t-distribution

合集下载

(完整版)t分布的概念及表和查表方法.doc

(完整版)t分布的概念及表和查表方法.doc

t分布介绍在概率论和统计学中,学生 t - 分布(t -distribution ),可简称为 t 分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t 分布曲线形态与 n(确切地说与自由度 df )大小有关。

与标准正态分布曲线相比,自由度df 越小, t 分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度 df 愈大, t 分布曲线愈接近正态分布曲线,当自由度 df= ∞时, t 分布曲线为标准正态分布曲线。

中文名t 分布应用在对呈正态分布的总体外文名t -distribution 别称学生 t 分布学科概率论和统计学相关术语t 检验目录1历史2定义3扩展4特征5置信区间6计算历史在概率论和统计学中,学生 t -分布( Student's t-distribution )经常应用在对呈正态分布的总体的均值进行估计。

它是对两个样本均值差异进行显著性测试的学生t 测定的基础。

t 检定改进了Z 检定(en:Z-test ),不论样本数量大或小皆可应用。

在样本数量大(超过 120 等)时,可以应用Z 检定,但 Z 检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。

在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t 检定。

当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。

学生 t-分布可简称为t 分布。

其推导由威廉·戈塞于 1908 年首先发表,当时他还在都柏林的健力士酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student )这一笔名。

之后t 检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

定义由于在实际工作中,往往σ是未知的,常用s 作为σ的估计值,为了与u 变换区别,称为t 变换,统计量 t 值的分布称为t 分布。

TDistribution-distribution”,or“t-distribution”isW

TDistribution-distribution”,or“t-distribution”isW

Team Members: Ran Xu, Ruofan Jia, Abigail Gluck, Yujia Wu, Heng Fun.T Distribution:I.History of the t-DistributionAs a method of making inferences when specific information about a population such as an unknown population standard deviation, the t-distribution utilizes elements and aspects of other distributions to calculate population estimates.William Sealy Gosset, an analyst for Guinness Brewery, published the uses of the t-distribution in 1908.His employer prevented employees from publishing scientific work under their own names, consequently;Gosset published his work under the name Student. He corresponded with R.A. Fisher over years discussing the potentials of the t-distribution and later:Fisher realized that the unified treatment of tests of significance of a mean, of the difference betweentwo means, and of simple and partial coefficients of correlation and regression could be achieved morereadily in terms of where v is the number of degrees of freedom associated with the sum ofsquares used in defining z. (43 Kotz)Eventually, the uses of the z-distribution and chi-squared distribution with the t-distribution resulted in the ability to test many hypotheses with large amounts of data1.II.Definition of T-DistributionIf a population has a normal distribution, then the “student t-distribution”, or “t-distribution” is . Where n is thenumber of degrees of freedom and Γ is the Gamma function.2III.Picture of probability density function of the t-distribution for various parameter values.Above is t-distribution for 2 different values of degree s of freedom. 3IV.Expected Value and VarianceBecause the standard normal curve is used in the t-distribution, the expected value is zero for all degrees of freedom over one. If the degrees of freedom are equal to one as with the Cauchy distribution, the expectedvalue is undefined and does not exist. The variance of the t-distribution is , where n is the degree of freedomand n>2; otherwise, the variance is undefined.V.Appropriate Situations/Special CasesThe t-d istribution can be used when making deductions about a population mean when one does not know the standard deviation of a chi-square distribution, the t-distributionequal to one, the t-distribution becomes the Cauchy distribution . As the degrees of freedom increase, theprobability density function of t-distribution approaches the normal curve. Overall, the t-distribution is bell-shaped and symmetric around zero (because of the standard normal curve).4VI. Relationships to Other Distributions —Normal distributionIt is appropriate to use standard normal distribution (z-distribution ) for a large sample size (N) case. In general, if N > 30, use z-distribution ; N ≤ 30, use t-distribution . Note: n = N - 1 Since the variance of n/(n-2) > 1, t-distribution has a larger variance than standard normal distribution. The t-distribution becomes flatter with a smaller value of n. As seen below, when the degrees of freedom increase, the t-distribution approaches a normal distribution .Cauchy DistributionI. History of Cauchy DistributionSimeon-Denis Poisson first discovered the Cauchy distribution and its stable properties about twenty years before L. A. Cauchy. This distribution is named after Baron Louis-Augustin Cauchy (1789-1857), a Frenchmathematician and engineer ( ndre i o aevich Ko mogorov, and do f av ovich IU shkevich ). Cauchy distribution has many applications in physics, where it is more frequently known as Lorentz distribution (after the name of the Dutch physicist H. Lorentz, 1853-1928).II. Definition of Cauchy Distribution Probability Density FunctionGeneral Form: t the location parameter, defines the location of the peak of distribution.s the scale parameter, defines the dispersionStandard Form:Where t =0 and s =1. The peak point is located at 0 with scale of 1. III. Picture of Probability Density Function of the Cauchy DistributionComments: Cauchy distributions look similar to a normal distribution ; however, they have much heavier tails. Many times the hypothesis has normality, but people still will run the data through the Cauchy distribution because it is a good indicator of the sensitivity of tests compared to the normal. (Note: the purple curve is the standard Cauchy distribution.)IV.Expected Value and VarianceThe Expected Value and the Variance are undefined.Instead, we use t(a location parameter) and s(a scale parameter) to describe the distribution.If a distribution has no mean and variance, it basically means that if we collect 10,000 data points, then it gives no more precise an estimate of the mean and standard deviation than does a single point.V.Appropriate Situations/Special CasesWe use Standard Cauchy distribution when the degree of freedom in t distribution is 1 with t=0 and s=1. In physics, economics, mechanics, and electric, and especially in technical scientific fields (with calibration problems), we use it instead of normal distributions when extreme events are comparatively likely to occur. We also describe this phenomenon as a “fat-tai ed” behavior(Jacod and Protter).The Cauchy distribution is often used for counter-examples in probability theory. One of the big reasons is that its “heavy tai s” lead to the absence of a lot of concrete properties.VI.Relationship to Other Distributions1.Student t-distribution vs standard Cauchy DistributionThe standard Cauchy distribution is defined by s=1, t=0.The distribution pdf is the same as a special case of the t-distribution withone degree of freedom. It is related to other distributions in the same way asthe t-distribution( Upton, and Cook).2.Normal DistributionLike the normal distribution, the Cauchy distribution is bell-shapedand depends on two parameters (Meucci). Also, the ratio ofindependent normally distributed variables with zero mean is distributedwith a Cauchy distribution (Johnson).F DistributionI.History of F-DistributionThe F-distribution is named after Sir Ronald A. Fisher, it was however first formalized by George W. Snedecor in Calculation and Interpretation of Analysis of Variance and Covariance, which is why the F-Distribution is sometimes referred to Snedecor F-distribution. F-distribution first came into light in a discussi on on the ana ysis of variance in Fisher’s The Correlation Between Relatives on the Supposition of Mendelian Inheritance. It was ater popu arized in Fisher’s Statistical Methods for Research Workers (David, May 1995). Today the F-Distribution is commonly used in ANOVA to assign p values to F ratios and also in comparing statistical models that have been fit to a data set. (Everitt & Skrondal, 2010) Simply put the F-distribution allows us to test the likelihood that two population variance are either the same or similar.II.Definition of F-Distribution: Probability DensityFunctionThe random variable F is defined to be the ratio of twoindependent chi-sqaure random variables, each divided by itsnumber of degrees of freedom. V and U are independent chisquare random variables.III.Picture of Probability Density Function of the F-DistributionThe F random variable is nonnegative, and the distribution is skewedto the right. The two parameters that define the function are degrees offreedom1 = m, and degrees of freedom2 = n.IV.Expected Value and VarianceV.Appropriate Situations/Special CasesF-Distribution is used when we perform an F-test. F-test is no more than a ratio of sample variances, which was its original motivation when Fisher created the statistic in the 1920s. (Lomax, 2007) The F-test is for the null hypothesis that two normal populations have the same variance.However, the F-test is extremely vulnerable to non-normality. Because we are employing the F-Distribution we are assuming that the two variables have a normal distribution and therefore their variances follow a chi-squared distribution. We are also assuming that each sample is statistically independent.A formalized process, ANOVA, which is a statistical method used to compare the means of two or more groups, uses the F-test to compare the components of variation.VI.Relationship to Other DistributionsThe F distribution allows us to compare the ratio of two sample variances with their respective degrees of freedom. Well what happens if we use this method not on experiments but rather on the other families of other distributions such t and z, more specifically their error functions. Then we will see that by manipulating the degree of freedom parameters we are able to derive a surprising relationship. In 1924, "On a distributionFisher shows these relationships. (Fisher R. , 1924)Since we know F is just the ratio of variances we can get back t ratio squared. Furthermore this relationship along with a simple proof that random variables Y and sample standard deviation S, allows us to derive the pdfof the t. (Larsen & Marx, 2006)Work CitedDefinition of T-Distribution. /definitions/t-distribution/908, Cramster Inc., 20 Jan 2011. Weisstein, Eric W. "Student's t-Distribution." From MathWorld--A Wolfram Web Resource./Studentst-Distribution.htmlKa bf eish, J.G., “ robabi ity and Statistica Inference Vo ume One: robabi ity.” Springer-Verlag. New York Inc. 1985Kotz, Samue . “Encyc opedia of Statistica Sciences Vo ume 9”. John Wi ey & Sons, Inc. 1988Larsen, Richard J. An Introduction to Mathematical Statistics and its Applications. Pearson Education Inc. 2006. Electronic Book:Jean Jacod, and Philip E. Protter. Probability Essentials (Google eBook). Springer, 2003.</books?id=JHYMvY0Bd7YC&dq=cauchy+distribution+name+after&source=gbs_nav links_s>Graham J. G. Upton, and Ian Cook, A Dictionary of Statistics, Oxford University Press, 2008.</books?id=u97pzxRjaCQC&dq=cauchy+distribution&source=gbs_navlinks_s>ndre i o aevich Ko mogorov, and do f av ovich I U shkevich, Mathematics of the 19th Century: Mathematical Logic, Algebra, Number Theory, Probability Theory (Google eBook), Birkhäuser, 2001.</books?id=X3u5hJCkobYC&dq=cauchy+distribution+first+used&source=gbs_navlin ks_s>Attilio Meucci, Risk and asset allocation, シュプリンガー・ジャパン株式会社, 2005.</books?id=bAS63cyIp0EC&dq=cauchy+distribution+normal+distribution&source=gb s_navlinks_sNorman I. Johnson, (1994) “Continuous univariate distribution-1” Houghton Miff in Company-Boston p159-160Ka bf eish, J.G. 1985 , “ robabi ity and Statistica Inference Vo ume One: robabi ity.” SpringerVer ag. ew York Inc. p35-36Mario F Trio a (2005), “E ementary statistics tenth edition”, earson & ddison We s ey.Inc p350-351Kotz, Samue . “Encyc opedia of Statistica Sciences Vo ume 9”. John Wi ey & Sons, Inc. 1988Larsen, Richard J. An Introduction to Mathematical Statistics and its Applications. Pearson Education Inc. 2006 p261。

数学专业词汇(T)

数学专业词汇(T)

t distribution 学生t 分布t nu mber t 数t statistic t 统计量t test t 检验tltopological space t1 拓扑空间t2topological space t2 拓扑空间t3topological space 分离空间t4topological space 正则拓扑空间t5 topological space 正规空间t6topological space 遗传正规空间table 表table of random nu mbers 随机数表table of sines 正弦表table of square roots 平方根表table of values 值表tabular 表的tabular value 表值tabulate 制表tabulati on 造表tabulator 制表机tacnode 互切点tag标签tame驯顺嵌入tame distributio n 缓增广义函数tamely imbedded 驯顺嵌入tangency 接触tangent 正切tangent bun dle 切丛tangent cone 切线锥面tangent curve 正切曲线tangent function 正切tangent line 切线tangent of an an gle 角的正切tangent pla ne 切平面tangent pla ne method 切面法tangent surface 切曲面tangent vector 切向量tangent vector field 切向量场tangent vector space 切向量空间tangen tial approximati on 切线逼近tangen tial comp onent 切线分量tangen tial curve 正切曲线tangen tial equati on 切线方程tangen tial stress 切向应力tangents method 切线法tape 纸带tape in scripti on 纸带记录tariff 税tautology 重言taylor circle 泰勒圆taylor expa nsion 泰勒展开taylor formula 泰勒公式taylor series 泰勒级数tech nics 技术tech nique 技术telegraph equati on 电报方程teleparallelism 绝对平行性temperature 温度tempered distributio n 缓增广义函数tend倾向tendency 瞧tension 张力ten sor 张量ten sor algebra 张量代数ten sor an alysis 张量分析ten sor bun dle 张量丛ten sor calculus 张量演算法ten sor den sity 张量密度ten sor differe ntial equati on张量微分方程ten sor field 张量场ten sor form 张量形式ten sor form of the first kind 第一张量形式ten sor fun ctio n 张量函数ten sor of torsion 挠率张量ten sor product 张量乘积ten sor product functor 张量乘积函子ten sor represe ntati on 张量表示ten sor space 张量空间ten sor subspace 张量子空间ten sor surface 张量曲面ten sorial multiplicati on 张量乘法term 项term of higher degree 高次项term of higher order 高次项term of series 级数的项termi nability 有限性termi nable 有限的terminal decisi on 最后判决termi nal edge 终结边terminal point 终点terminal un it 级端设备termi nal vertex 悬挂点termi nate 终止termin at ing cha in 可终止的链termin at ing con ti nued fraction 有尽连分数termin at ing decimal 有尽小数termin atio n 终止termino logy 专门名词termwise 逐项的termwise additi on 逐项加法termwise differe ntiati on 逐项微分termwise in tegrati on 逐项积分ternary 三元的ternary conn ective 三元联结ternary form 三元形式ternary no tati on 三进制记数法ternary nu mber system 三进制数系ternary operati on 三项运算ternary relati on 三项关系ternary represe ntati on og nu mbers 三进制记数法tertiary obstruct ion 第三障碍tesseral harm onic 田形函数tesseral lege ndre function 田形函数test 检验test for additivity 加性检验test for uniform con verge nee —致收敛检验test fun ctio n 测试函数test of dispersio n 色散检验test of good ness of fit 拟合优度检验test of hypothesis 假设检验test of in depe ndence 独立性检验test of lin earity 线性检验test of normality 正规性检验test poi nt 测试点test rout ine 检验程序test statistic 检验统计量tetracyclic coord in ates 四圆坐标tetrad 四元组tetrago n 四角形tetrago nal 正方的tetrahedral 四面角tetrahedral an gle 四面角tetrahedral co ordin ates 四面坐标tetrahedral group 四面体群 tetrahedral surface 四面曲面tetrahedroid 四面体 tetrahedr on 四面形 tetrahedr on equati on 四面体方程theorem 定理 theorem for damp ing 阻尼定理theorem of alter native 择一定理theorem of ide ntity for power series 幕级数的一致定理theorem of implicit fun cti ons隐函数定理 theorem of mea n value平均值定理 theorem of prin cipal axes车由定理 theorem of residues 残数定理theorem of riemann roch type 黎曼 洛赫型定理 theorem on embedd ing嵌入定理theorems for limits theoretical curve theoretical model theory of automata theory of card inalstheory of hyperbolic functions theory of judgme nt theory of nu mbers theory of ordin als theory ofperturbatio ns theoryof probability theory ofproporti ons theory ofrelativity theory ofreliability theory ofreprese ntatio nstheory of complex multiplicati ontheory of complexity of computatio ns theory of correlati on 相关论 theory of differe ntial equati ons theory of dime nsions 维数论 theory of eleme ntary divisors theory of eleme ntary particles theory of equati ons theory of errors theory ofestimati on theory of fun cti ons theory of games 方程论 误差论 估计论 函数论 对策论 复数乘法论 计算的复杂性理论 微分方程论初等因子理论基本粒子论 极限定理 理论曲线 理论模型 自动机理论基数论 双曲函数论判断论数论序数论 摄动理论 概率论 比例论 相对论 可靠性理论 表示论theory of sets 集论theory of types 类型论 thermal 热的 thermodynamic 热力学的 thermody namics 热力学 theta fun cti on 函数theta series 级数 thick 厚的 thick ness 厚度 thin 薄的 thin set 薄集 third boundary con diti on 第三边界条件third boundary value problem第三边界值问题 third fun dame ntal form第三基本形式 third isomorphism theorem 第三同构定理 third proportio nal 比例第三项third root 立方根 thom class 汤姆类 thom complex 汤姆复形 three body problem 三体问题 three dime nsional 三维的three dime nsional space三维空间 three dime nsional torus三维环面 three eighths rule八分之三法three faced三面的 three figur三位的 three place 三位的 three point problem 三点问题 three series theorem 三级数定理three sheeted 三叶的 three sided 三面的 three sigma rule 三规贝 U three termed 三项的three valued三值的 three valued logic 三值逻辑 three valued logic calculus 三值逻辑学threshold logic 阈逻辑 time in terval 时程time lag 时滞 time series an alysistimeshari ng 分时toeplitz matrix 托普利兹矩阵 tolera nee 容许 tolera nee distributi on容许分布 tolera nee estimati on容许估计 tolera nee factor容许因子 tolera nee level耐受水平 tolera nee limit容许界限 tolera nee region 容许区域top digit 最高位数字 topologieal 拓扌卜的 topologieal abelia n group拓扌卜阿贝耳群 topologieal algebra拓扌卜代数 topologieal eell拓扑胞腔theory of sheaves theory of sin gularities theory of test ing theory of time series theory of transversals 层理论 检验论奇点理论时间序列论横断线论 时序分析topologieal eirele 拓扌卜圆topologieal eomplete ness 拓扌卜完备性topologieal eomplex 拓扌卜复形topologieal con verge nee 拓扌卜收敛topologieal dime nsion 拓扌卜维topologieal direet sum 拓扌卜直禾口topologieal dyn amies 拓扌卜动力学topologieal embeddi ng 拓扌卜嵌入topologieal field 拓扌卜域topologieal group 拓扌卜群topologieal homeomorphism 拓扌卜同胚topologieal in dex拓扌卜指数topologieal in varia nt 拓扌卜不变量topologieal limit 拓扑极限topologieal li near spaee 拓扌卜线性空间topologieal mani fold 拓扌卜廖topologieal mapp ing 拓扌卜同胚topologieal pair 拓扌卜偶topologieal polyhedr on 曲多面体topologieal produet 拓扑积topologieal residue elass ring 拓扌卜剩余类环topologieal ring 拓扌卜环topologieal simplex 拓扌卜单形topologieal skew field 拓扌卜非交换域topologieal spaee topologieal sphere 拓扑空间拓扑球面topologieal strueture 拓扌卜结构topologieal sum topologieal type 拓扑和拓扑型topologieally eomplete set 拓扌卜完备集topologically complete space拓扌卜完备空间 topologically equivale nt space拓扌卜等价空间 topologically n ilpote nt eleme nt拓扌卜幕零元 topologically rin ged space拓扌卜环式空间 topologically solvable grouptopologico differe ntial in varia nttopologize 拓扌卜化 topology 拓扌卜 topology of bounded con verge nee topology ofcompact con verge nee topology ofuniform con verge nee toroid 超环面toroidal coord inates圆环坐标 toroidal fun ction圆环函数 torque 转矩torsio n 挠率torsion coefficie nt 挠系数torsio n form 挠率形式torsion free group 非挠群 torsion group 挠群torsion module 挠模 torsio n of a curve 曲线的挠率 torsi on product挠积 torsion subgroup 挠子群 torsion ten sor 挠率张量 torsion vector 挠向量 torsionfree connection 非挠联络 torsionfree module 无挠模 torsionfree ring 无挠环 torus 环面torus function 圆环函数torus group 环面群 torusk not 环面纽结total 总和total correlatio n 全相关 total curvature 全曲率 total degree 全次数total differe ntial 全微分total differe ntial equatio n全微分方程 total error全误差 total graph全图 total image 全象total in spect ion全检查 total in stability 全不稳定性 拓扑可解群 拓扑微分不变式有界收敛拓扑 紧收敛拓扑 一致收敛拓扑total in verse image 全逆象total matrix algebra 全阵环total matrix ring 全阵环total order 全序total predicate 全谓词total probability 总概率total probability formula 总概率公式total regressi on 总回归total relation 通用关系total space 全空间total stability 全稳定性total step iteratio n 整步迭代法total step method 整步迭代法total stiefel whit ney class 全斯蒂费尔惠特尼类total subset 全子集total sum 总和total variati on totally boun ded set totally boun ded space totally differe ntiable totally differe ntiable fun ctio n totally disc onn ected totally disc onn ected graphtotally disc onn ected groupoid totally disc onn ected set totally disc onn ected space totally geodesic 全测地的 totally nonn egative matrixtotally ordered group totallyordered set totally positivetotally positive matrix totallyquasi ordered set totally realfield totally reflexive relati on totally regular matrix method totally sin gular subspace totally symmetric loop totally symmetric quasigroup touch 相切 tourn ame nt 竞赛图 trace迹 trace form 迹型 trace function 迹函数全变差 准紧集 准紧空间 完全可微分的完全可微函数完全不连通的 完全不连通图完全不连通广群完全不连通集完全不连通空间 全非负矩阵 全有序群 线性有序集 全正的 全正矩阵 完全拟有序集 全实域 完全自反关系 完全正则矩阵法 全奇异子空间完全对称圈 完全对称拟群trace of dyadic 并向量的迹trace of matrix 矩阵的迹trace of ten sor 张量的迹tracing point 追迹点track 轨迹tractrix 曳物线trajectory轨道transcendence 超越性transcendence basis 超越基transcendence degree 超越次数transcendency 超越性transcenden tal eleme nt 超越元素transcenden tal equatio n 超越方程transcenden tal function 超越函数transcenden tal in tegral fun cti on 超越整函数transcenden tal nu mber 超越数transcenden tal sin gularity 超越奇点transcenden tal surface 超越曲面transfer 转移transfer function 转移函数transfin ite 超限的transfin ite diameter 超限直径transfin ite in ducti on 超限归纟纳法transfin ite nu mber 超限序数transfin ite ordinal 超限序数tran sform 变换tran sformati on 变换tran sformati on equati on 变换方程tran sformati on factor 变换因子坐标的变换公式transformation formulas of the coord inates transformatio n fun ctio n 变换函数tran sformati on group 变换群tran sformati on of air mass 气团变性tran sformati on of coord in ates 坐标的变换tran sformati on of parameter 参数变换tran sformati on of state 状态变换tran sformati on of the variable 变量的更换tran sformati on rules 变换规贝Utran sformati on theory 变换论tran sformati on to prin cipal axes 车由变换tran sgressi on 超渡tran sie nt response 瞬态响应tran sie nt stability 瞬态稳定性tran sie nt state 瞬态tran sie nt time 过渡时间tran siti on function 转移函数tran siti on graph 转换图 tran siti on matrix 转移矩阵tran siti on probability转移函数 tran sitive closure 传递闭包tran sitive graph 传递图tran sitive group of moti ons可迁运动群tran sitive law 可迁律tran sitive permutati on group可迁置换群 tran sitive relati on传递关系 tran sitive set 可递集 tran sitivity 可递性tran sitivity laws tran slatable design tran slate 转移tran slati on 平移tran slati on curvetran slati on grouptran slati on invaria nt可迁律可旋转试验设计 平移曲线 平移群 平移不变的tran slati on in varia ntmetric 平移不变度量 tran slati on nu mbertran slati on ofaxes tran slati onoperator tran slati on surface tran slati on symmetry tran slati on theorem tran smissi on cha nnel tran smissi on ratio tran sport problem tran sportati on algorithm tran sportati on matrix transportatio n n etwork tran sportatio n problem transpose 转置 tran sposed in verse matrix tran sposedkernel 转置核 tran sposed map 转置映射tran sposed matrix 转置阵 tran spositi on 对换殆周期 坐标轴的平移 平移算子 平移曲面 平移对称平移定理 传输通道 传输比 运输问题运输算法 运输矩阵运输网络 运输问题 转置逆矩阵 tran sversal 横截矩阵胚 transversal curve 横截曲线 tran sversal field模截场tran sversality 横截性tran sversality con diti on 横截条件tran sverse axis 横截车由tran sverse surface 横截曲面trapezium 不规则四边形trapezoid 不规则四边形trapezoid formula 梯形公式trapezoid method 梯形公式traveli ng salesma n problem 转播塞尔斯曼问题tree 树trefoil 三叶形trefoil knot 三叶形纽结trend 瞧trend line 瞧直线triad 三元组trial 试验trian gle 三角形tria ngle axiom 三角形公理trian gle con diti on 三角形公理trian gle in equality 三角形公理trian gulable 可三角剖分的trian gular decompositi on 三角分解trian gular form 三角型trian gular matrix 三角形矩阵trian gular nu mber 三角数trian gular prism 三棱柱trian gular pyramid 四面形trian gular surface 三角曲面trian gulate 分成三角形trian gulati on 三角剖分triaxial 三轴的triaxial ellipsoid 三维椭面trichotomy 三分法tride nt of newton 牛顿三叉线tridiago nal matrix 三对角线矩阵tridime nsional 三维的trigammafu ncti on 三函数trigo no metric 三角的trigo no metric approximati on polyno mial 三角近似多项式trigo no metric equati on 三角方程trigo no metric fun cti on 三角函数trigo no metric mome nt problem 三角矩问题trigo no metric polyno mial 三角多项式trigo no metric series 三角级数trigo no metrical in terpolati on trigo三角内插法no metry 三角学trihedral 三面形的trihedral an gle 三面角trihedr on 三面体trilateral 三边的trili near 三线的trili near coord inates 三线坐标trili near form 三线性形式trinomial 三项式;三项式的trino mialequati on 三项方程triplanar point 三切面重点?triple 三元组triple curve 三重曲线triple in tegral 三重积分triple point 三重点triple product 纯量三重积triple product of vectors 向量三重积triple root 三重根triple series 三重级数triple tangent 三重切线triply orthog onal system 三重正交系triply tangent 三重切线的trirecta ngular spherical tria ngle 三直角球面三角形triseca nt 三度割线trisect 把... 三等分trisect ion 三等分trisect ion of an an gle 角的三等分trisectrix 三等分角线trivale nt map 三价地图trivector 三向量trivial 平凡的trivial character 单位特贞trivial cohomology fun ctor 平凡上同弹子trivial exte nsion 平凡扩张trivial fibre bun dle 平凡纤维丛trivial graph 平凡图trivial homoge neous ideal 平凡齐次理想trivial kn ot 平凡纽结trivial soluti on 平凡解trivial subset 平凡子集trivial topology 密着拓扌卜trivial valuatio n 平凡赋值triviality 平凡性trivializati on 平凡化trochoid 摆线trochoidal 余摆线的trochoidal curve 摆线true error 真误差true formula 真公式true propositi on 真命题true sig n 直符号true value 真值trun cated cone 截锥trun cated cyli nder 截柱trun cated distributio n 截尾分布trun cated pyramid 截棱锥trun cated sample 截样本trun cated seque nee截序歹Utrun cati on 舍位trun cati on error 舍位误差trun cati on point 舍位点truth 真值truth fun ction 真值函项truth matrix 真值表truth set 真值集合truth symbol 真符号truth table 真值表truthvalue 真值tube 管tubular knot 管状纽结tubular n eighborhood 管状邻域tubular surface 管状曲面turbule nee 湍流turbule nt 湍聊turing computability 图灵机可计算性turing computable 图灵机可计算的turing mach ine 图录机turn转向turni ng point 转向点twice 再次twice differe ntiable fun ctio n 二次可微函数twin primes 素数对twisted curve 空间曲线twisted torus 挠环面two address 二地址的two address code 二地址代码two address in struct ion 二地址指令two body problem 二体问题two decisi on problem 二判定问题two digit 二位的two dime nsional 二维的two dime nsion al laplace tran sformatio n 二重拉普拉斯变换two dime nsional no rmal distributi on 二元正态分布two dime nsional quadric 二维二次曲面two dime nsional vector space 二维向量空间two fold tran sitive group 双重可迁群two person game 两人对策two person zero sum game 二人零和对策two phase sampli ng 二相扌由样法two place 二位的two point distributi on 二点分布two point form 两点式two sample method 二样本法two sample problem 二样本问题two sample test 双样本检验two sheet 双叶的two sided con diti on 双边条件two sided decompositi on 双边分解two sided divisor 双边因子two sided ideal 双边理想two sided in verse 双边逆元two sided module 双边模two sided n eighborhood 双侧邻域two sided surface 双侧曲面two sided test 双侧检定two stage sampli ng 两阶段抽样法two termed expressi on 二项式two valued logic 二值逻辑two valued measure 二值测度two variable matrix 双变量矩阵two way array 二向分类two way classificati on 二向分类twopo int boundary value problem 两点边值问题type 型type problem 类型问题typenumber 型数typical mea n 典型平均。

正态分布 t分布

正态分布 t分布

未知时,以样本标准差 S 代替 σ 所得到的统 计量
xμ S/ n
态分布,而是服从 t 分布(t-distribution)。 它的概率分布密度函数如下:
t 分布概率密度曲线特点: 1、t 分布受自由度的制约,每一个自由度都有一条 t 分布概率密度曲线。 2、t 分布概率密度曲线以纵轴为对称轴,左右对称, 且在t=0时,取得最大值。 3、与标准正态分布曲线相比,t 分布曲线顶部略低, 两尾部稍高而平。df 越小这种趋势越明显。df 越大,t 分布越趋近于标准正态分布。当n >50时,t 分布与标 准正态分布的区别很小;n >100时,t 分布基本与标准 正态分布相同;n→+∞时,t 分布与标准正态分布完全 一致。
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
x=
1 2
x
-3 -2 -1 0
x=
1 2 3 x
x=
不同均数 均值 反映随机变量的平均水平(位置参数),向 右平移表示逐渐增大,向左平移表示逐渐减小。
(1)曲线在x 轴的上方,与x 轴永不相交 (2)曲线是单峰的,它关于直线 x=μ对称 1 (3)曲线在 x=μ 处达到峰值(最高点) σ 2π (4)曲线与横轴 x所夹面积为1
例3 某地1986年120名8岁男孩身高均数为 X =123.02cm ,标准差为S=4.79cm,试估 计: (1)该地8岁男孩身高在130cm以上者占该地8 岁男孩总数的百分比; (2)身高在120cm~128cm者占该地8岁男孩总 数的百分比; (3)该地80%的男孩身高集中在哪个范围?
t 分布
利用公式,查附表得: (1) P(x<1.64) =Φ(1.64) =0.9495 (2) P (x≥2.58) =1-Φ(2.58) =1-0.9951 =0.0049 (3) P (│x│≥2.56) =2-2Φ(2.56) =2-2×0.9948 =0.0104 (4) P (0.34<x≤1.53) =Φ(1.53)-Φ(0.34) = 0.9370-0.6331=0.3039 (5) P(x<-1.82) =1-Φ(1.82) =1-0.9656 =0.0344

t分布例题

t分布例题

t分布例题Sure! Here's an example of a t-distribution problem:A random sample of 25 students' test scores had a mean of 75 anda standard deviation of 5. Can we conclude at the 5% significance level that the average test score for all students is different from 70? Solution:To answer this question, we need to conduct a t-test. The null hypothesis (H0) is that the average test score for all students is 70, and the alternative hypothesis (Ha) is that the average test score is different from 70.Step 1: State the hypotheses:H0: µ = 70 (where µ is the population mean)Ha: µ ≠ 70Step 2: Determine the significance level:The significance level is given as 5%, which corresponds to an α level of 0.05.Step 3: Calculate the test statistic:The test statistic for a t-distribution is calculated using the formula: t = (x - µ) / (s / √n)where x is the sample mean, µ is the population mean (under the null hypothesis), s is the sample standard deviation, and n is the sample size.In this case, x = 75, µ = 70, s = 5, and n = 25. Plugging these values into the formula, we get:t = (75 - 70) / (5 / √25) = 5 / (5 / 5) = 1Step 4: Determine the critical value:Since we are conducting a two-tailed test (because Ha: µ ≠ 70), we need to find the critical t-value that corresponds to a significance level of 0.025 (half of the total α level). Since the sample size is 25, the degrees of freedom is (25 - 1) = 24. Using a t-table or calculator, we find that the critical t-value is approximately ±2.064. Step 5: Make a decision:Since the test statistic (t = 1) is not greater than the critical t-value (±2.064), we fail to reject the null hypothesis. This means we do not have enough evidence to conclude that the average test score for all students is different from 70 at the 5% significance level. Conclusion:Based on the sample data, we do not have enough evidence to conclude that the average test score for all students is different from 70 at the 5% significance level.。

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结概率论与数理统计中有许多不同的概率分布,每个分布都具有不同的特征和应用。

下面是一些常见的概率分布的总结:1. 均匀分布(Uniform Distribution):在一个区间内的所有取值都具有相等的概率。

它可以是离散的(离散均匀分布)或连续的(连续均匀分布)。

2. 二项分布(Binomial Distribution):描述了在一系列独立的伯努利试验中成功次数的概率分布。

每个试验只有两个可能结果(成功和失败),并且成功的概率保持不变。

3. 泊松分布(Poisson Distribution):用于描述在给定时间或空间单位内发生某事件的次数的概率分布。

它通常用于模拟稀有事件的发生情况。

4. 正态分布(Normal Distribution):也称为高斯分布,是最常见的连续概率分布之一。

它具有钟形曲线的形状,对称且具有明确的均值和标准差。

许多自然现象和测量数据都可以近似地用正态分布来描述。

5. 指数分布(Exponential Distribution):描述了连续随机事件之间的时间间隔的概率分布。

它通常用于模拟无记忆性事件的发生情况,如设备故障、到达时间等。

6. 卡方分布(Chi-Square Distribution):由正态分布的平方和构成的概率分布。

它在统计推断中广泛应用,特别是在假设检验和信赖区间的计算中。

7. t分布(Student's t-Distribution):用于小样本量情况下参数估计和假设检验。

与正态分布相比,t分布具有更宽的尾部,因此更适用于小样本数据。

8. F分布(F-Distribution):用于比较两个或多个样本方差是否显著不同的概率分布。

它经常用于方差分析和回归分析中。

这只是一些常见的概率分布的总结,还有其他许多分布,每个都在不同的领域和应用中起着重要的作用。

t分布的概念表和查表方法

t分布的概念表和查表方法

t分布介绍在和中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t分布曲线形态与n(确切地说与自由度df)大小有关。

与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。

目录123456历史在和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈的总体的进行估计。

它是对两个差异进行测试的学生t测定的基础。

t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。

在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。

在数据有三组以上时,因为误差无法压低,此时可以用代替学生t检定。

当母群体的是未知的但却又需要估计时,我们可以运用学生t-分布。

学生t-分布可简称为t分布。

其推导由于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。

之后t检验以及相关理论经由的工作发扬光大,而正是他将此分布称为学生分布。

定义由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。

假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n 的t分布,记为。

分布密度函数,其中,Gam(x)为伽马函数。

扩展(normal distribution)是数理统计中的一种重要的理论分布,是许多的理论基础。

正态分布有两个参数,μ和σ,决定了正态分布的位置和形态。

为了应用方便,常将一般的正态变量X通过u变换[(X-μ)/σ]转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的(standard normal distribution),亦称u分布。

T-分布的故事

T-分布的故事

S tudent t D istributionIn 1908,William S.Gosset,a chemist and statistician at the Guinness brewery in Dublin,noticed that the usual statistical practice of his day introduced small errors when sample sizes are small.The standard practice was to take a sample of size n of some variable quantity,obtaining valuesx 1,x 2,...,x n ,forming the average x =(x 1+x 2+···+x n )/n ,approximating the standard deviation σby (1)σ≈ 1n n i =1(x i −x )2,and then computing confidence intervals by the standard trick of using (2)x ±Z α/2σ√n,but using the approximation in (1)instead of the true (and unknown)value of σ.Here Z a denotes the a cutoff for the standard normal distribution,a =P (Z >Z a ).For example,suppose that Gossett had measured the contents of twelve “pint”bottles of stout randomly chosen from the bottling line,and obtained the measurements (in fluid ounces)of16.2116.0715.5315.5915.8316.1715.6615.8816.1515.7715.9716.12We findx =15.9125, 11212 i =1(x i −x )2=0.228149.(Note we divided by 12.)So the standard statistical practice before 1908would have been to use15.9125±1.95996×0.228149√12=15.9125±0.129085.In other words,statisticians in 1908would have believed that the true mean of a bottle of stout was somewhere between 15.91−0.13=15.78fluid ounces and 15.91+0.13=16.04fluid ounces,with a 95%confidence.(They would have been wrong .)Here,to compute the 95%confidence interval we take α=0.05,and thus use the familiar Z 0.025=1.95996(1.96is good enough).Guinness had a policy that employees were not permitted to publish under their own names (some com-panies still do this),so Gosset published his results under the name “A.Student”.As a result,his name is almost unknown outside the statistical fraternity;yet millions of students learn about the “Student t -test.”What Gossett noticed was that the approximation for σin (1)introduces an extra variability to the problem,so that the standard normal distribution is no longer the optimal target.He noticed that for small values of n,the standard practice overestimated the confidence level.In other words,a confidence interval computed this way,instead of being correct 95%of the time,might be right only 92%of the time.12The difference is small,but can be significant when one is working with small margins for error (as one almost always is,in order to remain competitive).Gosset noticed two things:first,this estimate for σshould be replaced by what is now called the sample population standard deviation ,s = 1n −1n i =1(x i −x )2.The only difference between this and the original estimate (1)is in the use of the n −1in the denominator instead of n ;so the amount of computation is exactly the same.Roughly speaking,the idea is that while there are n “degrees of freedom”in picking the x i ,there are only n −1degrees of freedom in the x i −x ,since they must satisfy one extra relation,ni =1(x i −x )=0.When s is used (i.e.when we divide by n −1instead of by n )we findE (s 2)=σ2,that is,the expected value of s 2is the exact variance of the original distribution.In other words,if we take a sample of size n millions of times,and compute s 2for each of those samples,the results should average out to something very close to the true value of σ2.In other words,s 2is an unbiased estimator for σ2.But the second thing Gosset noted was even more important:if we use s as an approximation to the σ,and try to compareX −µs /√nto the standard normal distribution,(where X is the random variable which takes x as its values,and µis the true mean),they aren’t equal .Instead,this ratio fits what is now called the Student t -distribution.Just as Z is used to denote the standard normal distribution,the Student t -distribution is denoted by t ,and we have t =X −µs /√n.But t isn’t a single distribution;it also depends on n ,or more precisely (by convention)on ν=n −1,which is called the number of degrees of freedom of the problem:t ν=X −µs /√n.Gossett calculated the exact probability density function for this distribution;it turns out to be(3)c n 1+x 2ν (ν+1)/2,where c n is a constant.The exact value of the constant,and for that matter (3),are almost never needed;all you need to remember is that the exact formula is known.(The constant c n is chosen so as to make the integral of (3)on (−∞,+∞)equal to 1.)I’ll illustrate with the graph of the PDF for t 11(see Figure 1).Hmmm,well,it looks an awful lot like the normal distribution.For comparison,Figure 2has the plot of the standard normal distribution.3-3-2-1012300.10.20.30.4F igure 1.Density function for Student t distribution with 11degrees of freedom (t 11)-3-2-1012300.10.20.30.4F igure 2.Density function for Standard Normal DistributionHah!Fat chance that you can see any difference when they’re plotted separately like that.To tell that they’re not the same,I’ll plot them on the same graph,with a “fill”(aquamarine if you’re seeing this in color;otherwise some shade of grey.You may have to look closely...).F igure parison between the last two plots.From this we see that the graphs really are different,but they’re close .In fact,as ν→∞,the PDF of t νapproaches the PDF of the standard normal distribution.We saw earlier how the data for the 12bottles of stout would have been analyzed before 1908:the confi-dence interval would have been 15.91±0.13.How would it be done today?Well,we still compute=15.9125,4but now we compute s instead of the approximation (1)to σ:s = 11112 i =1(x i −x )2=0.238294instead of 0.228149(the result is a little larger because we divided by 11instead of by 12).But instead of using (2),which assumes normality,we must usex ±t 0.025,n −1s √nwith n =12.We have to look up the t cutoff for ν=11degrees of freedom and α/2=0.025,which we find to be 2.201from the tables.So our 95%confidence interval isPost-1908:15.9125±2.201×0.238294√12=15.9125±pare this with our earlier (pre-1908)resultPre-1908:15.9125±1.95996×0.228149√12=15.9125±0.129085.We see that when using the Student t -distribution,the plus-or-minus amount is larger (compared to the normal distribution method)because both of the numbers being multiplied are larger:1.95996<2.2010.228149<0.238294.The lower confidence level (LCL)is therefore about 15.76and the UCL is about 16.06,as opposed to the pre-1908values of 15.78,16.04.This may seem like a small difference–only 0.02out of about 16ounces–but note that the plus-or-minus amount using Student is about 17%larger than the plus-or-minus amount using Normal.Now let us recall the scenario where we want to adjust the sample size so the confidence interval has a fixed width.For example,suppose we wanted to sample just enough bottles of stout so that we’re 95%confident that our sample mean is within ±0.1of the true mean.If we knew the standard deviation ,our method would be to set1.96σ√n=0.1.For example,suppose we knew the standard deviation is 0.3.Then we solve1.96×0.3√n=0.1,which results in a value of n =34.5744,which must be rounded up to 35.But it is very unlikely that we know σ!Instead,I will show you three ways we can solve this problem:the book’s way (which involves some guessing),a more standard method,and finally an overly clever method.All of the methods require us to first collect a preliminary sample and use the data from that preliminary sample to estimate σ.For example,suppose we take a preliminary sample of 12bottles,obtaining the data5 I gave before.We use the computed value of s=0.238294instead ofσ.The book recommends that wesolve1.96×0.238294√n=0.1,yielding n=21.8(which is rounded up to n=22).Wefigure we should have sampled22bottles instead of12.So we have to go sample another10bottles.Now,in sampling those extra10bottles,both the average x and the sample standard deviation s are likely to change.We don’t care about x,since it isn’t involved in solving for n—but not knowing s is disturbing. So we will pretend that s isn’t going to change,and use the value s=0.238294which we got from the sample of12.Now the confidence interval for the t test will bex±t0.025,210.238294√22(remember,we should use the t test when we don’t knowσ).We look upt0.025,21=2.07961from the tables,and obtainx±2.079610.238294√22=x±0.105653.Oops!This doesn’t quitefit the desired±0.1.So we bump n up a little bit–let’s try n=24.。

概率分布函数的常用公式整理

概率分布函数的常用公式整理

概率分布函数的常用公式整理概率分布函数是描述随机变量在不同取值下的概率分布的函数,是统计学中重要的概念。

在实际应用中,我们常常需要计算或查阅各种概率分布函数的公式,以便进行数据分析和决策。

下面是一些常用的概率分布函数和相关公式的整理。

1. 二项分布(Binomial Distribution)二项分布是一种离散型概率分布,描述了在n次独立实验中成功次数的概率分布。

二项分布的概率质量函数(Probability Mass Function, PMF)和累积分布函数(Cumulative Distribution Function, CDF)分别为:PMF: P(X = k) = C(n, k) * p^k * (1-p)^(n-k)CDF: P(X ≤ k) = Σ(C(n, i) * p^i * (1-p)^(n-i)), 0 ≤ i ≤ k其中,X表示成功次数,k表示取值,n表示实验次数,p表示单次实验的成功概率,C(n, k)表示组合数。

2. 泊松分布(Poisson Distribution)泊松分布是一种描述单位时间或空间内随机事件发生次数的概率分布。

泊松分布的概率质量函数和累积分布函数为:PMF: P(X = k) = (λ^k * e^(-λ)) / k!CDF: P(X ≤ k) = Σ(λ^i * e^(-λ)) / i!, 0 ≤ i ≤ k其中,X表示事件发生次数,k表示取值,λ表示事件发生的平均次数。

3. 正态分布(Normal Distribution)正态分布是一种连续型概率分布,以钟形曲线来描述数据分布。

正态分布的概率密度函数(Probability Density Function, PDF)和累积分布函数为:PDF: f(x) = (1 / (σ * √(2π))) * e^(-(x-μ)^2 / (2σ^2))CDF: P(X ≤ x) = (1 / 2) * (1 + erf((x-μ) / (σ√2)))其中,X表示随机变量取值,μ表示均值,σ表示标准差,π表示圆周率,erf表示高斯误差函数。

t分布

t分布

学生t-分布维基百科,自由的百科全书跳转到:导航、搜索汉漢▼▲学生t-分布概率密度函数累积分布函数参数自由度支撑集概率密度函數累积分布函数其中:是超几何函数期望值时为,时未定义中位数众数方差时为,否则为无穷大偏度时为峰度时为信息熵•: 双Γ函数,•: 贝塔函数未定义动差生成函数特性函数•: 贝塞尔函数在概率论和统计学中,学生t-分布(Student's t-distribution)应用在当对呈正态分布的母群体的均值进行估计。

它是对两个样本均值差异进行显著性测试的学生t测定的基础。

t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。

在样本数量大(超过30等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。

在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。

当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。

学生t-分布可简称为t分布。

其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。

之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

目录• 1 描述• 2 学生t-分布置信区间的推导• 3 表格• 4 范例• 5 相关条目描述假设是呈正态分布的独立的随机变量(随机变量的期望值是,方差是)。

令:为样本均值。

为样本方差。

它显示了数量呈正态分布并且均值和方差分别为0和1。

另一个相关数量T的概率密度函数是:等于n− 1。

T的分布称为t-分布。

参数一般被称为自由度。

是伽玛函数。

分布的矩为:学生t-分布置信区间的推导假设数量A在当T呈t-分布(T的自由度为n−1)满足这与是相同的A是这个概率分布的第95个百分点那么等价于因此μ的90%置信区间为:表格下表列出了自由度为的t-分布的单侧和双侧区间值。

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用1. 常数分布(Constant distribution):概率密度函数(Probability Density Function,PDF)为常数,表示特定区间内的概率相等。

这种分布常用于模拟实验或作为基线分布进行比较。

2. 均匀分布(Uniform distribution):概率密度函数为一个常数,表示在特定区间内的各个取值的概率相等。

均匀分布经常用于随机抽样,以确保样本的代表性。

3. 二项分布(Binomial distribution):概率密度函数描述了进行n次独立二类试验中成功次数的概率分布。

二项分布在实验设计、质量控制和市场研究中广泛应用。

4. 泊松分布(Poisson distribution):5. 正态分布(Normal distribution):概率密度函数为指数函数形式,常用来描述自然界中众多连续变量的分布,例如身高、体重等。

正态分布在统计学和金融学中广泛应用。

6. χ2分布(Chi-square distribution):概率密度函数描述了n个独立标准正态分布随机变量的平方和的分布,是假设检验和方差分析中常用的分布。

7. t分布(t-distribution):概率密度函数描述了标准正态分布随机变量与一个自由度为n的卡方分布随机变量的比值的分布。

t分布在小样本推断和回归分析中常用。

8. F分布(F-distribution):概率密度函数描述了两个自由度为m和n的卡方分布随机变量的比值的分布。

F分布在方差分析、回归分析和信号处理中常应用。

9. 负二项分布(Negative binomial distribution):概率密度函数描述了进行一系列独立二类试验中直到第r次取得第k 次成功的概率。

负二项分布在可靠性工程和传染病模型中常用。

10. 伽马分布(Gamma distribution):概率密度函数描述了多个指数分布随机变量的和的分布,常被用于描述连续事件的时间间隔。

t分布的概念及表和查表方法

t分布的概念及表和查表方法

ttt分布,用于根据-distribution-分布(),可简称为在概率论和统计学中,学生的均值。

如果总体方差已知(例如在样本数量足小样本来估计呈正态分布且方差未知的总体够多时),则应该用正态分布来估计总体均值。

)大小有关。

与标准正态分布曲线相比,自(确切地说与自由度tdf分布曲线形态与n愈大,曲线双侧尾部翘得愈高;自由度df由度df越小,t分布曲线愈平坦,曲线中间愈低,分布曲线为标准正态分布曲线。

∞时,分布曲线愈接近正态目录历史1定义2扩展3特征4置信区间56计算历史t t)经常应用在对呈正态分布的总体-distribution分布-(Student's 在概率论和统计学中,学生检定Z测定的基础。

tt检定改进了的均值进行估计。

它是对两个样本均值差异进行显著性测试的学生,但Z检定(超过(en:Z-test),不论样本数量大或小皆可应用。

在样本数量大120等)时,可以应用在数据有三组以上时,t检定。

因此样本很小的情况下得改用学生Z 检定用在小的样本会产生很大的误差,检定。

t因为误差无法压低,此时可以用变异数分析代替学生t-分布。

当母群体的标准差是未知的但却又需要估计时,我们可以运用学生tt分布。

其推导由威廉·戈塞于1908年首先发表,-分布可简称为当时他还在都柏林的健力士学生t检验以)这一笔名。

之后酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

定义由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。

假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n的t分布,记为。

分布密度函数,其中,Gam(x)为伽马函数。

扩展正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。

t分布

t分布
数的均数: 样本均数的均数:
∑f X X= ∑f
i i
i
17266.0 = = 172.66 100
数学可以证明,当样本含量较大时(n>50), 数学可以证明,当样本含量较大时(n>50), 样本均数的均数近似等于总体均数。 样本均数的均数近似等于总体均数。 样本均数的标准差(标准误 : 样本均数的标准差 标准误): 标准误
CI
SX =
∑f X −
2
(∑ f X )
2
n
∑ f −1
2981298− (17266 2 / 100 ) = = 1.23(cm) 100−1
•不服从标准正态,常用 作为σ 不服从标准正态 常用s 作为σ 实际工作中, 往往是未知的 往往是未知的, 实际工作中,σ往往是未知的 分布 的估计值,称为t变换 t值的分布为 分布。 变换, 值的分布为t分布 的估计值,称为•服从 ,的t分布 变换 值的分布为 分布。 服从n-1的 分布 服从
U=
t分布的特征: 分布的特征:
X −µ
σX
X −µ t= SX
是以0为中心对称分布的一簇曲线; 是以 为中心对称分布的一簇曲线; 为中心对称分布的一簇曲线 其形态变化与自由度(n-限制条件个数 有关。 其形态变化与自由度 限制条件个数) 有关。 限制条件个数
t值
自由度一定时, 的值, 自由度一定时,t0.05/2或t0.01/2的值, 可以从t界值表中查到 界值表中查到。 可以从 界值表中查到。(P246) t 分布主要用于: 分布主要用于: •总体均数置信区间的估计 总体均数置信区间的估计 • t 检验
100个样本均数的频数表及均数,标准差的计算表 个样本均数的频数表及均数, 个样本均数的频数表及均数

常用的概率分布类型及其特征

常用的概率分布类型及其特征

常用的概率分布类型及其特征概率分布是用来描述随机变量的取值的概率的函数。

不同的概率分布具有不同的特征和应用范围。

以下是常用的概率分布类型及其特征。

1. 伯努利分布(Bernoulli Distribution):伯努利分布是最简单的概率分布之一,它描述了只有两个可能结果的离散随机变量的概率分布。

例如,抛一枚硬币的结果可以是正面或反面。

伯努利分布的特征是它的均值和方差分别等于成功的概率(p)和失败的概率(1-p)。

2. 二项分布(Binomial Distribution):二项分布是一种描述离散随机变量成功次数的概率分布。

它描述了在n次独立试验中成功的次数。

例如,投掷一枚硬币n次,成功的次数即为正面出现的次数。

二项分布的特征是它的均值等于试验次数乘以成功概率,方差等于试验次数乘以成功概率乘以失败概率。

3. 泊松分布(Poisson Distribution):泊松分布适用于描述单位时间内独立事件发生的次数的概率分布。

例如,在一小时内到达一些公共汽车站的乘客数。

泊松分布的特征是它的均值和方差相等,并且与单位时间内事件发生的频率(λ)相关。

4. 正态分布(Normal Distribution):正态分布是最常见的概率分布之一,它以钟形曲线表示。

正态分布适用于连续变量,例如身高、体重等。

正态分布的特征是它的均值和方差决定了曲线的位置和形状。

均值决定了曲线的中心,而方差决定了曲线的宽窄。

5. 卡方分布(Chi-Square Distribution):卡方分布适用于描述随机变量和它的平方之和的概率分布。

它在统计推断中经常用于检验统计模型的拟合优度。

卡方分布的特征是它的自由度决定了分布的形状。

6. t分布(Student's t-Distribution):t分布适用于样本容量较小,总体标准差未知的情况。

t分布的特征是它的形状比正态分布更扁平,更厚尾。

7. F分布(F-Distribution):F分布适用于进行方差分析等统计推断问题。

偏态t分布展开形式

偏态t分布展开形式

偏态t分布展开形式
偏态t分布(skew t-distribution)是一种常用的概率分布,它是对传统的t分布进行了拓展,考虑了分布的偏斜性。

偏态t分布的展开形式可以通过以下方式来描述:
假设X是一个服从自由度为ν的标准t分布的随机变量,Y是一个服从参数为λ的偏态分布的随机变量,那么偏态t分布可以表示为:
f(x,ν,λ) = 2Γ((ν+1)/2) / (√(πν)Γ(ν/2)) (1 + (x^2/ν))^(-(ν+1)/2) (1 + λx^2/ν)^(-(ν+1)/2)。

其中,f(x,ν,λ)表示偏态t分布的概率密度函数,ν是自由度参数,λ是偏斜参数,Γ(·)表示Gamma函数。

这个展开形式描述了偏态t分布的概率密度函数,其中包括了自由度参数和偏斜参数。

通过这个展开形式,我们可以看出偏态t 分布相对于标准t分布的偏斜性特征。

偏态t分布的形状受到自由度参数和偏斜参数的影响,使得它可以更好地拟合真实世界中的偏斜数据。

除了展开形式外,偏态t分布还有许多其他特性和性质,包括
累积分布函数、期望值、方差等,这些都是对偏态t分布全面理解
的重要内容。

总之,偏态t分布的展开形式提供了对其概率密度函数的描述,帮助我们理解和应用这一分布在实际问题中的作用和意义。

通过深
入研究偏态t分布的展开形式以及相关特性,可以更好地利用偏态
t分布来分析和建模实际数据,从而得出更准确的结论和预测。

11-t-distribution, f-distribution

11-t-distribution, f-distribution
• most notably in the analysis of variance
f-distribution
• The F distribution is a right-skewed distribution used most commonly in Analysis of Variance.
• What is the probability that M will be within 1.96 sM of the population mean (μ)?
• Two ways in which M could be more than 1.96 sM from μ :
1. M could, by chance, be either ry high or very low ;
Coefficient of Determination
• Coefficient of determination (R-squared) indicates the proportionate amount of variation in the response variable y explained by the independent variables X in the linear regression model.
• 95% of the area of a normal distribution is within 1.96 standard deviations of the mean.
• Therefore, if you randomly sampled a value from a normal distribution with a mean of 100, the probability it would be within 1.96σ of 100 is 0.95.

什么是t分布

什么是t分布

什么是t分布
T 分布(t- distribution)又称高斯分布,是一种离散型随机变量的概率分布。

它由法国数学家拉普拉斯(Laplace)于1833年提出,后来,德国数理统计学家高斯(Gauss)进行了系统研究并将其引入统计学中来,因此而得名。

T 分布有两个参数:一个是分布函数;另一个是概率密度函数。

T 分布又叫高斯分布,是一种离散型随机变量的概率分布。

在正态总体中,其标准差σ是常数。

如果把正态总体均值μ代入标准正态分布公式,可以求得其样本均值为μ(μ为总体均值)。

其中:λ为标准正态分布的分位数, n 为正整数。

概率密度函数为:其中,σ是总体方差, r 是随机变量的期望值, n 是自然数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档