化工原理传热膜系数测定实验报告

合集下载

化工原理-传热膜系数测定实验报告

化工原理-传热膜系数测定实验报告

化工原理-传热膜系数测定实验报告
实验名称:传热膜系数测定实验
实验目的:通过实验测量不同流速下铜管内传热膜系数,掌握传热膜系数实验测量方法,并熟悉其影响因素。

实验原理:传热膜系数是表征流体间传热的一项重要指标。

通过传热膜系数来描述传
热强度与传热面的关系。

传热膜系数的计算公式为:
α=q/(S·ΔT) (1)
其中,q为传热量,S为传热面积,ΔT为传热温差。

传热膜系数α与流速、流体性质、传热管材料、管径等因素有关。

实验器材:传热器、温度计、流量计、水泵、水池、电源、压力表等。

实验步骤:
1、打开电源,调节水泵和流量计,控制水流量,调节出口温度在稳定范围内。

2、预热传热器,调整流量计使水流量稳定。

3、调节传热器进水温度和出水温度,稳定后记下温度。

4、根据公式(1)求出传热膜系数α。

5、改变流速,重复以上步骤,记录数据。

实验结果与分析:
|流速(m/s) | 温差(℃) | 传热膜系数 |
|--------|------------|------------|
| 0.4 | 20.4 | 346.21 |
| 0.6 | 19.7 | 420.31 |
| 0.8 | 20.2 | 524.28 |
| 1.0 | 21.1 | 602.60 |
根据实验结果可以看出,传热膜系数α随着流速的增加而增加。

这是由于流速越快,对流传热强度越大,传热膜系数也就越大。

同时,由于传热膜系数与温差成正比,所以温
差越大,传热膜系数也越大。

因此,我们可以通过控制流速和温差来实现对传热膜系数的控制。

实验3化工原理实验传热膜系数的测定

实验3化工原理实验传热膜系数的测定

实验3化工原理实验传热膜系数的测定引言:传热膜系数是衡量传热效果的一个重要参数。

在化工工程中,准确测定传热膜系数对于设计和优化传热设备具有重要意义。

本实验旨在通过实验方法测定传热膜系数。

材料与方法:材料:水、试验设备、温度计仪器设备:传热装置、恒温器、温度计、流量计实验步骤:1.接通电源,打开恒温器,使其内部温度稳定在所需温度。

2.打开冷水和热水进水阀门,调节流量计开度至所需流量。

3.记录冷水、热水的入口和出口温度,并计算平均温度。

4.根据冷水和热水的平均温度与进出口温差,计算传热膜系数。

结果与讨论:实验中,我们进行了多组实验数据的测定,并计算了传热膜系数。

以下是两组实验结果的示例数据:实验1:冷水入口温度:20℃冷水出口温度:25℃热水入口温度:70℃热水出口温度:40℃冷水平均温度:22.5℃热水平均温度:55℃冷水和热水的进出口温差:2.5℃传热膜系数:10W/(m²·℃)实验2:冷水入口温度:15℃冷水出口温度:28℃热水入口温度:75℃热水出口温度:30℃冷水平均温度:21.5℃热水平均温度:52.5℃冷水和热水的进出口温差:3℃传热膜系数:15W/(m²·℃)通过多组实验数据的测定,我们可以发现传热膜系数与温差成正比例关系。

我们可以根据实验结果得到传热膜系数与温差的经验公式:q=KΔT,其中q为传热膜系数,ΔT为温差,K为比例常数。

结论:通过化工原理实验传热膜系数的测定,我们可以得到传热膜系数与温差的关系,并可以根据实验数据计算传热膜系数。

得到的实验结果可以在化工工程的传热设备设计和优化中起到重要的指导作用。

水的传热膜系数_传热膜系数测定实验报告范文加思考题解读

水的传热膜系数_传热膜系数测定实验报告范文加思考题解读

水的传热膜系数_传热膜系数测定实验报告范文加思考题解读目录一.摘要 (1)二.实验目的 (1)三.实验基本原理及内容 (1)四.实验装置说明及流程图 (3)五.实验步骤 (4)六.实验注意事项 (4)七.实验数据处理 (5)八.结果与讨论 (8)九.误差分析 (9)十.思考题 (9)化工原理实验报告——传热膜系数测定实验三传热膜系数测定实验一.摘要选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、对普通管换热器进行了强制对流传热实验研究。

确定了在相应条件下冷流体对流传热膜系数的关联式。

此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。

本实验采用由风机、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,让空气走内管,蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算了传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A和指数m(n取0.4),得到了半经验关联式。

关键词:对流传热对流传热膜系数蒸汽冷凝膜系数管内对流传热系数二.实验目的1.掌握传热膜系数α及传热系数K的测定方法;2.通过实验掌握确定传热膜系数准数关系式中的系数A和指数m、n的方法;3.通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。

三.实验基本原理及内容对流传热的核心问题是求算传热膜系数,当流体无相变时对流传热准数关联式的一般形式为:mnpGrPrNuARe(1)对于强制湍流而言,Gr准数可以忽略,故mnPrAReNu(2)本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。

用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。

本实验可简化上式,即取n=0.4(流体被加热)。

这样,上式即变为单变量方程,在两边取对数,即得到直线方程:1NulgAmlglgRe0.4Pr(3)在双对数坐标中作图,找出直线斜率,即为方程的指数m。

化工原理实验报告(传热)

化工原理实验报告(传热)

北京化工大学化工原理实验报告传热膜系数测定实验院(部):化学工程学院专业:化学工程与工艺班级:化工1005*名:*** 2010011136同组人员:王彬刘玥波方郡实验名称:传热膜系数测定实验实验日期: 2012.11.28传热膜系数测定实验一、摘要本实验以套管换热器为研究对象,以冷空气及热蒸汽为介质,冷空气走黄铜管内,即管程,热蒸汽走环隙,即壳程,研究热蒸汽与冷空气之间的传热过程。

通过测得的一系列温度及孔板压降数值,分别求得正常条件和加入静态混合器后的强化条件下的对流传热膜系数α及Nu ,做出lg (Nu/Pr0.4)~lgRe 的图像,分析出传热膜系数准数关联式Nu=ARemPr0.4中的A 和m 值。

关键词:对流传热 Nu Pr Re α A 二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。

三、实验原理黄铜管内走冷空气,管外走100℃的热蒸汽,壁内侧热阻1/α远远大于壁阻、垢阻及外侧热阻,因此研究传热的关键问题是测算α,当流体无相变时对流传热准数关系式的一般形式为:p n m Gr A Nu Pr Re ⋅⋅=对于强制湍流有: n m A Nu Pr Re =用图解法对多变量方程进行关联,要对不同变量Re 和Pr 分别回归。

本实验可简化上式,即取n=0.4(流体被加热)。

在两边取对数,得到直线方程为Re lg lg Pr lg4.0m A Nu+= 在双对数坐标中作图,求出直线斜率,即为方程的指数m 。

在直线上任取一点函数值代入方程中,则可得到系数A ,即mNuA RePr4.0=其中 λαλμμρdNu Cp du ===,Pr ,Re 实验中改变空气的流量,以改变Re 值。

根据定性温度计算对应的Pr 值。

同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 值。

传热膜系数测定实验

传热膜系数测定实验
9
实验数据表格
序 空气入口 空气出口 壁温1 号 温度[℃] 温度[℃] [℃] 壁温2 孔板压降 [℃] [kPa]
Re
Nu
Pr
10
实验结果作图及要求
1、在双对数坐标系中画出Nu/Pr0.4~Re的关系图;
11
2、整理出传热膜系数α的准数关系式; 3、讨论影响α的因素及强化传热的措施; 4、思考题7选4。
7
四、实验流程图
8
五、操作步骤
1、向蒸汽发生器加水至液位计高度4/5,关闭补水阀,启 动加热器; 2、铜管表面出现液滴时,全开阀门,调频率50Hz启动风机 预热5分钟; 3、间隔4Hz由大到小改变空气流量,孔板压降最小值大于 0.1kPa,稳定2分钟后记录数据; 4、加入静态混合器进行强化传热实验,方法同3,注意空 气出口温度计对中; 5、数据采集与控制软件使用及现场清理。
2
二、实验目的
在套管总传热方程 总传热系数
1 K
Q = K ⋅ A ⋅ Δt m
= 1
α
+
1
1 1 + λ / d α 2
α1 范围:
λ/d范围: α2 范围:
104 W/(m2•℃) 104 W/(m2•℃) 2000 W/(m2•℃)
关键因素α2,如何确定?进而确定K,求算A
3
通过实验要达到以下目的:
1、测定管内壁与空气的对流传热膜系数α; 2、测定用因次分析法求α时,关联式Nu=ARemPrn 中的参数; 3、分析影响α的因素,了解工程上强化传热的措施。
4
三、实验原理
温度 [℃]
t出
t 气膜
w
液膜
(一)确定对流传热膜系数α:
(t (t

传热膜系数测定实验

传热膜系数测定实验
传热量可由下式得
Q WC p (t2 t1 ) / 3600
空气的体积流量由孔板流量计侧得
式中
Vs 26.2p 0.54
p --------孔板流量计降 kPa Vs ---------空气流量, m3 / h
三、装置和流程图
-2-
化工原理实验—传热膜系数测定
四、实验步骤 1、 实验开始前,先熟悉配电箱各按钮与设备的对应关系,
Q = 428.34 110.62
Atm 3.14 0.0201.25
Nu d 110.62 0.020 78.48
0.0282
W·m-2·K-1
-5-
化工原理实验—传热膜系数测定
Re
4qm d
4mVs 3600 d
4 1.0955 1.85 3600 3.14 0.020 0.1957 104
50066.0
六 实验结果分析 根据实验数据用 origin 做图如下:
上图显示了在双对数坐标下强化传热前后所得到的结果,为 两条斜率基本相同而截距不同的直线
1.强化传热前拟合结果 m=0.76804 logA= -1.64768
Nu 0.022 Re0.77 Pr0.4
-6-
化工原理实验—传热膜系数测定
线行任取一点即可求得系数 A
A Nu Pr0.4 Rem
对于关联方程,首先要有 Nu,Re, Pr数据组,其定义分别为
牛顿冷却定理
Re du
Pr C p
Q Atm
Nu d
式中 : Q ——单位时间传热量, W; α——总传热系数,W/m2·K; A——传热面积,m2; tm——平均温差,K 或 oC。
这次的实验数据由计算机直接读出,准确性大大提高; 因为所有数据都由程序读出,实验过程也大大简化,我们动 手的步骤很少。数据由 origin 采用最小二乘法完成处理, 实验结果与理论公式符合得很好。希望在以后的实验中更多 地采用计算机读取数据,这样数据读取准确、记录方便,对 于后来的数据处理有很大的好处,也使实验结果更佳符合理 论公式。

【最新推荐】化工原理实验实验报告word版本 (18页)

【最新推荐】化工原理实验实验报告word版本 (18页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==化工原理实验实验报告篇一:化工原理实验报告吸收实验姓名专业月实验内容吸收实验指导教师一、实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数KYa.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。

但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。

(一)、空塔气速与填料层压降关系气体通过填料层压降△P与填料特性及气、液流量大小等有关,常通过实验测定。

若以空塔气速uo[m/s]为横坐标,单位填料层压降?P[mmH20/m]为纵坐标,在Z?P~uo关系Z双对数坐标纸上标绘如图2-2-7-1所示。

当液体喷淋量L0=0时,可知为一直线,其斜率约1.0—2,当喷淋量为L1时,?P~uo为一折线,若喷淋量越大,Z?P值较小时为恒持Z折线位置越向左移动,图中L2>L1。

每条折线分为三个区段,液区,?P?P?P~uo关系曲线斜率与干塔的相同。

值为中间时叫截液区,~uo曲ZZZ?P值较大时叫液泛区,Z线斜率大于2,持液区与截液区之间的转折点叫截点A。

姓名专业月实验内容指导教师?P~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B。

在液泛区塔已Z无法操作。

塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。

图2-2-7-1 填料塔层的?P~uo关系图 Z图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。

若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。

其吸收速率方程可用下式表示: NA?KYa???H??Ym(1)式中:NA——被吸收的氨量[kmolNH3/h];?——塔的截面积[m2]H——填料层高度[m]?Ym——气相对数平均推动力KYa——气相体积吸收系数[kmolNH3/m3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):NA?V(Y1?Y2)?L(X1?X2) (2)式中:V——空气的流量[kmol空气/h]L——吸收剂(水)的流量[kmolH20/h]Y1——塔底气相浓度[kmolNH3/kmol空气]Y2——塔顶气相浓度[kmolNH3/kmol空气]X1,X2——分别为塔底、塔顶液相浓度[kmolNH3/kmolH20] 由式(1)和式(2)联解得:KYa?V(Y1?Y2)(3) ??H??Ym为求得KYa必须先求出Y1、Y2和?Ym之值。

化工原理_传热膜系数测定实验报告

化工原理_传热膜系数测定实验报告

北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班姓名:XXX学号:XXX 序号:11同组人:XXXX设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期:2015-12-17一、实验摘要首先,本实验让空气走内管,蒸汽走环隙,采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,由人工智能仪来读取所有温度和压差等参数,用计算机软件实现数据的在线采集与控制。

其次,由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α,再通过作图,使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=0.4)中的系数A 和指数m 后,在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。

最后,整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式,并与公认的关联式进行了比较。

关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,将实验所得结果与公认的关联式进行比较,分析影响α的因素,了解工程上强化传热的措施。

三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热,第二、固体壁面的热传导,第三、固体壁面对冷流体的对流传热。

当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言,Gr 数可忽略,进行简化后:Re Pr m n Nu A =在本文中,采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。

实验3化工原理实验传热膜系数的测定

实验3化工原理实验传热膜系数的测定

实验3 化工原理实验传热膜系数的测定实验报告实验3:化工原理实验传热膜系数的测定一、实验目的1.学习和掌握传热膜系数的概念及其物理意义。

2.通过实验测定不同条件下的传热膜系数,了解其对传热过程的影响。

3.学习和掌握传热实验的基本方法和技能。

二、实验原理传热膜系数(也称为传热系数)是指在单位时间内、单位温度差下,通过单位面积的热量。

它反映了传热过程中,单位面积的热流量大小。

本实验通过测量加热管内溶液的温度变化,以及测量加热管外表面的温度,来测定传热膜系数。

实验采用同心套管式换热器,由内、外两根套管组成,其中外管走冷却水,内管走加热液体。

当内管中的加热液体通过时,热量会通过内管壁传递到外管中的冷却水,使得两者温度发生变化。

通过测量内、外管的温度变化以及内管的热流量,可以计算出传热膜系数。

三、实验步骤1.准备实验器材:同心套管式换热器、加热器、温度计、冷却水、加热液体等。

2.将同心套管式换热器安装在实验装置上,确保密封良好。

3.启动加热器,加热内管中的加热液体。

4.测量内管的初始温度Ti和外管的初始温度To。

5.在加热过程中,控制冷却水的流量,使内外管的温度变化保持稳定。

6.加热一定时间后,停止加热,记录内管的最终温度Tf和外管的最终温度Tf。

7.测量加热过程中内管的热流量Q。

8.改变加热液体的流速或更换不同材料的外管,重复步骤3-7。

四、实验数据分析1.根据测量数据计算传热膜系数:传热膜系数K可以通过下式计算:K = Q / (Tf - Ti) / A / Δt其中,Q为加热过程中内管的热流量(W),Ti和Tf分别为内管初始和最终温度(℃),A为内管表面积(m2),Δt为加热时间(s)。

2.将不同条件下的传热膜系数进行比较,分析传热膜系数与哪些因素有关。

3.根据实验数据,可以得出以下结论:(1)传热膜系数随着加热液体流速的增加而增加,表明流速对传热过程有促进作用。

(2)传热膜系数随着外管材料的不同而有所差异,表明材料性质对传热过程有影响。

传热膜系数测定实验

传热膜系数测定实验

北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:学号:姓名:同组人:实验日期: 2015-12-14摘要本实验以套管换热器为研究对象,以冷空气及热蒸汽为介质,冷空气走黄铜管内,即管程,热蒸汽走环隙,即壳程,研究热蒸汽与冷空气之间的传热过程。

通过测得的一系列温度及孔板压降数值,分别求得正常条件和加入静态混合器后的强化条件下的对流传热膜系数α及Nu,做出lg(Nu/Pr0.4)~lgRe的图像,分析出传热膜系数准数关联式Nu=Are m Pr0.4中的A和m值。

关键词:对流传热 Nu Pr Re α A一、目的及任务1、掌握传热膜系数α及传热系数K的测定方法。

2、通过实验掌握确定传热膜系数准数关系式中的系数A和指数m、n的方法。

3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。

二、基本原理对流传热的核心问题是求算传热系数α,当流体无相变时对流传热准数关系式的一般形式为对于强制湍流而言,Gr数可忽略,即本实验中,可用图解法和最小二乘法计算上述准数关系式中的指数m和系数A。

用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。

本实验可简化上式,即取n=0.4。

在两边取对数,得到直线方程为在双对数坐标中作图,求出直线斜率,即为方程的指数m。

在直线上任取一点函数值代入方程中,则可得到系数A,即用图解法,根据实验点确定直线位置有一定的人为性。

而用最小二乘法回归,可以得到最佳关联结果。

应用计算机辅助手段,对多变量方程进行一次回归,就能同时得到A,m,n。

对于方程的关联,首先要有Nu,Re,Pr的数据组。

其特征数定义式分别为实验中改变空气的流量,以改变Re值。

根据定性温度计算对应的Pr值。

同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu的值。

牛顿冷却定律为式中α——传热膜系数,W/(m2·℃);Q——传热量,W;A——总传热面积,m2;Δtm——管壁温度与管内流体温度的对数平均温差,℃。

化工原理实验传热实验报告

化工原理实验传热实验报告

传热膜系数测定实验(第四组)一、实验目的1、了解套管换热器的结构和壁温的测量方法2、了解影响给热系数的因素和强化传热的途径3、体会计算机采集与控制软件对提高实验效率的作用4、学会给热系数的实验测定和数据处理方法二、实验内容1、测定空气在圆管内作强制湍流时的给热系数α12、测定加入静态混合器后空气的强制湍流给热系数α1’3、回归α1和α1’联式4.0Pr Re ⋅⋅=aA Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失二、实验原理间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。

由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。

1)寻找影响因素物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βgΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βgΔT) 2)量纲分析ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]]3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ4)无量纲化非基本变量α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βgΔT : Gr =βgΔT l 3ρ2/μ2 5)原函数无量纲化⎪⎪⎭⎫ ⎝⎛∆=223,,μρβλμμρλαtl g c lu F l p 6)实验Nu =ARe a Pr b Gr c强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: m t A K t T t T t T t T A K Q ∆⋅⋅=-----⋅=111221122111ln)()(热量衡算方程:)()(12322111t t c q T T c q Q p m p m -=-=圆管传热牛顿冷却定律:22112211222112211211ln )()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----⋅=-----⋅=αα圆筒壁传导热流量:)]/()ln[)()()/ln(112211221212w w w w w w w w t T t T t T t T A A A A Q -----⋅-⋅=δλ 空气流量由孔板流量测量:54.02.26P q v ∆⨯= [m 3h -1,kPa]空气的定性温度:t=(t 1+t 2)/2 [℃]三、实验流程1、蒸汽发生器2、蒸汽管3、补水漏斗4、补水阀5、排水阀6、套管换热器7、放气阀8、冷凝水回流管9、空气流量调节阀10、压力传感器11、孔板流量计12、空气管13、风机图1、传热实验流程套管换热器内管为φ27×3.5mm黄铜管,长1.25m,走冷空气,外管为耐高温玻璃管,壳程走100℃的热蒸汽。

化工原理实验传热实验报告

化工原理实验传热实验报告

传热膜系数测定实验(第四组)一、实验目的1、了解套管换热器的结构和壁温的测量方法2、了解影响给热系数的因素和强化传热的途径3、体会计算机采集与控制软件对提高实验效率的作用4、学会给热系数的实验测定和数据处理方法 二、实验内容1、测定空气在圆管内作强制湍流时的给热系数α12、测定加入静态混合器后空气的强制湍流给热系数α1’3、回归α1和α1’联式4.0Pr Re ⋅⋅=a A Nu 中的参数A 、a *4、测定两个条件下铜管内空气的能量损失 二、实验原理间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。

由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。

1)寻找影响因素物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]]3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验Nu =ARe a Pr b Gr c强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程:圆管传热牛顿冷却定律:圆筒壁传导热流量:)]/()ln[)()()/ln(112211221212w w w w w w w w t T t T t T t T A A A A Q -----⋅-⋅=δλ空气流量由孔板流量测量:54.02.26P q v ∆⨯= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]三、实验流程1、蒸汽发生器2、蒸汽管3、补水漏斗4、补水阀5、排水阀6、套管换热器7、放气阀8、冷凝水回流管9、空气流量调节阀10、压力传感器 11、孔板流量计 12、空气管 13、风机图1、传热实验流程套管换热器内管为φ27×3.5mm黄铜管,长1.25m,走冷空气,外管为耐高温玻璃管,壳程走100℃的热蒸汽。

化工原理传热膜系数测定实验报告

化工原理传热膜系数测定实验报告

北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班姓名:张玮航学号: 2013011132 序号: 11同组人:宋雅楠、陈一帆、陈骏设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期: 2015-12-17一、实验摘要首先.本实验让空气走内管.蒸汽走环隙.采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置.由人工智能仪来读取所有温度和压差等参数.用计算机软件实现数据的在线采集与控制。

其次.由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α.再通过作图.使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=0.4)中的系数A 和指数m 后.在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。

最后.整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式.并与公认的关联式进行了比较。

关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解.将实验所得结果与公认的关联式进行比较.分析影响α的因素.了解工程上强化传热的措施。

三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热.第二、固体壁面的热传导.第三、固体壁面对冷流体的对流传热。

当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言.Gr 数可忽略.进行简化后:Re Pr m n Nu A =在本文中.采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。

传热膜系数测定实验报告北京化工大学化工原理实验

传热膜系数测定实验报告北京化工大学化工原理实验

传热膜系数测定摘要:选用牛顿冷却定律作为对流传热实验的测试原理,通过建立不同体系的传热系统,即水蒸汽—空气传热系统、分别对普通管换热器和强化管换热器进行了强制对流传热实验研究。

确定了在相应条件下冷流体对流传热膜系数的关联式。

此实验方法可以测出蒸汽冷凝膜系数和管内对流传热系数。

本实验采用由风机、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,让空气走内管,蒸汽走环隙,用计算机在线采集与控制系统测量了孔板压降、进出口温度和两个壁温,计算了传热膜系数α,并通过作图确定了传热膜系数准数关系式中的系数A 和指数m (n 取0.4),得到了半经验关联式。

实验还通过在内管中加入混合器的办法强化了传热,并重新测定了α、A 和m 。

一、 实验目的1、掌握传热膜系数α及传热系数K 的测定方法;2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,并分析影响α的因素,了解工程上强化传热的措施。

二、基本原理对流传热的核心问题是求算传热膜系数 ,当流体无相变时对流传热准数关联式的一般形式为:p n m Gr A Nu ⋅⋅⋅=Pr Re (1)对于强制湍流而言,Gr 准数可以忽略,故n m A Nu Pr Re ⋅⋅= (2)本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m 、n 和系数A 。

用图解法对多变量方程进行关联时,要对不同变量Re 和Pr 分别回归。

本实验可简化上式,即取n =0.4(流体被加热)。

这样,上式即变为单变量方程,在两边取对数,即得到直线方程: Re lg lg Pr lg4.0m A Nu += (3)在双对数坐标中作图,找出直线斜率,即为方程的指数m 。

在直线上任取一点的函数值代入方程中,则可得到系数A ,即: m Nu A Re Pr 4.0⋅= (4)用图解法,根据实验点确定直线位置有一定的人为性。

而用最小二乘法回归,可以得到最佳关联结果。

传热膜系数的测定报告1

传热膜系数的测定报告1

传热膜系数的测定报告1长江大学化工原理实验报告实验名称:班级:姓名:同组人员:指导老师:实验日期:传热膜系数的测定应化11002班李明杰李强、李双华、李俊尧吴洪特20XX年5月12日1目录一、实验目的及任务 ................................................ ................. 3 二、基本原理 ................................................ .............................. 3 1.套管式传热膜系数的测定 .................................................3 2.管内强化传热系数的测定 .................................................4 三、实验装置与流程 ................................................ .................5 实验装置 ................................................ ...... 5 流程说明 ................................................ ...................... 5 四、实验步骤 ................................................ .............................. 5 五、实验数据记录与处理 ................................................ ......... 6 普通传热 ................................................ ................................ 7 普通传热:以第三组为例 ................................................ .... 8 强化传热:以第四组为例 ................................................ .... 9 六、注意事项 ................................................ .............................. 9 七、实验结果分析与讨论 ................................................ ......... 9 八、思考题 .................................................................................. 9 九、附录 ................................................ (10)2传热膜系数的测定一、实验目的及任务Ⅰ.通过掌握传热膜系数的测定方法,并分析影响的因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理传热膜系数测定实验报告SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#北京化工大学化工原理实验报告实验名称:传热膜系数测定实验班级:化工1305班姓名:张玮航学号: 32 序号: 11同组人:宋雅楠、陈一帆、陈骏设备型号:XGB型旋涡气泵及ASCOM5320型压力传感器第4套实验日期: 2015-12-17一、实验摘要首先,本实验让空气走内管,蒸汽走环隙,采用由XGB 型漩涡气泵风机、ASCOM5320型压力传感器、孔板流量计、蒸汽发生器等组成的自动化程度较高的装置,由人工智能仪来读取所有温度和压差等参数,用计算机软件实现数据的在线采集与控制。

其次,由所得数据分别求得了正常条件和加入静态混合器后的强化条件下的对流传热膜系数α,再通过作图,使用图解法确定了传热膜系数准数关系式Re Pr m n Nu A =(n=)中的系数A 和指数m 后,在双对数坐标纸中作出了0.4/Pr Re Nu 的关系曲线。

最后,整理出了流体在圆管内做强制湍流流动的传热膜系数准数半经验关联式,并与公认的关联式进行了比较。

关键词:传热膜系数K 、雷诺数Re 、努赛尔准数Nu 、普朗特数Pr 、图解法二、实验目的1、掌握传热膜系数α及传热系数K 的测定方法: (1)测定空气在圆管内作强制湍流时的给热系数α1 (2)测定加入静态混合器后空气的强制湍流给热系数α1’2、通过实验掌握确定传热膜系数准数关系式中的系数A 和指数m 、n 的方法;3、通过实验提高对准数关系式的理解,将实验所得结果与公认的关联式进行比较,分析影响α的因素,了解工程上强化传热的措施。

三、实验原理间壁式传热过程可分为三个过程:第一、由热流体对固体壁面的对流传热,第二、固体壁面的热传导,第三、固体壁面对冷流体的对流传热。

当流体无相变时的对流传热准数关系式可由量纲分析法写为:Re Pr m n p Nu A Gr =对于强制湍流而言,Gr 数可忽略,进行简化后:Re Pr m n Nu A =在本文中,采用Excel 软件对上述准数关系式中的指数m 、n 和系数A 进行计算机求解。

采用双对数坐标作图,利用幂函数函数形式对数据进行拟合,即可很好的求解出自变量lg Re 对0.4lgPr Nu的线性关系,直接得到其幂函数关系的解析式。

该方法中,要求对不同变量的Re 和Pr 分别回归。

本实验测取流体被加热过程中的各参数,因而上述式子中的0.4n =,这样式(2)便成为单变量方程,两边同时去对数得:0.4lg lg lg Re PrNuA m =+ 首先定义三个无量纲数群:Nu 、Re 、Pr 的数据组。

其特征数定义式分别为Re ,Pr ,du Cp dNu ρμαμλλ===实验中通过改变空气的流量,以改变Re 值,根据定性温度(空气进出口温度的算术平均值)计算相应的Pr 值。

同时,由牛顿冷却定律,求出不同流速下的传热膜系数值,进而求得Nu 的值。

在圆管中,有传热基本方程:m t A K t T t T t T t T A K Q ∆⋅⋅=-----⋅=111221122111ln )()(在圆管中,有传热牛顿冷却定律:22112211222112211211ln )()(ln )()(w w w w w w w w T T T T T T T T A t t t t t t t t A Q -----⋅=-----⋅=αα 在圆管中,有筒壁传导热流量:)]/()ln[)()()/ln(112211221212w w w w w w w w t T t T t T t T A A A A Q -----⋅-⋅=δλ式中α——传热膜系数,()2·W m ℃Q ——传热量,WA ——传热面积,A dl π=,2m 由由热量衡算方程:)()(12322111t t c q T T c q Q p m p m -=-=,传热量可由下式求得()()2121/3600/3600p S p Q Wc t t V c t t ρ=-=-式中W ——质量流量,kg hp c ——流体的比定压热容,)·J kg ℃12,t t ——流体进出口温度,℃——定性温度下流体密度,3/m hS V ——流体体积流量,3/m h四、实验流程和设备图1 传热实验带控制点的工艺流程1-风机,2-孔板流量计,3-空气流量调节阀,4-空气入口测温点,5-空气出口测温点,6-水蒸气入口壁温,7-水蒸气出口壁温,8-不凝性气体放空阀,9-冷凝水回流管,10-蒸汽发生器,11-补水漏斗,12-补水阀,13-排水阀1、 设备说明本实验空气走内管,蒸汽走管隙(玻璃管)。

内管为黄铜管,其内径为,有效长度为。

空气进、出口温度和管壁温度分别由铂电阻(Pt100)和热电偶测得。

测量空气进、出口的铂电阻应置于进、出管得中心。

测量管壁温度用一支铂电阻和一支热电偶分别固定在管外壁两端。

孔板流量计的压差由压差传感器测得。

本实验使用的蒸汽发生器由不锈钢材料制成,装有玻璃液位计,加热功率为。

风机采用XGB 型漩涡气泵,最大压力,最大流量100m 3/h 。

2 、采集系统说明(1) 压力传感器:本实验装置采用ASCOM5320型压力传感器,其测量范围为0~20kPa。

(2) 显示仪表:在实验中所有温度和压差等参数均可由人工智能仪表读取,并实验数据的在线采集与控制,测量点分别为:孔板压降、进出口温度和两个壁温。

3、流程说明本实验装置流程图1所示,冷空气由风机输送,经孔板流量计计量以后,进入换热器内管(铜管),并与套管环隙中的水蒸气换热。

空气被加热后,排入大气。

空气的流量由空气流量调节阀调节。

蒸汽由蒸汽发生器上升进入套管环隙,与内管中冷空气换热后冷凝,再由回流管返回蒸汽发生器。

放气阀门用于排放不凝性气体,在铜管之前设有一定长度的稳定段,用于消除端效应。

铜管两端用塑料管与管路相连,用于消除热效应。

五、实验操作(1)实验准备1、先熟悉计算机软件的界面使用和配电箱上各个按钮与设备的对应关系,检查蒸汽发生器中的水位,开补水阀,使其保持在4/5液位计高度;2、按下本小组的总电源开关对应的加热、风机按钮。

检查空气出口温度计顶端位于中心偏上5mm处;(2)空气强制对流给热实验1、关闭蒸汽发生器补水阀,启动风机,接通蒸汽发生器的发热电源,保持不凝气阀开1/2圈,调整好热电偶位置;2、运行软件,修改风机频率为12Hz左右,使此时界面中的孔板压降提示为“”左右。

按采集画面中的绿色按钮启动风机,待仪表数值稳定后,记录数据;再每升高至3Hz取一实验点,使得管路压降按实验原始数据记录表格中的顺序和大小进行实验,总计进行13次直至达到最大孔板压降(本实验中为)。

3、实验中,不断通过计算机软件的“记录数据”及“实验结果”进行实验数据的初步处理,由电脑所绘制的拟合曲线来检验实验结果是否符合线性关系,如偏差较小,可认为实验较为成功;(3)空气强化传热给热实验1、先通过电脑停风机,再将出口温度计向上拔约3cm,将静态混合器插入管中,并将其固定,再次调整好热电偶温度计,将软件界面调整为新的操作环境。

将风机频率调回12Hz左右,使此时界面中的孔板压降提示为“”左右。

待仪表数值稳定后,记录数据;再每升高至3Hz取一实验点,使得管路压降按实验原始数据记录表格中的顺序和大小进行实验,总计进行12次直至达到最大孔板压降(本实验中为);2、实验中,不断通过计算机软件的“记录数据”及“实验结果”进行实验数据的初步处理,由电脑所绘制的拟合曲线来检验实验结果是否符合线性关系,如偏差较小,可认为实验较为成功;(4)实验结束实验结束后,按采集画面的红色按钮停风机,停蒸汽发生器电源。

然后向上拔出口温度计,再旋转取出混合器放好,并将空气出口温度计放回原位。

清理现场,向蒸汽发生器内补水。

六、实验数据表格及计算举例表1 空气强制湍流给热系数实验数据表2 空气强化传热给热系数实验数据以第一表中第三组数据为例:由于本试验温度变化较大,所以需要用内插法分别求出各温度下气体的特性参数,内插过程如下:定性温度:12t t 21.262.4t 41.822C ++===︒定压比热容:1p 1005.33J (kg )C C -=⋅⋅︒热导率:()0.02670.00099.610.W /m K λ=+⨯÷=0027564 测量点表压:00-0.4-0.00-0.51-0.000.71kpa 22P P P P P ∆∆=∆∆+=+=孔板,孔板测量点管路,管路()()()() 测量点密度(t1处的空气密度由纯物质物理性质表查得):-31.201kg m ρ=⋅测量点 测量点流量:'4-43-10.62 3.141036000.62 3.1410360022.2m h v q -=⨯⨯=⨯⨯=⋅工作点温度 :12t t 21.262.4t 41.822C ++===︒ 工作点表压:0-0.510.000.26kpa 22P P P ∆∆-===管路,管路工作点工作点密度(t=℃时):-31.124kg m ρ=⋅工作点 工作点粘度(t=℃时):-51.898710a s P μ=⨯⋅ 工作点热导率(t=℃时):10.0272(m )W K λ-=⋅⋅ 工作点比热容(t=℃时):1p 1005.33J (kg )C C -=⋅⋅︒ 工作点流量:3-11.20118.119.34m h 1.124v v q q ρρ=⨯=⨯=⋅测量点测量点工作点工作点 工作点气速:-1v 2q 19.344u 17.11m s A 3600 3.140.02⨯===⋅⨯⨯ 其中,换热面积A : 1A d π= 热流量:v 2119.3 1.1241005.33.-21.2q p t -t 249.593600Q C W ρ⨯⨯⨯===工作点(624)()对数平均温差:w11w 22m w11w 22t -t -t -t 101-21.2-100.3-62.4t 56.27t -t 101-21.2ln ln t -t 100.3-62.4C ∆===︒()()()()()()()给热系数:2111249.958.93.14 1.200.02056.3m Q W m C A t α--===⋅⋅︒∆⨯⨯⨯ 努塞尔准数:158.90.0243.310.0272d Nu αλ⨯=== 普朗特准数:51005.33 1.898710Pr 0.7020.0272Cp μλ-⨯⨯=== 雷诺数:50.02017.1 1.124Re 20245.851.898710du ρμ-⨯⨯===⨯0.40.443.31=49.89Pr 0.702Nu = 0.80.80.40.023e 0.023*******.089Pr NuR =⨯=⨯=理论值七、实验结果作图及分析(1)从实验结果的双对数纸坐标曲线图中可以看出, Nu/~Re 关系在强制对流和强化传热的两次实验中都十分符合线性关系。

相关文档
最新文档