高二年级理科数学2—3分类加法和分步乘法原理2

合集下载

人教版高中数学选修2-3知识点汇总

人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

分步要做到“步骤完整”。

n元集合A={a1,a2⋯,a n}的不同子集有2n个。

1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。

排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。

组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。

(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。

最新人教版高中数学选修2-3《分类加法计数原理与分步乘法计数原理》教学设计

最新人教版高中数学选修2-3《分类加法计数原理与分步乘法计数原理》教学设计

教学设计1.1分类加法计数原理和分步乘法计数原理整体设计教材分析两个原理的主要内容都是计算在完成一件事情中所有不同方法种数的问题,其区别在于:运用加法原理的前提条件是做一件事有n类方案,选择任何一类方案中的任何一种方法都可以独立完成此事,也就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是做一件事有n个步骤,只有依次完成所有的步骤后才能完成这件事,也就是说,完成这件事的各个步骤是相互依存的.两个原理本身是容易理解的,但学生又缺乏一定的认知基础,而这两个原理是我们学习排列、组合的基础,它的方法和思想贯穿于整章的教学内容中,故学生对两个原理的掌握程度决定后面两个单元的学习效果.所以在教学中要通过实例导入,引导学生利用实例分析两个原理的区别,明确使用的前提条件.课时分配4课时第一课时教学目标知识与技能1.归纳得出分类加法计数原理与分步乘法计数原理.2.初步学会区分“分类”和“分步”,能够用两个计数原理解决简单的计数问题.过程与方法通过对简单实例的分析概括,总结出分类加法计数原理和分步乘法计数原理.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力.重点难点教学重点:分类加法计数原理与分步乘法计数原理.教学难点:分类加法计数原理与分步乘法计数原理的准确理解.教学过程引入新课提出问题1:某家庭欲在五一期间从甲地去乙地进行自助旅游,一天中有火车3班,有汽车2班,那么这个家庭一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?提出问题2:后来听说丙地也是旅游胜地,于是改变行程,先从甲地到乙地,再从乙地到丙地,已知乙地到丙地一天中有飞机2班,轮船2班,问一天中乘坐这些交通工具从甲地到丙地共有多少种不同的走法?活动设计:请学生举手回答.活动成果:问题1如图1,从甲地到乙地共有两类不同的走法,其中坐火车有3种走法,坐汽车有2种走法,所以从甲地到乙地共有5种不同的走法.图1问题2如图2,先从甲地到乙地,再从乙地到丙地,有5类不同的方案.图2若从甲地到乙地乘火车1,从乙地到丙地有飞机2班,轮船2班共4种不同的走法;同样,若从甲地到乙地乘火车2、3和汽车1、2,从乙地到丙地均有飞机2班,轮船2班共4种不同的走法,所以从甲地经乙地到丙地共有4+4+4+4+4=4×5=20种不同的走法.设计意图:从两个具体的例子入手,引出这一章要研究的问题:计数问题.为引出分类加法计数原理和分步乘法计数原理做准备.1.分类加法计数原理探索新知提出问题1:由上述问题1,你能归纳猜想出一般结论吗?活动设计:先独立思考,后小组交流,学生总结,教师补充.活动成果:分类加法计数原理:完成一件事,有两类不同的方案,在第1类方案中有m 种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.设计意图:培养学生的抽象概括能力,得到分类加法计数原理.理解新知提出问题1:在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么他共有多少种选择呢?活动设计:请学生举手回答.活动成果:由于这名同学在A、B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择A、B两所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法.又由于两所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4=9.设计意图:强调解决计数问题时,应特别注意使用计数原理的条件.提出问题2:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?活动设计:学生举手发言.活动成果:解:这名同学可以选择A、B、C三所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,在C大学中有3种专业选择方法.又由于三所大学没有共同的强项专业,因此根据分类加法计数原理,这名同学可能的专业选择种数为5+4+3=12.设计意图:加深对分类加法计数原理的理解,明确使用的条件.提出问题3:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?活动设计:学生举手发言.活动成果:共有m1+m2+m3种不同的方法.设计意图:将分类加法计数原理推广到三类的情况,为进一步推广奠定基础.提出问题4:如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.设计意图:推广分类加法计数原理,加深对分类加法计数原理的理解.2.分步乘法计数原理探索新知提出问题1:用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?活动设计:请学生举手回答.活动成果:用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54个不同的号码.设计意图:进一步应用分类加法计数原理,为引出分步乘法计数原理做准备.提出问题2:由上述问题,你能归纳猜想出一般结论吗?活动成果:分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.设计意图:培养学生的抽象概括能力,得到分步乘法计数原理.理解新知提出问题1:设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选择?活动设计:学生分析思路.活动成果:思路分析:选出一组参赛代表,可以分两个步骤:第1步是选男生,第2步是选女生.解:第1步,从30名男生中选出1人,有30种不同选择;第2步,从24名女生中选出1人,有24种不同选择.根据分步乘法计数原理,共有30×24=720种不同的选法.设计意图:在用原理做题时,要从完成一件事的角度去分析,完成这件事是分成几个不同的步骤还是几个不同的类别.提出问题2:学校要为同学们订做新校服,有三个服装厂,每个服装厂均提供了五种款式,每种款式均有六种颜色可供选择,那么学校有多少种不同的订做校服的选择?活动设计:学生举手回答.活动成果:可以把订做校服这件事分成三个步骤来完成.第一步,选择服装厂,有3种选择;第二步,选择款式,有5种选择;第三步,选择颜色,有6种选择.根据分步乘法计数原理,共有3×5×6=90种不同的选择.设计意图:将分步乘法计数原理推广到分三步的情况,为进一步推广奠定基础.提出问题3:由上述问题,你能得到更一般的结论吗?活动设计:学生举手发言,学生补充,教师总结.活动成果:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.设计意图:推广分步乘法计数原理,加深学生对分步乘法计数原理的理解.提出问题4:比较分类加法计数原理和分步乘法计数原理,你能找出它们的区别与联系吗?活动成果:1.相同点:都是回答有关完成一件事的不同方法种数的问题.2.不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:引导学生对两个计数原理作比较,加深对原理使用条件的理解.运用新知例书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从书架上任取两本不同学科的书,有多少种不同的取法?思路分析:(1)要完成的事是“取一本书”,由于不论取书架的哪一层的哪一本书都可以完成这件事,因此是分类问题,应用分类计数原理.(2)要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有在第1、2、3层中都取一本书后,才能完成这件事,因此是分步问题,应用分步计数原理.(3)要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解:(1)从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4种方法;第2类方法是从第2层取1本文艺书,有3种方法;第3类方法是从第3层取1本体育书,有2种方法.根据分类加法计数原理,不同取法的种数是N=m1+m2+m3=4+3+2=9.(2)从书架的第1,2,3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数是N=m1×m2×m3=4×3×2=24.(3)N=4×3+4×2+3×2=26.【巩固练习】要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?解:从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅画中选1幅挂在左边墙上,有3种选法;第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法.根据分步乘法计数原理,不同挂法的种数是N=3×2=6.6种挂法可以表示如下:【变练演编】为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码.在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?(2)密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的一个.这样的密码共有多少个?解:(1)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有10种不同的方法;第二步,确定第二位密码,有10种不同的方法;第三步,确定第三位密码,有10种不同的方法;第四步,确定第四位密码,有10种不同的方法.根据分步乘法计数原理,不同的密码共有10×10×10×10=10 000个.(2)设置电子密码可以分成四个步骤:第一步,确定第一位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第二步,确定第二位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第三步,确定第三位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法;第四步,确定第四位密码,有两类不同的方案.第一类方案选数字有10种不同的方法,第二类方案选字母,有26种不同的选择,共有10+26=36种不同的选法.根据分步乘法计数原理,不同的密码共有36×36×36×36=364个.设计意图:进一步加深对分类加法计数原理和分步乘法计数原理的理解,初步接触分类加法计数原理和分步乘法计数原理的综合运用.【达标检测】1.填空:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是________.(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同的路线有________条.2.十字路口来往的车辆,如果不允许回头,共有________种行车路线.3.某地的部分电话号码是0543316××××,后面的每个数字来自0~9这10个数,问可以产生多少个不同的电话号码?答案:1.(1)9(2)6 2.12 3.10 000课堂小结1.知识收获:分类加法计数原理和分步乘法计数原理,以及它们的区别与联系.分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.2.方法收获:分类讨论、化归思想.3.思维收获:抽象概括问题的能力.补充练习【基础练习】1.(1)在图Ⅰ的电路中,只合上一只开关以接通电路,有多少种不同的方法?(2)在图Ⅱ的电路中,合上两只开关以接通电路,有多少种不同的方法?2.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?答案:1.(1)5(2)6 2.(1)12(2)60【拓展练习】已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数有多少?解答:要确定圆的方程可以分成三个步骤:第一步,确定a的值,有3种不同的选择;第二步,确定b的值,有4种不同的选择;第三步,确定半径r的值,有2种不同的选择.根据分步乘法计数原理得,共可表示圆的个数为3×4×2=24.设计说明本节课是计数原理的起始课,是全章内容的理论依据和知识基础.重点介绍分类加法计数原理和分步乘法计数原理,理解两个原理的区别与联系,并会初步应用两个原理解决计数问题.本节课的设计主要是实例分析、问题驱动、归纳总结、类比思考、启发引导、自主探索等教学方式.主要特点是引导学生把两个原理总结出来,并总结出两个原理的区别与联系.实例分析总结、类比分析是本节课设计的主要特点.本节课突出教师的主导作用和学生的主体地位,在教师所提问题的引导下,学生自主完成探究新知和理解新知的过程,在运用新知时进行变练演编,加深学生对知识的理解和问题转化的能力.备课资料例1某学校食堂备有5种素菜、3种荤菜、2种汤.现要配成一荤一素一汤的套餐.问可以配制出多少种不同的品种?分析:1.完成的这件事是什么?2.如何完成这件事?(配一个荤菜、配一个素菜、配一个汤)3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分步:第一步,配一个荤菜,有3种选择;第二步,配一个素菜,有5种选择;第三步,配一个汤,有2种选择.共有N=3×5×2=30种不同的品种.例2有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书.(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1.完成的这件事是什么?2.如何完成这件事?3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分类:第一类,从上层取一本书,有5种选择;第二类,从下层取一本书,有4种选择.共有N=5+4=9种.(2)分析:1.完成的这件事是什么?2.如何完成这件事?3.它们属于分类还是分步?(是否独立完成)4.运用哪个计数原理?5.进行计算.解:属于分步:第一步,从上层取一本书,有5种选择;第二步,从下层取一本书,有4种选择.共有N=5×4=20种.(设计者:徐西文)第二课时教学目标知识与技能分类加法计数原理和分步乘法计数原理的应用.过程与方法通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力.重点难点教学重点:分类加法计数原理和分步乘法计数原理的应用.教学难点:分类加法计数原理和分步乘法计数原理的应用.教学过程复习回顾提出问题1:某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?提出问题2:有一个班共有46名学生,其中男生有21名.(1)现要选派一名学生代表本班参加学校的学代会,则有多少种不同的选派方法?(2)若要选派男、女学生各一名代表本班参加学校的学代会,则有多少种不同的选派方法?活动设计:请同学分析思路和解法依据,并由另外的同学补充.活动成果:1.要完成领带和衬衣的搭配可以分两个步骤:第一步,选择一条领带,有4种不同的选择;第二步,选择一件衬衣,有6种不同的选择.根据分步乘法计数原理,共有4×6=24种不同的搭配方法.2.(1)要选派一名学生代表本班参加学校的学代会有两类不同的选法:第一类,选男生,有21种不同的选择;第二类,选女生,有25种不同的选择.根据分类加法计数原理,共有21+25=46种不同的选择.(2)要选派男、女学生各一名代表本班参加学校的学代会,可以分成两个步骤:第一步,选男生,共有21种不同的选择;第二步,选女生,共有25种不同的选择.根据分步乘法计数原理,共有21×25=525种不同的选法.设计意图:通过以上两个简单的问题,引导学生回顾分类加法计数原理和分步乘法计数原理.提出问题3:上一节课我们学习了分类加法计数原理和分步乘法计数原理,并将两个原理进行了推广,请同学们回忆我们推广的两个原理的内容,并回忆两个原理的区别与联系.活动设计:教师提问,学生回答,请不同的同学补充.活动成果:1.分类加法计数原理:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别与联系:(1)相同点:都是回答有关完成一件事的不同方法种数的问题.(2)不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:检查学生对两个原理的掌握情况,为本节课的学习提供知识基础和方法提示.典型示例例1给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9,问最多可以给多少个程序命名?思路分析:要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,选中间字符;第三步,选最后一个字符.而首字符又可以分为两类.解:第一步,先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13种不同的选法.第二步,中间字符和末位字符各有9种不同的选法.根据分步乘法计数原理,最多可以有13×9×9=1 053种不同的选法,即最多可以给1 053个程序命名.例2核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有4个不同的碱基,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子由100个碱基组成,那么能有多少种不同的RNA分子?思路分析:用100个位置表示由100个碱基组成的长链,每个位置都可以从A、C、G、U中任选一个来占据.第1位第2位第3位第100位↑↑↑↑4种4种4种4种解:100个碱基组成的长链共有100个位置,如上图所示.从左到右依次在每个位置中,从A、C、G、U中任选一个来填入,每个位置有4种填充方法.根据分步计数原理,长度为100的所有可能的RNA分子种数为.例3电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?思路分析:由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.解:(1)用下图来表示一个字节.第1位第2位第3位第8位↑↑↑↑2种2种2种2种一个字节共有8位,每位上有2种选择.根据分步乘法计数原理,一个字节最多可以表示2×2×2×2×2×2×2×2=28=256个不同的字符.(2)由(1)知,用一个字节所能表示的字符不够6 763个,我们就考虑用2个字节能够表。

2-3 1.1分类加法计数原理和分步乘法计数原理

2-3 1.1分类加法计数原理和分步乘法计数原理

学校:临清二中 学科:数学 编写人: 丁良之 审稿人:马英济1.1. 两个原理【教学目标】准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。

【教学重难点】教学重点:两个原理的理解与应用 教学难点:学生对事件的把握【教学过程】情境设计1、从学校南大门到图艺中心有多少种不同的走法?2、从学校南大门经图艺中心到食堂有多少种不同的走法?(请画分析图)3、课件中提供的生活实例。

新知教学 引出原理:分类计数原理:完成一件事, 有n 类方式, 在第一类方式,中有m 1种不同的方法,在第二类方式,中有m 2种不同的方法,……,在第n 类方式,中有m n 种不同的方法. 那么完成这件事共有 N=m 1+m 2+…+m n 种不同的方法.分步计数原理:完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有 N=m 1×m 2×…×m n 种不同的方法。

巩固原理例1、某班共有男生28名,女生20名,从该班选出学生代表参加校学代会。

(1)若学校分配给该班1名代表,有多少不同的选法?(2)若学校分配给该班2名代表,且男、女代表各一名,有多少种不同的选法? 解:见书本第6页例1(让学生明确是一件什么样的事)练习1、乘积()()1231234a a a b b b b ++⋅+++⋅()12345c c c c c ++++展开后共有多少项?例2(1)在下图(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法? (2)在下图(2)的电路中,合上两只开关以接通电路,有多少种不同的方法?(1)(2)解:见书本第6页例2(让学生明确是一件什么样的事,结合物理知识进行原理运用)例3、为了确保电子信箱的安全,在注册时通常要设置电子信箱密码.在网站设置的信箱中, (1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的 密码共有多少个? (2)密码为4位,每位是0到9这10个数字中的一个,或是从A 到Z 这26个英文字母中的1个,这样的密码共有多少个?(3)密码为4~6位,每位均为0到9这10个数字中的一个数字,这样的 密码共有多少个? 解:见书本第7页例3(学生先练习分析,老师小结)例4、用4种不同颜色给下图示的地图上色, 要求相邻两块涂不同的颜色, 共有多少种不同的涂法?解:见书本第8页例4(结合课本的思考对问题进行变换分析,着色问题是难点不急于一次到位)【当堂检测】课本P9:练习1--5 课堂小结1. 分类计数与分步计数原理是两个最基本,也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事.作业:课本P9:习题1—5;6—12学校:临清二中 学科:数学 编写人: 丁良之 审稿人:马英济1.1. 两个原理课前预习学案一、预习目标准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。

人教版数学高二A版选修2-3教材梳理 1.1分类加法计数原理和分步乘法计数原理

人教版数学高二A版选修2-3教材梳理 1.1分类加法计数原理和分步乘法计数原理

庖丁巧解牛知识·巧学一、分类加法计数原理完成一件事,有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.如果完成一件事有n类不同的方案,在各个方案中又各有m1,m2,m3,…,mn种不同的方法,那么完成这件事共有M=m1+m2+m3+…+mn种不同的方法.解决“分类”问题,用分类加法计数原理,即完成事件通过途径A,就不必再通过途径B 就可以完成.要清楚怎样才算是完成一件事的含义,即知道做“一件事”或叫完成一个“事件”在题目中具体所指的是什么.要点提示分类时,首先要确定一个分类标准,然后在这个标准下进行分类.一般地,分类标准不同,分类的结果也不同.分类的基本要求是:每一种方法必属于某一类,即不漏;任意不同类的两种方法是不同的方法,即不重.二、分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.如果完成一件事情需要n个步骤,在各个步骤中又各有m1,m2,m3,…,mn种不同的方法,那么完成这件事共有M=m1×m2×m3×…×mn种不同的方法.解决“分步”问题,用分步乘法计数原理,需要分成若干个步骤,每个步骤都完成了,才算完成一件事件,注意各步骤之间的连续性.要清楚怎么才是完成一件事的含义,即知道做“一件事”在所给的题目中需要经过哪几个步骤.要点提示每个题中,标准不同,分步也不同,分步的基本要求是:一是完成一件事,必须且只需连续做完几步,即不漏步也不重步,二是每个步骤的方法之间是无关的,不能互相替代.三、分类加法计数原理和分步乘法计数原理的意义与区别分类加法计数原理和分步乘法计数原理都是涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理是完成一件事要分为若干类,各类相互独立,各类中的各种方法也相互独立,用任何一类中的任何一种方法都可以单独完成这件事;分步乘法计数原理是完成一件事要分为若干步,各个步骤相互依存,缺少任何一步都不能完成该事件.只有当各个步骤都完成之后,才能完成该事件.因此,分辨清楚完成一件事的方法是分类还是分步,是正确使用这两个计数原理的前提.一般地,若需要同时利用两个原理时,应先分类,再分步.如果从集合的角度去看,会显得更加清楚.1.完成一件事有A、B两类办法,即集合A、B互不相交,在A类办法中有m1种方法,在B类办法中有m2种方法,即card(A)=m1,card(B)=m2,那么完成这件事的不同方法种数是card(A∪B)=card(A)+card(B)=m1+m2.这就是当n=2时的分类加法计数原理.2.完成一件事需要分成A、B两个步骤,在实行A步骤时有m1种方法,在实行B步骤时有有m2种方法,即card(A)=m1,card(B)=m2,那么完成这件事的不同方法种数就是card(A·B)=card(A)·card(B)=m1·m2.这就是当n=2时的分步乘法计数原理.当n>2时可类似得出.问题·探究问题1 随着人民生活水平的提高,“家庭理财”已经成为普通家庭一个关注的问题.王军大学毕业参加工作后,从每月工资中节余一笔钱,他打算从人民币定期储蓄和购买国债两种方式中选择一种来投资.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可从一年期、二年期和三年期三种中选择一种.问:王军一共有多少种不同的理财方式?思路:王军共有两类不同形式的选择:第一类,从一年期和二年期两种人民币定期储蓄中任意选择一种投资方法;第二类,从一年期、二年期和三年期三种国债中任意选择一种投资方法.以上任选一种方法都能达到理财的目的,因此,王军的不同选择共有2+3=5种.探究:分类是指做一件事,完成它可以有几类方案,这是对完成这件事的所有方法的一个分类.分类时,首先要根据问题的特点确定一个适合它的分类标准,然后在这个标准下进行分类;分类时要注意满足两条基本原则:一是完成这件事的任何一种方法必须属于某一类;二是分属于不同类的方法是不同的方法.问题2 由于王军工资水平逐步提高,他决定把节余的钱分成两笔,其中一笔存入人民币定期储蓄,另一笔用来购买国债,定期储蓄和国债的种类与问题1相同,问:王军共有多少种不同的理财方式?思路:王军要完成定期储蓄和国债这两项投资,理财目标才算完成,所以可以分两步来做.第一步,将一笔钱存入人民币定期储蓄,从一年期和二年期中任意选择一种理财方法;第二步,用另一笔钱购买国债,从一年期、二年期和三年期中选择一种理财方法.对于第一步中的两种储蓄方法中的每一种方法,在第二步中都有不同的购买国债的选择,当这两步选择完成后,理财的任务也就完成了.所以所有的方式共有2×3=6种.探究:这一个问题与问题1不同,问题1是进行了分类,各类方法中任何一种都可以把这件事情完成.而问题2是进行了分步,每一个步骤中的任何一种方法都不能把这件事做完.只有把各个步骤依次全部完成,才能把这件事做完.分步时,首先根据问题的特点确定一个可行的分类标准,其次步骤的设置要满足完成这件事必须连续完成这几个步骤后,这件事才算最终完成.典题·热题例1 (2005湖南高考)设直线的方程是Ax+By=0,从1,2,3,4,5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是()A.20B.19C.18D.16思路分析:从1,2,3,4,5这五个数中取两个不同的数作为A、B的值这一任务的完成,可以分两步进行,第一步取A的值,第二步取B的值.第一步:确定A的值,有5种方法;第二步:确定B的值,有4种方法.但由于当A取1,B取2时与A取2,B取4时,当A 取2,B取1时与A取4,B取2时所对应的直线为同一直线,所以应减少2条.综上,所得的不同直线的条数为5×4-2=18条.答案:C误区警示在此类问题中,容易忽视的是“不同直线”的含义.即在按分步乘法计数原理得出直线条数后,要把重复的直线剔除.例2甲、乙、丙、丁四个好朋友每人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有()A.6种目B.9种C.11种D.23种思路分析:思路一:让四人甲、乙、丙、丁依次拿一张别人送出的贺年卡,如果甲先拿有3种取法,此时被甲拿走的那张贺年卡的作者也有3种取法,接下来的两人就各有一种取法(因为此时剩下两张贺年卡中至少有一张是其中一人所写,他就只能取另一张).由于这是分步完成,用分步计数原理,有3×3×1×1=9种不同的分配方式,故应选B.思路二:设四人甲、乙、丙、丁所写的贺年卡分别是A、B、C、D,当甲拿贺年卡B 时,则乙可以拿A、C、D中任何一张,即乙拿A,丙拿D,丁拿C或乙拿C,丙拿D,丁拿A或乙拿D,丙拿A,丁拿C,所以甲拿B时有三种不同的分配方法.同理甲拿C、D时都各有三种不同的分配方法,这是对A的分类完成.用分类计数原理,共有3+3+3=9种分配方式,应选B.答案:B深化升华在解决具体问题时,首先必须弄清楚是“分步”还是“分类”,接着还要搞清楚“分步”或者“分类”的具体标准是什么.因此,我们在解题时,要认真审题,真正弄清问题的条件和结论,同时还要注意分类、分步不能重复,不能遗漏.例3把3封信投到4个邮箱,所有可能的投法共有()A.24种B.4种C.43种D.34种思路分析:把第一封信投到信箱中有4种投法;把第2封信投到信箱也有4种投法;把第3封信投到信箱也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.答案:C拓展延伸火车上有10名乘客,要在沿途的5个车站下车,问乘客下车的所有可能情况共有()A.510种B.105种C.50种D.以上都不对思路分析:同例2类似,完成这件事情可分为10步,即10个乘客全部下车,每个乘客选择下车的不同方法均为5种,由分步乘法计数原理知,所有可能的情况为10个5相乘,即510种.故答案为A.答案:A方法归纳此类问题要注意到每个个体(每封信或每个乘客)的选择方法相互独立,互不影响.完成此事只需每个个体一个个的完成即可.同时要正确理解两个基本的计数原理,在解决相关问题时要优先考虑是否运用这两个基本原理.例4完成下列问题:(1)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有四班,轮船有3次,问此人的走法可有几种选择?(2)小明要从教学楼的底层上到三层,已知从底层到二层有4个扶梯可走,从二层到三层有2个扶梯可走,问小明从底层到三层的走法共有几种?思路分析:(1)要完成从甲地到乙地,只要选择任一种方式即可,可以利用分类加法计数原理求解;(2)要完成底层到三层,可分两步:从底层到二层和从二层到三层.可能用分步乘法计数原理来解决.解:(1)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,所以此人的走法可有4+3=7种.(2)因为从底层到二层的走法有4种,而每一种走法又必须配合着由二层到三层的2种走法中的一种才能到达三层.所以小明从底层到三层的走法共有4×2=8种.深化升华应用分类计数原理与分步计数原理首先要分清“类”与“步”.应用分类计数原理,必须要各类的每一种方法都保证事件的完成;应用分步计数原理,则是各步均是完成事件必须经由的各个彼此独立的“步”.例5从1到200的自然数中,各个数位上都不含有数字8的有多少个数?思路分析:在1到200的自然数中,有个位数、两位数和三位数.可以把这三类数中符合条件的数分别找出.求和即可.解:由题意分三类:第一类:一位数中符合要求的数有8个;第二类:两位数中,十位数字除0和8外有8种选法,而个位数字除8外有9种选法,共有8×9=72个;第三类:三位数中,百位上数字是1的,十位上和个位上的数字均有9种选法,有9×9=81个;而百位上数字是2的就只有200一个数.所以符合条件的自然数的个数为N=8+8×9+9×9+1=162个.深化升华本题是一个混合使用分类加法计数原理和分步乘法计数原理的综合问题.从整体上看需分类完成,用分类加法计数原理,从局部看需分步完成,用分步计数原理,可见使用两个基本原理时要密切配合,不能截然分开.例6用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码;(2)四位数;(3)四位奇数.思路分析:(1)可以分步选取数字,作四位密码的四个位置上的数字,且所取数字不能重复;(2)可以分步选取数字,分别做为千位数字、百位数字、十位数字和个位数字,且所取数字不能重复.与(1)的不同之处是千位数字不能为0;(3)四位奇数的个位只能是1或3,因此符合条件的四位奇数可以分为个位数字是1和个位数字是3的两类,每一类中再分步.要注意千位数字不能取0,且所取数字不能重复.解:(1)完成“组成无重复数字的四位密码”这件事,可以分为四步:第一步,选取左边第一个位置上的数字,有5种选取方法;第二步,选取左边第二个位置上的数字,有4种选取方法;第三步,选取左边第三个位置上的数字,有3种选取方法;第四步,选取左边第四个位置上的数字,有2种选取方法.由分步乘法计数原理,可以组成不同的四位密码共有N=5×4×3×2=120个.(2)完成“组成无重复数字的四位数”这件事,可以分四步:第一步,从1,2,3,4中选取一个数字做千位数字,有4种不同的选取方法;第二步,从1,2,3,4中剩余的三个数字和0共四个数字中选取一个数字做百位数字,有4种不同的选取方法;第三步,从剩余的三个数字中选取一个做十位数字,有3种不同的选取方法;第四步,从剩余的两个数字中选取一个数字做个位数字,有2种不同的选取方法.由分步乘法计数原理,可以组成不同的四位数共有N=4×4×3×2=96个.(3)完成“组成无重复数字的四位奇数”这件事,有两类办法:第一类办法是四位奇数的个位取数字为1,这件事可分三个步骤完成:第一步,从2,3,4中选取一个数字做千位数字,有3种不同的选取方法;第二步,从2,3,4中剩余的两个数字与0共三个数字中选取一个做百位数字,有3种不同的选取方法;第三步,从剩余的两个数字中,选取一个数字做十位数字,有2种不同的选取方法.利用分步乘法计数原理,第一类中的四位奇数共有N1=3×3×2=18个.第二类办法是四位奇数的个位取数字为3,这件事可分三个步骤完成.利用分步乘法计数原理,第二类中的四位奇数共有N2=3×3×2=18个.最后,由分类加法计数原理知,符合条件的四位奇数共有N=18+18=36.方法归纳如果完成一件事,可以有几类办法,这几类办法中的任一类办法都能独立的完成这件事,即方法是相互独立且互斥的,此时应用分类计数原理.如果完成一件事,需分成几个步骤进行,必须连续做完每个步骤才能完成这件事,且各个步骤是互相依存、缺一不可的,此时应用分步计数原理.。

1.1分类加法计数原理与分步乘法计数原理(2)

1.1分类加法计数原理与分步乘法计数原理(2)

4.如图,该电路,从A到B共有多少条不同的线路可
通电?
A
B
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
通电?
4.如图,该电路,从A到B共有多少条不同的线路可
解: 按地图A、B、C、D四个区域依次分四步完成, 第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种, 所以根据乘法原理, 得到不同的涂色方案种数共有 N = 3 × 2 ×1×1 = 6 种。
例4 如图, 要给地图A、B、C、D四个区域分别涂 上3种不同颜色中的某一种, 允许同一种颜色使用 多次, 但相邻区域必须涂不同的颜色, 不同的涂色 方案有多少种?
思考 你能归纳一下用分类加法计数原理、分步乘 法计数原理解决计数问题的方法吗?
用两个计数 原理解决计 数问题时, 最 重要的是 在 开始 计算 之 前要进 行仔 细分析 需 要分类还 是 需要分步.
分类要做到"不重不漏". 分类后再分别
对每一类进行计数 最后用分类加法计 , 数原理求和, 得到总数.
课本P9例9
分析 按照新规定, 牌照可以分为 2 类,即字 母组合在左和字母组合在右.确定一个牌照 的字母和数字可以分6个步骤.
解 将汽车牌照分为2类, 一类字母组合在左, 另一 类的字母组合在右. 字母组合在左时分6个步骤确定一个汽车牌 , 照的 字母和数字: 第1步, 从26个字母中选 个, 放在首位 有26种选法 1 , ; 第 2 步, 从剩下的 个字母中选 个, 放在第2位,有 25 1 25种选法; 第3步, 从剩下的 个字母中选1 个, 放在第3位,有 24 24种选法;

选修2-3分类加法计数原理与分步乘法计数原理

选修2-3分类加法计数原理与分步乘法计数原理

分类加法和分布乘法计数原理题型一分类加法计数原理【例1-1】(2020·全国高三专题练习)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有A.8种B.9种C.10种D.11种【解析】设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理,共有3+3+3=9(种)不同的监考方法,故选B.【例1-2】 设集合A ={1,2,3,4},m ,n ∈A ,则方程x 2m +y 2n=1表示焦点位于x 轴上的椭圆的有( ) A .6个B .8个C .12个D .16个【解析】 因为椭圆的焦点在x 轴上,所以m >n .当m =4时,n =1,2,3;当m =3时,n =1,2;当m =2时,n =1,即所求的椭圆共有3+2+1=6(个).【举一反三】1.(2019·重庆高二月考(理))小王有70元钱,现有面值分别为20元和30元的两种IC 电话卡.若他至少买一张,则不同的买法共有( )A .7种B .8种C .6种D .9种【解析】要完成的一件事是“至少买一张IC 电话卡”,分三类完成:买1张IC 卡,买2张IC 卡,买3张IC 卡.而每一类都能独立完成“至少买一张IC 电话卡”这件事.买1张IC 卡有2种方法,即买一张20元面值的或买一张30元面值的;买2张IC 卡有3种方法,即买两张20元面值的或买两张30元面值的或20元面值的和30元面值的各买一张,买3张IC 卡有2种方法,即买两张20元面值的和一张30元面值的或3张20元面值的,故共有2+3+2=7(种)不同的买法.2.(2020·全国高三专题练习)从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为( )A .6B .5C .3D .2【解析】选女同学有3种选法,选男同学有2种选法,所以共有5种选法.故选:B.3.(2020·全国高三专题练习)从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.一天一人从甲地去乙地,共有________种不同的方法.【解析】(1)分三类:一类是乘汽车有8种方法;一类是乘火车有2种方法;一类是乘飞机有2种方法,由分类加法计数原理知,共有8+2+2=12(种)方法.故答案为:12.题型二 分步乘法计数原理【例2-1】(2019·辽宁实验中学高三月考(理))高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,甲工厂必须有班级要去,则不同的参观方案有( )A .16种B .18种C .37种D .48种【解析】根据题意,若不考虑限制条件,每个班级都有4种选择,共有4×4×4=64种情况,其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有3×3×3=27种方案;则符合条件的有64−27=37种,故选:C .【例2-2】(2020·全国高三专题练习)如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有()A.72种B.48种C.24种D.12种【解析】先涂A的话,有4种选择,若选择了一种,则B有3种,而为了让C与AB都不一样,则C有2种,再涂D的话,只要与C涂不一样的就可以,也就是D有3种,所以一共有4x3x2x3=72种,故选A。

高中数学选修2-3-分类加法计数原理与分步乘法计数原理

高中数学选修2-3-分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理知识集结知识元分类加法计数原理知识讲解1.分类加法计数原理【知识点的认识】1.定义:完成一件事有两类不同方案:在第1类办法中有m种不同的方法,在第2类办法中有n种不同的方法,那么完成这件事共有:N=m+n种不同的方法.2.推广:完成一件事有n类不同方案:在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有:N=m1+m2+…+m n种不同的方法.3.特点:(1)完成一件事的n类方案相互独立;(2)同一类方案中的各种方法相对独立.(3)用任何一类方案中的任何一种方法均可独立完成这件事;4.注意:与分步乘法计数原理区别分类加法计数原理分步乘法计数原理相同点计算“完成一件事”的方法种数不同点分类完成,类类相加分步完成,步步相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事情(每步中的每一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整【解题步骤】如果完成一件事情有n类方案,且每一类方案中的任何一种方法均能独立完成这件事,则可使用分类加法计数原理.实现步骤:(1)分类;(2)对每一类方法进行计数;(3)用分类加法计数原理求和;【命题方向】与实际生活相联系,以选择题、填空题的形式出现,并综合排列组合知识成为能力型题目,主要考查学生分析问题和解决问题的能力及分类讨论思想.例:某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有()A.30种B.35种C.42种D.48种分析:两类课程中各至少选一门,包含两种情况:A类选修课选1门,B类选修课选2门;A 类选修课选2门,B类选修课选1门,写出组合数,根据分类计数原理得到结果.解答:可分以下2种情况:①A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;②A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.故选A.点评:本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.本题也可以从排列的对立面来考虑,写出所有的减去不合题意的,可以这样解:C73﹣C33﹣C43=30.例题精讲分类加法计数原理例1.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有()A.4种B.5种C.6种D.7种例2.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A.5 B.9 C.10 D.25例3.李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则李芳有几种不同的选择方式()A.24 B.14 C.10 D.9分步乘法计数原理知识讲解1.分步乘法计数原理【知识点的认识】1.定义:完成一件事需要分成两个步骤:做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有:N=m×n种不同的方法.2.推广:完成一件事需要分成n个步骤:做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有:N=m1×m2×…×m n种不同的方法.3.特点:完成一件事的n个步骤相互依存,必须依次完成n个步骤才能完成这件事;4.注意:与分类加法计数原理区别分类加法计数原理分步乘法计数原理相同点计算“完成一件事”的方法种数如果完成一件事情有n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤才能完成这件事,则可使用分步乘法计数原理.实现步骤:(1)分步;(2)对每一步的方法进行计数;(3)用分步乘法计数原理求积;【命题方向】与实际生活相联系,以选择题、填空题的形式出现,并综合排列组合知识成为能力型题目,主要考查学生分析问题和解决问题的能力及分类讨论思想.例:从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()A.432B.288C.216D.108分析:本题是一个分步计数原理,先从4个奇数中取2个再从3个偶数中取2个共C42C32,再把4个数排列,其中是奇数的共A21A33种,根据分步计数原理得到结果.解答:∵由题意知本题是一个分步计数原理,第一步先从4个奇数中取2个再从3个偶数中取2个共C42C32=18种,第二步再把4个数排列,其中是奇数的共A21A33=12种,∴所求奇数的个数共有18×12=216种.故选C.点评:本题考查分步计数原理,是一个数字问题,数字问题是排列中的一大类问题,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.例题精讲分步乘法计数原理例1.用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C=0中的A、B、C,若A、B、C的值互不相同,则不同的直线共有()A.25条B.60条C.80条D.181条例2.直角坐标xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有()A.25个B.36个C.100个D.225个例3.对某种产品的6件不同正品和4件不同次品一一进行测试,到区分出所有次品为止若所有次品恰好在第五次测试被全部发现,则这样的测试方法有()A.24种B.96种C.576种D.720种计数原理的应用知识讲解1.计数原理的应用【知识点的认识】1.两个计数原理(1)分类加法计数原理:N=m1+m2+…+m n(2)分步乘法计数原理:N=m1×m2×…×m n2.两个计数原理的比较1.计数原理的应用(1)如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类加法计数原理;(2)如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步乘法计数原理.2.解题步骤(1)指明要完成一件什么事,并依事件特点确定是“分n类”还是“分n步”;(2)求每“类”或每“步”中不同方法的种数;(3)利用“相加”或“相乘”得到完成事件的方法总数;(4)作答.【命题方向】分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法.常见考题类型:(1)映射问题(2)涂色问题(①区域涂色②点的涂色③线段涂色④面的涂色)(3)排数问题(①允许有重复数字②不允许有重复数字)例题精讲计数原理的应用例1.艺术节期间,秘书处派甲、乙、丙、丁四名工作人员分别到A,B,C三个不同的演出场馆工作,每个演出场至少派一人.若要求甲、乙两人不能到同一演出场馆工作,则不同的分派方案有____种.例2.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有____种.例3.现用五种不同的颜色,要对如图中的四个部分进行着色,要求公共边的两块不能用同一种颜色,共有____种不同着色方法当堂练习单选题练习1.将5名同学分配到A、B、C三个宿舍中,每个宿舍至少安排1名学生,其中甲同学不能分配到A宿舍,那么不同的分配方案有()A.76种B.100种C.132种D.150种练习2.来自中国、英国、瑞典的乒乓球裁判各两名,执行北京奥运会的一号、二号和三号场地的乒乓球裁判工作,每个场地由两名来自不同国家的裁判组成,则不同的安排方案总数有()练习3.2010年的自主招生工作,部分高校实施校长实名推荐制.某中学获得推荐4名学生的资格,可以选择的大学有三所,而每所大学至多接受该校的2名推荐生,那么校长推荐的方案有()练习4.某省示范高中将6名教师分配至3所农村学校支教,每所学校至少分配一名教师,其中甲必去A校,乙、丙两名教师不能分配在同一所学校的不同分配方法数为()练习5.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种练习1.将5名学生分配到3个社区参加社会实践活动,每个社区至少分配一人,则不同的分配方案有_____种(用数字填写答案)练习2.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有_____个.解答题练习1.'某校学生会由高一年级5人,高二年级6人,高三年级4人组成。

高中数学选修2-3优质课件:分类加法计数原理与分步乘法计数原理

高中数学选修2-3优质课件:分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理【応识梃理】1.完成一件事有两类不同的方案,在第1类方案中有加种不同的方法,在第2类方案中有〃种不同的方法,那么完成这件事共有N= R+门种不同的方法.2.完成一件事有〃类不同的方案,在第1类方案中有种不同的方法,在第2类方案中有加2种不同的方法,…,在第〃类方案中有观”种不同的方法,则完成这件事共有N=... + ®种不同的方法.3.完成一件事需要两个步骤,做第1步有加种不同的方法,做第2步有〃种不同的方法,那么完成这件事共有N =心种不同的方法.4.完成一件事需要〃个步骤,做第1步有加1种不同的方法,做第2步有加2种不同的方法,…,做第n步有m n 种不同的方法,则完成这件事共有NSF…x®种不同的方法.【纟考麵型】同的选法?(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1 名学生任学生会生活部部长,有多少种不同的选法?[解](1)从三个班中选1名学生任学生会主席,共有三类 男生数女生数 总数 高三⑴班30 20 50 高三⑵班30 30 60 高三⑶班 35 20 55某校高三共有三个班,各班人数如下表.(1)从三个班中选1名学生任学生会主席,有多少种不 分类加法计数原理[例1]不同的方案:第1类,从高三(1)班中选出1名学生,有50种不同的选法;第2类,从高三(2)班中选出1名学生,有60种不同的选法;第3类,从高三⑶班中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55 = 165种不同的选法.(2)从高三⑴班、(2)班男生中或从高三⑶班女生中选1名学生任学生会生活部部长,共有三类不同的方案:第1类,从高三⑴班男生中选出1名学生,有30种不同的选法;第2类,从高三⑵班男生中选出1名学生,有30种不同的选法;第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高三⑴班、(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80种不同的选法•[类题通法]利用分类加法计数原理时要注意(1)要准确理解题意,确定分类的标准.(2)分类时要做到“不重不漏”,即类与类之间要保证相互间的独立性.[对点训练]若小且x+yW6,试求有序自然数对(兀,刃的个数. 解:按兀的取值进行分类:兀=1时,丿=1,2,3,4,5,共构成5个有序自然数对;兀=2 时,y = l,2,3,4,共构成4个有序自然数对;兀=5时,j = l,共构成1个有序自然数对.根据分类加法计数原理,共有^=5+4+3+2+1 = 15个有序自然数对.题型二分步乘法计数原理[例2]从1,2,3,4中选三个数字,组成无重复数字的整数,则满足下列条件的数有多少个?(1)三位数;(2)三位偶数.[解](1)三位数有三个数位: 百位十位个位故可分三个步骤完成: 第1步,排个位,从1,23,4中选1个数字,有4种方法;第2步,排十位,从剩下的3个数字中选1个,有3种方法;第3步,排百位,从剩下的2个数字中选1个,有2种方法.根据分步乘法计数原理,共有4X3X2=24个满足要求的三位数.(2)分三个步骤完成:第1步,排个位,从2,4中选1个,有2种方法;第2步,排十位,从余下的3个数字中选1个,有3种方法;第3步,排百位,只能从余下的2个数字中选1个,有2种方法.根据分步乘法计数原理,共有2X3X2=12个满足要求的三位偶数.[类题通法]利用分步乘法计数原理时要注意(1)仔细审题,抓住关键点确立分步标准,有特殊要求的先行安排;(2)分步要保证各步之间的连续性和相对独立性.[对点训练]一个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同.(1)从两个口袋里各取1封信,有多少种不同的取法?(2)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的投法?解:(1)各取1封信,不论从哪个口袋里取,都不能算完成了这件事,因此应分两个步骤完成,由分步乘法计数原理,共有5 X4=20种不同的取法.(2)若从每封信投入邮筒的可能性考虑,第一封信投入邮筒有4种可能,第二封信仍有4种可能,・・・,第九封信还有4种可能,所以共有4°种不同的投法.两个计数原理的综合应用[例3]现有高一学生50人,高二学生42人,高三学生30 人,组成冬令营.(1)若从中选1人作总负责人,共有多少种不同的选法?(2)若每年级各选1名负责人,共有多少种不同的选法?(3)若从中推选两人作为中心发言人,要求这两人要来自不同的年级,则有多少种选法?[解](1)从高一选1人作总负责人有50种选法;从高二选1 人作总负责人有42种选法;从高三选1人作总负责人有30种选法.由分类加法计数原理,可知共有50+42+30=122种选法.(2)从高一选1名负责人有50种选法;从高二选1名负责人有42种选法;从高三选1名负责人有30种选法.由分步乘法计数原理,可知共有50X42X30=63 000种选法.(3)①从高一和高二各选1人作中心发言人,有50X42=2100种选法;②从高二和高三各选1人作中心发言人,有42X30=1 260种选法;③从高一和高三各选1人作中心发言人,有50X30=1 500种选法.故共有2 100+1 260+1 500=4 860种选法・[类题通法]在用两个计数原理处理问题时,首先要分清是“分类”还是“分步”,其次要清楚“分类”或“分步”的具体标准,在“分类”时要遵循“不重” “不漏”的原则,在“分步”时要正确设计“分步”的程序, 注意“步”与“步”之间的连续性.[对点训练]有一项活动,需在3名老师、8名男同学和5名女同学中选部分人员参加.(1)若只需一人参加,有多少种不同的选法?(2)若需老师、男同学、女同学各一人参加,有多少种不同的选法?(3)若需一名老师、一名同学参加,有多少种不同的选法?解:(1)有三类:3名老师中选一人,有3种方法;8名男同学中选一人,有8种方法;5名女同学中选一人,有5种方法.由分类加法计数原理知,有3+8+5=16种选法.(2)分三步:第1步选老师,有3种方法;第2步选男同学, 有8种方法;第3步选女同学,有5种方法.由分步乘法计数原理知,共有3X8X5=120种选法.(3)可分两类,每一类又分两步.第1类,选一名老师再选一名男同学,有3X8=24种选法;第2类,选一名老师再选一名女同学,共有3X5 = 15种选法. 由分类加法计数原理知,共有24+15=39种选法.【俅习反僦】1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为()B. 12A. 7C. 64D. 81解析:要完成长裤与上衣配成一套,分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同选法;第2步, 选长裤,从3条长裤中任选一条,有3种不同选法.故共有4X3=12种不同的配法.答案:B2.已知集合M={19 -2,3},N={—4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一.二象限内不同的点的个数是()B. 17A. 1C. 16D. 10解析:分两类:第1类,M中的元素作横坐标,N中的元素作纵坐标,则有3X3=9个在第一、二象限内的点;第2 类,N中的元素作横坐标,M中的元素作纵坐标,则有4X2 =8个在第一、二象限内的点.由分类加法计数原理,共有9+8=17个点在第一、二象限内.答案:B3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a, b组成复数a+肘,其中虚数有解析:第1步取b的数,有6种方法;第2步取"的数,也有6种方法.根据分步乘法计数原理,共有6X6 =36种方法.答案:364. 一学习小组有4名男生,3名女生,任选一名学生当数学课代表,共有种不同选法;若选男女生各一名当组长,共有_________ 种不同选法.解析:任选一名当数学课代表可分两类,一类是从男生中选,有4种选法;另一类是从女生中选,有3种选法.根据分类加法计数原理,共有4+3=7种不同选法.若选男女生各一名当组长,需分两步:第1步,从男生中选一名,有4种选法;第2步,从女生中选一名,有3种选法.根据分步乘法计数原理,共有4X3=12种不同选法.答案:7 125.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?解:(1)由分类加法计数原理得, 从中任取一个球共有8+7 = 15种取法.⑵由分步乘法计数原理得' 从中任取两个不同颜色的球共有8X7 = 56种取法.。

分类加法原理和分步乘法原理

分类加法原理和分步乘法原理

分类加法原理和分步乘法原理分类加法原理和分步乘法原理是概率论中常用的计数原理,它们在解决组合计数问题时非常有用。

本文将详细介绍这两个原理的概念、应用场景以及实际计算方法,希望能对读者有指导意义。

一、分类加法原理分类加法原理是指将一个计数问题分成若干个互不相交的子问题,然后将各个子问题的计数结果累加起来得到总的计数结果。

换句话说,分类加法原理认为,如果一个事件可以被划分为若干个不相交的情况,那么它所有情况的计数结果之和就是总的计数结果。

举个例子来说明分类加法原理的应用。

假设有一家商店,它的商品有3种颜色(红色、蓝色、绿色),每种颜色都有2种尺寸(大号、小号)。

现在要计算这家商店的商品总数。

根据分类加法原理,我们可以将这个问题划分为两个子问题:计算每种颜色的商品总数,然后将这些结果相加。

假设红色、蓝色、绿色商品的数量分别为3、4、2,那么总的商品数量就是3+4+2=9。

分类加法原理除了可以用于计算组合问题的数量,还可以用于计算各种可能性的总数,比如排列问题和概率问题。

二、分步乘法原理分步乘法原理是指将一个多步骤的计数问题分解成若干个独立步骤,然后将各个步骤的计数结果相乘得到总的计数结果。

简而言之,分步乘法原理认为,如果一个多步骤的事件的计数问题可以被分解成若干个独立的子问题,那么它的总的计数结果就是各个子问题计数结果的乘积。

举个例子来说明分步乘法原理的应用。

假设有一家餐厅,它的菜单上有3种汤品选择(番茄汤、鸡肉汤、蘑菇汤),每种汤品有2种配料选择(鸡肉块、海鲜)。

现在要计算在这家餐厅用餐的菜单组合总数。

根据分步乘法原理,我们可以将这个问题分解成两个子问题:计算汤品选择的数量,然后计算配料选择的数量,最后将这两个数量相乘。

假设汤品选择的数量为3,配料选择的数量为2,那么菜单组合总数就是3 * 2 = 6。

分步乘法原理类似于分类加法原理,但是不同的是,分步乘法原理适用于计算多步骤问题的总数,而分类加法原理适用于计算一个事件的不同情况之和的总数。

高中数学选修2-3课件:1.1分类加法计数原理和分步乘法计数原理

高中数学选修2-3课件:1.1分类加法计数原理和分步乘法计数原理

议、展
探究二:有一项活动,需在3名教师、8名男生
和5名女生中选人参加. (1)若只需一人参加,有多少种选法? (2)若需教师、男生、女生各1人参加,有几种选法?
解 (1)只要选出1人就可以完成这件事, 而选出的1人有3种不同类型,即教师、 男生或女生,因此要分类相加. 第一类:选出的是教师,有3种选法. 第二类:选出的是男生,有8种选法. 第三类:选出的是女生,有5种选法. 根据加法原理,共有N=3+8+5=16种选
加法原理
乘法原理
联系
区分一
分类计数原理和分步计数原理,回答的都是关于 完成一件事情的不同方法的种数的问题。 完成一件事情共有n类 完成一件事情,共分n个 办法,关键词是“分类” 步骤,关键词是“分步”
区分二Байду номын сангаас
每类办法都能独立完成 这件事情。
每一步得到的只是中间结果,
任何一步都不能独立完成 这件事情,缺少任何一步也
甲地
乙地 N1=2×3=6
N2=4×2=8
丙地
N= N1+N2 =14
丁地
法.
(2)完成这件事需要分别选出1名教师、1名 男生和1名女生,可以先选教师,再选男 生,最后选女生,因此要分步相乘. 第一步:选1名教师,有3种选法. 第二步:选1名男生,有8种选法. 第三步:选1名女生,有5种选法.
根据乘法原理, 共有N=3×8×5=120 种选法.
评 小结:分类计数与分步计数原理的区分和联系:
第一章 计数原理
§1.1 分类加法计数原理和分步 乘法计数原理
高二数学备课组
学习目标
❖ 1.理解分类加法计数原理与分 步乘法计数原理.
❖ 2.会用这两个原理分析和解决 一些简单的实际计数问题.

分类加法原理和分步乘法原理

分类加法原理和分步乘法原理

种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有N =m 1·m 2·…·m n 种不同的方法.种不同的方法.三、“类”和“步”的区别在于:分类加法原理和分步乘法原理【考纲要求】1、理解分类加法、理解分类加法计数计数原理和分步乘法计数原理;原理和分步乘法计数原理;2、会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 【基础知识】一、分类加法计数原理:做一件事,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,同的方法,……,……,在第n 类办法中有m n 种不同的方法,种不同的方法,那么完成这件事共有那么完成这件事共有N =m 1+m 2+…+m n 种不同的方法.方法.二、分步乘法计数原理: 做一件事,完成它需要分成n 个步骤,做第一步有m 1“类”和“类”之间是相互独立的,互不影响,每一类都可以单独完成任务;“步”和“步”之间是相互依存的,相互影响的,每一步不能单独完成任务。

相互依存的,相互影响的,每一步不能单独完成任务。

四、注意要点1、认真读题审题,弄清事件的要求。

、认真读题审题,弄清事件的要求。

2、分类不重不漏,分步条理清晰。

、分类不重不漏,分步条理清晰。

【例题精讲】例1:电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?中各确定一名幸运伙伴,有多少种不同的结果?例2:(1)在广州亚运会上,4个选手争夺3项比赛的冠军(没有并列的冠军),问一共有多少种不同的结果?问一共有多少种不同的结果? (2)暑假,4个老师每个人从3个旅游城市个旅游城市上海上海、北京和深圳中选择一个去旅游,问一共有多少种不、北京和深圳中选择一个去旅游,问一共有多少种不 同的结果?同的结果?B.8 C.36 D.48 4.把编号为1、2、3、4、5的5位运动员排在编号为1、2、3、4、5的5条跑道中,要求有且只有两位运动员的编号与其所在跑道的编号相同,共有不同排法的种数是() A.10 B.20 C.40 分类加法原理和分步乘法原理强化训练【基础精练】1.从a、b、c、d、e五人中选1名班长,1名副班长,1名学习委员,1名纪律委员,1名文娱委员,但a 不能当班长,b不能当副班长,不同选法总数为() A.78B.54 C.24 D.20 2.一生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有() A.24种B.36种C.48种D.72种3.一植物园参观一植物园参观路径路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有() A.6 D.60 5. 如图所示的如图所示的几何体几何体是由一个正三棱锥P—ABC与正与正三棱柱三棱柱ABC—A1B1C1组合而成,现用3种不同种不同颜色颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有() A.24种B.18种C.16种D.12种6.只用1、2、3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有() A.6个B.9个C.18个D.36个7.2009年9月某地全运会火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有______种(用数字作答).8. 如图,正五边形ABCDE中,若把中,若把顶点顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有顶点所染颜色不相同,则不同的染色方法共有 种.种.9.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的公益广告,要求最后播放的必须是公益广告,且两个公益广告不能连续播放,则不同的播放种类数为________.10. 中央电视台“开心辞典”节目的现场观众来自四个不同的单位,分别在右图中的A、B、C、D四个区域落座.现有四种不同颜色的服装,每个单位的观众必须穿同色服装,且相邻区域不能同色,不相邻区域是否同色不受限制,则不同的是否同色不受限制,则不同的着装着装方法共有多少种?方法共有多少种?人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?11.一个一个口袋口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同.封信,各封信内容均不相同. (1)从两个口袋中任取一封信,有多少种不同的取法?从两个口袋中任取一封信,有多少种不同的取法?(2)从两个口袋里各取一封信,有多少种不同的取法?从两个口袋里各取一封信,有多少种不同的取法?(3)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法?同的放法?【拓展提高】1.现有高现有高一年级一年级四个班有学生34。

人教版高中数学选修2-3培优辅导讲义第二讲分类加法计数原理与分步乘法计数原理

人教版高中数学选修2-3培优辅导讲义第二讲分类加法计数原理与分步乘法计数原理

第二讲分类加法计数原理与分步乘法计数原理(2) 【知识清单】1.两计数原理的联系分类加法计数原理与分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.2.两计数原理的区别分类加法计数原理针对的是分类问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分类要做到不重不漏;分步乘法计数原理针对的是分步问题,各个步骤中的方法相互依存,只有各个步骤都完成才算做完这件事,分步要做到步骤完整.说明1.分类加法计数原理与分步乘法计数原理是两个最基本,也是最重要的原理,是解答排列,组合问题,尤其是较复杂的排列,组合问题的基础.2.应用分类加法计数原理要求分类的每一种方法都能把事件独立完成;应用分步乘法计数原理要求各步均是完成事件必须经过的若干彼此独立的步骤.3.一般是先分类再分步,分类时要设计好标准,设计好分类方案,防止重复和遗漏.4.若正面分类,种类比较多,而问题的反面种类比较少时,则使用间接法会简单一些.【考点分析】一两个计数原理在排数中的应用例1 数字不重复的四位偶数共有多少个?解(1)0在末位时,十、百、千分别有9,8,7种排法,共有9×8×7=504(个).(2)0不在末位时,2,4,6,8中的一个在末位,有4种排法,首位有8种(0除外),其余两位分别有8,7两种排法.∴共有4×8×8×7=1 792(个).由(1)(2)知,共有符合题意的偶数为504+1 792=2 296(个).方法归纳排数问题实际就是分步问题,需要用分步乘法计数原理解决.此题中,由于数字0的出现,又进行了分类讨论,即在解决相关的排数问题时,要注意两个原理的综合应用.反馈训练1 用0,1,…,9这十个数字,可以组成多少个:(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?解由于0不可在最高位,因此应对它进行单独考虑.(1)百位数字有9种选择,十位数字和个位数字都各有10种选择.由分步乘法计数原理知,适合题意的三位数共有9×10×10=900(个).(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择.由分步乘法计数原理知,适合题意的三位数共有9×9×8=648(个).(3)百位数字只有4种选择,十位数字有9种选择,个位数字有8种选择.由分步乘法计数原理知,适合题意的三位数共有4×9×8=288(个).二抽取(分配)问题例2 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( )A.16种 B.18种 C.37种 D.48种解析法一(直接法)以甲工厂分配班级情况进行分类,共分为三类:第一类,三个班级都去甲工厂,此时分配方案只有1种情况;第二类,有两个班级去甲工厂,剩下的班级去另外三个工厂,其分配方案共有3×3=9(种);第三类,有一个班级去甲工厂,另外两个班级去其他三个工厂,其分配方案共有3×3×3=27(种).综上所述,不同的分配方案有1+9+27=37(种).法二(间接法)先计算3个班自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即:4×4×4-3×3×3=37(种)方案.方法归纳解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用例举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.反馈训练2 3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?解法一(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60(种).法二(以盒子为研究对象)盒子标上序号1,2,3,4,5;分成以下10类:第一类:空盒子标号为(1,2),选法有3×2×1=6(种);第二类:空盒子标号为(1,3),选法有3×2×1=6(种);第三类:空盒子标号为(1,4),选法有3×2×1=6(种).分类还有以下几种情况:(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5);共10类,每一类都有6种方法.根据分类加法计数原理得:共有方法数N=6+6+…+6=60(种).三涂色问题例3 一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.(1)如图1,圆环分成的3等份为a1,a2,a3,有多少种不同的种植方法?(2)如图2,圆环分成的4等份为a1,a2,a3,a4,有多少种不同的种植方法?解(1)如题图1,先对a1部分种植,有3种不同的种植方法,再对a2,a3种植.因为a2,a3与a1不同颜色,a2,a3也不同,所以由分步乘法计数原理得3×2×1=6(种).(2)如图2,当a1,a3不同色时,有3×2×1×1=6(种)种植方法,当a1,a3同色时,有3×2×2×1=12(种)种植方法,由分类加法计数原理,共有6+12=18(种)种植方法.规律方法(1)涂色问题的基本要求是相邻区域不同色,但是不相邻的区域可以同色.因此一般以不相邻区域同色、不同色为分类依据,相邻区域可用分步涂色的办法涂色.(2)涂色问题往往涉及两计数原理的综合应用,因此,要找准分类标准,兼顾条件的情况下分步涂色.反馈训练3 如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成的,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.解析先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,由分步乘法计数原理,共有3×2×1×2=12(种)不同的涂法. 四 种植问题例4 从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.解 法一 (直接法):若黄瓜种在第一块土地上,则有3×2×1=6(种)不同种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2×1=6(种)不同种植方法.故不同的种植方法共有6×3=18(种).法二 (间接法):从4种蔬菜中选出3种,种在三块地上,有4×3×2=24(种),其中不种黄瓜有3×2×1=6(种),故共有不同种植方法24-6=18(种). 方法归纳 按元素性质分类,按事件发生过程分步是计数问题的基本思想方法,区分“分类”与“分步”的关键,是验证所提供的某一种方法是否完成了这件事情,分类中的每一种方法都完成了这件事情,而分步中的每一种方法不能完成这件事情,只是向事情的完成迈进了一步.反馈训练4 将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有________种(以数字作答).解析 分别用a ,b ,c 代表3种作物,先安排第一块田,有3种方法,不妨设放入a ,再安排第二块田,有2种方法b 或c ,不妨设放入b,第三块也有2种方法a 或c .(1)若第三块田放c :第四、五块田分别有2种方法,共有2×2=4(种)方法. (2)若第三块田放a :第四块有b 或c 2种方法:①若第四块放c :第五块有2种方法; ②若第四块放b :第五块只能种作物c ,共1种方法.综上,共有3×2×(2×2+2+1)=42(种)方法. 【强化训练】1.如图,小圆点表示网络的结点,结点之间的连线表示它们有网线相连,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可沿不同的路径同时传递,则单位时间传递的最大信息量是( )A .26B .24C .20D .19解析 单位时间内传递的最大信息量是N =3+4+6+6=19,故选D.2.已知x ∈{1,2,3,4},y ∈{5,6,7,8},则xy 可表示不同值的个数为( ) A .2 B .4C .8D .15解析 完成xy 这件事分两步:第一步:从集合{1,2,3,4}选一个数,共有4种选法; 第二步:从集合{5,6,7,8}选一个数,共有4种选法. 共有4×4=16(种)选法.其中3×8=4×6,所以xy 可表示的不同值的个数为15.3.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点(a ,b )的坐标,能够确定不在x 轴上的点的个数是( )A .100B .90C .81D .72解析 分两步:第一步选b ,∵b ≠0,所以有9种选法;第二步选a ,因a ≠b ,所以有9种选法.由分步乘法计数原理知共有9×9=81(个)点.4.(2013·福建理)满足a ,b ∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13 C.12 D.10解析①当a=0时,很显然为垂直于x轴的直线方程,有解,此时b取4个值,故有4种有序数对;②当a≠0时,需要Δ=4-4ab≥0,即ab≤1,显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).∵(a,b)共有3×4=12个实数对,此时(a,b)的取值为12-3=9(个).∴(a,b)的个数为4+9=13.5.五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案有________种.解析完成承建任务可分五步:第一步,安排1号有4种;第二步,安排2号有4种;第三步,安排3号有3种;第四步,安排4号有2种;第五步,安排5号有1种.由分步乘法计数原理知,共有4×4×3×2×1=96(种).6.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有________种不同的取法.解析分三类,第一类:取数学书和语文书,有10×9=90(种);第二类:取数学书和英语书,有10×8=80(种);第三类:取语文书和英语书,有9×8=72(种),故共有90+80+72=242(种).7.若把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有多少对?解把六棱锥的棱分成三类:第一类,底面上的六条棱所在的直线共面,则每两条之间不能构成异面直线.第二类,六条侧棱所在的直线共点,每两条之间也不能构成异面直线.第三类,结合图形可知,底面上的六条棱所在的直线中的每一条与之不相交的四条侧棱所在的四条直线中的每一条才能构成异面直线.再由分步乘法计数原理,可构成异面直线6×4=24(对).8.现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A.24种 B.30种 C.36种D.48种解析共有4×3×2×2=48(种).9.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则形成不同的直线最多有( )A.18条B.20条C.25条D.10条解析第一步取A的值,有5种取法,第二步取B的值有4种取法,其中当A=1,B=2时,与A=2,B=4时是相同的;当A=2,B=1时,与A=4,B=2时是相同的,故共有5×4-2=18(条).10.如图是5个相同的长方形,用红、黄、蓝、白、黑5种颜色涂这些长方形,使每个长方形涂一种颜色,且相邻长方形涂不同的颜色.如果颜色可反复使用,那么共有________种涂色方法.解析涂第一个长方形时有5种方法;涂第二个长方形时颜色与第一个不同,有4种方法;由于颜色可以反复使用,因此第三个、第四个、第五个长方形各有4种涂法.由分步乘法计数原理知,所有的涂色方法共有5×4×4×4×4=1 280(种).11.有一项活动,需在3名老师、8名男同学和5名女同学中选人参加.(1)若只需一人参加,有多少种不同方法?(2)若需老师、男同学、女同学各一人参加,有多少种不同选法?(3)若需一名老师、一名学生参加,有多少种不同选法? 解 (1)有三类选人的方法:3名老师中选一人,有3种方法;8名男同学中选一人,有8种方法;5名女同学中选一人,有5种方法.由分类加法计数原理,共有3+8+5=16种选法. (2)分三步选人:第一步选老师,有3种方法;第二步选男同学,有8种方法;第三步选女同学,有5种方法. 由分步乘法计数原理,共有3×8×5=120种选法. (3)可分两类,每一类分两步.第一类:选一名老师再选一名男同学,有3×8=24种选法;第二类:选一名老师再选一名女同学,共有3×5=15种选法. 由分类加法计数原理,共有24+15=39种选法. 12.从{-3,-2,-1,0,1,2,3}中,任取3个不同的数作为抛物线方程y =ax 2+bx +c 的系数,如果抛物线经过原点,且顶点在第一象限,则这样的抛物线共有多少条?解 因为抛物线经过原点,所以c =0,从而知c 只有1种取值.又抛物线y =ax 2+bx +c 顶点在第一象限,所以顶点坐标满足⎩⎪⎨⎪⎧-b2a>0,4ac -b 24a >0,由c =0解得a <0,b >0,所以a ∈{-3,-2,-1},b ∈{1,2,3},这样要求的抛物线的条数可由a ,b ,c 的取值来确定: 第一步:确定a 的值,有3种方法; 第二步:确定b 的值,有3种方法; 第三步:确定c 的值,有1种方法.由分步乘法计数原理知,表示的不同的抛物线有N =3×3×1=9(条).13.(1)从5种颜色中选出三种颜色,涂在一个四棱锥的五个顶点上,每个顶点上染一种颜色,并使同一条棱上的两端点异色,求不同的染色方法总数.(2)从5种颜色中选出四种颜色,涂在一个四棱锥的五个顶点上,每个顶点上染一种颜色,并使同一条棱上的两端点异色,求不同的染色方法总数.解 (1)如图,由题意知,四棱锥S -ABCD 的顶点S ,A ,B 所染色互不相同,则A ,C 必须颜色相同,B ,D 必须颜色相同,所以,共有5×4×3×1×1=60(种). (2)法一 由题意知,四棱锥S -ABCD 的顶点S ,A ,B 所染色互不相同,则A ,C 可以颜色相同,B ,D 可以颜色相同,并且两组中必有一组颜色相同.所以,先从两组中选出一组涂同一颜色,有2种选法(如:B ,D 颜色相同);再从5种颜色中,选出四种颜色涂在S ,A ,B ,C 四个顶点上,有5×4×3×2=120(种)涂法;根据分步乘法计数原理,共有2×120=240(种)不同的涂法. 法二 分两类.第一类,C 与A 颜色相同.由题意知,四棱锥S -ABCD 的顶点S ,A ,B 所染色互不相同,它们共有5×4×3=60(种)染色方法.共有5×4×3×1×2=120(种)方法; 第二类,C 与A 颜色不同.由题意知,四棱锥S -ABCD 的顶点S ,A ,B 所染色互不相同,它们共有5×4×3=60(种)染色方法.共有5×4×3×2×1=120(种)方法; 由分类加法计数原理,共有120+120=240(种)不同的方法.。

人教A版高中数学选修2-3课件分类加法计数原理与分步乘法计数原理 (2).pptx

人教A版高中数学选修2-3课件分类加法计数原理与分步乘法计数原理 (2).pptx

字母 BCEFDA
树形图
数字
1 2 3 4 5 6 7 8 9
得到的号码
BACEFD1111 BACEFD2222 BACEFD3333 BACEFD4444 BACEFD5555 BACEFD6666 BACEFD7777 BACEFD8888 BACEFD9999
十一长假中,小明跟着父母去北京旅游 变换:用前6个大写英文字母和1~9九个阿拉
如果从中选择一个景点参观,共有多少种选法?
注意:分类——不重不漏
十一长假中,小明跟着父母去北京旅游
情境1:用一个大写的英文字母或一个阿拉伯
数字给北京部分景点编号,总共能够编出多少 种不同的号码?
变换:用前6个大写英文字母和1~9九个阿拉
伯数字,以A1,A2,···,B1,B2,···的 方式给北京部分景点编号,总共能编出多少种 不同的号码?
实例并相互交流
谢谢!
制作人
不同点 每类方案中的每一 种方法都能_独__立___
完成这件事
每步_依__次__完__成__才 算完成这件事情 (每步中的每一种 方法不能独立完成
这件事)
注意点 类类独立 不重不漏 步步相依 步骤完整
反馈练习1
商店中有不同的风景类明信片4套,不同的 人物类明信片3套,不同的奥运类明信片2套.
以选购明信片为背景
十一长假中,小明跟着父母去北京旅游
情境2:已知从杭州到北京,火可车以1 乘火车,也
可以乘飞机.一天中,直达火火车…车有25班,直达飞
杭机州有10班。那么一天中,乘坐火这车些5交通工具北从京
杭州到北京共有多少种不同的飞走机法1?
飞机2

飞机10
分析:完成从杭州到北京这件事有两类方案,

高二数学选修2-3-分类加法计数原理与分步乘法计数原理-ppt

高二数学选修2-3-分类加法计数原理与分步乘法计数原理-ppt

学、人力资源学.那么,这名同学可能的专业选择共有
多少种?
2021/3/10
讲解:XX
6
探究:如果完成一件事有三类不同方案,在
m 第 中1有类方案2 种中不有同m的1 方种法不,同在的第方3法类,方在案第中2有类方m案3
种不同的方法,那么完成这件事共有多少种不 同的方法?
n 如果完成一件事情有 类不同方案,在每一
2021/3/10
讲解:XX
16
例5、给程序模块命名,需要用3个字符,其中首 字符要求用字母A~G或U~Z,后两个要求用数字 1~9,问最多可以给多少个程序命名? 解:第1步:选首字符,共有7+6=13种选法
从甲地到乙地共有
3+2 = 5 种20不21/3同/10的走法。
3×2 = 6
讲解:X种X 不同的走法。
4
分类加法计数原理
完成一件事有两类不同方案,在第1类方案中
m 有
n
种不同的方法,在第2类方案中有 种不同的方法.
那么完成这件N 事共有mn
分种步不乘同法的计方数法原. 理
完成一件事需要两个步骤,做第1步有m 种不同的 方法,做第2步有n 种不同的方法, 那么完成这件事
走法?
火车3
走法?
火车2
火车1


火车3 丙 汽车1

火车2

汽车1
火车1
汽车2
汽车2
从甲地到乙地,有2类办
从甲地到乙地,需要分成2
法,第1类办法乘火车,有3
个步骤,第1步从甲地到丙地有
种不同的走法,第2类办法乘 3种不同的走法,第2步从丙地
汽车,有2种不同的走法,那 到乙地有2种不同的走法,那么

高中数学选修2-3加法原理和乘法原理

高中数学选修2-3加法原理和乘法原理
方法.
加法原理
练习1:在填写高考志愿表时,一名高中毕业生了解到,A,B两 所大学各有一些自己感兴趣的强项专业,具体情况如下:
(A)生物学
(B) 数学
化学
会计学
医学
信息技术学
物理学
法学
工程学
如果这名同学只能选一个专业,那么他共有多少种选择呢?
变变式式21::若若还B有大C学大,学其,中其强中项强专项业专也业有为“:化机学械”制那造么、,建这筑 学名、同广学告可学能、的汉专语业言选文择学共、有韩多语少,种那?么,这名同学可能的 专业选择共有多少种?
1.1 分类加法计数原理和 分步乘法计数原理
加法原理
问题1:五一期间,你去旅游,欲从德阳去江油 的避暑山庄,一天中火车有3班,汽车有5班, 那么一天中乘坐这些交通工具从德阳到江油有多 少种不同的走法?
1、分类加法计数原理: 完成一有件两事类不同方案,在第1类
方案中有m1种不同的方法,在第2类方案中有m2种不 同的方法. 那么完成这件事共有N= m1+ m2种不同的
由选择,则不同分配方案有 种;
(2)3人去甲乙丙丁4个工厂进行社会实践,其中工厂甲必有人
去,每人去何工厂可自由选择,则不同分配方案有
种。
例3:现有0,1,2,3,4五个数字,
(1)可以组成
个三位数;
(2)可以组成 个能被2整除的无重复数字的三位数;
(3)可以组成
个无重复数字的四位奇数;
(4)可以组成
个无重复数字的四位偶数;
思考:
如图,要给A、B、C、D四个区域分别涂上5种不同颜色
中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同
的颜色,不同的涂色方案有
种?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有 8 种选法. 根据分步乘法计数原理,字母组合在左的牌照共有 26 ×25×24×10×9×8=11 232 000(个) . 同理,字母组合在右的牌照也有 11232 000 个. 所以,共能给 11232 000 + 11232 000 = 22464 000(个) . 辆汽车上牌照. 用两个计数原理解决计数问题时,最重要的是在开始 计算之前要进行仔细分析 ― 需要分类还是需要分步.分 类要做到“不重不漏” .分类后再分别对每一类进行计数, 最后用分类加法计数原理求和, 得到总数. 分步要做到 “步 骤完整” ― 完成了所有步骤,恰好完成任务,当然步与 步之间要相互独立.分步后再计算每一步的方法数,最后 根据分步乘法计数原理,把完成每一步的方法数相乘,得 到总数. 同步练习: 1. (a1 a2 a3 )(b1 b2 b3 )(c1 c2 c3 c4 c5 ) 乘 展开后共有多少项? 2.某电话局管辖范围内的电话号码由八位数字组成, 其中前四位的数字是不变的,后四位数字都是。到 9 之间 的一个数字,那么这个电话局不同的电话号码最多有多少 个? 3.从 5 名同学中选出正、副组长各 1 名,有多少种 不同的选法? 4.某商场有 6 个门,如果某人从其中的任意一个门 进人商场,并且要求从其他的门出去,共有多少种不同的 进出商场的方式? 例 5.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另 一个顶点的最近路线共有多少条? 解:从总体上看,如,蚂蚁从顶点 A 爬到顶点 C1 有三类方 法,从局部上看每类又需两步完成,所以, 第一类, m1 = 1×2 = 2 条 第二类, m2 = 1×2 = 2 条 第三类, m3 = 1×2 = 2 条 所以, 根据加法原理, 从顶点 A 到顶点 C1 最近路线共有 N = 2 + 2 + 2 = 6 条 例 6 .如图,要给地图 A、B、C、D 四个区域分别涂上 3 种不 同颜色中的某一种,允许同一种颜色使用多次,但相邻区域 必须涂不同的颜色,不同的涂色方案有多少种?
王新敞
奎屯 新疆王新敞奎屯 Nhomakorabea新疆
王新敞
奎屯
新疆
王新敞
奎屯
新疆
考虑取 1 本计算机书或取 1 本文艺书都只完成了这 件事的一部分,应用分步计数原理,上述每一种选法都完 成后,这件事才能完成,因此这些选法的种数之间还应运 用分类计数原理. 解: (1) 从书架上任取 1 本书,有 3 类方法:第 1 类 方法是从第 1 层取 1 本计算机书,有 4 种方法;第 2 类方 法是从第 2 层取 1 本文艺书,有 3 种方法;第 3 类方法是 从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计 数原理,不同取法的种数是 N m1 m2 m3 =4+3+2=9; (2)从书架的第 1 , 2 , 3 层各取 1 本书,可以分成 3 个 步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种 方法;第 2 步从第 2 层取 1 本文艺书,有 3 种方法;第 3 步从第 3 层取 1 本体育书,有 2 种方法.根据分步乘 法计数原理,不同取法的种数是 N m1 m2 m3 =4×3×2=24 . (3) N 4 3 4 2 3 2 26 。 例 2. 要从甲、乙、丙 3 幅不同的画中选出 2 幅,分 别挂在左、右两边墙上的指定位置,问共有多少种不同的 挂法? 解:从 3 幅画中选出 2 幅分别挂在左、右两边墙上, 可以分两个步骤完成:第 1 步,从 3 幅画中选 1 幅挂在 左边墙上,有 3 种选法;第 2 步,从剩下的 2 幅画中选 1 幅挂在右边墙上, 2 种选法. 有 根据分步乘法计数原理, 不同挂法的种数是 N=3×2=6 . 6 种挂法可以表示如下:
课后作业:
分类加法计数原理和分步乘法计数原理,回答的都是 有关做一件事的不同方法的种数问题.区别在于:分类加 法计数原理针对的是“分类”问题,其中各种方法相互独 立,用其中任何一种方法都可以做完这件事,分步乘法计 数原理针对的是“分步”问题,各个步骤中的方法互相依 存,只有各个步骤都完成才算做完这件事. 同步练习: 1.填空: (1) 一件工作可以用 2 种方法完成, 5 人只会用第 1 有 种方法完成,另有 4 人只会用第 2 种方法完成,从中选 出 1 人来完成这件工作,不同选法的种数是_ ; (2) A 村去 B 村的道路有 3 条, B 村去 C 村的 从 从 道路有 2 条,从 A 村经 B 的路线有_条. 2. 现有高一年级的学生 3 名, 高二年级的学生 5 名,
2.理解分类加法计数原理与分步乘法计数原理,并加区 别 分类加法计数原理针对的是“分类”问题,其中各种 方法相对独立,用其中任何一种方法都可以完成这件事; 而分步乘法计数原理针对的是“分步”问题,各个步骤中 的方法相互依存, 只有各个步骤都完成后才算做完这件事. 3.运用分类加法计数原理与分步乘法计数原理的注意 点: 分类加法计数原理:首先确定分类标准,其次满足:完成 这件事的任何一种方法必属于某一类,并且分别属于不同 的两类的方法都是不同的方法,即"不重不漏". 分步乘法计数原理:首先确定分步标准,其次满足: 必须并且只需连续完成这 n 个步骤,这件事才算完成. 板书设计:
解: 按地图 A、B、C、D 四个区域依次分四步完成, 第一步, m1 = 3 种, 第二步, m2 = 2 种, 第三步, m3 = 1 种, 第四步, m4 = 1 种, 所以根据乘法原理, 得到不同的涂色方案种数共有 N = 3 × 2 ×1×1 = 6 变式试训练: 1,如图,要给地图 A、B、C、D 四个区域分别涂上 3 种不 同颜色中的某一种,允许同一种颜色使用多次,但相邻区域 必须涂不同的颜色,不同的涂色方案有多少种? 2 若颜色是 2 种,4 种,5 种又会什么样的结果呢? 巩固练习: 1.如图,从甲地到乙地有 2 条路可通,从乙地到丙地有 3 条路可通;从甲地到丁地有 4 条路可通, 从丁地到丙地有 2 条路可通。从甲地到丙地共有多少种不同的走法? 2.书架上放有 3 本不同的数学书, 本不同的语文书, 5 6 本不同的英语书. (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中,取数学书、语文书、英语书各一本, 有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同 的取法? 3.如图一,要给①,②,③,④四块区域分别涂上五种颜 色中的某一种,允许同一种颜色使用多次,但相邻区域必须 涂不同颜色,则不同涂色方法种数为( ) A. 180 ② ① 一 ③ B. 160 ④ C. 96 ① ③ ② 二 ④ ② D. 60
定边四中高二年级理科数学学科教学案
主备人:曹世鹏 审核人:李秀萍 时间:2013 年 3 月 28 日 个人空间 总第 30 课时 教后反思 选修:2-3 第一章:计数原理 第 1 节:分类加法计数原理和分步乘法计数原理 第 2 课时 课题:分类加法计数原理和分步乘法计数原理 《课标》要求: ①通过实例,总结分类加法计数原理、分步乘法计数原理; ②能根据具体问题的特征,选择分类加法计数原理或分步 乘法计数原理解决一些简单的实际问题。 教学目标: (1)知识与技能: ①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; (2)过程与方法:培养学生的归纳概括能力; (3)情感、态度与价值观:引导学生形成 “自主学习” 与“合作学习”等良好的学习方式 教材分析:两个计数原理作为本章重要的知识,教材采取 了“实例分析——抽象概括”的方式,安排了从具体例证 中归纳两个计数原理的活动,以引导学生经历原理的概括 过程。 教学重点: 分类计数原理(加法原理)与分步计数原理(乘法 原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法 原理)的准确理解 教学过程: 例题讲解: 例 1. 书架的第 1 层放有 4 本不同的计算机书,第 2 层放有 3 本不同的文艺书,第 3 层放 2 本不同的体育书. ①从书架上任取 1 本书,有多少种不同的取法? ②从书架的第 1、2、3 层各取 1 本书,有多少种不同 的取法? ③从书架上任取两本不同学科的书,有多少种不同的 取法? 分析: ①要完成的事是“取一本书” ,由于不论取书架的哪一 层的书都可以完成了这件事,因此是分类问题,应用分类 计数原理. ②要完成的事是“从书架的第 1、2、3 层中各取一本 书” ,由于取一层中的一本书都只完成了这件事的一部分, 只有第 1、2、3 层都取后,才能完成这件事,因此是分步 问题,应用分步计数原理. ③要完成的事是“取 2 本不同学科的书” ,先要考虑的 是取哪两个学科的书,如取计算机和文艺书各 1 本,再要
王新敞
奎屯 新疆
① ③④

若变为图二,图三呢? 4.五名学生报名参加四项体育比赛,每人限报一项, 报名方法的种数为多少?又他们争夺这四项比赛的冠军, 获得冠军的可能性有多少种? 5. (2007 年重庆卷)若三个平面两两相交,且三条交 线互相平行,则这三个平面把空间分成( C ) A.5 部分 B.6 部分 C.7 部分 D.8 部分 课堂小结 1. 分类加法计数原理和分步乘法计数原理是排列组合问 题的最基本的原理,是推导排列数、组合数公式的理论依 据,也是求解排列、组合问题的基本思想.
高三年级的学生 4 名. (1)从中任选 1 人参加接待外 宾的活动,有多少种不同的选法?村去 C 村,不同 (2) 从 3 个年级的学生中各选 1 人参加接待外宾的活动,有 多少种不同的选法? 3. 在例 1 中, 如果数学也是 A 大学的强项专业, A 则 大学共有 6 个专业可以选择, B 大学共有 4 个专业可以 选择,那么用分类加法计数原理,得到这名同学可能的专 业选择共有 6 + 4 = 10 (种) . 这种算法有什么问题? 例 3.给程序模块命名,需要用 3 个字符,其中首字符 要求用字母 A~G 或 U~Z , 后两个要求用数字 1~9.问 最多可以给多少个程序命名? 分析: 要给一个程序模块命名, 可以分三个步骤: 1 第 步,选首字符;第 2 步,选中间字符;第 3 步,选最后一 个字符.而首字符又可以分为两类. 解:先计算首字符的选法.由分类加法计数原理,首 字符共有 7 + 6 = 13 种选法. 再计算可能的不同程序名称.由分步乘法计数原理, 最多可以有 13×9×9 = = 1053 个不同的名称,即最多可以给 1053 个程序命名. 例 4.随着人们生活水平的提高,某城市家庭汽车拥有 量迅速增长,汽车牌照号码需交通管理部门出台了一种汽 车牌照组成办法,每一个汽车牌照都必须有 3 个不重复的 英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必 须合成一组出现, 个数字也必须合成一组出现. 3 那么这种 办法共能给多少辆汽车上牌照? 分析:按照新规定,牌照可以分为 2 类,即字母组合 在左和字母组合在右. 确定一个牌照的字母和数字可以分 6 个步骤. 解:将汽车牌照分为 2 类,一类的字母组合在左,另 一类的字母组合在右.字母组合在左时,分 6 个步骤确定 一个牌照的字母和数字: 第 1 步,从 26 个字母中选 1 个,放在首位,有 26 种 选法; 第 2 步,从剩下的 25 个字母中选 1 个,放在第 2 位, 有 25 种选法; 第 3 步,从剩下的 24 个字母中选 1 个,放在第 3 位, 有 24 种选法; 第 4 步,从 10 个数字中选 1 个,放在第 4 位,有 10 种选法; 第 5 步,从剩下的 9 个数字中选 1 个,放在第 5 位, 有 9 种选法; 第 6 步,从剩下的 8 个字母中选 1 个,放在第 6 位,
相关文档
最新文档