实验四 直流斩波电路的性能研究
直流斩波电路建模仿真实训报告新颖完整
直流斩波电路建模仿真实训报告新颖完整直流斩波电路是一种常用的电路拓扑,可用于将直流电转换为可调节的脉冲电压输出。
其在电力电子领域有着广泛的应用,例如交流电压变换、电流控制等。
本文将对直流斩波电路进行建模仿真,并详细介绍其原理和性能特点。
一、直流斩波电路的原理直流斩波电路主要由稳压电源、开关器件(如功率MOS管)、电流传感器、电感、电容、负载等组成。
稳压电源提供稳定的直流电压作为输入,开关器件通过控制开关时间和频率来调节输出波形。
电流传感器用于感应电流变化并反馈给控制电路,使控制电路能够根据需要来调整开关器件的导通时间,以达到输出波形的调节目的。
电感和电容则用来平滑输出波形。
直流斩波电路的工作原理是通过开关器件的周期性导通和截止来实现对直流电压的切割,进而产生脉冲电压输出。
当开关器件导通时,输入电压被加到负载上,电流开始增加;而当开关器件截止时,负载上的电流被切断,负载上的电压下降,电流开始减小。
通过改变开关器件的导通和截止时间,可以改变输出脉冲的宽度和频率。
二、直流斩波电路的性能特点1.可调节输出:直流斩波电路能够灵活地调节输出脉冲的宽度和频率,从而实现对输出脉冲电压的精确控制。
2.高效能转换:直流斩波电路能够将输入直流电转换为高频脉冲电压输出,具有高效的能量转换特性,可以提高系统的能量利用率。
3.电压稳定性好:直流斩波电路通过电感和电容来平滑输出波形,从而提高输出电压的稳定性,在脉动和噪声方面有较好的表现。
4.小型化设计:直流斩波电路由于结构简单,元件少,可以实现小型化设计,满足电子设备对体积的要求。
三、直流斩波电路的建模仿真首先,在LTspice中绘制直流斩波电路的原理图,包括稳压电源、开关器件、电流传感器、电感、电容、负载等。
然后,设置元件的参数,例如输入电压、负载电阻、开关器件的导通时间和截止时间等。
接下来,设置仿真的条件,例如仿真时间、步长等。
进行仿真分析时,可以观察直流斩波电路的输出波形,例如输出脉冲的宽度、频率、占空比等。
实验五-直流斩波电路的性能研究实验报告-第五组
XXX学院实验报告学院:专业:班级:成绩:姓名:学号:组别:组员:实验地点:实验日期:指导教师签名:验(序号)项目名称:直流斩波电路的性能研究(六种典型线路)实验五直流斩波电路的性能研究(六种典型线路)一、实验目的(1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解PWM 控制与驱动电路的原理及其常用的集成芯片。
二、实验所需挂件及附件三、实验线路及原理1、主电路①、降压斩波电路(Buck Chopper)降压斩波电路(Buck Chopper)的原理图及工作波形如图4-12 所示。
图中V 为全控型器件,选用IGBT。
D 为续流二极管。
由图4-12b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向负载供电,U D=U i。
当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。
负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on/T)。
由此可知,输出到负载的电压平均值U O 最大为U i,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
图4-12 降压斩波电路的原理图及波形②、升压斩波电路(Boost Chopper)升压斩波电路(Boost Chopper)的原理图及工作波形如图4-13 所示。
电路也使用一个全控型器件V。
由图4-13b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向电感L1 充电,充电电流基本恒定为I1,同时电容C1 上的电压向负载供电,因C1 值很大,基本保持输出电压U O 为恒值。
设V 处于通态的时间为t on,此阶段电感L1 上积蓄的能量为U i I1t on。
当V 处于断态时U i和L1 共同向电容C1 充电,并向负载提供能量。
直流降压斩波电路实验报告
直流降压斩波电路实验报告
一、实验目的
本实验的主要目的是了解直流降压斩波电路的工作原理,掌握电路的搭建方法和调试技巧,同时能够通过实验数据分析和计算得出电路的性能参数。
二、实验原理
直流降压斩波电路是一种常用的电源调节电路,它可以将高压直流电源转换为低压直流电源。
该电路由三个部分组成:变压器、整流滤波器和斩波稳压器。
其中变压器主要起到降压作用,整流滤波器则可以将交流信号转换为直流信号,并对信号进行平滑处理,最后斩波稳压器则可以对输出信号进行稳定控制。
三、实验步骤
1. 搭建直流降压斩波电路。
2. 连接示波器和负载。
3. 调节变压器输出电压为所需输出值。
4. 调节斩波管触发角度和输出信号稳定性。
5. 记录实验数据并进行分析。
四、实验注意事项
1. 实验过程中应注意安全,避免触电等事故。
2. 严格按照步骤操作,避免误操作导致电路损坏。
3. 实验数据应准确记录,避免误差产生。
五、实验结果分析
通过实验数据的分析和计算,可以得出直流降压斩波电路的性能参数。
其中包括输出电压、输出电流、效率等指标。
同时还可以观察到斩波
管的触发角度对输出信号稳定性的影响,并对电路进行优化调整。
六、实验总结
本次实验通过搭建直流降压斩波电路并进行调试和分析,深入了解了
该电路的工作原理和性能参数计算方法。
同时也提高了我们的实验技
能和安全意识,为今后的学习和科研奠定了基础。
直流斩波电路Buck、Buck-Boost 开关电路实验
直流斩波电路Buck、Buck-Boost 开关电路实验一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(3)了解KC系列集成触发器的调整方法和各点的波形。
二、实验线路的构成及原理(1)DDS02主电路挂箱配置原理DDS02挂箱包括脉冲和熔断丝指示、晶闸管(I组桥、Ⅱ组桥)电路、电抗器等内容。
脉冲有无指示为方便实验中判断对应晶闸管上门阴极上是否正常,若正常,则指示灯亮,否则则不亮;同样熔断丝指示也是同理。
主要分I组桥和Ⅱ组桥分别指示。
晶闸管电路装有12只晶闸管、6只整流二极管。
12只晶闸管分两组晶闸管变流桥,其中VTl~VT6为正组桥(I组桥),由KP5-8晶闸管元件构成,一般不可逆、可逆系统的正桥、交-直-交变频器的整流部分均使用正组元件;由VT1ˊ~VT6ˊ组成反组桥(Ⅱ组桥),元件为KP5-12晶闸管,可逆系统的反桥、交-直-交变频器的逆变部分使用反组元件;同时还配置了6只整流二极管VDl~VD6,可构成不可控整流桥作为直流电源,元件的型号为KZ5-10。
所有这些功率半导体元件均配置有阻容吸收、熔丝保护,电源侧、直流环节、电机侧均配置有压敏电阻或阻容吸收等过电压保护装置。
电抗器为平波电抗器L,共有4档电感值,分别为50mH、100mH、200mH、700mH,1200 mH可根据实验需要选择电感值。
续流二极管为桥式整流实验时电路续流用,型号为KZ5-10;另外挂箱还配有一组阻容吸收电路。
(2)DDS03控制电路挂箱配置原理DDS03挂箱包括三相触发电路及功放电路、FBC+FA(电流反馈与过流保护)、G(给定器)等内容。
面板上部为同步变压器,其连线已在内部接好,连接组为△/Y-1.可在“同步电源观察孔”观察同步电源的相位。
三相触发电路(GT)及功放电路(AP)包括有GTF正组(I组)触发脉冲装置和GTR 反组(Ⅱ组)触发脉冲装置,分别通过开关连至VF正组晶闸管和VR反组晶闸管的门极、阴极。
直流斩波电路实验三
实验四 直流斩波电路的性能研究(六种典型线路)一、实验目的(1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解PWM 控制与驱动电路的原理及其专用PWM 控制芯片SG3525。
二、预习内容(1)什么是斩波电路?其应用范围有哪些?(2)了解IGBT 的特性。
(3)了解直流斩波电路的工作原理。
三、实验设备及挂件 1)设备列表四、实验电路原理示意图及流程图1)实验线路原理示意图图X-1图X-1实验线路原理示意图2) 实验电路流程框图X-2图X-2 实验电路流程图五、实验内容1、控制与驱动电路测试2、六种典型电路测试1)降压斩波电路(Buck Chopper) ;2)升压斩波电路(Boost Chopper);3)升降压斩波电路(Boost-Buck Chopper);4)Cuk斩波电路;5)Sepic斩波电路;6) Zeta斩波电路;六、注意事项1)示波器测量时的共地问题。
当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,各探头接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。
(建议测量主电路各点信号及U GE 时用一个探头)2)每当做完一个电路时,必须关掉所有电源,方可拆掉线路和接新的实验电路。
3)注意电解电容的正负极性。
4)整流输出电压<45伏。
七、实验步骤与方法1、控制与驱动电路的测试1)不接主电路,把万用表放在电压档。
用正极插在Ur 孔,负极插在地,示波器的地线和万用表的地线夹在一起。
2)将DJKO1电源的钥匙打在开(不按启动开关),开启DJK20 控制电路电源开关。
3)调节PWM 脉宽调节电位器改变Ur ,用双踪示波器分别观测SG3525 的第11 脚与第14脚的波形,观测输出PWM 信号的变化情况,记录占空比并填入表1中。
PWM 与11 脚、14脚不共地。
4)用示波器分别观测A 、B 和PWM 信号的波形,记录其波形、频率和幅值,并填入。
直流斩波电路原理实验
直流斩波电路原理实验一、实验目的(1)加深理解斩波器电路的工作原理。
(2)掌握斩波器主电路、触发电路的调试步骤和方法。
(3)熟悉斩波器电路各点的电压波形。
二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。
2 DJK05直流斩波电路该挂件包含触发电路及主电路两个部分。
3 DJK06 给定及实验器件该挂件包含“给定”等模块。
4 D42 三相可调电阻5 双踪示波器自备6 万用表自备三、实验线路及原理本实验采用脉宽可调的晶闸管斩波器,主电路如图3-24所示。
其中VT1为主晶闸管,VT2为辅助晶闸管, C和L1构成振荡电路,它们与VD2、VD1、L2组成VT1的换流关断电路。
当接通电源时,C经L1、VD1、L2及负载充电至+U d0,此时VT1、VT2均不导通,当主脉冲到来时,VT1导通,电源电压将通过该晶闸管加到负载上。
当辅助脉冲到来时,VT2导通,C通过VT2、L1放电,然后反向充电,其电容的极性从+U d0变为-U d0,当充电电流下降到零时,VT2自行关断,此时VT1继续导通。
VT2关断后,电容C通过VD1及VT1反向放电,流过VT1的电流开始减小,当流过VT1的反向放电电流与负载电流相同的时候,VT1关断;此时,电容C继续通过VD1、L2、VD2放电,然后经L1、VD1、L2及负载充电至+U d0,电源停止输出电流,等待下一个周期的触发脉冲到来。
VD3为续流二极管,为反电势负载提供放电回路。
图3-24 斩波主电路原理图从以上斩波器工作过程可知,控制VT2脉冲出现的时刻即可调节输出电压的脉宽, 从而可达到调节输出直流电压的目的。
VT1、VT2的触发脉冲间隔由触发电路确定。
斩波器触发电路如图1-27所示,其原理可参见1-3节内容。
实验接线如图3-25所示,电阻R用D42三相可调电阻,用其中一个900Ω的电阻;励磁电源和直流电压、电流表均在控制屏上。
图3-25 直流斩波器实验线路图四、实验内容(1)直流斩波器触发电路调试。
直流斩波电路的性能研究
T1,同时,C 向负载 R 输出电压 u0 为恒值,记为 U0。设 VT 在通态的时间为 ton,储能电感 L 中的电量为 EI1ton;VT 处 于断态时,电源 E 与储能电感 L 同时为 C 以及 R 供电。设 VT 在断态的时间为 toff,则储能电感 L 输出电量为(U0-E) I1toff;在稳态时,储能电感 L 在周期 T 内的输入与输出电量 相同,则有:
2.2 直流斩波器的测试 直流斩波器的测试过程如下:接通交流电源,由三相 调压器输出单相交流电,通过 DJK20 挂箱上的单相桥式 整流,并经过电容滤波后,得到斩波电路的输入直流电压 Ui,然后记录 Ui 波形以及平均值。 直流斩波电路测试的具体步骤如下: 步骤 1:首先切断电源,然后依照主电路图将各元器 件接成测试电路。控制输出接于 V 的 G 端,将驱动电路输 出接于 E 端,所接电阻负载的电流最大值不得超过 22mA。 步骤 2:检查步骤 1 中的电路接线是否正确,重点检 查电解电容的极性,确定无误后接通电源。 步骤 3:通过示波器来观察测试情况,主要观测对象 包括 PWM 信号、UGE 电压、UCE 电压、输出电压 U0 以及 二极管两端电压 UD,同时观测上述对象彼此间的波形相 位关系。 步骤 4:通过 PWM 脉宽调节电位器,对 Ur 进行调节。 观测并记录各占空比(琢)下的 Ui、U0 和 琢 数值,以此得到 测试结果波形图。 2.3 测试结果 通过上述步骤进行测试,最终得到直流斩波器的升降 压波形图,如图 5、图 6 所示。
将式(1)进行化简,从而可以得到:
(1)
(2)
由此看出,当 T toff
>1 时,输出电压是高于输入电压,进
而达到升压的目的。
1.2 降压式直流斩波电路分析
降压式直流斩波电路包括可控开关 VT、滤波电容 C、
直流斩波电路的性能研究_2
实验2 直流斩波电路的性能研究1 实验目的熟悉降压斩波电路和升压斩波电路的工作原理,掌握这两种基本斩波电路的工作状态及波形情况。
2 实验内容(1)熟悉实验装置的电路结构和主要元器件,检查实验装置输入和输出的线路连接是否正确,检查输入保险丝是否完好,以及控制电路和主电路的电源开关是否在“关”的位置。
电路原理图见实验图2。
斩波电路的直流输入电压ui由交流电经整流得到,如实验图2a所示。
实验图2b和c分别为降压斩波主电路和升压斩波主电路。
实验图2d为控制和驱动电路的原理图,控制电路以专用PWM控制芯片SG3525为核心构成,控制电路输出占空比可调的矩形波,其占空比受uco控制。
实验图2 降压斩波和升压斩波主电路及控制电路a)直流供电电源b)降压斩波主电路c)升压斩波主电路d)控制和驱动电路(2)接通控制电路电源,用示波器分别观察锯齿波和PWM信号的波形(实验装置应给出测量端,位置在图中已标出),记录其波形、频率和幅值。
调节Ur的大小,观察PWM信号的变化情况。
(3)斩波电路的输入直流电压ui由低压单相交流电源经单相桥式二极管整流及电感电容滤波后得到。
接通交流电源,观察ui波形,记录其平均值。
(4)斩波电路的主电路包括降压斩波电路和升压斩波电路两种,分别如实验图2b、c所示,电路中使用的器件为电力MOSFET,注意观察其型号、外形等。
(7)切断各处电源,将直流电源ui与升压斩波主电路连接,断开降压斩波主电路。
检查接线正确后,接通主电路和控制电路的电源。
改变ur值,每改变一次ur,分别观测PWM信号的波形、电力MOSFET V的栅源电压波形、输出电压uo的波形、输出电流io的波形,记录的PWM信号占空比a,ui、uo的平均值Ui和Uo。
(8)改变负载R的值,重复上述内容7。
毕业设计(论文)_直流斩波电路的分析与仿真研究
由式(1-4)、式(1-6)、式(1-7)、式(1-8)得出:
(1-9)
(1-10)
式中:;;。
由图1.1a可知, 和 分别是负载电流瞬时值的最小值和最大值。
把式(1-9)和式(1-10)用泰勒级数近似,可得
(1-11)
上式表示了平波电抗器 为无穷大,负载电流完全平直时的负载电流平均值 ,此时负载电流最大值、最小值均等于平均值。
其工作的原理波形图如下所示
图1.3升压斩波电路工作波形
设 通态的时间为 ,此阶段 上积蓄的能量为:
设 断态的时间为 ,则此期间电感 释放能量为:
稳态时,一个周期 中 积蓄能量与释放能量相等,即
(1-20)
化简得
(1-21)
由于上式中的 ,输出电压高于电源电压,故称该电路为升压斩波电路。
式(1-21)中表示升压比,调节其大小,即可改变输出电压 的大小,调节方法与1.1.1中改变导通比 的方法类似。将升压比的倒数记作 ,即,则β和 关系为
a) 通态期间,设负载电流为 ,可列出如下方程:
(1-3)
设此阶段电流初值为 ,=L/R,解上式得:
(1-4)
b) 断态期间,设负载电流为 ,可列出如下方程:
(1-5)
设此阶段电流初值为 ,解上式得:
(1-6)
当电流连续时,有
(1-7)
(1-8)
即 进入通态时的电流初值就是 在断态阶段结束时的电流值,反过来, 进入断态时的电流初值就是 在通态阶段结束时的电流值。
根据对输出电压平均值进行调制的方式不同,斩波电路可有三种控制方式:
(1)保持开关周期T不变,调节开关导通时间 ,称为脉冲宽度调制(PWM调制)此种方式应用最多。
电力电子技术课程设计---直流斩波电路的性能研究
7脚:振荡器放电端,用外接电阻来控制死区时间,电阻范围为0~500 Ω;
8脚:软启动端,外接软启动电容,该电容由内部Vref的50μA恒流源充电;
9脚:误差放大器的输出端;
10脚:PWM信号封锁端,当该脚为高电平时,输出驱动脉冲信号被封锁,该脚主要用于故障保护;
11脚:A路驱动信号输出;
12脚:接地;
13脚:输出集电极电压;
14脚:B路驱动信号输出;
15脚:电源, 其范围为8~35 V,通常采用+15V;
16脚:内部+5 V基准电压输出。
SG3525芯片内部结构如图所示
图2-3bSG3525内部结构图
SG3525芯片内部集成了精密基准电源、误差放大器、带同步功能的振荡器、脉冲同步触发器、图腾柱式输出晶体管、PWM比较器、PWM锁存器、软启动电路、关断电路和欠压锁定电路。
1脚:误差放大器的反相输入端;
2脚:误差放大器的同相输入端;
3脚:同步信号输入端, 同步脉冲的频率应比振荡器频率fs要低一些;
4脚:振荡器输出;
5脚:振荡器外接电容CT端,振荡器频率fs=1/CT(0.7RT+3R0),R0为5脚与7脚之间跨接的电阻,用来调节死区时间,定时电容范围为0.001~0.1 μF;
稳态时,一个周期T中L积蓄能量与释放能量相等
化简得:
(1)
,输出电压高于电源电压,故称升压斩波电路。也称之为boost变换器。 表示升压比,调节其大小即可改变Uo。将升压比的倒数记作β,即 。β和导通占空比α有如下关系:
(2)
因此,式(1)可表示为
(3)
升压斩波电路能使输出电压高于电源电压的原因:L储能之后具有使电压泵升的作用,电容C可将输出电压保持住。
直流斩波电路原理实验报告新颖完整
直流斩波电路原理实验报告新颖完整实验报告:直流斩波电路原理及实验一、实验目的掌握直流斩波电路的基本原理,了解其在工程中的应用,进一步加深对电路的理解。
二、实验器材1.直流电源2.电阻、电容、二极管、晶体管等元器件3.示波器、万用表等测试仪器三、实验原理四、实验步骤1.搭建直流斩波电路按照实验原理搭建直流斩波电路,将直流电源连接到斩波器的输入端,然后将输出端连接到滤波电路。
2.测量电路参数使用万用表等测试仪器,依次测量电阻、电容、二极管等元器件的电阻值、电容值、正向电压降等参数。
3.进行示波器测量将示波器的探头分别连接到斩波器的输入端和输出端,观察输入信号和输出信号的波形,并记录下相关数据。
4.更换元器件在保持电路基本结构不变的情况下,更换其中一元器件,并观察输出信号的变化,记录下相关数据。
五、实验数据记录及分析1.电路参数记录测得的电阻、电容、二极管等元器件的电参数。
2.示波器测量数据记录输入信号和输出信号的波形,并分析其频率、幅值等特征。
3.元器件更换实验数据记录更换元器件后输出信号的波形,并分析其变化原因。
六、实验结果讨论通过实验数据的记录和分析,得出直流斩波电路的输入信号和输出信号的关系,进一步认识到电路中各元器件的作用与影响。
七、实验心得通过本次实验,我深入理解了直流斩波电路的原理和应用,并通过实际操作了解了不同元器件对输出信号的影响,加深了对电路的认识。
这次实验让我更加熟悉了直流斩波电路的特点,培养了动手实验的能力,提高了解决问题的能力。
希望今后能在工程中更好地应用直流斩波电路的知识。
直流斩波电路实验报告模板
实验编号实验指导书实验项目:直流斩波电路(Buck-Boost变换器)所属课程: 电力电子技术基础课程代码: EE303面向专业: 电气工程学院(系): 电气工程系实验室: 电气工程与自动化代号: 030102010年4月27 日一、实验目的:1.掌握Buck—Boost变换器的工作原理、特点与电路组成。
2.熟悉Buck—Boost变换器连续与不连续工作模式的工作波形图。
3.掌握Buck—Boost变换器的调试方法。
二、实验内容:1.连接实验线路,构成一个实用的Buck—Boost变换器。
2.调节占空比,测出电感电流i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。
3.将电感L增大一倍,测出i L处于连续与不连续临界状态时的占空比D,并与理论值相比较。
4.测出连续与不连续工作状态时的V be、V ce、V D、V L、i L、i C、i D等波形。
5.测出直流电压增益M=V O/V S与占空比D的函数关系。
6.测试输入、输出滤波环节分别对输入电流i S与输出电流i O影响。
三、实验主要仪器设备:1.MCL-08直流斩波及开关电源实验挂箱2.万用表3.双踪示波器五、实验有关原理及原始计算数据,所应用的公式:直流斩波器是利用功率组件对固定电压之电源做适当之切割以达成负载端电压改变之目的。
若其输出电压较输入之电源电压低,则称为降压式(Buck )直流斩波器,若其输出电压较输入之电源电压高,则称为升压式(Boost) 直流斩波器。
最常见的改变方式为1.周期T固定,导通时间Ton改变,称脉波宽度调变(Pulse-width Modulation PWM)。
2.导通时间Ton固定,周期T改变,称频率调变(Frequency Modulation FM)。
3.周期T及导通时间Ton 同时改变,即波宽调变及频率调变混合使用。
在实际应用中,因直流斩波器常需在负载端接上滤波电感及滤波电容,若频率改变过大对电感及电容影响大,因此多数采用脉波宽度调变。
实验五_直流斩波电路的性能研究实验报告_第五组
XXX学院实验报告学院:专业:班级:成绩:姓名:学号:组别:组员:实验地点:实验日期:指导教师签名:验(序号)项目名称:直流斩波电路的性能研究(六种典型线路)实验五直流斩波电路的性能研究(六种典型线路)一、实验目的(1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解PWM 控制与驱动电路的原理及其常用的集成芯片。
二、实验所需挂件及附件三、实验线路及原理1、主电路①、降压斩波电路(Buck Chopper)降压斩波电路(Buck Chopper)的原理图及工作波形如图4-12 所示。
图中V 为全控型器件,选用IGBT。
D 为续流二极管。
由图4-12b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向负载供电,U D=U i。
当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。
负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on/T)。
由此可知,输出到负载的电压平均值U O 最大为U i,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
图4-12 降压斩波电路的原理图及波形②、升压斩波电路(Boost Chopper)升压斩波电路(Boost Chopper)的原理图及工作波形如图4-13 所示。
电路也使用一个全控型器件V。
由图4-13b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向电感L1 充电,充电电流基本恒定为I1,同时电容C1 上的电压向负载供电,因C1 值很大,基本保持输出电压U O 为恒值。
设V 处于通态的时间为t on,此阶段电感L1 上积蓄的能量为U i I1t on。
当V 处于断态时U i和L1 共同向电容C1 充电,并向负载提供能量。
实验四 直流斩波电路实验
实验四直流斩波电路实验一.实验目的熟悉降压斩波电路(Buck Chopper)和升压斩波电路(Boost Chopper)的工作原理,掌握这两种基本斩波电路的工作状态及波形情况。
二.实验内容1.SG3525芯片的调试。
2.降压斩波电路的波形观察及电压测试。
3.升压斩波电路的波形观察及电压测试。
三.实验设备及仪器1.电力电子教学实验台主控制屏2.NMCL-16组件3.MEL-03A电阻箱(900Ω/0.41A) 或其它可调电阻盘4.万用表5.双踪示波器四.实验方法1.SG3525的调试。
图6-1 PWM波形发生将扭子开关S1打向“直流斩波”侧,S2电源开关打向“ON”,将“3”端和“4”端用导线短接,用示波器观察“1”端输出电压波形应为锯齿波,并记录其波形的频率和幅值。
扭子开关S2扳向“OFF”,用导线分别连接“5”、“6”、“9”,再将扭子开关S2扭向“ON”,用示波器观察“5”端波形,并记录其波形、频率、幅度,调节“脉冲宽度调节”电位器,记录其最大占空比和最小占空比。
2.实验接线图见图6-2。
图6-2 升压斩波电路(1)切断NMCL-16主电源,分别将“主电源2”的“1”端和“降压斩波电路”的“1”端相连,“主电源2”的“2”端和“降压斩波电路”的“2”端相连,将“PWM波形发生”的“7”、“8”端分别和降压斩波电路VT1的G1,S1端相连,“降压斩波电路”的“4”、“5”端串联MEL-03电阻箱(将两组900Ω/0.41A的电阻并联起来,顺时针旋转调至阻值最大约450Ω),和直流安培表(将量程切换到2A挡)。
(2)检查接线正确后,接通控制电路和主电路的电源(注意:先接通控制电路电源后接通主电路电源),改变脉冲占空比,每改变一次,分别观察PWM信号的波形,MOSFET的栅源电压波形,输出电压u波形的波形,记录PWM信号占空比D,ui、u0的平均值Ui和U。
(3)改变负载R的值(注意:负载电流不能超过1A),重复上述内容2。
直流斩波电路的性能研究
直流斩波电路的性能研究一、实验原理与容:直流斩波电路〔DC Chopper〕的功能是将直流电变为固定电压或可调电压的直流电,也称为直接直流-直流变换器〔DC/DC Converter〕。
目前比拟根本的和较为常用的直流斩波电路有以下几种:一)降压斩波电路〔Buck Chopper〕1、电路图如下:2、降压斩波电路原理:在t=0时驱动V导通,电源E向负载供电,负载u o=E,负载电流i o按指数曲线上升。
当t=t1时刻,控制V关断,负载电流经二极管VD 续流,负载电压u o近似为零,负载电流呈指数曲线下降。
为了使负载电流连续且脉动小,通常串接L值较大的电感。
只一个周期T完毕,再驱动V导通,重复上一周期过程。
当电路工作于稳态时,负载电流在一个周期的初值和终值相等U o的值与占空比〔alpha〕成正比。
3、典型应用:拖动直流电机,带蓄电池负载二〕升压斩波电路〔Boost Chopper〕1、电路图如下:2、升压斩波电路的原理:假设电路中电感L很大,电容C很大。
当V导通,电源E向L充电,充电电流根本恒定位为I1,同时电容C上的电压向负载R供电,由于C值很大,根本保持输出电压u o位恒值,记为U o。
当V关断的时候电源与电感L同时对电容C充电,并且向负载R提供能量。
当电路工作稳定时,有如下方程:U o=(t on+t off)E/t off=TE/t off由上式可知,输出电压高于电源电压。
3、典型应用:直流电动机传动,单项功率因数校正〔Power Factor Correction—PFC〕电路,用于其他交直流电源中三〕升降压斩波电路〔Boost-Buck Chopper〕1、电路图如下:2、升降压斩波电路原理:假设电感L很大,电容C很大,致使电感电流i L和电容典雅即负载电压u o根本为恒值。
V导通,L充电,有电流i1。
同时有电容C维持输出电压根本恒定并向负载R供电。
V关断,电感L向负载提供其所储存的能量,此时有电流i2。
实验四直流斩波电路(设计性)的性能研究实验
实验四直流斩波电路(设计性)的性能研究实验一.实验目的熟悉三种斩波电路(buck chopper 、boost chopper 、buck-boost chopper)的工作原理,掌握这三种斩波电路的工作状态及波形情况。
二.实验内容1.SG3525芯片的调试。
2.斩波电路的连接。
3.斩波电路的波形观察及电压测试。
三.实验设备及仪器1.电力电子教学试验台主控制屏;2.NMCL-22组件;3.示波器(自备);4.万用表(自备)。
四.实验方法按照面板上各种斩波器的电路图,取用相应的元件,搭成相应的斩波电路即可。
1.SG3525性能测试用示波器测量,PWM波形发生器的“1”孔和地之间的波形。
调节占空比调节旋钮,测量驱动波形的频率以及占空比的调节范围。
2.buck chopper(1)连接电路。
将PWM波形发生器的输出端“1”端接到斩波电路中IGBT管VT的G端,将PWM的“地”端接到斩波电路中“VT”管的E端,再将斩波电路的(E、5、7),(8、11),(6、12)相连,最后将15V直流电源U1的“+”正极与VT的C相连,负极“-”和6相连。
(照电路图接成buck chopper斩波器。
)(2)观察负载电压波形。
经检查电路无误后,闭合电源开关,用示波器观察VD两端5、6孔之间电压,调节PWM 触发器的电位器RP1,即改变触发脉冲的占空比,观察负载电压的变化,并记录电压波形。
(4)观察负载电流波形。
用示波器观察并记录负载电阻R两端波形。
(5)并观察当电容去掉,输出波形的变化。
(6)观察电感值发生改变时输出波形的变化3.boost chopper(1)照图接成boost chopper电路。
电感和电容任选,负载电阻为R。
实验步骤(1~5)同buck chopper。
第(6)步除外。
4.buck-boost chopper(1)照图接成buck-boost chopper电路。
电感和电容任选,负载电阻为R。
实验步骤(1~5)同buck chopper,第(6)步除外。
直流斩波电路的性能研究_5
目录一、buck斩波电路工作原理 (1)二、硬件调试 (3)2.1、电源电路 (3)2.1.1 工作原理: (3)2.2 buck斩波电路 (5)2.3、控制电路 (6)2.4、驱动电路 (7)2.5 过压保护电路 (9)2.5.1 主电路器件保护 (9)2.5.2 负载过压保护 (9)2.5.3 过流保护电路 (10)2.6 元器件列表 (12)三、总结 (12)四、参考文献 (13)一、buck斩波电路工作原理直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。
直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。
习惯上,DC-DC变换器包括以上两种情况。
直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。
一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。
利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路、桥式可逆斩波电路等。
利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。
直流斩波电路广泛应用于直流传动和开关电源领域,是电力电子领域的热点。
全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR和电力MOSFET 的优点,具有良好的特性。
目前已取代了原来GTR和一部分电力MOSFET的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。
所以,此课程设计选题为:设计使用全控型器件为电力MOSFET的降压斩波电路。
主要讨论电源电路、降压斩波主电路、控制电路、驱动电路和保护电路的原理与设计。
1.1主电路工作原理图1.1 BUCK斩波电路电路图直流降压斩波主电路使用一个Power MOSFET IRF640N控制导通。
直流斩波电路原理实验
直流斩波电路原理实验概述直流斩波电路是一种将直流信号转换为脉冲信号的电路。
该电路通过控制开关管的导通和截止,实现了直流信号的二值化处理。
本文将介绍直流斩波电路的原理和实验步骤。
直流斩波电路原理直流斩波电路的原理基于开关管的开关功能,当开关管导通时,直流信号通过;当开关管截止时,直流信号被切断,产生脉冲信号。
在直流斩波电路中,常用的开关管有晶体管和场效应管。
实验材料1.直流电源2.NPN型晶体管3.耦合电容4.变压器5.负载电阻6.示波器实验步骤1. 搭建电路根据电路原理图,搭建直流斩波电路实验电路。
将直流电源连接到变压器的输入端,变压器的输出端与晶体管的集电极相连,同时将负载电阻接在晶体管的发射极和地之间。
2. 调整参数调整变压器的变比,使得输出信号的幅值适当。
同时调整负载电阻的阻值,以达到所需的输出功率。
3. 连接示波器将示波器的探头分别连接到晶体管的集电极和发射极上,以观察输出信号的波形。
4. 实验记录记录示波器显示的波形和各个参数的数值。
实验结果分析根据实验记录的数据,分析直流斩波电路的性能和特点。
主要包括以下几个方面:1. 输出波形通过示波器观察输出波形,可以判断直流斩波电路的工作状态和性能。
根据波形的幅值、频率和占空比等参数,可以评估电路的性能。
2. 电路效率根据输入功率和输出功率的比值,计算直流斩波电路的效率。
效率越高,电路的能量转换效率越高。
3. 噪声分析通过分析输出波形的噪声水平,可以评估直流斩波电路的抗干扰能力和噪声性能。
实验应用直流斩波电路在实际应用中有着广泛的用途,主要包括以下几个方面:1. 消息传输直流斩波电路可以将模拟信号转换为数字信号,用于消息传输和通信系统中。
2. 电力变换直流斩波电路在电力系统中可以用于直流与交流的转换,实现电力的变压变频控制。
3. 电动机控制直流斩波电路可用于电动机控制系统,实现电机的速度和方向控制。
4. 脉冲控制直流斩波电路产生的脉冲信号可用于触发其他电路和系统的工作,如触发器、计数器等。
直流斩波电路Buck、Buck-Boost 开关电路实验报告
城市学院实验报告课程名称: 电力电子技术 指导老师:____唐益民______________ 成绩:实验名称: 直流斩波电路Buck 、Buck-Boost 开关电路实验实验类型:__________________同组学生姓名:_褚盼盼、周芳芳、林雅婷、鲁颖莹_________4-1 BUCK 电路实验 一、 实验目的1、掌握Buck 降压开关变换电路的工作原理及特点;2、掌握Buck 降压开关变换电路的调试方法。
二、实验线路及原理实验线路如图3-14所示:专业:__自动化________ 姓名:___陈园园_______ 学号:____30802297____ 日期:周五下午第二节__地点:___理五A-206___装订线图3-14实验线路图三、实验内容1、主电路电感电流处于连续导通状态时,电路各工作点波形的研究测量;2、主电路电感电流处于断续导通状态时,电路各工作点波形的研究测量;3、主电路电感电流处于临界连续导通状态时,电路各工作点波形的研究测量;4、研究频率变化对电路工作状态的影响;5、研究负载变化对电路工作状态的影响;6、研究主电路电感L的变化对电路工作状态的影响;7、占空比K与输出电压U O之间的的函数关系测试;8、输入滤波器的作用观测。
四、实验仪器与设备1、DDS01电源控制屏;2、DDS31“Buck、Buck—Boost”实验挂箱;3、DT14“直流电压、电流表”实验挂箱;4、示波器等。
五、实验方法1、主电路电感电流处于连续导通状态时,电路各工作点波形的研究测量打开DDS31掛箱右下角电源开关,断开Buck主电路单元S1电源开关。
按表8接线:表87 21 1719206134513141415接线完毕,仔细核对无误,千万不要将线错接在Buck——Boost单元上。
开启Buck单元S1电源开关,将频率开关S2拨向“通”,将RP1负载电位器调在中间适当位置。
用示波器测量“8”和“11”R S3两端波形,此波形即电感电流i L波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四直流斩波电路的性能研究
一.实验目的
熟悉降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)和升降压斩波电路(Boost-Buck Chopper)的工作原理,掌握这三种基本斩波电路的工作状态及波形情况。
二.实验内容
1.熟悉SG3525芯片。
2.降压斩波电路的波形观察及电压测试。
3.升压斩波电路的波形观察及电压测试。
4.升降压斩波电路的波形观察及电压测试。
三.实验设备及仪器
1.NMCL-22现代电力电子电路和直流脉宽调速实验箱。
2.双踪示波器。
四.实验方法
1.熟悉SG3525。
闭合开关S1,观察SG3525的13端子,将有方波输出。
调节“脉冲宽度调节”电位器RP,可调节占空比。
2.按照实验箱上所示电路
(1)任意选择电阻、电感和电容,分别组成降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)和升降压斩波电路(Boost-Buck Chopper)。
(2)闭合开关S8,接通主电路。
观察UPW输出的方波信号,记录占空比α。
观察输入电压u i、输出电压u0的波形。
(3)改变负载R、电感L、电容C的值,观察电压u i和u0的波形有何变化。
并据此判断各个器件值的大小。
(4)实验完成后,断开主电路电源,拆除所有导线。
五.注意事项:
实验过程当中先加控制信号,后加“主电路电源2”。
(即,先合S1,后合S8。
)六.实验报告
记录在某一占空比D下,降压斩波电路中,输入电压u i波形,输出电压u0波形,计算Ui、Uo,并绘制降压斩波电路的Uo/Ui-α曲线,与理论分析结果进行比较,并讨论产生差异的原因。