一元一次不等式与一次函数习题精选(含答案)
2021年九年级数学中考复习知识点综合专题训练:一次函数与一元一次不等式1(附答案)
2021年九年级数学中考复习知识点综合专题训练:一次函数与一元一次不等式1(附答案)1.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3B.x<3C.x>﹣1D.x<﹣12.如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣2,2),则关于x的不等式x+a>kx+b 的解集是()A.x<﹣2B.x>﹣2C.x<2D.x>23.如图,已知函数y=kx+b图象如图所示,则不等式kx+b<0的解集为()A.x>5B.x<5C.x>4D.x<44.一次函数y=kx+b(k,b为常数)的图象如图所示,则不等式kx+b<1的解集是()A.x<﹣2B.x<1C.x>﹣2D.x<05.如图,直线l1:y1=ax(a≠0)与直线l2:y2=x+b(b≠0)交于点P,有四个结论:①a<0②a>0③当x>0时,y1>0④当x<﹣2时,y1>y2,其中正确的是()A.①②B.①③C.①④D.②③6.已知一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b<0的解集是()A.x>0B.x<0C.x>2D.x<27.一次函数y1=kx+b与y2=mx+n的图象如图所示,则以下结论:①k>0;②b>0;③m >0;④n>0;⑤当x=3时:y1>y2.正确的个数是()A.1个B.2个C.3个D.4个8.如图,已知一次函数y1=x+b与正比例函数y2=kx的图象交于点P.四个结论:①k>0;②b>0;③当x<0时,y2>0;④当x<﹣2时,kx<x+b.其中正确的是()A.①③B.②③C.③④D.①④9.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为()A.﹣1B.﹣3C.﹣4D.﹣510.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则()A.x>0B.x>﹣3C.x>﹣6D.x>﹣911.直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是()A.x<1B.x<2C.x>0D.x>212.在平面直角坐标系中,正比例函数y=2x的图象与直线y=kx+b交于A(﹣1,﹣2).直线y=kx+b,还经过点(﹣2,0).则不等式2x<kx+b<0的解集为()A.x<﹣2B.﹣2<x<0C.﹣2<x<﹣1D.﹣1<x<0 13.若一次函数y=(m﹣1)x﹣m+4的图象与y轴的交点在x轴的上方,则m的取值范围是.14.如图,直线y1=x+b与y2=kx﹣1相交于点P,则关于x的不等式x+b>kx﹣1的解集为.15.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为.16.如图,一次函数y=kx+b的图象经过点(4,﹣3),则关于x的不等式kx+b<﹣3的解集为.17.一次函数y=kx+b的图象如图所示,则关于x的不等式kx﹣m+b>0的解集是.18.函数y=2x和y=ax+4的图象相交于点A(m,2),则不等式2x﹣4≤ax的解集.19.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣1)﹣b>0的解集为.20.已知直线y1=2x与直线y2=﹣2x+4相交于A,有以下结论:①A的坐标为(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④y1,y2在平面直角坐标系中的位置关系是平行,其中正确的是.21.如图,直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,则不等式k1x+b>k2x+b的解集为.22.在平面直角坐标系xOy中,一次函数y=ax和y=kx+7的图象如图所示,则关于x的一元一次不等式ax>kx+7的解集是.23.已知一次函数y=kx+b经过点A(3,0),B(0,3).(1)求k,b的值.(2)在平面直角坐标系xOy中,画出函数图象;(3)结合图象直接写出不等式kx+b>0的解集.24.在给出的网格中画出一次函数y=2x﹣3的图象,并结合图象求:(1)方程2x﹣3=0的解;(2)不等式2x﹣3>0的解集;(3)不等式﹣1<2x﹣3<5的解集.25.在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=结合上面经历的学习过程,现在来解决下面的问题:在函数y=||(k>0)中,当x=﹣4时,y=1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)已知函数y=x的图象如图所示,结合你所画的函数图象,直接写出不等式||≥x 的解集.26.在平面直角坐标系中,直线y=2x向右平移1个单位长度得到直线y1.(1)直接写出直线y1的解析式;(2)直线y1分别交x轴,y轴于点A,B,交y2=kx于点C,若A为BC的中点.①请画图并求k的值;②当0<y1<y2时,请直接写出x的取值范围.27.在学习一元一次不等式与一次函数中,小明在同一个坐标系中分别作出了一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A、B,两直线交于点C.已知点A(﹣1,0),B(2,0),观察图象并回答下列问题:(1)关于x的方程k1x+b1=0的解是;关于x的不等式kx+b<0的解集是;(2)直接写出关于x的不等式组的解集;(3)若点C(1,3),求关于x的不等式k1x+b1>kx+b的解集和△ABC的面积.28.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.29.如图,过点C(0,﹣2)的直线l1:y1=kx+b(k≠0)与直线l2:y2=x+1交于点P(2,m),且直线l1与x轴交于点B,直线l2与x轴交于点A.(1)直接写出使得y1<y2的x的取值范围;(2)求点P的坐标和直线l1的解析式;(3)若点M在x轴的正半轴上运动,点M运动到何处时△ABP与△BPM面积相等?求出此时△BPM面积.30.如图,函数y1=2x和y2=kx+4(k为常数,且k≠0)的图象都经过点A(m,3).(1)求点A的坐标及k的值;(2)结合图象直接写出)y2≥y1时x的取值范围.31.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.32.设函数f(x)=|x+2|﹣|x﹣1|.(1)画出函数y=f(x)的图象;(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,求实数m的取值范围.参考答案1.解:当x<﹣1时,k2x>k1x+b,所以不等式k2x>k1x+b的解集为x<﹣1.故选:D.2.解:因为直线y1=x+a与y2=kx+b相交于点P(﹣2,2),当x>﹣2时,x+a>kx+b,所以不等式x+a>kx+b的解集为x>﹣2.故选:B.3.解:∵从图象可知:一次函数图象和x轴的交点坐标为(4,0),y随x的增大而减小,∴不等式kx+b<0的解集是x>4,故选:C.4.解:从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(0,1),并且函数值y随x的增大而增大,因而则不等式kx+b<1的解集是x<0.故选:D.5.解:∵直线l1:y1=ax(a≠0)从左往右呈下降趋势,∴a<0,故①正确,②错误;由函数图象可得当x>0时,y1<0,故③错误;∵两函数图象交于P,∴x<﹣2时,y1>y2,故④正确,故选:C.6.解:由图可知:当x>2时,y<0,即kx+b<0;故关于x的不等式kx+b<0的解集为x>2.故选:C.7.解:∵一次函数y1=kx+b的图象经过第一、三象限,∴k>0,所以①正确;∵一次函数y1=kx+b的图象与y轴的交点在y轴的负半轴上,∴b<0,所以②错误;∵一次函数y2=mx+n的图象经过第二、四象限,∴m<0,所以③错误;∵一次函数y2=mx+n的图象与y轴的交点在y轴的正半轴上,∴n>0,所以④正确;∵x>2时,y1>y2,∴当x=3时:y1>y2.所以⑤正确.故选:C.8.解:∵直线y2=kx经过第二、四象限,∴k<0,故①错误;∵y1=x+b与y轴交点在正半轴,∴b>0,故②正确;∵正比例函数y2=kx经过原点,且y随x的增大而减小,∴当x<0时,y2>0;故③正确;当x<﹣2时,正比例函数y2=kx在一次函数y1=x+b图象的上方,即kx>x+b,故④错误.故选:B.9.解:当y=0时,nx+4n=0,解得x=﹣4,所以直线y=nx+4n与x轴的交点坐标为(﹣4,0),当x>﹣4时,nx+4n>0;当x<﹣2时,﹣x+m>nx+4n,所以当﹣4<x<﹣2时,﹣x+m>nx+4n>0,所以不等式组﹣x+m>nx+4n>0的整数解为x=﹣3.故选:B.10.解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣9,所以当x>﹣9时,kx+b>x,即kx﹣x>﹣b的解集为x>﹣9.故选:D.11.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故选:D.12.解:画出函数y=2x与y=kx+b如图,由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(﹣1,﹣2),∴不等式2x<kx+b的解集是x<﹣1,∵一次函数y=kx+b的图象与x轴的交点坐标是B(﹣2,0),∴不等式kx+b<0的解集是x>﹣2,∴不等式2x<kx+b<0的解集是﹣2<x<﹣1,故选:C.13.解:一次函数y=(m﹣1)x﹣m+4中,令x=0,解得:y=﹣m+4,与y轴的交点在x轴的上方,则有﹣m+4>0,解得:m<4.故本题答案为:m<4且m≠1.14.解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b>kx﹣1的解集为x>﹣1.故答案为x>﹣1.15.解:从图象可看出当x≥﹣1,直线l2的图象在直线l1的上方,不等式ax+b>kx.故答案为:x≥﹣1.16.解:∵一次函数y=kx+b的图象经过(4,﹣3),∴x=4时,kx+b=﹣3,又y随x的增大而减小,∴关于x的不等式kx+b<﹣3的解集是x>4.故答案是:x>4.17.解:当x<﹣3时,y=kx+b>m,所以关于x的不等式kx﹣m+b>0的解集为x<﹣3.故答案为:x<﹣3.18.解:∵函数y=2x的图象经过点A(m,2),∴2m=2,解得:m=1,∴点A(1,2),当x≤1时,2x≤ax+4,即不等式2x﹣4≤ax的解集为x≤1.故答案为x≤1.19.解:把(3,0)代入y=kx+b得3k﹣b=0,则b=3k,所以k(x﹣1)﹣b>0化为k(x﹣1)﹣3k>0,即kx﹣4k>0,因为k<0,所以x<4,故答案为:x<4.20.解:解方程组得,∴两直线的交点坐标为(1,2),所以①②正确;当y1<y2,即2x<﹣2x+4,解得x<1,即当x<1时,y1<y2;所以③正确;∵直线y1=2x与直线y2=﹣2x+4相交于A,∴y1,y2在平面直角坐标系中不平行,所以④错误.故答案为:①②③.21.解:∵直线y1=k1x+b和直线y2=k2x+b交于y轴上一点,∴交点的横坐标为0∵从图象看,当x>0时,直线y1=k1x+b的图象位于直线y2=k2x+b的上方;当x<0时,直线y1=k1x+b的图象位于直线y2=k2x+b的下方∴当x>0时,k1x+b>k2x+b故答案为:x>0.22.解:因为当x>2时,ax>kx+7,所以关于x的一元一次不等式ax>kx+7的解集为x>2.故答案为x>2.23.解:(1)∵一次函数y=kx+b经过点A(3,0),B(0,3).∴,解得;(2)函数图象如图:;(3)不等式kx+b>0的解集为:x<3.24.解:(1)由图象可知,方程2x﹣3=0的解是x=,(2)由图象可知,不等式2x﹣3>0的解集是x>;(3)由图象可知,不等式﹣1<2x﹣3<5的解集是:1<x<4.25.解:(1)∵在函数y=||(k>0)中,当x=﹣4时,y=1,∴||=1,解得k=4,∴这个函数的表达式是y=||;(2)∵y=||,∴y=,列表:x﹣4﹣2﹣1123y124421…描点、连线,画出该函数的图象如图所示:由图象可知,函数的图象关于y轴对称;(3)由函数图象可得,不等式||≥x的解集是0<x≤2或x<0.26.解:(1)由“左加右减”的原则可知:把直线y=2x向右平移1个单位长度后,其直线解析式为y=2(x﹣1),即y=2x﹣2.故直线y1的为y=2x﹣2;(2)①如图,由直线y1的为y=2x﹣2可知A(1,0),B(0,﹣2),∵A为BC的中点,∴C(2,2),把C(2,2)代入y2=kx得,2=2k,∴k=1;②当0<y1<y2时,x的取值范围是1<x<2.故答案为1<x<2.27.解:(1)∵一次函数y=k1x+b1和y=kx+b的图象,分别与x轴交于点A(﹣1,0)、B (2,0),∴关于x的方程k1x+b1=0的解是x=﹣1,关于x的不等式kx+b<0的解集,为x>2,故答案为x=﹣1,x>2;(2)根据图象可以得到关于x的不等式组的解集﹣1<x<2;(3)∵点C(1,3),∴由图象可知,不等式k1x+b1>kx+b的解集是x>1,∵AB=3,∴S△ABC=•y C==.28.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).29.解:(1)当x<2时,y1<y2;(2)把点P(2,m)代入y2=x+1中,得m=2+1=3,∴点P的坐标为(2,3).把点C(0,﹣2)、P(2,3)分别代入y1=kx+b中,得,解得,∴直线l1的解析式为y1=x﹣2;(3)由(2)得点P的坐标为(2,3),∵△ABP与△BPM有相同的高,即h=3.要使△ABP与△BPM面积相等,且点M在x 轴正半轴上.∴在x轴上取点M,当AB=BM时,△ABP与△BPM面积相等.∵在直线中,当y=0时,,即点B的坐标是(,0),∴AB=1+=,BM=OM﹣OB=,∴OM=,则点M运动到(0,)时△ABP与△BPM面积相等.∴S△BPM=.30.解:(1)把A(m,3)代入y1=2x得2m=3,解得m=,∴A(,3),把A(,3)代入y2=kx+4得3=k+4,解得k=﹣;(2)当x≤时,y2≥y1.31.解:(1)联立两函数解析式可得方程组,解得:,∴点A的坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,解得:x=﹣2,∴B(﹣2,0),当y2=0时,x﹣4=0,解得:x=4,∴C(4,0),∴CB=6,∴△ABC的面积为:6×3=9;(3)由图象可得:y1≤y2时x的取值范围是x≥1.32.解:(1)函数f(x)=,所以其图象如图:(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,即(|x+2|﹣|x﹣1|+4)的最大值≥|1﹣2m|,故|x+2|﹣|x﹣1|+4的最大值大于或等于|1﹣2m|,利用绝对值的意义可得|x+2|﹣|x﹣1|+4的最小值为3+4=7,∴|1﹣2m|≤7,解得﹣3≤m≤4。
(易错题)高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(答案解析)
一、选择题1.如果两个正方形的边长之和为1,那么它们的面积之和的最小值是( ) A .14B .12C .1D .22.已知0a >,0b >,若不等式122m a b a b+≥+恒成立,则实数m 的最大值为( ) A .10B .9C .8D .73.设实数x 满足0x >,函数4231y x x =+++的最小值为( ) A .431-B .432+C .421+D .64.若正数a ,b 满足21a b +=,则下列说法正确的是( ) A .ab 有最大值12B .224a b +有最小值12C .ab 有最小值18 D .224a b +有最大值145.已知A 、B 、C 为ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为( ) A .13B .12C .23D .16.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .217.如图,平行四边形ABCD 的对角线相交于点O ,过点O 的直线与AB ,AD 所在直线分别交于点M ,N ,若AB =m AM ,AN =n AD (m >0,n >0),则mn的最大值为( )A .22B .1C .2D .28.两个正实数a ,b 满足3a ,12,b 成等差数列,则不等式2134m m a b+≥+恒成立时实数m 的取值范围是( )A .[]4,3-B .[]2,6-C .[]6,2-D .[]3,4-9.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .610.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .511.若a ,b 为正实数,直线2(23)20x a y +-+=与直线210bx y +-=互相垂直,则ab 的最大值为( )A .32B .98C .94D 12.集合{}2230A x x x =--≤,{}1B x x =>,则A B =( ).A .()1,3B .(]1,3C .[)1,-+∞D .()1,+∞二、填空题13.设m ,a R ∈,()()211f x x a x =+-+,2()24mg x mx ax =++,若“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件,则实数m 的取值范围是___________.14.若对(,1]x ∈-∞-时,不等式21()2()12xxm m --<恒成立,则实数m 的取值范围是____________..15.已知正数,x y 满足10xy y -+=,则4y x+的最小值为___________. 16.已知a ,b 为正实数,且39ab a b ++=,则3a b +的最小值为_________. 17.已知a 、b 、c 为正实数,则代数式938432a b cb c c a a b+++++的最小值是_________. 18.已知0a >,b R ∈,当0x >时,()1102ax x b x ⎛⎫---≥ ⎪⎝⎭恒成立,则+a b 的最小值是_____________.19.设x ,y 为正实数,若2241x y xy ++=,则266x yxy++的最大值是______.20.已知实数0a b >>,且2a b +=,则22323a ba ab b -+-的最小值为____三、解答题21.在数学探究活动中,某兴趣小组合作制作一个工艺品,设计了如图所示的一个窗户,其中矩形ABCD 的三边AB ,BC ,CD 由长为8厘米的材料弯折而成,BC 边的长为2t 厘米(04t <<);曲线AOD 是一段抛物线,在如图所示的平面直角坐标系中,其解析式为23x y =-,记窗户的高(点O 到BC 边的距离)为f t .(1)求函数f t 的解析式;(2)要使得窗户的高最小,BC 边应设计成多少厘米?(3)要使得窗户的高与BC 长的比值达到最小,BC 边应设计成多少厘米?22.某工厂进行废气回收再利用,把二氧化硫转化为一种可利用的化工产品.已知该单位每月的处理量最少为200吨,最多为500吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为2150400004y x x =-+,且每处理一吨二氧化硫得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的月平均处理成本最低?(2)该工厂每月进行废气回收再利用能否获利?如果获利,求月最大利润;如果不获利,求月最大亏损额.23.已知不等式2320mx x +->的解集为{2}xn x <<∣ (1)求,m n 的值;(2)解关于x 的不等式2()0( , 1)ax n a x m a R a -+->∈<24.已知正实数a ,b 满足4a b +=,求1113a b +++的最小值.25.如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设km AB y =,并在公路同侧建造边长为km x 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知1AB AC =+,且60ABC ∠=︒.(1)求y 关于x 的函数;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:该公司建中转站围墙和两条道路总造价M 最低为多少?26.设a ,b 为实数,比较22a b +与1ab a b ++-的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设两个正方形的边长分别为x 、y ,可得1x y +=,利用基本不等式可求得两个正方形的面积之和22x y +的最小值.【详解】设两个正方形的边长分别为x 、y ,则0x >,0y >且1x y +=,由基本不等式可得222x y xy +≥,所以,()()22222221x yxy xy x y +≥++=+=,所以,2212x y +≥,当且仅当12x y ==时,等号成立,因此,两个正方形的面积之和22x y +的最小值为12. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】 由已知可得()122m a b a b ⎛⎫≤++ ⎪⎝⎭,即求()122a b a b ⎛⎫++ ⎪⎝⎭的最小值,由基本不等式可得答案. 【详解】因为0a >,0b >,则()122m a b a b ⎛⎫≤++ ⎪⎝⎭,所以()1242448b a a b a b a b ⎛⎫++=++≥+⎪⎝⎭, 当且仅当4b aa b=即2b a =等号成立,要使不等式恒成立,所以8m ≤ 所以实数m 的最大值为8.故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.A解析:A 【分析】将函数变形为()43111y x x =++-+,再根据基本不等式求解即可得答案. 【详解】解:由题意0x >,所以10x +>, 所以()4423231311y x x x x =++=++-+++()4311111x x =++-≥=+,当且仅当()4311x x +=+,即10x =->时等号成立,所以函数4231y x x =+++的最小值为1. 故选:A . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.B解析:B 【分析】利用基本不等式分析22,4ab a b +的最值,注意取等条件的分析,由此得到结果.【详解】因为21a b +=,所以12a b =+≥18ab ≤,取等号时11,24a b ==, 所以ab 有最大值18,所以A ,C 错误; 又因为()22211241414824a b ab b a ab =+-=-≥-⨯=+,取等号时11,24a b ==, 所以224a b +有最小值12,所以B 正确,D 错误, 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.C解析:C 【分析】将11tan tan B C +化为关于tan A 的式子,然后利用基本不等式可以求出最小值. 【详解】在ABC 中,()tan tan C A B =-+,111111tan tan tan tan tan tan tan tan tan A BB C B A B B A B,tan 2tan B A =,211tan tan 112tan 12tan tan tan tan 2tan 3tan 6tan 3A B AAB A B A AA ,角A 为锐角,tan 0A ∴>,12tan 12tan 226tan 36tan 33A AA A , 当且仅当12tan 6tan 3A A ,即1tan 2A =时,等号成立,∴11tan tan B C +的最小值为23. 故选:C. 【点睛】本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.6.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P (,4),所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.7.B解析:B 【分析】根据向量共线的推论,结合向量的线性运算求得12m n+=,再用基本不等式即可求得结果. 【详解】 因为1122AO AB AD =+,又AB =m AM ,AN =n AD , 故可得 122m AO AM AN n=+,又,,O M N 三点共线, 故可得1122m n +=,即12m n+=. 故211114m m m n n n ⎛⎫=⨯≤+= ⎪⎝⎭,当且仅当1m n ==时取得最大值. 故选:B . 【点睛】本题考查平面向量共线定理的推论以及基本不等式的应用,属综合中档题.8.C解析:C 【分析】由题意利用等差数列的定义和性质求得13a b =+,再利用基本不等式求得112ab,根据题意,2412m m +,由此求得m 的范围. 【详解】 解:两个正实数a ,b 满足3a ,12,b 成等差数列, 13a b ∴=+,123ab ∴,112ab∴,∴112ab. ∴不等式2134m m a b ++恒成立,即234a b m m ab++恒成立, 即214m m ab+恒成立. 2412m m ∴+,求得62m -,故选:C . 【点睛】本题主要考查等差数列的定义和性质,不等式的恒成立问题,基本不等式的应用,属于基础题.9.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.10.D解析:D 【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解. 【详解】因为3x >,所以30x ->,则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.11.B解析:B 【分析】由两直线垂直求出23a b +=,再利用基本不等式求出ab 的最大值. 【详解】解:由直线2(23)20x a y +-+=与直线210bx y +-=互相垂直所以22(23)0b a +-= 即23a b +=又a 、b 为正实数,所以2a b +≥即229224a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当a 34=,b 32=时取“=”;所以ab 的最大值为98. 故选:B 【点睛】本题主要考查了由直线垂直求参数,基本不等式求最值的应用,属于中档题.12.B解析:B 【分析】求得集合{}|13A x x =-≤≤,结合集合交集的概念及运算,即可求解. 【详解】由题意,集合{}{}2230|13A x x x x x =--≤=-≤≤,{}1B x x =>,根据集合交集的概念及运算,可得{}(]|131,3A B x x =<≤=.故选:B. 【点睛】本题主要考查了集合交集的概念及运算,其中解答中正确求解集合A ,结合集合交集的概念及运算求解是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】先求出和恒成立时的范围然后根据充分条件的定义求解【详解】在上恒成立则解得在上恒成立首先都不可能恒成立因此解得∵对于一切实数x 是对于一切实数x 的充分条件∴解得故答案为:【点睛】思路点睛:本题考 解析:[6,)+∞【分析】先求出()0f x >和()0>g x 恒成立时a 的范围,然后根据充分条件的定义求解. 【详解】()0f x >在R 上恒成立,则2(1)40a ∆=--<,解得13a -<<,()0>g x 在R 上恒成立,首先0m ≤都不可能恒成立,因此2240m a m >⎧⎨∆=-<⎩,解得22m m a -<<,∵“对于一切实数x ,()0f x >”是“对于一切实数x ,()0g x >”的充分条件, ∴12320m m m ⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得6m ≥.故答案为:[6,)+∞.【点睛】思路点睛:本题考查一元二次不等式恒成立问题,考查由充分条件求参数范围,一元二次不等式恒成立问题,注意讨论最高次项系数(若最高次项系数为0,则不等式不是二次不等式),充分条件与必要条件问题可以利用集合的包含关系进行求解.14.【分析】运用换元法参变分离法来求解不等式恒成立问题【详解】不等式转化为化简为令又则即恒成立令又当时取最小值所以恒成立化简得解不等式得故答案为:【点睛】方法点晴:本题考查了不等式恒成立问题在求解过程中 解析:()2,3-【分析】运用换元法,参变分离法来求解不等式恒成立问题.【详解】不等式()21212x x m m ⎛⎫--< ⎪⎝⎭转化为2214x x m m +-<,化简为2211()22x x m m -<+, 令12x t =,又(],1x ∈-∞-,则[)2,t ∈+∞, 即22m m t t -<+恒成立,令2()f t t t =+,又[)2,t ∈+∞, 当2t =时,()f t 取最小值min ()(2)6f t f ==,所以,26m m -<恒成立,化简得260m m --<,解不等式得23m -<<.故答案为:()2,3-【点睛】方法点晴:本题考查了不等式恒成立问题,在求解过程中运用了参变分离法,注意题目中变量的取值范围.15.9【分析】由已知条件得出将代数式与相乘展开后利用基本不等式可求得的最小值【详解】因为正数满足所以即所以当且仅当即时等号成立故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条 解析:9【分析】由已知条件得出11x y +=,将代数式1x y +与4y x+相乘,展开后利用基本不等式可求得4y x+的最小值. 【详解】因为正数,x y 满足10xy y -+=, 所以1xy y +=,即11x y+=,所以4144()()559y x y xy x y x xy +=++=++≥+=, 当且仅当2xy =,即3y =,23x =时,等号成立. 故答案为:9【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.6【分析】利用基本不等式得出的不等式解之可得的最小值【详解】∵∴∴当且仅当即时等号成立故答案为:6【点睛】方法点睛:本题考查用基本不等式求最小值解题方法是用基本不等式得出关于的不等式然后通过解不等式 解析:6【分析】利用基本不等式得出3a b +的不等式,解之可得3a b +的最小值.【详解】∵0,0a b >>,∴211933(3)(3)(3)312ab a b a b a b a b a b =++=⋅++≤+++. (318)(36)0a b a b +++-≥,∴36a b +≥,当且仅当3a b =,即3,1a b ==时等号成立,故答案为:6.【点睛】方法点睛:本题考查用基本不等式求最小值,解题方法是用基本不等式得出关于3a b +的不等式,然后通过解不等式得出结论.不是直接由基本不等式得最小值,解题时也要注意基本不等式成立的条件.即最小值能否取到.17.【分析】先由题意令得到代入所求式子化简整理根据基本不等式即可求出结果【详解】因为abc 为正实数不妨令则所以当且仅当即即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三 解析:4748【分析】先由题意,令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,得到111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,代入所求式子,化简整理,根据基本不等式,即可求出结果.【详解】因为a 、b 、c 为正实数,不妨令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,则111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩, 所以11113139393862164216438432x y z x y z x y z a b c b c c a a b x y z-++-++-++=+++++ 1339338621642164y z x z x y x x y y z z =-+++-+++- 6139488262164y x z x y z x y x z z y ⎛⎫⎛⎫⎛⎫=-++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭61474848≥-+=, 当且仅当823629164y x x y z x x z y z z y ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即::1:2:3x y z =,即::10:21:1a b c =时,等号成立. 故答案为:4748. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.【分析】根据题中条件先讨论根据不等式恒成立求出;再讨论根据不等式恒成立求出结合题意得到再由基本不等式即可求出结果【详解】因为(1)当时;不等式恒成立可化为在上恒成立即在上恒成立因为在上显然单调递增所【分析】 根据题中条件,先讨论10x a<<,根据不等式恒成立求出12a b a ≥-;再讨论1x a ≥,根据不等式恒成立,求出12a b a ≤-,结合题意,得到12a b a =-,再由基本不等式,即可求出结果.【详解】因为0a >, (1)当10x a <<时,10ax ;不等式()1102ax x b x ⎛⎫---≥ ⎪⎝⎭恒成立,可化为102x b x --≤在10,a ⎛⎫ ⎪⎝⎭上恒成立,即12b x x ≥-在10,a ⎛⎫ ⎪⎝⎭上恒成立, 因为12y x x =-在10,a ⎛⎫ ⎪⎝⎭上显然单调递增,所以1122a x x a -<-, 因此只需12a b a ≥-; (2)当1x a ≥时,10ax -≥;不等式()1102ax x b x ⎛⎫---≥ ⎪⎝⎭恒成立,可化为102x b x --≥在1,a ⎛⎫+∞ ⎪⎝⎭上恒成立,即12b x x ≤-在1,a ⎛⎫+∞ ⎪⎝⎭上恒成立, 因为12y x x =-在1,a ⎛⎫+∞ ⎪⎝⎭上显然单调递增,所以1122a x x a ->-, 因此只需12a b a ≤-; 综上,只能12a b a =-,所以12a b a a b =+≥==+当且仅当12a a=,即a =.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方19.【分析】先得到当且仅当时接着得到当且仅当时从而化简得到再求取最小值最后求出的最大值【详解】解:∵即∵当且仅当即时取等号∴当且仅当时取等号∵即∴当且仅当时取等号令则∴∵当时取最小值此时最大为:故答案为【分析】先得到当且仅当2x y =时15xy ≤,接着得到当且仅当2x y =时2x y +=≤266x y xy ++得到142m m+,再求42m m +取最小值,最后求出266x y xy++的最大值. 【详解】解:∵2241x y xy ++=,即2241x y xy =-+∵22414xy x x y y ≥=-=+,当且仅当224x y =即2x y =时,取等号, ∴15xy ≤,当且仅当2x y =时,取等号, ∵2241x y xy ++=,即2(2)31x y xy +-=∴2x y +=≤2x y =时,取等号,令2x y m +==≤231xy m =-, ∴221466242x y m xy m m m+==+++, ∵当m =42m m +266x y xy ++故答案为:18. 【点睛】 本题考查基本不等式求最值,是基础题.20.【分析】由a+b =2得出b =2﹣a 代入代数式中化简后换元t =2a ﹣1得2a =t+1得出1<t <3再代入代数式化简后得出然后在分式分子分母中同时除以t 利用基本不等式即可求出该代数式的最小值【详解】解:解析:34+ 【分析】由a +b =2得出b =2﹣a ,代入代数式中,化简后换元t =2a ﹣1,得2a =t +1,得出1<t <3,再代入代数式化简后得出()2265t t t -+,然后在分式分子分母中同时除以t ,利用基本不等式即可求出该代数式的最小值.【详解】解:由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,()()()()][()()()()()()2232221334223322622262232a a a a b a b a a ab b a b a b a a a a a a a a ------====+--+----⎡⎤--⋅+-⎣⎦,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,()()()()()()()()22222132222523226215161656a a b t t t a ab b a a t t t t t t t t --=====+-----⎡⎤⎛⎫--+-+⎣⎦-+ ⎪⎝⎭.当且仅当()513t t t=<<,即当t = 因此,22323a b a ab b-+-【点睛】本题考查利用基本不等式求最值,解本题的关键就是对代数式进行化简变形,考查计算能力,属于中等题.三、解答题21.无22.无23.无24.无25.无26.无。
一元一次不等式与一次函数练习题
• (一题多变题)x为何值时,一次函数 y=-2x+3的值小于一次函数y=3x-5的值? (1)一变:x为何值时,一次函数y=-2x+3 的值等于一次函数y=3x-5的值; (2)二变:x为何值时,一次函数y=-2x+3 的图象在一次函数y=3x-5的图象的上方? (3)三变:已知一次函数y1=-2x+a, y2=3x-5a,当x=3时,y1>y2,求a的取 值范围.
• 5.直线L1:y=k1x+b与直线L2:y=k2x 在同一平面直角坐标系中的图象如图 所示,则关于x的不等式k1x+b>k2x的 解为( ) A.x>-1 B.x<-1 C.x<-2 D.无法确定
(2008,沈阳,3分)一次函数 y=kx+b的图象如图所示,当y<0时, x的取值范围是( ) • A.x>0 B.x<0 C.x>2 D.x<2
堂清作业
• 某学校需刻录一批光盘,若在电脑公 司刻录每张需8元(包括空白光盘费); 若学校自制,除租用刻录机需120元外, 每张还需成本4元(包括空白光盘 费).问刻录这批电脑光盘到电脑公 司刻录费用省,还是自制费用省?请 你说明理由.
• 解:设需刻录x张光盘,学校自刻的总费用 为y1元,电脑公司刻录的总费用为y2 元.由题意,得y1=4x+120,y2=8x. (1)当y1>y2时,即4x+120>8x,解得x<30; (2)当y1=y2时,即4x+120=8x,解得x=30; (3)当y1<y2时,即4x+120<8x,解得 x>30. 所以,当刻录光盘小于30张时,到电脑公司 刻录费用省;当刻录光盘等于30张时,两 个地方都行;当刻录光盘大于30张时,学 校自刻费用省.
一元一次不等式与一次函数(2)
y2=0.5ax+(40-x)a,即y2=(40-0.5x)a。
令y1=y2,得32a=(40-0.5x)a,解得x=16; 令y1>y2,得32a > (40-0.5x)a,解得x > 16;
令y1<y2,得32a < (40-0.5x)a,解得x < 16。
所以,当x=16时,两种购票方案费用相同;当17≤x ≤ 40时,选 择女士票价打五折的购票方案;当0 < x < 16时,选择买团体 票的购票方案。
一元一次不等式与一次函数
一、复习练习
1、一次函数 y= -3x+12中x为何值时: (1)当x取何值时,y>0;(2)当x取何值时, y=0;(3)当x取何值时,y<0 。 解:(1)当y>0时,则有-3x+12>0,
-3x>-12, x<4
(2)当y=0时,则有-3x+12=0, -3x=-12, x=4 (3)当y<0时,则有-3x+12<0, -3x<-12, x>4 注意:(1)不等式两边同时乘以(或除以)一个 负数,不等号的方向要改变。
三随堂练习
解:设此公司40名员工中女士有x人,则男士有(40-x)人,景点 票价每张a元,打八折的购票方案费用为y1元,女士票价打五折 的购票方案费用为y2元。
根据题意得:y1=40×0.8a,即y1=32a;
某公司40名员工到一景点集体参观,景点门票价格 为30元/人。该景点规定满40人可以购买团体票, 票价打八折。这天恰逢妇女节,该景点做活动,女 士票价打五折,但 不能同时享受两种优惠。请你帮 助他们选择购票方案。
四、考考你
某电信公司的A类手机收费标准:不管通话时间多长, 每部手机必须缴月租费50元,另外每通话1分钟交 费0.4元;B类手机收费如下:没有月租费,但每通 话1分钟收费0.6元。 (1)分别写出A类、B类标准下每月应交费用y元与 通话时间x(分)之间的关系式; (2)什么情况下选择A类收费标准? (3)什么情况下选择B类收费标准? 解(1)A类:y1=50+0.4x, B类:y2=0.6x (2)y1<y2,即50+0.4x<0.6x,x>250,通话时间超过 250分钟时选择A类标准。 (3)y1>y2,50+0.4x>0.6x,x<250,通话时间少于 250分钟时选择B类标准。
一元一次不等式与一次函数(1)练习
一元一次不等式与一次函数(1)一、目标导航1.一元一次不等式,一元一次方程与一次函数的关系,感知不等式,函数,方程的不同作用与内在联系.2.根据函数图象观察方程的解及不等式的解集.二、基础过关1.已知函数y=8x-11,要使y>0,那么x应取( )A.x>B.x<C.x>0 D.x<02.已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是(•)A.y>0 B.y<0 C.-2<y<0 D.y<-23.已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是()A.x>5 B.x<C.x<-6 D.x>-64.已知一次函数的图象如图所示,当x<1时,y的取值范围是()A.-2<y<0 B.-4<y<0 C.y<-2 D.y<-45.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3 时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.36.如图,直线交坐标轴于A,B两点,则不等式的解集是()A.x>-2 B.x>3 C.x<-2 D.x<37.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(-1,0)C.(0,-1)D.(1,0)6题8题8.直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为()A、x>-1B、x<-1C、x<-2D、无法确定9.若一次函数y=(m-1)x-m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.10.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.11.当自变量x 时,函数y=5x+4的值大于0;当x 时,函数y=5x+4的值小于0.12.已知2x-y=0,且x-5>y,则x的取值范围是________.13.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是_______________.14.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为_________.15.已知关于x的不等式kx-2>0(k≠0)的解集是x<-3,则直线y=-kx+2与x•轴的交点是__________.16.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.三、能力提升17.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2(2)2y1-y2≤418.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.(2)直接写出:当x取何值时y1>y2;y1<y2四、聚沙成塔如果x,y满足不等式组,那么你能画出点(x,y)所在的平面区域吗?。
(完整版)一元一次不等式与一次函数习题精选(含答案)
一元一次不等式与一次函数1.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()(5)A.x<B.x<3 C.x>D.x>32.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<13.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<24.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c 的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣25.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()A.x>0 B.x>﹣3 C.x>2 D.﹣3<x<26.如图,函数y=kx和y=﹣x+3的图象相交于(a,2),则不等式kx<﹣x+3的解集为()A.x<B.x>C.x>2 D.x<27.(如图,直线l是函数y=x+3的图象.若点P(x,y)满足x<5,且y>,则P点的坐标可能是()A.(4,7)B.(3,﹣5)C.(3,4)D.(﹣2,1)8.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣49.如图,一次函数y=kx+b的图象经过点(2,0)与(0,3),则关于x的不等式kx+b>0的解集是()(10) (11)A.x<2 B.x>2 C.x<3 D.x>310.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题)11.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为_________.12.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须_________.(13) (14) (15)13.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为_________.14.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集为_________.15.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是_________.16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为_________.(17) (18)17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为_________.18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是_________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.(1)求点B的坐标;(2)求直线l2的解析表达式;(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)(1)求a,b的值;(2)求使得y1、y2的值都大于0的取值范围;(3)求这两条直线与x轴所围成的△ABC的面积是多少?(4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.22.如图,直线y=kx+b经过点A(0,5),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.AACBBAAAAD﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣19 x≥5.20.解:(1)当x=0时,x+3=0+3=3,∴点A的坐标是(0,3),∵点A与点B恰好关于x轴对称,∴B点坐标为(0,﹣3);(2)∵点P横坐标为﹣1,∴(﹣1)+3=,∴点P的坐标是(﹣1,),设直线l2的解析式为y=kx+b,则,解得,∴直线l2的解析式为y=﹣x﹣3;(3)∵点P横坐标是﹣1,△MAB的面积是△PAB的面积的,∴点M的横坐标的长度是,①当横坐标是﹣时,y=(﹣)×(﹣)﹣3=﹣3=﹣,②当横坐标是时,y=(﹣)×﹣3=﹣﹣3=﹣,∴M点的坐标是(﹣,﹣)或(,﹣);(4)l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,l2:y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣,∴当﹣6<x<﹣时,l1、l2表示的两个函数的函数值都大于0.21 解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);解得:.(2)由(1)知,直线l2:y=﹣x+1;∵y1=x+1>0,∴x>﹣1;∵;∴﹣1<x<2.(3)由题意知A(﹣1,0),则AB=3,且OC=1;∴S△ABC=AB•OC=.(4)由于△ABC、△ABP同底,若面积相等,则P点纵坐标为﹣1,代入直线l1可求得:P的坐标为(﹣2,﹣1).22. 解:(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),∴,解方程组得,∴直线AB的解析式为y=﹣x+5;(2)∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为(3,2);(3)由图可知,x≥3时,2x﹣4≥kx+b.。
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)
第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。
一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典
11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。
2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x 轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。
评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:- 1 -(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;- 2 -由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).- 3 -- 4 -∴02,20,k b b =-+⎧⎨=+⎩ 解得1,2,k b =⎧⎨=⎩ ∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。
一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典
11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。
2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。
评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h 行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).∴02,20,k bb=-+⎧⎨=+⎩解得1,2,kb=⎧⎨=⎩∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。
一次函数与一元一次方程(不等式)
答案显示
1.已知方程12x+b=0 的解是 x=-2,则下列 为函数 y=12x+b 的图象的是( C )
2.【中考·通辽】如图,直线y=kx+b(k≠0)经过点(-1, 3),则不等式kx+b≥3的解集为( D ) A.x>-1 B.x<-1 C.x≥3 D.x≥-1
HK版八年级上
第12章 一次函数
12.2 一次函数 第7课时 一次函数与一元一次方程
(不等式)
提示:点击 进入习题
1C 2D 3D 4B 5A
答案显示
62
7
(1)l2;30;20 (2)1.3 h或1.5 h
8 -1<x<2
9 见习题
5 10 (1)x<3.
(2)-4≤k<0 或 0<k≤1.
提示:点击 进入习题
夯实基础
1.关于线段的垂直平分线有以下说法: ①一条线段的垂直平分线的垂足,也是这条线段的中点; ②线段的垂直平分线是一条直线; ③一条线段的垂直平分线是这条线段的唯一对称轴. 其中正确的说法有( B ) A.1个 B.2个 C.3个 D.0个
整合方法
解:AD垂直平分EF. 证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC, ∴∠DFA=∠DEA=90°,DE=DF, ∴点D在线段EF的垂直平分线上,∠DFE=∠DEF, ∵∠AFE=∠DFA-∠DFE,∠AEF=∠DEA-∠DEF, ∴∠AFE=∠AEF,∴AE=AF, ∴点A在线段EF的垂直平分线上,∴AD垂直平分EF.
3.【中考·苏州】若一次函数y=kx+b(k,b为 常数,且k≠0)的图象经过点A(0,-1),B(1, 1),则不等式kx+b>1的解集为( D ) A.x<0 B.x>0 C.x<1 D.x>1
人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)(1)
一、选择题1.已知函数22(0)y ax bx c a =+->的图象与x 轴交于()2,0A 、()6,0B 两点,则不等式220cx bx a +-< 的解集为( ) A .(6,2)-- B .11,,62⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭C .11,26--⎛⎫⎪⎝⎭D .11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭2.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .63.已知2x >,那么函数42y x x =+-的最小值是( ) A .5B .6C .4D .84.已知关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <,则错误的是( ) A .122x x +=B .123x x <-C .214x x ->D .1213x x -<<<5.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2463450x x -+<成立的x 的取值范围是( ) A .[)1,15B .[]2,8C .[)2,8D .[)2,15 6.若集合{}2|10A x ax ax =-+<=∅,则实数a 的取值范围是 ( ) A .{}|04a a << B .{|04}a a ≤< C .{|04}a a <≤D .{|04}a a ≤≤ 7.若实数,x y 满足0xy >,则的最大值为( ) A .22-B .22+C .422+D .422-8.已知正实数,x y 满足3x y +=,则41x y+的最小值( ) A .2B .3C .4D .1039.已知a≥0,b≥0,且a+b=2,则 ( ) A .ab≤ B .ab≥ C .a 2+b 2≥2D .a 2+b 2≤310.已知正实数a ,b 满足21a b +=,则12a b+的最小值为( ) A .8B .9C .10D .1111.已知01a <<,1b >,则下列不等式中成立的是( )A .4aba b a b+<+ B 2aba b<+C <D .a b +12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则a 的最小值为( )A .4B .4+C .8D .8+二、填空题13.为了调查盘龙江的水流量情况,需要在江边平整出一块斜边长为13m 的直角三角形空地建水文观测站,该空地的最大面积是______2m . 14.已知a 、b 、c 为正实数,则代数式938432a b cb c c a a b+++++的最小值是_________. 15.已知函数2()34(0)f x ax x a =-+>,若存在32m n a<≤,使得()f x 在区间[,]m n 上的值域为[,]m n ,则a 的取值范围________.16.设0b >,21a b -=,则242a a b+的最小值为_________.17.已知0,0a b >>,1a b +=,则14y a b=+的最小值是__________. 18.设A .B 分别为双曲线22221x y a b-=(a >0,b >0)的左.右顶点,P 是双曲线上不同于A .B的一点,直线AP .BP 的斜率分别为m .n ,则当3b a 取最小值时,双曲线的离心率为__________.19.已知x ,0y >,且194x y+=,则x y +的最小值________.20.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 三、解答题21.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.22.已知函数()()221f x ax a x b =-++-.(1)若2a =-,9b =,求函数()()0f x y x x=<的最小值; (2)若1b =-,解关于x 的不等式()0f x ≥.23.已知关于x 的不等式()22600kx x k k -+<≠.(1)若不等式的解集是{3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围.24.已知函数()|21||2|f x x x =---,M 为不等式()1f x <-的解集. (1)求M ;(2)当,a b M ∈且1a b +=时,4a b tab +≥恒成立,求t 的最大值.25.解关于x 的不等式ax 2-(a +1)x +1<0.26.已知ABC 内接于O ,AB c =,BC a =,=CA b ,O 的半径为r .(1)若230OA OB OC ++=,试求BOC ∠的大小;(2)若A 为动点,60BAC ∠=︒,AO OC OB λμ=+,试求λμ+的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用函数图象与x 的交点,可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,再利用根与系数的关系,转化为4b a =-,12c a =-,最后代入不等式220cx bx a +-<,求解集.【详解】由条件可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,则226b a +=-,26ca⨯=-,得4b a =-,12c a =-, 22201280cx bx a ax ax a ∴+-<⇔---<,整理为:()()21281021610x x x x ++>⇔++>, 解得:16x >-或12x <-, 所以不等式的解集是11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭. 故选:D 【点睛】思路点睛:本题的关键是利用根与系数的关系表示4b a =-,12c a =-,再代入不等式220cx bx a +-<化简后就容易求解.2.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b >()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】根据基本不等式可求得最小值. 【详解】∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6. 故选:B . 【点睛】本题考查用基本不等式求最值,利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.D解析:D 【分析】根据关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <,可得120,,a x x <是方程22310ax ax a --+=,然后利用根与系数的关系判断.【详解】因为关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <, 所以120,,a x x <是方程22310ax ax a --+=的两根, 所以12121312,33a x ax x x a -===-⋅<-+,214x x ===->,故ABC 正确; 设()(1)(3)f x a x x =+-,()(1)(3)1g x a x x =+-+其图象如图所示:由图象知:121,3x x <->,故D 错误; 故选:D 【点睛】关键点点睛:本题考查一元二次不等式的解集的应用,关键是三个“二次”的转化,还有根与系数的关系与函数零点,注意二次项系数的正负.5.A解析:A 【分析】先由不等式[][]2463450x x -+<得出[]x 的取值范围,再由[]x 的定义得出x 的取值范围. 【详解】不等式[][]2463450x x -+<即为[]()[]()43150x x --<,解得[]3154x <<, 则[]{}1,2,3,,14x ∈,因此,115x ≤<,故选A.【点睛】本题考查一元二次不等式的解法,同时也考查了取整函数的定义,解题的关键要结合不等式得出[]x 的取值,考查计算能力,属于中等题.6.D解析:D 【分析】本题需要考虑两种情况,00a a =≠,,通过二次函数性质以及即集合性质来确定实数a 的取值范围. 【详解】设()21f x ax ax =-+当0a =时,()10f x =>,满足题意 当0a ≠时,()f x 时二次函数 因为{}2|10A x ax ax =-+<=∅ 所以()21f x ax ax =-+恒大于0,即0≤所以240a a -≤,解得04a ≤≤. 【点睛】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论.7.D解析:D 【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m ny n m =-=-,则2222224()424222x y m n n m n m n mx y x y m n m n m n--+=+=-+≤-⋅=-++,当且仅当2n mm n=,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.8.B解析:B 【详解】()41141144133y x x y x y x y x y ⎛⎫⎛⎫+=++=+++ ⎪ ⎪⎝⎭⎝⎭ 145233y x x y ⎛≥+⨯= ⎝, 当且仅当4y x x y =,即21x y ==,,时41x y+的最小值为3. 故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9.C解析:C 【解析】选C.由≥得ab≤=1,当且仅当a=b=1时,等号成立.又a 2+b 2≥2ab ⇒2(a 2+b 2)≥(a+b)2⇒a 2+b 2≥2,当且仅当a=b=1时,等号成立.10.B解析:B 【分析】 由题意,得到121222()(2)5b aa b a b a b a b+=++=++,结合基本不等式,即可求解,得到答案. 【详解】由题意,正实数a ,b 满足21a b +=, 则12122222()(2)55549b a b aa b a b a b a b a b+=++=++≥+⋅=+=, 当且仅当22b a a b =,即13a b ==等号成立, 所以12a b +的最小值为9. 故选:B. 【点睛】本题主要考查了利用基本不等式求解最值问题,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了构造思想,以及推理与运算能,属于据此话题.11.D解析:D 【分析】本题先根据完全平方公式与基本不等式得到()22224a b a ab b ab +=++>,所以排除选项A 2211abab a b a b>=++,所以排除选项B ;接着根据基本()222222a b ab ab +>⨯=,所以排除选项C ;最后根据基本不等式得到选项D 正确. 【详解】解:对于选项A :因为01a <<,1b >,所以()22224a b a ab b ab +=++>,故选项A 错误; 对于选项B 2211abab a b a b>=++,故选项B 错误;对于选项C ()222222a b ab ab +>⨯=C 错误;对于选项D :()22222222a b a ab b a b +>++=+,所以a b +<,故选项D 正确. 故选:D . 【点评】本题考查基本不等式的应用、学生的运算能力和转换能力,是基础题.12.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到1tan b α=ABC 中,有tan a b α=⋅,然后将a +转化为4ta n a αα=++利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 1501sin tan b ααα︒-==+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan tan a b ααααα⎛⋅==+⎝+=44≥+=+an α=,即4πα=时取等号, 故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】设直角三角形的两条直角边分别为则进而根据基本不等式得【详解】解:设直角三角形的两条直角边分别为则所以当且仅当等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条 解析:1694【分析】设直角三角形的两条直角边分别为,a b ,则22169a b +=,进而根据基本不等式得22111692224a b S ab +=≤⨯=. 【详解】解:设直角三角形的两条直角边分别为,a b ,则22169a b +=所以22111692224a b S ab +=≤⨯=,当且仅当a b ==. 故答案为:1694【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【分析】先由题意令得到代入所求式子化简整理根据基本不等式即可求出结果【详解】因为abc 为正实数不妨令则所以当且仅当即即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三 解析:4748【分析】先由题意,令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,得到111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,代入所求式子,化简整理,根据基本不等式,即可求出结果. 【详解】因为a 、b 、c 为正实数,不妨令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,则111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,所以11113139393862164216438432x y z x y z x y z a b c b c c a a b x y z-++-++-++=+++++ 1339338621642164y z x z x y x x y y z z =-+++-+++- 6139488262164y x z x y z x y x z z y ⎛⎫⎛⎫⎛⎫=-++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭61474848≥-+=, 当且仅当823629164y x x y z x x z y z z y ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即::1:2:3x y z =,即::10:21:1a b c =时,等号成立. 故答案为:4748. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 15.【分析】由二次函数的性质可得化简得进而可得是方程两个不相等的实数根即可得解【详解】因为函数的图象开口朝上且对称轴为所以函数在区间上单调递减所以两式相减化简得将代入可得同理所以是方程两个不相等的实数根 解析:113164a ≤< 【分析】由二次函数的性质可得()()223434f m am m n f n an n m⎧=-+=⎪⎨=-+=⎪⎩,化简得2m n a +=,进而可得,m n 是方程22240ax x a-+-=两个不相等的实数根,即可得解. 【详解】 因为函数2()34(0)f x ax x a =-+>的图象开口朝上且对称轴为32x a =,32m n a <≤,所以函数2()34(0)f x ax x a =-+>在区间[,]m n 上单调递减,所以()()223434f m am m n f n an n m ⎧=-+=⎪⎨=-+=⎪⎩,两式相减化简得2m n a +=, 将2m n a =-代入234an n m -+=可得22240an n a-+-=, 同理22240am m a -+-=, 所以,m n 是方程22240ax x a -+-=两个不相等的实数根, 又函数2224y ax x a =-+-的图象开口朝上,对称轴为132x a a=<, 所以24440a a ⎛⎫∆=--> ⎪⎝⎭且当32x a =时,22240ax x a -+-≥, 所以22444033224022a a a a a a ⎧⎛⎫--> ⎪⎪⎝⎭⎪⎨⎛⎫⎛⎫⎪⋅-⋅+-≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得113164a ≤<, 所以a 的取值范围为113164a ≤<. 故答案为:113164a ≤<. 【点睛】 关键点点睛:解决本题的关键是利用二次函数的性质转化条件为2m n a+=,再结合一元二次方程根的分布即可得解. 16.4【分析】两次应用基本不等式验证等号能同时成立即得【详解】由题意当且仅当即时上述不等式中等号同时成立故答案为:4【点睛】本题考查了基本不等式求最值考查了运算求解能力逻辑推理能力在连续运用基本不等式求 解析:4【分析】两次应用基本不等式,242a a b +≥12b b +≥,验证等号能同时成立即得. 【详解】由题意211a b =+≥,2442a a b +≥===≥,当且仅当2142b b a a b⎧=⎪⎪⎨⎪=⎪⎩,即21a b =⎧⎨=⎩时上述不等式中等号同时成立. 故答案为:4.【点睛】本题考查了基本不等式求最值,考查了运算求解能力,逻辑推理能力,在连续运用基本不等式求最值时,要注意等号能否同时成立.17.9【分析】把看成的形式把1换成整理后积为定值然后用基本不等式求最小值【详解】∵等号成立的条件为所以的最小值为9即答案为9【点睛】本题考查了基本不等式在求最值中的应用解决本题的关键是1的代换解析:9【分析】 把14a b +看成141a b+⨯() 的形式,把“1”换成a b +,整理后积为定值,然后用基本不等式求最小值.【详解】∵14144 1?459b a y a b a b a b a b =+=+⨯+=+++≥+=()() 等号成立的条件为4b a a b =. 所以14a b+的最小值为9. 即答案为9.【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换.18.【分析】先根据点的关系确定mn 再根据基本不等式确定最小值最后根据最小值取法确定双曲线的离心率【详解】设则因此当且仅当时取等号所以离心率是故答案为:【点睛】本题考查双曲线离心率和基本不等式求最值的简单解析:3【分析】先根据点的关系确定mn ,再根据基本不等式确定最小值,最后根据最小值取法确定双曲线的离心率.【详解】设11(,)P x y ,则 22111222111y y y b mn x a x a x a a=⋅==+--,因此3b a+3b a a b =+≥= 当且仅当3a b 时取等号,所以离心率是3c e a ===.【点睛】本题考查双曲线离心率和基本不等式求最值的简单综合问题,属于基础题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a=求解;2.公式法:c e a === 3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.19.4【分析】根据x 且将利用1的代换转化为利用基本不等式求解【详解】因为x 且所以当且仅当即时取等号所以的最小值为4故答案为:4【点睛】本题主要考查基本不等式的应用还考查了运算求解的能力属于中档题解析:4【分析】根据x ,0y >,且194x y+=,将x y +利用“1”的代换,转化为x y +()119191044⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭y x x y x y x y ,利用基本不等式求解. 【详解】因为x ,0y >,且194x y +=, 所以x y +()11919110104444⎛⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝y x x y x y x y 当且仅当9y x x y=,,即1,3x y ==时,取等号, 所以x y +的最小值为4,故答案为:4【点睛】本题主要考查基本不等式的应用,还考查了运算求解的能力,属于中档题.20.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比 解析:32【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b a a b a b a b a b+=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.三、解答题21.无22.无23.无24.无25.无26.无。
(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)
一、选择题1.已知,,(0,)x y t ∈+∞,且11tx y+=, A .当2t =时,当且仅当2x y ==时,2x y +有最小值 B .当8t =时,当且仅当253x y ==时,2x y +的最小值为25 C .若2x y +的最小值为9,则t 的值为2 D .若2x y +的最小值为25,则t 的值为62.在弹性限度内,弹簧拉伸的距离与所挂物体的质量成正比,即md k=,其中d 是距离(单位cm ),m 是质量(单位g ),k 是弹簧系数(单位g/cm ).弹簧系数分别为1k ,2k 的两个弹簧串联时,得到的弹簧系数k 满足12111k k k =+,并联时得到的弹簧系数k 满足12k k k =+.已知物体质量为20g ,当两个弹簧串联时拉伸距离为1cm ,则并联时弹簧拉伸的最大距离为( ) A .1cm 4B .1cm 2C .1cmD .2cm3.在区间1,23⎡⎤⎢⎥⎣⎦上,不等式2410mx x -+<有解,则m 的取值范围为( )A .4m ≤B .74m <C .4m <D .3m <4.若,a b 为实数,且2a b +=,且33a b +的最小值为( ) A .18B .6C .23D .4235.若不等式210x ax -+≥对一切[2,)x ∈+∞恒成立,则实数a 的最大值为( ) A .0B .2C .52D .36.已知A 、B 、C 为ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为( ) A .13B .12C .23D .17.若实数,x y 满足0xy >,则的最大值为( ) A .22B .22+C .422+D .422-8.若不等式2210ax ax ++>对任意的x ∈R 恒成立,则实数a 的取值范围是( )A .[)0,1B .[)0,+∞C .(](),01,-∞+∞D .()0,19.若过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是( )A .4B .5C .6D .810.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .611.若关于x 的不等式20x px q ++<的解集为{|23}x x <<,则关于x 的不等式22028x px qx x ++>--的解集是( ) A .()2,3 B .()(),24,-∞-+∞C .()()2,23,4-D .()()(),22,34,-∞-+∞12.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .5二、填空题13.若对(,1]x ∈-∞-时,不等式21()2()12xxm m --<恒成立,则实数m 的取值范围是____________..14.已知函数2()34(0)f x ax x a =-+>,若存在32m n a<≤,使得()f x 在区间[,]m n 上的值域为[,]m n ,则a 的取值范围________. 15.已知正实数m ,n 满足119222m n m n +++=,则2m n +的最小值是_______. 16.某学习小组,调查鲜花市场价格得知,购买2支玫瑰与1支康乃馨所需费用之和大于8元,而购买4支玫瑰与5支康乃馨所需费用之和小于22元.设购买2支玫瑰花所需费用为A 元,购买3支康乃馨所需费用为B 元,则A 、B 的大小关系是______________ 17.ABC 中,点M ,N 在线段AB 上,且满足AM BM =,2BN AN =,若6C π=,||4CA CB ⋅=∣∣,则CM NC ⋅的最大值为________.18.函数()10y x x x=->的图象上一点到坐标原点的距离的平方的最小值为________. 19.已知,a b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则23a b+的最小值为__________.20.已知实数x ,y ,z 满足:222336x y z x y z ++=⎧⎨++=⎩,则x y z ++的最大值为_________.三、解答题21.近年来,某西部乡村农产品加工合作社每年消耗电费24万元.为了节能环保,决定修建一个可使用16年的沼气发电池,并入该合作社的电网.修建沼气发电池的费用(单位:万元)与沼气发电池的容积x (单位:米3)成正比,比例系数为0.12.为了保证正常用电,修建后采用沼气能和电能互补的供电模式用电.设在此模式下,修建后该合作社每年消耗的电费C (单位:万元)与修建的沼气发电池的容积x (单位:米3)之间的函数关系为()50kC x x =+(0x ≥,k 为常数).记该合作社修建此沼气发电池的费用与16年所消耗的电费之和为F (单位:万元).(1)解释()0C 的实际意义,并写出F 关于x 的函数关系;(2)该合作社应修建多大容积的沼气发电池,可使F 最小,并求出最小值.(3)要使F 不超过140万元,求x 的取值范围.22.已知关于x 的不等式()24(4)0()kx k x k --->∈R 的解集为A . (1)写出集合A ;(2)若集合A 中恰有9个整数,求实数k 的取值范围.23.已知函数()()223f x x bx b R =-+∈.(1)若()f x 在区间[22]-,上单调递减,求实数b 的取值范围; (2)若()f x 在区间[22]-,上的最大值为9,求实数b 的值.24.已知函数2()1()f x ax ax a R =--∈.(1)若对任意实数x ,()0f x <恒成立,求实数a 的取值范围; (2)解关于x 的不等式()23f x x <-.25.设0x >,0y >,4xy x y a =++,其中a 为参数. (1)当0a =时,求x y +的最小值; (2)当5a =时,求xy 的最小值.26.(1)已知2x <,求()92f x x x =+-的最大值; (2)已知x 、y 是正实数,且9x y +=,求13x y+的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 当2t =时,121x y +=,()1222x y x y x y ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可判断A ;当当8t =时,181x y +=,()2812x y x y x y ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可判断B ;()1221212122x y x y t t t x y x t y tx y ⎛⎫+=++=+++≥++=++ ⎪⎝⎭分别令129t ++=和1225t ++=即可求出t 的值,可判断选项C 、D ,进而可得正确选项. 【详解】对于选项A :当2t =时,121x y+=, ()122225259x x y x y x y x y y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当12122x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以3x y ==时,2x y +有最小值,故选项A 不正确;对于选项B :当8t =时,181x y+=,()188222171725x x y x y x y x y y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当18128x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以510x y =⎧⎨=⎩时,2x y +有最小值,故选项B 不正确;对于选项C :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++⎪⎝⎭12t =++129t ++=即0==即2t =,当且仅当12122x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以2t =,故选项C 正确;对于选项D :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++⎪⎝⎭12t =++1225t ++=即0==,即8t =,当且仅当12128x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以8t =,故选项D 不正确;故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】先利用串联列关系()121220k k k k +=,结合基本不等式求得12k k +最小值,再利用并联关系得到12k k k '=+最小时求得弹簧拉伸的最大距离即可. 【详解】依题意设两个弹簧的弹簧系数分别为1k ,2k ,串联时弹簧系数为k ,并联时弹簧系数为k '. 两个弹簧串联时,由m d k =知,20201m k d ===,则12111k k k =+即12121211120k k k k k k +=+=, 即()()2121212204k k k k k k ++=≤,故1280k k +≥,当且仅当1240k k ==时等号成立,两个弹簧并联时,12k k k '=+,拉伸距离12m md k k k '==+',要是d '最大,则需12k k k '=+最小,而1240k k ==时()12min 80k k +=,故此时d '最大,为284001m d k '==='cm. 故选:A. 【点睛】 思路点睛: 利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)妙用“1”拼凑基本不等式求最值.3.C解析:C 【分析】令()241f x mx x =-+,对二次项系数m 分三种情况讨论,再对二次函数的对称轴分类讨论,分别求出参数的取值范围,最后取并集即可; 【详解】解:令()241f x mx x =-+当0m =时,原不等式为410x -+<,解得14x >,满足条件; 当0m <时,函数的对称轴为20x m =<,要使不等式2410mx x -+<在区间1,23⎡⎤⎢⎥⎣⎦有解,只需()20f <,即4700m m -<⎧⎨<⎩解得0m <当0m >时,函数的对称轴为20x m =>,要使不等式2410mx x -+<在区间1,23⎡⎤⎢⎥⎣⎦有解,当2103m <<,即6m >时,只需103f ⎛⎫< ⎪⎝⎭,即110936m m ⎧-<⎪⎨⎪>⎩无解;当22m >,即01m <<时,只需()20f <,即47001m m -<⎧⎨<<⎩解得01m <<;当1223m ≤≤,即16m ≤≤时,只需20f m ⎛⎫< ⎪⎝⎭,即481016m m m ⎧-+<⎪⎨⎪≤≤⎩解得14m ≤<;综上可得4m < 故选:C 【点睛】本题考查一元二次不等式的解,一元二次方程根的分布问题,解答的关键是对对称轴即二次项系数分类讨论,分别求出各种情况的参数的取值范围,最后取并集;4.B解析:B 【分析】根据基本不等式可知33a b +≥,结合条件求解出33a b +的最小值. 【详解】因为233236a ba b ++≥=⋅=,取等号时1a b ==,所以33a b +的最小值为6, 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.C解析:C 【分析】采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值. 【详解】因为不等式210x ax -+≥对一切[)2,x ∈+∞恒成立,所以对一切[)2,x ∈+∞,21ax x ≤+,即21x a x+≤恒成立.令()[)()2112,x g x x x x x+==+∈+∞.易知()1g x x x=+在[)2,+∞内为增函数. 所以当2x =时,()min 52g x =,所以a 的最大值是52.故选C . 【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发); (2)参变分离法(考虑新函数与参数的关系).6.C解析:C 【分析】将11tan tan B C +化为关于tan A 的式子,然后利用基本不等式可以求出最小值. 【详解】在ABC 中,()tan tan C A B =-+,111111tan tan tan tan tan tan tan tan tan A BB C B A B B A B,tan 2tan B A =, 211tan tan 112tan 12tan tan tan tan 2tan 3tan 6tan 3A B AAB A B A AA ,角A 为锐角,tan 0A ∴>,12tan 12tan 226tan 36tan 33A AA A , 当且仅当12tan 6tan 3A A ,即1tan 2A =时,等号成立,∴11tan tan B C +的最小值为23. 故选:C. 【点睛】本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.7.D解析:D 【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m ny n m =-=-,则222224()442x y m n n m n m x y x y m n m n --+=+=-+≤--++,当且仅当2n m m n=,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.8.A解析:A 【分析】设函数()221f x ax ax =++,把不等式2210ax ax ++>在x ∈R 上恒成立,转化为()0f x >对于x R ∀∈恒成立,结合函数的性质,即可求解.【详解】解:设函数()221f x ax ax =++,则不等式2210ax ax ++>在x ∈R 上恒成立,即()0f x >对于x R ∀∈恒成立, 当0a =时,()10f x =>,显然成立; 当0a ≠时,要使()0f x >在x ∈R 上恒成立,需函数()221f x ax ax =++开口向上,且与x 轴没有交点,即20(2)410a a a >⎧⎨∆=-⨯⨯<⎩,解得01a <<, 综上知,实数a 的取值范围为[0,1).故选:A. 【点睛】本题主要考查了不等式的恒成立问题,以及二次函数的图象与性质的应用,其中解答中把不等式的恒成立问题转化为利用二次函数的性质求解是解答的关键,着重考查转化思想,以及推理与计算能力.9.B解析:B 【分析】先计算出两条动直线经过的定点,即A 和B ,注意到两条动直线相互垂直的特点,则有PA PB ⊥;再利用基本不等式放缩即可得出||||PA PB 的最大值. 【详解】解:由题意可知,动直线0x my +=经过定点(0,0)A ,动直线30mx y m --+=即(1)30m x y --+=,经过点定点()1,3B ,注意到动直线0x my +=和动直线30mx y m --+=始终垂直,P 又是两条直线的交点,则有PA PB ⊥,222||||||10PA PB AB ∴+==.故22||||||||52PA PB PA PB +=(当且仅当||||PA PB ==时取“=” ) 故选:B . 【点睛】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有22||||PA PB +是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.10.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.11.D解析:D 【分析】根据关于x 的不等式20x px q ++<的解集为{|23}x x <<,利用韦达定理得到5,6p q =-=,则不等式22028x px q x x ++>--转化为 2256028x x x x -+>--,再利用穿根法求解.【详解】因为关于x 的不等式20x px q ++<的解集为{|23}x x <<, 所以由韦达定理得:5,6p q =-=,所以22028x px q x x ++>--,即为2256028x x x x -+>--,即为()()()()23042x x x x -->-+,即为()()()()23420x x x x ---+>用穿根法得不等式的解集为:()()(),22,34,-∞-+∞,【点睛】本题主要考查一元二次不等式的解集的应用以及穿根法求高次不等式,属于中档题. 12.D解析:D【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解.【详解】因为3x >,所以30x ->,则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D.【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.二、填空题13.【分析】运用换元法参变分离法来求解不等式恒成立问题【详解】不等式转化为化简为令又则即恒成立令又当时取最小值所以恒成立化简得解不等式得故答案为:【点睛】方法点晴:本题考查了不等式恒成立问题在求解过程中 解析:()2,3-【分析】运用换元法,参变分离法来求解不等式恒成立问题.【详解】不等式()21212x xm m ⎛⎫--< ⎪⎝⎭转化为2214x x m m +-<,化简为2211()22x x m m -<+, 令12xt =,又(],1x ∈-∞-,则[)2,t ∈+∞, 即22m m t t -<+恒成立,令2()f t t t =+,又[)2,t ∈+∞, 当2t =时,()f t 取最小值min ()(2)6f t f ==,所以,26m m -<恒成立,化简得260m m --<,解不等式得23m -<<.故答案为:()2,3-方法点晴:本题考查了不等式恒成立问题,在求解过程中运用了参变分离法,注意题目中变量的取值范围.14.【分析】由二次函数的性质可得化简得进而可得是方程两个不相等的实数根即可得解【详解】因为函数的图象开口朝上且对称轴为所以函数在区间上单调递减所以两式相减化简得将代入可得同理所以是方程两个不相等的实数根 解析:113164a ≤< 【分析】由二次函数的性质可得()()223434f m am m n f n an n m⎧=-+=⎪⎨=-+=⎪⎩,化简得2m n a +=,进而可得,m n 是方程22240ax x a-+-=两个不相等的实数根,即可得解. 【详解】 因为函数2()34(0)f x ax x a =-+>的图象开口朝上且对称轴为32x a =,32m n a<≤, 所以函数2()34(0)f x ax x a =-+>在区间[,]m n 上单调递减,所以()()223434f m am m n f n an n m ⎧=-+=⎪⎨=-+=⎪⎩,两式相减化简得2m n a +=, 将2m n a =-代入234an n m -+=可得22240an n a-+-=, 同理22240am m a -+-=, 所以,m n 是方程22240ax x a-+-=两个不相等的实数根, 又函数2224y ax x a =-+-的图象开口朝上,对称轴为132x a a =<, 所以24440a a ⎛⎫∆=--> ⎪⎝⎭且当32x a =时,22240ax x a-+-≥, 所以22444033224022a a a a a a ⎧⎛⎫--> ⎪⎪⎝⎭⎪⎨⎛⎫⎛⎫⎪⋅-⋅+-≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得113164a ≤<, 所以a 的取值范围为113164a ≤<. 故答案为:113164a ≤<.关键点点睛:解决本题的关键是利用二次函数的性质转化条件为2m n a+=,再结合一元二次方程根的分布即可得解. 15.【分析】利用基本不等式可求得再结合可得从而可求出的取值范围即可得到的最小值【详解】由题意当且仅当时等号成立又所以令则解得所以即的最小值是故答案为:【点睛】关键点点睛:本题考查求代数式的最值解题关键是 解析:32【分析】()1112222n m m n m n m n ⎛⎫++=+++ ⎪⎝⎭,利用基本不等式,可求得()119222m n m n ⎛⎫++≥⎪⎝⎭,再结合()119222m n m n +=-+,可得()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的取值范围,即可得到2m n +的最小值.【详解】由题意,()11155922222222n m m n m n m n ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当n m m n=时,等号成立, 又()119222m n m n +=-+,所以()()()1199222222m n m n m n m n ⎛⎫⎡⎤++=+-+≥ ⎪⎢⎥⎝⎭⎣⎦, 令2m n t +=,则9922t t ⎛⎫-≥ ⎪⎝⎭,解得332t ≤≤, 所以32,32m n ⎡⎤+∈⎢⎥⎣⎦,即2m n +的最小值是32. 故答案为:32. 【点睛】关键点点睛:本题考查求代数式的最值,解题关键是利用基本不等式求出()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再根据()119222m n m n ⎛⎫+++= ⎪⎝⎭,可得到只包含2m n +的关系式()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.16.A>B 【分析】设每支支玫瑰x 元每支康乃馨y 元则由题意可得:代入可得:根据不等式性质联立即可得解【详解】设每支支玫瑰x 元每支康乃馨y 元则由题意可得:代入可得:根据不等式性质可得:而可得故故答案为:【点 解析:A >B【分析】设每支支玫瑰x 元,每支康乃馨y 元,则2,3x A y B ==,由题意可得:284522x y x y +>⎧⎨+<⎩,代入可得:8352223B A B A ⎧+>⎪⎪⎨⎪+<⎪⎩,根据不等式性质,联立即可得解.【详解】设每支支玫瑰x 元,每支康乃馨y 元,则2,3x A y B ==,由题意可得:284522x y x y +>⎧⎨+<⎩, 代入可得:8352223B A B A ⎧+>⎪⎪⎨⎪+<⎪⎩, 根据不等式性质可得:6B <, 而83B A >-,可得6A >, 故A B >,故答案为:A B >.【点睛】 本题考查了利用不等式解决实际问题,考查了不等式性质,同时考查了转化思想和计算能力,属于中档题.17.;【分析】由平面向量数量积的运算可知再根据平面向量的线性运算可分别得到故由基本不等式的性质可知将所得结论均代入的表达式即可得解【详解】解:根据题意作出如下图形由基本不等式的性质可知的最大值为故答案为解析:3; 【分析】 由平面向量数量积的运算可知23CA CB =1()2CM CA CB =+,1(2)3NC CA CB =-+,故221(23)6CM NC CA CB CA CB =-++,由基本不等式的性质可知,22222||||CA CBCA CB +,将所得结论均代入CM NC 的表达式即可得解.【详解】解:根据题意,作出如下图形,6C π=,||||4CA CB =,∴4cos 236CA CB π=⨯=AM BM =,∴1()2CM CA CB =+, 2BN AN =,∴111()(2)333NC AC AN AC AB CA CB CA CA CB =-=-=---=-+, ∴22111()[(2)](23)236CM NC CA CB CA CB CA CB CA CB =+-+=-++, 由基本不等式的性质可知,222222||||22||||82CA CB CA CB CA CB +=+=, ∴142(82323)36CM NC -⨯⨯= ∴CM NC 的最大值为423- 故答案为:423- 【点睛】 本题考查平面向量的线性运算和数量积运算、基本不等式的性质,熟练掌握平面向量的加法、减法、数乘和数量积的运算法则是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.18.【分析】设曲线上任一点坐标为求出它是原点距离的平方用基本不等式求得最小值【详解】设曲线上作一点的坐标为则当且仅当即时等号成立故答案为:【点睛】本题考查用基本不等式求最值属于基础题 解析:22【分析】设曲线上任一点坐标为1,x x x ⎛⎫-⎪⎝⎭,求出它是原点距离的平方,用基本不等式求得最小值.【详解】设曲线上作一点P 的坐标为1,(0)x x x x ⎛⎫-> ⎪⎝⎭,则2222211222OP x x x x x ⎛⎫=+-=+-≥ ⎪⎝⎭,当且仅当2212x x =,即142x -=时等号成立,故答案为:2.【点睛】本题考查用基本不等式求最值,属于基础题.19.【分析】函数求导由切线方程可得再利用基本不等式求得最值【详解】的导数为由切线的方程可得切线的斜率为1可得切点的横坐标为切点为代入得为正实数则当且仅当即时取得最小值故答案为:【点睛】本题考查导数的运算解析:5+【分析】函数求导,由切线方程y x a =-可得1a b +=,再利用基本不等式求得最值.【详解】ln()y x b =+的导数为1y x b'=+, 由切线的方程y x a =-可得切线的斜率为1,可得切点的横坐标为1b -,切点为(1,0)b -,代入y x a =-,得1a b +=,,a b 为正实数,则2323233()()2355b a a a b a b a b a b b+=++=+++≥+=+当且仅当3a b =,即2,3a b ==5+.故答案为:5+【点睛】 本题考查导数的运算、导数的几何意义及基本不等式求最值,属于基础题.20.【分析】按的正负分类讨论由得至少有一个正数然后分全正一负二负然后利用基本不等式可得结论【详解】首先至少有一个正数(1)如果则由得不成立;(2)若中只有一个负数不妨设则又∴即当且仅当时等号成立;(3)解析:1+【分析】按,,x y z 的正负分类讨论,由3x y z ++=得,,x y z 至少有一个正数,然后分全正,一负,二负,然后利用基本不等式可得结论.【详解】首先,,x y z 至少有一个正数,(1)如果0,0,0x y z ≥≥≥,则由3x y z ++=得,,[0,3]x y z ∈,2222736x y z ++<<,不成立;(2)若,,x y z 中只有一个负数,不妨设0,0,0x y z ≥≥<,则3z x y -=+-,22()6()9z x y x y =+-++,又2222()36()362x y z x y +=-+≤-, ∴2()6()9x y x y +-++2()362x y +≤-,即2()4()180x y x y +-+-≤,2x y +≤2231x y z x y z x y ++=+-=+-≤+12x y ==+,1z =时等号成立;(3)若,,x y z 中有两个负数,不妨设0,0,0x y z ≥<<,则3y z x --=-,2222()362y z y z x ++=-≥, ∴22(3)362x x --≥,整理得22210x x --≤,01x ≤≤+231x y z x y z x ++=--=-≤+1x =+12y z ==-时等号成立;综上所述,x y z ++的最大值是1+故答案为:1+【点睛】 本题考查用基本不等式求最值,解题关键是根据绝对值的定义分类讨论去掉绝对值符号,然后利用基本不等式.三、解答题21.(1)()0C 的实际意义是未修建沼气发电池时,该合作社每年消耗的电费;192000.1250F x x =++,0x ≥;(2)该合作社应修建容积为350立方米的沼气发电池时,可使F 最小,且最小值为90万元;(3)3050100,3⎡⎤⎢⎥⎣⎦. 【分析】(1)根据题中函数关系式,可直接得到()0C 的实际意义;求出k ,进而可得F 关于x 的函数关系;(2)根据(1)中F 的函数关系,利用基本不等式,即可求出最小值;(3)将140F ≤,转化为关于x 的不等式,求解即可.【详解】(1)()0C 的实际意义是修建这种沼气发电池的面积为0时的用电费用,即未修建沼气发电池时,该合作社每年消耗的电费;由题意可得,()02450k C ==,则1200k =; 所以该合作社修建此沼气发电池的费用与16年所消耗的电费之和为120019200160.120.125050F x x x x =⨯+=+++,0x ≥; (2)由(1)()19200192000.120.125065050F x x x x =+=++-++690≥=, 当且仅当()192000.125050x x =++,即350x =时,等号成立, 即该合作社应修建容积为350立方米的沼气发电池时, 可使F 最小,且最小值为90万元;(3)为使F 不超过140万元,只需192000.1214050F x x =+≤+, 整理得2333503050000x x -+≤,则()()330501000x x --≤,解得30501003x ≤≤, 即x 的取值范围是3050100,3⎡⎤⎢⎥⎣⎦【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 22.无23.无24.无25.无26.无。
一次函数与一元一次不等式训练题及答案
精心整理一次函数与一元一次不等式训练题及答案一、选择题(共10小题;共30分)1.如图,以两条直线,的交点坐标为解的方程组是A. B.C. D.2.将一次函数的图象向上平移个单位,平移后,若,则的取值范围是?()A. B. 4 C. D.3.如图所示,函数和的图象相交于,两点.当时,的取值范围是A. B.C. D.或4.一次函数的图象如图所示,则方程的解为?()A. B. C. D.5.如图,直线是函数的图象.若点满足,且,则点的坐标可能是?().A. B. C. D.6.如图,一次函数与一次函数的图象交于点,则关于的不等式的解集是?()A. B. C. D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是?().A. B.C. D.8.已知函数,,的图象交于一点,则值为?()A. B. C. D.9.如图,函数和的图象相交于点,则不等式的解集为?()A. B. C. D.10.已知关于的一次函数在上的函数值总是正的,则的取值范围是A. B.C. D.以上答案都不对二、填空题(共5小题;共15分)11.如图,已知函数和的图象交于点,根据图象可得方程组的解是?.12.一次函数与的图象如图,则的解集是?.13.如图,已知函数与函数的图象交于点,则不等式的解集是?.14.方程组的解是则直线和的交点坐标是?.15.观察函数的图象,根据图所提供的信息填空:(1)当?时,;(2)当?时,;(3)当?时,;(4)当?时,.三、解答题(共5小题;共55分)16.如图,函数和的图象相交于点,(1)求点的坐标;(2)根据图象,直接写出不等式的解集.17.已知一次函数的图象过点,,求函数表达式并画出它的图象,再利用图象求:(1)当为何值时,,,;(2)当时,的取值范围;(3)当时,的取值范围.18.甲、乙两地相距,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段表示货车离甲地的距离与时间之间的函数关系,折线表示轿车离甲地的距离与时间之间的函数关系.根据图象,解答下列问题:(1)线段表示轿车在途中停留了?;(2)求线段对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.19.如图,直线经过点,.(1)求直线的解析式;(2)若直线与直线相交于点,求点的坐标;(3)根据图象,写出关于的不等式的解集.20.如图,在平面直角坐标系中,过点的直线与直线相交于点,动点沿路线运动.(1)求直线的解析式.(2)求的面积.(3)当的面积是的面积的时,求出这时点的坐标.答案第一部分1.C2.B3.D4.C5.B6.C7.D8.B9.A 10.A第二部分11.12.13.14.15.(1);(2);(3);(4)第三部分16.(1)由题意,得方程组解得的坐标为.(2)由图象,得不等式的解集为:.17.(1)设一次函数的表达式为.把点,分别代入,得解得所以.一次函数的图象如图所示.由图可知,直线与轴交于点,当时,;当时,;当时,.(2)当时,.(3)当时,.18.(1)(2)设线段对应的函数解析式是.,,故线段对应的函数解析式是.(3)设线段对应的函数解析式是,,.线段对应的函数解析式是.解方程组得(小时).答:轿车从甲地出发后经过小时追上货车.19.(1)直线经过点,,所以解方程得直线的解析式为.(2)直线与直线相交于点,解方程组得点的坐标为.(3)当时.直线位于直线上方.不等式的解集为.20.(1)设直线的解析式是,根据题意得:解得则直线的解析式是:;(2)在中,令,解得,;(3)设的解析式是,则,解得:,则直线的解析式是:,当的面积是的面积的时,的横坐标是,在中,当时,,则的坐标是;在中,则,则的坐标是.则的坐标是:或().。
一元一次不等式及与一次函数(9类热点题型讲练)(原卷版) 八年级数学下册
第02讲一元一次不等式及与一次函数(9类热点题型讲练)1.经历一元一次不等式概念的形成过程.2.能解数字系数的一元一次不等式,并能在数轴上表示出解集.3.初步认识一元一次不等式的应用价值,发展学生分析问题、解决问题的能力;初步感知实际问题对不等式解集的影响,积累利用一元一次不等式解决简单实际问题的经验.4.应用一元一次不等式解决实际问题.知识点01一元一次不等式的定义(1)一元一次不等式的定义:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.(2)概念解析一方面:它与一元一次方程相似,即都含一个未知数且未知项的次数都是一次,但也有不同,即它是用不等号连接,而一元一次方程是用等号连接.另一方面:它与不等式有区别,不等式中可含、可不含未知数,而一元一次不等式必含未知数.但两者也有联系,即一元一次不等是属于不等式.知识点02解一元一次不等式根据不等式的性质解一元一次不等式基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.知识点03一元一次不等式的整数解解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.知识点04由实际问题抽象出一元一次不等式用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.知识点05一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.知识点06利用一次函数的图象得到一元一次不等式的解集(1)一元一次不等式kx+b>0的解集,一次函数的图象在x轴上方的点的横坐标所组成的集合.(2)一元一次不等式kx+b<0的解集,一次函数的图象在x轴下方的点的横坐标所组成的集合.(3)一元一次不等式k1x+b1>k2x+b2的解集,一次函数y=k1x+b1图象在一次函数y=k2x+b2图象上方的点的横坐标所组成的集合.(4)一元一次不等式k1x+b1<k2x+b2的解集,一次函数y=k1x+b1图象在一次函数y=k2x+b2图象下方的点的横坐标所组成的集合.题型01一元一次不等式的识别【变式训练】题型02利用一元一次不等式的定义题型03求一元一次不等式的解集并在数轴上表示不等式的解集【变式训练】题型04求一元一次不等式的整数解【变式训练】题型05解|x|≥a型的不等式【变式训练】解:(1)当30x -≥,即3x ≥时:34x -≤解这个不等式,得:7x ≤由条件3x ≥,有:37x ≤≤(2)当30x -<,即3x <时,(3)4x --≤解这个不等式,得:1x ≥-由条件3x <,有:13x -≤<∴如图,综合(1)、(2)原不等式的解为17x -≤≤根据以上思想,请探究完成下列2个小题:(1)|1|2x +≤;(2)|2|1x -≥.题型06列一元一次不等式题型07用一元一次不等式的解决实际问题【例题】(2023上·黑龙江哈尔滨·九年级哈尔滨市第四十七中学校考阶段练习)47中计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,且该学校购买排球和篮球的总费用不超过6000元,求至少需要购买多少个排球?【变式训练】1.(2023下·七年级课时练习)甲、乙两厂家生产的课桌和座椅的质量、价格一致,每张课桌200元,每把椅子50元,甲、乙两个厂家推出各自销售的优惠方案,甲:买一张课桌送1把椅子;乙:课桌和椅子全部按原价的9折优惠.现某学校要购买60张课桌和()60x x 把椅子,则什么情况下该学校到甲工厂购买更合算?2.(2023上·黑龙江哈尔滨·九年级校考阶段练习)某中学计划为生物兴趣小组购买大、小两种显微镜,若购买1个大显微镜和3个小显微镜需用1360元;若购买2个大显微镜和1个小显微镜需用1320元.(1)求每个大显微镜和每个小显微镜各多少元;(2)学校决定购买以上两种显微镜共30个,总费用不超过9600元,那么该中学最少可以购买多少个小显微镜?题型08由直线与坐标轴的交点求不等式的解集【例题】(2023上·江苏徐州·八年级校考阶段练习)已知一次函数y kx b =+的图象(如图),当0x >时,y 的取值范围是()A .2y >-B .0y <C .20y -<<D .2y <-【变式训练】1.(2023下·吉林长春·八年级期中)在平面直角坐标系中,若一次函数()0y kx b k =+≠的图像如图所示,则不等式4kx b +<的解集为()A .0x <2.(2023下·上海杨浦x 的取值范围是题型09根据两条直线的交点求不等式的解集【例题】(2023下·湖北十堰则关于x 的不等式0mx <【变式训练】1.(2023上·吉林长春·八年级长春外国语学校校考期末)则不等式23x kx ≥+的解集为2.(2023上·浙江宁波式2mx kx b +<+的解集为3.(2023下·安徽宿州·八年级校考期中)如图,根据图中信息解答下列问题:(1)求关于x 的不等式1mx n +<的解集;(2)当12y y ≤时,求x 的取值范围;(3)当210y y <<时,求x 的取值范围.一、单选题1.(2023上·浙江·八年级校联考期末)一个不等式的解表示在数轴上如图所示,则这个不等式可以是()A .26x ≥B .30x -<C .30x -<D .30x +>2.(2023下·全国·七年级专题练习)下列式子:①30>;②450x +>;③3x <;④22x x +<;⑤4x =-;⑥221x x +>+,其中一元一次不等式有()个.A .3B .4C .5D .63.(2023上·湖南娄底·八年级统考阶段练习)不等式213x -<-的解集在数轴上表示正确的是()....2023下·四川眉山·七年级校考期中)如果关于x的不等式()20232023a x a+>+的解集为1x<,那么A.方程x a bx-+=B.不等式x a-+<C.不等式组bx-D.方程组y x y bx+⎧⎨-10.(2023下·重庆江津·七年级统考期末)已知11.(2023上·江苏苏州·八年级苏州工业园区星湾学校校考阶段练习)12.(2023上·重庆江津式11145x x+-<-的正偶数解,则该三角形的周长为三、解答题13.(2023下·陕西榆林16.(2023上·安徽合肥·八年级合肥市五十中学西校校考期中)画出函数26y x =+的图象,结合图象:(1)求方程260x +=的解;(2)求不等式260x +<的解集;(3)若23y -≤≤,直接写出x 的取值范围.17.(2023上·甘肃兰州·八年级校考期中)已知函数()322y m x m =--+,(1)当m 为何值时,该函数图象经过原点;(2)若该函数图象与y 轴交点在x 轴上方,求m 的取值范围;(3)若该函数图象经过一、二、四象限,求m 的取值范围.18.(2023下·辽宁营口·七年级统考期末)某学校准备购买若干台A 型电脑和B 型打印机.如果购买一台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花费9400元.(1)求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2)如果学校购买A 型电脑和B 型打印机的预算费用不超过20000元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B 型打印机?参考阅读材料,解答下列问题:x-=的解为____________ (1)32。
上海徐汇中学必修第一册第二单元《一元一次函数,方程和不等式》测试(含答案解析)
一、选择题1.已知0x >,0y >,且1x y xy +=-,则( )A .xy 的最大值为3+B .xy 的最大值为6C .2x y +的最小值为3+D .2x y +的最小值为72.已知0a >,0b >,若不等式122m a b a b+≥+恒成立,则实数m 的最大值为( ) A .10 B .9C .8D .73.已知12x >,则2321x x +-的最小值是( )A .32B 32C 2D .324.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y->D .ln x +ln y >05.当4x >时,不等式44x m x +≥-恒成立,则m 的取值范围是( ) A .8m ≤B .8m <C .8m ≥D .8m >6.若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .4- B .14 C .10- D .107.若不等式2210ax ax ++>对任意的x ∈R 恒成立,则实数a 的取值范围是( )A .[)0,1B .[)0,+∞C .(](),01,-∞+∞ D .()0,18.下列命题正确的是( ) A .若a bc c>,则a b > B .若22a b >,则a b >C .若2211a b>,则a b < D <a b <9.若a ,b 为正实数,直线2(23)20x a y +-+=与直线210bx y +-=互相垂直,则ab 的最大值为( )A .32B .98C .94D .410.已知m ,0n >,4121m n+=+,则m n +的最小值为( )A .72B .7C .8D .411.已知关于x 的不等式()()224210a x a x -+--≥的解集为空集,则实数a 的取值范围是( )A .62,5⎡⎤-⎢⎥⎣⎦B .62,5⎡⎫-⎪⎢⎣⎭C .6,25⎛⎤- ⎥⎝⎦D .(][),22,-∞+∞12.设a 为正实数,数列{}n a 满足1a a =,()142n n na a n N a *+=+-∈,则( ) A .任意0a >,存在2n >,使得2n a < B .存在0a >,存在2n >,使得1n n a a +< C .任意0a >,存在*m N ∈,使得mn a a <D .存在0a >,存在*m N ∈,使得n n m a a +=二、填空题13.已知0,0,4a b a b >>+=,则411a b ++的最小值为__________. 14.设函数()()2,f x x ax b a b R =++∈,若关于x 的不等式()06f x x ≤≤-+的解集为[]{}2,36⋃,则b a -=__________.15.已知3x <,则函数4()3f x x x =+-的最大值是________. 16.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.17.若不等式256x xt <--对于1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,则实数t 的取值范围是______.18.已知函数()21f x ax a =+-的图象恒过定A ,若点A 在直线10mx ny ++=上,其中0m n ⋅>,则12m n+的最小值为____ 19.若正数a ,b 满足2ab =,则11112M a b=+++的最小值为________. 20.在ABC 中,角,,A B C 所对的边分别为,,a b c ,120,ABC ABC ∠=︒∠的平分线交AC 于点D ,且1BD =,则9a c +的最小值为________.参考答案三、解答题21.设函数2()(,)f x x ax b a b R =-+∈.(1)若2a =,求函数|()|y f x =在区间[0,3]上的最大值;(2)试判断:是否存在实数a ,b ,使得当,][0x b ∈时,2()6f x ≤≤恒成立,若存在,请求出实数b 的取值范围;若不存在,请说明理由.22.已知集合{}2430A x x x =-+≤,B =______.若“x A ∈”是“x B ∈”的必要不充分条件,给出如下三个条件:①{}1x a x a -≤≤,②{}2x a x a ≤≤+,③{}3x ≤≤.请从中任选一个补充到横线上.若问题中的a 存在,求出a 的取值范围.23.已知函数()24ax ax b f x =-+.(1)若关于x 的不等式()0f x <的解集为()1,b ,求a ,b 的值; (2)当3b a =时,求关于x 的不等式()0f x <的解集.24.已知函数212()log (1)f x x =+,26()g x x ax =-+.(1)若()g x 为偶函数,求a 的值并写出()g x 的增区间;(2)若关于x 的不等式()0<g x 的解集为{}23x x <<,当1x >时,求()1g x x -的最小值;(3)对任意的1[1,)x ∈+∞,2[2,4]x ∈-,不等式12()()f x g x ≤恒成立,求实数a 的取值范围.25.已知关于x 的不等式()22600kx x k k -+<≠.(1)若不等式的解集是{3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围.26.若关于x 的不等式(1-a )x 2-4x +6<0的解集是x| x<-3或x> 1}. (1)求实数a 的值;(2)解关于x 的不等式2x 2+(2-a )x -a>0.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】利用公式x y +≥,将等式转化为不等式,求xy 的范围;由条件转化为11x y x +=-,代入2x y +后,利用基本不等式求最小值. 【详解】0,0x y >>,x y +≥1xy ∴-≥210-≥,10x y xy +=->1>1t =>,即2210t t --≥,解得:1t ≥或1t ≤1≥,(213xy ≥=+,所以xy 的最小值是3+AB 不正确;10,0,1011x x y x y xy y x x +>>+=-⇒=>⇒>- ()11222222121111x x x y x x x x x x +-++=+=+=-+++---()2213371x x =-++≥=-,当()2211x x -=-时,即2x =时等号成立,所以2x y +的最小值是7,故D 正确. 故选:D 【点睛】关键点点睛:本题考查根据条件等式,利用基本不等式求最值,条件等式除了基本变形,同时也需注意变量的范围,比如本题中的1,1xy x >>等条件.2.C解析:C 【分析】由已知可得()122m a b a b ⎛⎫≤++ ⎪⎝⎭,即求()122a b a b ⎛⎫++ ⎪⎝⎭的最小值,由基本不等式可得答案. 【详解】因为0a >,0b >,则()122m a b a b ⎛⎫≤++ ⎪⎝⎭,所以()1242448b a a b a b a b ⎛⎫++=++≥+⎪⎝⎭, 当且仅当4b aa b=即2b a =等号成立,要使不等式恒成立,所以8m ≤所以实数m 的最大值为8. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.D解析:D 【分析】由2111333311212222x x x x x x ⎛⎫+=+=-++⎪-⎝⎭--,利用均值不等式可得答案. 【详解】21113333331121222222x x x x x x ⎛⎫+=+=-++≥= ⎪-⎝⎭-- 当且仅当113122x x ⎛⎫-= ⎪⎝⎭-,即12x = 时,取得等号. 故选:D 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.4.A解析:A 【分析】结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析: 对于选项A ,0x y ->,110y x x y xy--=<,故A 正确;对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确; 对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.5.A解析:A 【分析】 由题可得444444x x x x +=-++--,且40x ->,利用基本不等式解答即可. 【详解】解:∵4x >,∴40x ->,∴44444844x x x x +=-++≥=-- 当且仅当444x x -=-,即6x =时取等号, ∵当4x >时,不等式44x m x +≥-恒成立, ∴只需min 484m x x ⎛⎫≤+= ⎪-⎝⎭.∴m 的取值范围为:(8],-∞. 故选A . 【点睛】本题主要考查基本不等式,解题的关键是得出444444x x x x +=-++--,属于一般题.6.C解析:C 【分析】由题意可知方程220ax bx ++=的根为11,23-,结合根与系数的关系得出12,2a b =-=-,从而得出-a b 的值.【详解】由题意可知方程220ax bx ++=的根为11,23- 由根与系数的关系可知,11112,2323b a a-+=--⨯= 解得12,2a b =-=- 即12210a b -=-+=- 故选:C 【点睛】本题主要考查了根据一元二次不等式的解集求参数的值,属于中档题.7.A解析:A 【分析】设函数()221f x ax ax =++,把不等式2210ax ax ++>在x ∈R 上恒成立,转化为()0f x >对于x R ∀∈恒成立,结合函数的性质,即可求解.【详解】解:设函数()221f x ax ax =++,则不等式2210ax ax ++>在x ∈R 上恒成立,即()0f x >对于x R ∀∈恒成立, 当0a =时,()10f x =>,显然成立; 当0a ≠时,要使()0f x >在x ∈R 上恒成立,需函数()221f x ax ax =++开口向上,且与x 轴没有交点,即2(2)410a a a >⎧⎨∆=-⨯⨯<⎩,解得01a <<, 综上知,实数a 的取值范围为[0,1). 故选:A. 【点睛】本题主要考查了不等式的恒成立问题,以及二次函数的图象与性质的应用,其中解答中把不等式的恒成立问题转化为利用二次函数的性质求解是解答的关键,着重考查转化思想,以及推理与计算能力.8.D解析:D 【分析】A 项中,需要看分母的正负;B 项和C 项中,已知两个数平方的大小只能比较出两个数绝对值的大小. 【详解】A 项中,若0c <,则有a b <,故A 项错误;B 项中,若22a b >,则a b >,故B 项错误;C 项中,若2211a b>则22a b <即a b <,故C 项错误;D <定有a b <,故D 项正确.故选:D 【点睛】本题主要考查不等关系与不等式,属于基础题.9.B解析:B 【分析】由两直线垂直求出23a b +=,再利用基本不等式求出ab 的最大值. 【详解】解:由直线2(23)20x a y +-+=与直线210bx y +-=互相垂直 所以22(23)0b a +-= 即23a b +=又a 、b 为正实数,所以2a b +≥即229224a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当a 34=,b 32=时取“=”;所以ab 的最大值为98. 故选:B 【点睛】本题主要考查了由直线垂直求参数,基本不等式求最值的应用,属于中档题.10.A解析:A 【分析】利用“乘1法”与基本不等式的性质即可得出. 【详解】 ∵m ,0n >,4121m n+=+, ∴()()4111411911554122122n m m n m n m n m n +⎛⎫⎛⎫++=+++⨯=++≥+= ⎪ ⎪++⎝⎭⎝⎭, 当且仅当411n m m n +=+且4121m n+=+,即2m =,32n =时取等号, 故m n +的最小值72.故选:A. 【点睛】本题主要考查了均值不等式求最值,“1”的变形使用,属于中档题.11.C解析:C 【分析】由题意得出关于x 的不等式()()224210a x a x -+--<的解集为R ,由此得出240a -=或2400a ⎧-<⎨∆<⎩,在240a -=成立时求出实数a 的值代入不等式进行验证,由此解不等式可得出实数a 的取值范围. 【详解】由题意知,关于x 的不等式()()224210a x a x -+--<的解集为R .(1)当240a -=,即2a =±.当2a =时,不等式()()224210a x a x -+--<化为10-<,合乎题意;当2a =-时,不等式()()224210a x a x -+--<化为410x --<,即14x >-,其解集不为R ,不合乎题意;(2)当240a -≠,即2a ≠±时.关于x 的不等式()()224210a x a x -+--<的解集为R .2400a ⎧-<∴⎨∆<⎩,解得265a -<<.综上可得,实数a 的取值范围是6,25⎛⎤- ⎥⎝⎦.故选C . 【点睛】本题考查二次不等式在R 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.12.D解析:D 【分析】对于选项A ,2n ≥时,2n a ≥,所以该选项不正确;对于选项B ,证明+1n n a a ≥,所以该选项不正确;对于选项C ,令2,a =所以2n a =,所以该选项不正确;对于选项D ,令2a =.所以2n a =,所以该选项正确.【详解】对于选项A ,因为0,a >所以24222a a a =+-≥=,依次类推得到0n a >, 所以2n ≥时,114222n n n a a a --=+-≥=,所以不存在2n ≥,使得2n a <,所以该选项错误;对于选项B ,由已知得+142n n n a a a =+-,所以+1n na a =2421n n a a +-,设11(0)2n t t a =<≤,所以+1n n a a =22134214()144t t t -+=-+≤,所以+1n n a a ≤,所以不存在2n ≥,使得+1n n a a <,所以该选项错误; 对于选项C ,因为0,a >所以242a a a =+-,令242a a a a=+-=,所以2a =.所以2n a =,所以任意0a >,存在*m N ∈,总有mn a a <不正确,所以该选项不正确;对于选项D ,因为0,a >所以242a a a =+-,令242a a a a=+-=,所以2a =.所以2n a =,所以存在0a >,存在*m N ∈,使得n n m a a +=,所以该选项正确.故选:D. 【点睛】本题主要考查基本不等式求最值,考查数列单调性的判定,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题13.【分析】由可得则展开后利用基本不等式求解即可【详解】当且仅当即时等号成立故的最小值为故答案为:【点睛】方法点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母解析:95【分析】由4a b +=,可得(1)5a b ++= ,则()411111154a b a b a b ⎛⎫+=+++⋅⎡⎤ ⎪⎣⎦++⎝⎭,展开后利用基本不等式求解即可. 【详解】4,(1)5a b a b +=∴++=,414114(1)14(19[(1)]5251151555b a b a b a b a b a b a ⎡⎤++⎛⎫⎡⎤+=+++⋅=++⋅⋅=⎢⎥ ⎪⎢⎥+++⎝⎭⎣⎦⎣⎦, 当且仅当4(1)1b a a b +=+,即102,33a b ==时等号成立, 故411a b ++的最小值为95.故答案为:95. 【点睛】 方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14.【分析】根据不等式的解集可得为对应方程的根分析两个不等式对应方程的根即可得解【详解】由于满足即可得所以所以方程的两根分别为而可化为即所以方程的两根分别为且不等式的解集为所以解得则因此故答案为:【点睛 解析:27【分析】根据不等式的解集可得2、3、6为对应方程的根,分析两个不等式对应方程的根,即可得解.【详解】由于6x =满足()060f ≤≤,即()63660f a b =++=,可得636b a =--, 所以,()()()263666f x x ax a x x a =+--=-++, 所以,方程()0f x =的两根分别为6、6a --,而()6f x x ≤-+可化为()()21670x a x a ++-+≤,即()()670x x a -++≤, 所以,方程()6f x x =-+的两根分别为6、7a --,76a a --<--,且不等式()06f x x ≤≤-+的解集为[]{}2,36⋃,所以,6372a a --=⎧⎨--=⎩,解得9a =-,则18b =,因此,27b a -=. 故答案为:27.【点睛】关键点点睛:本题主要考查一元二次不等式与方程之间的关系,即不等式解集的端点即为对应方程的根,本题在理解2、3、6分别为方程()()660x x a -++=、()()670x x a -++=的根,而两方程含有公共根6,进而可得出关于实数a 的等式,即可求解.15.【分析】配凑成再用利用均值不等式直接求解【详解】因为所以当且仅当即时等号成立故答案为:【点睛】此题考查利用基本不等式求最值属于基础题方法点睛:均值不等式成立的3个条件一正二定三相等一正:的范围要为正 解析:1-【分析】配凑成()4()333f x x x ⎡⎤=--+⎢⎥-⎣⎦,再用利用均值不等式直接求解.【详解】因为3x <,所以()()43333413f x x x ⎡⎤=--+≤-=-=-⎢⎥-⎣⎦.当且仅当43=3x x --,即1x =时等号成立,故答案为: 1-【点睛】 此题考查利用基本不等式求最值,属于基础题.方法点睛:均值不等式a b +≥成立的3个条件“一正、二定、三相等”.一正:,a b 的范围要为正值二定:当,a b 为大于零的变量,那么a b +、最值.三相等:验证均值不等式在给定的范围内能否满足取等号的条件.16.9【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9 【分析】 将分式展开,利用基本不等式求解即可【详解】(4)(2)82416161x y xy x y xy xy xy xy xy++++++===+又x +2y =4≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥故填9【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件 17.【分析】整理已知条件得到对于恒成立利用二次函数的特点求解范围即可【详解】由得则对于恒成立令则;令则;综上:故答案为:【点睛】本题主要考查了绝对值不等式和一元二次不等式属于中档题解析:57,22⎛⎫ ⎪⎝⎭【分析】整理已知条件得到2211010x xt x xt ⎧+-<⎨-+<⎩对于1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,利用二次函数的特点求解范围即可.【详解】由256x xt <--, 得22265565xt x x xt x -<-⇒-<-<-, 则2211010x xt x xt ⎧+-<⎨-+<⎩对于1,22x ⎡∈⎤⎢⎥⎣⎦恒成立, 令()211f x x xt =+-, 则()431072272202t f t t f ⎧⎧⎛⎫<⎪<⎪⎪ ⎪⇒⇒<⎝⎭⎨⎨⎪⎪<<⎩⎪⎩; 令()21g x x xt =-+, 则()51052252202t g t t g ⎧⎧⎛⎫>⎪<⎪⎪ ⎪⇒⇒>⎝⎭⎨⎨⎪⎪><⎩⎪⎩; 综上:5722t <<. 故答案为:57,22⎛⎫⎪⎝⎭. 【点睛】本题主要考查了绝对值不等式和一元二次不等式.属于中档题.18.【分析】先求得函数的图象恒过定点代入直线的方程得到再结合基本不等式即可求解【详解】由题意函数可得函数的图象恒过定点又由点在直线上可得则又因为则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】本 解析:8【分析】先求得函数()y f x =的图象恒过定点(2,1)A --,代入直线的方程,得到21m n +=,再结合基本不等式,即可求解.【详解】由题意,函数()21(2)1f x ax a a x =+-=+-,可得函数()y f x =的图象恒过定点(2,1)A --,又由点(2,1)A --在直线10mx ny ++=上,可得210m n --+=,则21m n +=, 又因为0m n ⋅>,则0m n>,所以12124()(2)448n m m n m n m n m n +=++=++≥=,当且仅当122n m ==时,等号成立, 因此,12m n+的最小值为8. 故答案为:8.【点睛】本题主要利用基本不等式求最值问题,同时考查函数的图象过定点问题的应用,其中解答中熟记基本不等式的“一正、二定、三相等”,准确运算时解答的关键,着重考查推理与运算能力.19.【分析】求出设(当且仅当时成立)求出的最小值即可【详解】解:设(当且仅当时成立)的最小值为故答案为:【点睛】本题考查了基本不等式的性质考查转化思想属于中档题 解析:23【分析】 求出23154a M a a =-++,设254445259a a N a a a a a++==+++=(当且仅当2a =时“=”成立),求出M 的最小值即可.【详解】 解:2ab =,0a >,0b >,2b a ∴=, 21111114311411211414541a a M a b a a a a a a a a∴=+=+=+=+-=-++++++++++,设254445259a a N a a a a a ++==+++=(当且仅当2a =时“=”成立), 1109N ∴<,1303N--<,23113N -<, 11112M a b ∴=+++的最小值为23, 故答案为:23. 【点睛】本题考查了基本不等式的性质,考查转化思想,属于中档题.20.【分析】先根据三角形面积关系列等量关系再根据基本不等式求最值【详解】因为所以因此当且仅当即时取等号即的最小值为故答案为:【点睛】本题考查三角形面积公式利用基本不等式求最值考查综合分析求解能力属中档题 解析:16【分析】先根据三角形面积关系列,a c 等量关系,再根据基本不等式求最值.【详解】因为ABC ABD BDC SS S =+, 所以11111sin1201sin 601sin 601222ac a c a c=⨯⨯+⨯⨯∴+=因此1199(9)()101016c a a c a c a c a c +=++=++≥+= 当且仅当911,1c a a c a c =+=即44,3a c ==时取等号 即9a c +的最小值为16故答案为:16【点睛】本题考查三角形面积公式、利用基本不等式求最值,考查综合分析求解能力,属中档题.三、解答题21.无22.无23.无24.无25.无26.无。
一元一次不等式与一次函数(答案)
励志长廊:真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。
寒假作业之十 一元一次不等式与一次函数(答案)学习目标及导航预习课本P 20-25内容,弄懂P 20的“做一做”和P 24例题的解题思路和步骤。
1、由于任何一个一次不等式都可以转化为0ax b +>或0ax b +<(a ,b 是常数,a ≠0)的形式,所以解一元一次不等式0ax b +>或0ax b +<,可以看作是求一次函数y = ax +b 的图象在x 轴的上方(或下方)自变量x 的取值范围.2、解决实际问题(应用题)的关键有二:一是理解题意,根据题意列出包含题意的函数解析式;二是结合基础知识点列出不等式求解.题型归类:通过图象解不等式:1、如图,直线y kx b =+交坐标轴于A B ,两点,则不等式0kx b +>的解集是 ( A )( )A.2x >- B.3x > C.2x <- D.3x <解法一 本题以图象的形式给出了一次函数b kx y +=的x 与y 的对应值,由此可求出函数的解析式,再求出0>+b kx 解集.解法二 由一次函数与一元一次不等式的关系,要求0>+b kx 的解集,实际上是要求当x 为何值时,一次函数y = kx +b 的图象在x 轴的上方,观察图象可知0>+b kx 的解集是2x >-,故选A .利用一元一次不等式和一次函数解应用题:2、某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费, 然后每通话1分钟, 再付话费0.3元;乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元.若一个月内通话时间为x 分钟, 甲、乙两种的费用分别为y 1和y 2元.(1)试分别写出y 1、y 2与x 之间的函数关系式;(2)在同一坐标系中画出y 1、y 2的图像;(3)根据一个月通话时间, 你认为选用哪种通信业务更优惠?答案:(1) y 1=15+0.3x (x ≥0) ,y 2=0.6x (x ≥0) .(2)如下图:(3)由图像知:当一个月通话时间为50分钟时,y 1= y 2,即两种业务一样优惠;当一个月通话时间少于50分钟时,y 1> y 2, 即乙种业务更优惠;当一个月通话时间大于50分钟时, y 1< y 2,即甲种业务更优惠 . 必做题目:1、已知函数y =8x -11,要使y >0,那么x 应取( A )A 、x >811B 、x <811C 、x >0D 、x <02、已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x 的取值范围是( C ).A 、x >5B 、x <12C 、x <-6D 、x >-63、已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( C )A.20y -<< B.40y -<< C.2y <- D.4y <-答案:函数关系式为42-=x y ,当x=1时,y=2-,再结合图象得:当1x <时,y 的取值范围是2y <- 故选C4、如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是___2->x ____.5、已知不等式-x +5>3x -3的解集是x <2,则直线y =-x +5与y =3x -3•的交点坐标是_(2,3)_.答案:因为其解集是x <2,故两个函数图象交点的横坐标为2,代入函数关系式求出纵坐标为3,故交点坐标为(2,3)6、某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8 m 3,则每立方米按1元收费;若每户每月用水超过8m 3,则超过部分每立方米按2元收费.某用户7月份用水比8m 3多xm 3,交纳水费y 元.(1)求y 关于x 的函数解析式,并写出x 的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m 3?答案:(1)y=2x+8(x ≥0) (2)147、为了加快教学手段的现代化,某校计划购置一批电脑,已知甲公司的报价是每台5800元,优惠条件是购买10台以上,则从第11台开始按报价的70%计算;乙公司的报价也是每台5800元,优惠条件是每台均按报价的85%计算.假如你是学校有关方面负责人,在电脑品牌、质量、售后服务等完全相同的前提下,你如何选择?请说明理由?答案:如果购买电脑不超过11台,很明显乙公司有优惠,而甲公司没优惠,因此选择乙公司.如果购买电脑多于10台.则:设学校需购置电脑x 台,则到甲公司购买需付[10×5800+5800(x -10)×70%]元,到乙公司购买需付5800×85% x 元.根据题意得:1)若甲公司优惠:则10×5800+5800(x -10)×70%<5800×85% x解得: x >302)若乙公司优惠:则10×5800+5800(x -10)×70%>5800×85% x解得: x <303)若两公司一样优惠:则10×5800+5800(x -10)×70%=5800×85% x解得: x =30答:购置电脑少于30台时选乙公司较优惠,购置电脑正好30台时两公司随便选哪家,购置电脑多于30台时选甲公司较优惠,选做题目:1、已知一次函数y kx b =+(k 、b 是常数,且k ≠0),x 与y 的部分对应值如下表所示,那么不等式kx+b <0的解集是( )A 、x <0B 、x >0C 、x <1D 、x >1解法一:本题以表格形式给出了一次函数y kx b =+的x 与y 的部分对应值,由此可求出函数的解析式为1y x =-+,所以不等式kx+b <0,即10x -+<的解集x >1.解法二:如果你对一次函数与一元一次不等式的关系有充分理解,通过认真阅读表格不难发现:求不等式0ax b +<的解集,实质就是求当一次函数y ax b =+的函数值小于0时,对应的自变量x 的取值范围为1x >,故选D .实际用时: 分钟 家长签字:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式与一次函数
1.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )
(5)
A .x<
B
.
x<3C
.
x>
D
.
x>3
2.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为( )
A .x<﹣1B
.
x>﹣1C
.
x>1D
.
x<1
3.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为( )
A .x>1B
.
x>2C
.
x<1D
.
x<2
4.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为( )
A .x>1B
.
x<1C
.
x>﹣2D
.
x<﹣2
5.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是( )
A .x>0B
.
x>﹣3C
.
x>2D
.
﹣3<x<2
6.如图,函数y=kx和y=﹣x+3的图象相交于(a,2),则不等式kx<﹣x+3的解集为( )
A .x<
B
.
x>
C
.
x>2D
.
x<2
7.(如图,直线l是函数y=x+3的图象.若点P(x,y)满足x<5,且y>,则P点的坐标可能是( )
(6) (8)
A .(4,7)B
.
(3,﹣5)C
.
(3,4)D
.
(﹣2,1)
8.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是( )
A .x<5B
.
x>5C
.
x<﹣4D
.
x>﹣4
9.如图,一次函数y=kx+b的图象经过点(2,0)与(0,3),则关于x的不等式kx+b>0的解集是( )
(10) (11)
A .x<2B
.
x>2C
.
x<3D
.
x>3
10.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是( )
A .0B
.
1C
.
2D
.
3
二.填空题(共8小题)
11.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为 _________ .
12.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须 _________ .
(13) (14) (15)
13.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为 _________ .
14.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集为
_________ .
15.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是 _________ .
16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为 _________ .
(17) (18)
17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为 _________ .
18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是 _________ .
三.解答题
19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.
20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y
轴交于点B,点A与点B恰好关于x轴对称.
(1)求点B的坐标;
(2)求直线l2的解析表达式;
(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;
(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?
21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)
(1)求a,b的值;
(2)求使得y1、y2的值都大于0的取值范围;
(3)求这两条直线与x轴所围成的△ABC的面积是多少?
(4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.
22.如图,直线y=kx+b经过点A(0,5),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.
AACBBAAAAD
﹣2<x<﹣1 . 大于4 . x< . x>﹣1 .x>1 . x<1 . ﹣4<x<﹣1 . x>﹣
19 x≥5.
20.
解:(1)当x=0时,x+3=0+3=3,
∴点A的坐标是(0,3),
∵点A与点B恰好关于x轴对称,
∴B点坐标为(0,﹣3);
(2)∵点P横坐标为﹣1,
∴(﹣1)+3=,
∴点P的坐标是(﹣1,),
设直线l2的解析式为y=kx+b,
则,
解得,
∴直线l2的解析式为y=﹣x﹣3;
(3)∵点P横坐标是﹣1,△MAB的面积是△PAB的面积的,
∴点M的横坐标的长度是,
①当横坐标是﹣时,y=(﹣)×(﹣)﹣3=﹣3=﹣,
②当横坐标是时,y=(﹣)×﹣3=﹣﹣3=﹣,
∴M点的坐标是(﹣,﹣)或(,﹣);
(4)l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,
l2:y=﹣x﹣3,当y=0时,﹣x﹣3=0,
解得x=﹣,
∴当﹣6<x<﹣时,l1、l2表示的两个函数的函数值都大于0.
21解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);
则依题意可得:,
解得:.(2)由(1)知,直线l2:y=﹣x+1;
∵y1=x+1>0,∴x>﹣1;
∵;
∴﹣1<x<2.
(3)由题意知A(﹣1,0),则AB=3,且OC=1;
∴S△ABC=AB•OC=.
(4)由于△ABC、△ABP同底,若面积相等,则P点纵坐标为﹣1,代入直线l1可求得:P的坐标为(﹣2,﹣1).
22.解:(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),
∴,
解方程组得,
∴直线AB的解析式为y=﹣x+5;
(2)∵直线y=2x﹣4与直线AB相交于点C,
∴解方程组,
解得,
∴点C的坐标为(3,2);(3)由图可知,x≥3时,2x﹣4≥kx+b.。