高中数学求数列通项公式ppt
合集下载
高中数学必修5优质课件:数列的通项公式与递推公式
![高中数学必修5优质课件:数列的通项公式与递推公式](https://img.taocdn.com/s3/m/d0e270dccfc789eb162dc8dc.png)
第七页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,要弄清楚公式中各部 分的关系,依次代入计算即可.另外,解答这类问题时还需 注意:若知道的是首项,通常将所给公式整理成用前面的项 表示后面的项的形式;若知道的是末项,通常将所给公式整 理成用后面的项表示前面的项的形式.
第十二页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,然后由前几项分析其 特点、规律,归纳总结出数列的一个通项公式.
第十三页,编辑于星期日:二十三点 三十九分。
[对点训练] 3.已知数列{an}满足 a1=1,an=an-1+nn1-1(n≥2), 写出该数列前 5 项,并归纳出它的一个通项公式. 解:a1=1, a2=a1+2×1 1=1+12=32, a3=a2+3×1 2=32+16=53, a4=a3+4×1 3=53+112=74,
[类题通法] 通项公式法、列表法与图象法表示数列优点
(1)用通项公式表示数列,简洁明了,便于计算.公 式法是常用的数学方法.
(2)列表法的优点是不经过计算,就可以直接看出项 数与项的对应关系.
(3)图象能直观形象地表示出随着序号的变化,相应 项变化的趋势.
第四页,编辑于星期日:二十三点 三十九分。
第十七页,编辑于星期日:二十三点 三十九分。
3.已知 a1=1,an=1+an1-1(n≥2),则 a5=________. 解析:由 a1=1,an=1+an1-1得 a2=2,a3=32,a4=53, a5=85. 答案:85
第十八页,编辑于星期日:二十三点 三十九分。
4.已知数列{an}满足 a1>0,aan+n 1=13(n∈N*),则数列{an}是 ________数列(填“递增”或“递减”).
[类题通法] 根据递推公式写出数列的前几项,要弄清楚公式中各部 分的关系,依次代入计算即可.另外,解答这类问题时还需 注意:若知道的是首项,通常将所给公式整理成用前面的项 表示后面的项的形式;若知道的是末项,通常将所给公式整 理成用后面的项表示前面的项的形式.
第十二页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,然后由前几项分析其 特点、规律,归纳总结出数列的一个通项公式.
第十三页,编辑于星期日:二十三点 三十九分。
[对点训练] 3.已知数列{an}满足 a1=1,an=an-1+nn1-1(n≥2), 写出该数列前 5 项,并归纳出它的一个通项公式. 解:a1=1, a2=a1+2×1 1=1+12=32, a3=a2+3×1 2=32+16=53, a4=a3+4×1 3=53+112=74,
[类题通法] 通项公式法、列表法与图象法表示数列优点
(1)用通项公式表示数列,简洁明了,便于计算.公 式法是常用的数学方法.
(2)列表法的优点是不经过计算,就可以直接看出项 数与项的对应关系.
(3)图象能直观形象地表示出随着序号的变化,相应 项变化的趋势.
第四页,编辑于星期日:二十三点 三十九分。
第十七页,编辑于星期日:二十三点 三十九分。
3.已知 a1=1,an=1+an1-1(n≥2),则 a5=________. 解析:由 a1=1,an=1+an1-1得 a2=2,a3=32,a4=53, a5=85. 答案:85
第十八页,编辑于星期日:二十三点 三十九分。
4.已知数列{an}满足 a1>0,aan+n 1=13(n∈N*),则数列{an}是 ________数列(填“递增”或“递减”).
高中数学 构造法求通项公式课件 新人教A版必修5
![高中数学 构造法求通项公式课件 新人教A版必修5](https://img.taocdn.com/s3/m/4b2d7dc9240c844769eaee66.png)
1 数列 3 为等比数列. an
pan 1 r 1 q (4)形如an1 ( p, q, r为非零常数)的,将其变形为 qan r an+1 p an p
3、已知数列的递推公式求通项:
变式2:已知数列a n 满足a n+1 =2a n +3n,且a1 1 . 求数列a n 的通项公式. a n+1 an n n 解:a n+1 =2a n +3 两边除以3 得 n =2 n +1 3 3 a n+1 2 a n
_____ n an中,a1 1, an1 an 2n 1 ,则 an
2
3、在数列
1 an a1 , n 1 an n 1 an1 (n 2),则 4、数列 an 中,若 2
1 n n 1_ ____
方法归纳
1、观察法
例2、数列an 中,a1 =3,an+1 =2an +3,求通项an .
分析:变形得an+1 +t =2(an +t)且2t-t=3,构造得 数列an 3为等比数列.
方法归纳
3、已知数列的递推公式求通项:
例2、数列an 中,a1 =3,an+1 =2an +3,求通项an . 解:令an+1 +t=2(an +t) 且2t-t=3,得t=3
2、由an与sn的关系求an
(1)已知sn 求a n时,要分n=1和n 2两种情况讨论,然后 验证两种情况可否统一的解析式表示,若不能则用分段 s1 ,n 1 函数的形式表示为a n ; sn sn 1 , n 2
(2)当an与sn 在同一关系式中
pan 1 r 1 q (4)形如an1 ( p, q, r为非零常数)的,将其变形为 qan r an+1 p an p
3、已知数列的递推公式求通项:
变式2:已知数列a n 满足a n+1 =2a n +3n,且a1 1 . 求数列a n 的通项公式. a n+1 an n n 解:a n+1 =2a n +3 两边除以3 得 n =2 n +1 3 3 a n+1 2 a n
_____ n an中,a1 1, an1 an 2n 1 ,则 an
2
3、在数列
1 an a1 , n 1 an n 1 an1 (n 2),则 4、数列 an 中,若 2
1 n n 1_ ____
方法归纳
1、观察法
例2、数列an 中,a1 =3,an+1 =2an +3,求通项an .
分析:变形得an+1 +t =2(an +t)且2t-t=3,构造得 数列an 3为等比数列.
方法归纳
3、已知数列的递推公式求通项:
例2、数列an 中,a1 =3,an+1 =2an +3,求通项an . 解:令an+1 +t=2(an +t) 且2t-t=3,得t=3
2、由an与sn的关系求an
(1)已知sn 求a n时,要分n=1和n 2两种情况讨论,然后 验证两种情况可否统一的解析式表示,若不能则用分段 s1 ,n 1 函数的形式表示为a n ; sn sn 1 , n 2
(2)当an与sn 在同一关系式中
数列通项公式的求法课件-高三数学一轮复习
![数列通项公式的求法课件-高三数学一轮复习](https://img.taocdn.com/s3/m/8c3a74003d1ec5da50e2524de518964bcf84d2d7.png)
(2)证明:∵cn=a2nn(n∈N*), ∴cn+1-cn=a2nn+ +11-a2nn=an+21-n+12an=2bn+n 1. 将 bn=3·2n-1 代入,得 cn+1-cn=34(n∈N*). ∴数列{cn}是公差为34的等差数列,c1=a21=12, 故 cn=12+34(n-1)=34n-14.
探究 5 此类题可由 an=SS1n(-nS=n-11()n,≥2)求出通项 an,但要注意 n=1 与 n ≥2 两种情况能否统一.
思考题 5 在数列{an}中,a1=1,a1+2a2+3a3+…+nan=n+2 1an+1,n∈
N*,求 an. 【解析】
由 a1+2a2+3a3+…+nan=n+2 1an+1,
例 4 已知数列{an}满足 a1=1,an+1=2aan+n 1(n∈N+).求数列{an}的通项公 式.
【解析】 易知 an>0,依题意得an1+1=2ana+n 1=a1n+2, ∴数列a1n是等差数列,公差为 2,首项为 1,∴a1n=1+(n-1)×2=2n-1, ∴an=2n1-1.
探究 4 已知数列递推公式的分母中含有通项公式的表达式,求解对应的通 项公式时,往往可以通过观察表达式的特点,通过倒数关系加以转化,利用等差 数列的性质分析相应的通项公式问题.
思考题 4 设数列{an}是首项为 1 的正项数列,且 an+1-an+an+1·an= 0(n∈N*),求{an}的通项公式.
【解析】 ∵an+1-an+an+1·an=0.∴an1+1-a1n=1. 又a11=1,∴a1n是首项为 1,公差为 1 的等差数列. 故a1n=n,∴an=1n.
题型四 已知 Sn 求 an
题型二 累乘法
例 2 在数列{an} 中,已知 a1=3,nan=(1+n)an+1,求 an. 【解析】 据题意有aan+n 1=n+n 1⇒aan-n 1=n-n 1(n≥2 且 n∈N*). ∴an=a1·aa21·aa32·…·aan-n 1 =3×12×23×34×…×n-n 1=3n(n≥2 且 n∈N*),把 n=1 代入上式也成立,故 an=3n(n∈N*).
2.5求数列通项公式-浙江省瑞安市上海新纪元高级中学高中数学人教A版必修5课件(共28张PPT)
![2.5求数列通项公式-浙江省瑞安市上海新纪元高级中学高中数学人教A版必修5课件(共28张PPT)](https://img.taocdn.com/s3/m/63aabcf802768e9950e73836.png)
2an (n+2)an (n+1)an1
nan (n+1)an1
an
n+1
an1
n
再用逐商叠乘法求出数列an 的通项公式。
例4.2,已知数列an中,an 0, Sn是数列的前n项的和,
解
且an
:由an
1 a1n
an
2Sn , 求an
2Sn , 得an2
1
2Sn
•
an
,
又an Sn Sn1(n 2)
1
n
注意:累乘法与累加法有些相
似,但它是n个等式相乘所得
五、累乘法 (形如an+1 =f(n)•an型)
练习1:已知an中,a1 2,an1 3n an,求通项an.
解: an 3n1, an1
an1 3n2 , an2
an2 3n3 , an3
an3 3n4 an4
.......
a3 32 , a2 3
六、 构造法
题型2.an1 pan f (n)(q, p为常数,且p 1, q 0)
例8.
已知数列 an
中,a1
41,,an
1 3 2
an1
2n
1
n 2求an
六、 构造法
题型3.an1 pan qn (q, p为常数,且p 1, q 0) 例10.已知数列{an }满足:a1 1, an1 3an 2n1,求an
1
是以
an 1 2 2
为首项,以1为公差的等差数列.
(2)由(1)知
an 1 2n
2 (n 1)1
,所以an=(n+1)2n+1.
题型4 形取如 倒数a方n1法转pa化mna成n q为的递1 推式m,1可采m用
由数列的递推关系求通项公式PPT优秀课件
![由数列的递推关系求通项公式PPT优秀课件](https://img.taocdn.com/s3/m/168d4d0fa32d7375a41780e3.png)
3,
设 bn
an1
an
,则 b1
a2
a1
6 ,且 bn1 bn
3,
所以 bn 6 3n1 2 3n ,即 an1 an 2 3n ,
有 3an 3 an 2 3n
所以
an
3n
3 2
.
解:由已知递推式得
an 3an1 3 ,
an
2n .
1
例题分析
例 1.
已知数列an 中, a1
3 2
,
an1
3an
3
(n N *), 求数列an 的通项公式.
.
巩固练习
1. 已知数列 an 中, a1 1, an1 3an 3n (n N *), 求数列an 的通项公式.
an n3n1
an 2n1
课堂热身
2.已知数列
an
中,
a1
1 2
,
an1
an
1 3n
(n N*), 求数列an 的通项公式.
1
an
1
.
2
3n1
课堂热身
3.已知数列 an 中 a1 3, an1 3an (n N*).求数列an 的通项公式.
an 3n
1 3n
,所以 an1 3n1
an 3n
1 3n
,
设 bn
an 3n
, 则 b1
a1 3
1,, 2
且 bn1
bn
1 3n
人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)
![人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)](https://img.taocdn.com/s3/m/b001c8d17fd5360cbb1adb44.png)
证明.在求{an}通项公式时,要用到{an-2}是等差数列,先求 1
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.
苏教版数学必修五2《等差数列的概念及通项公式》ppt课件
![苏教版数学必修五2《等差数列的概念及通项公式》ppt课件](https://img.taocdn.com/s3/m/4d45a5b8dc88d0d233d4b14e852458fb770b388a.png)
aa11++((nm--11))dd==mn,,解得ad1==-m1+. n-1,
∴am+n=a1+(m+n-1)d=m+n-1-(m+n-1)=0.
栏 目
链
故选 B.
接
方法二 设 am+n=y,则由三点共线有mn--mn=(my+-nm)-n
⇒y=0.
方法三 由 am=n,an=m 知,在直角坐标平面上的 A(m,n)、 B(n,m)两点关于直线 y=x 对称,又∵A、B、C(m+n,am+n)是等 差数列中的项,∴A、B、C 在同一直线上且斜率为-1.∴mam++nn--mn=
苏教版数学必修五
2.2.1 等差数列的概念及通项公式
情景导入
栏 目 链
接
相信同学们都听说过天才数学家高斯小时候计算1+2+3 +…+100的故事,不过,这很可能是一个不真实的传说, 据对高斯素有研究的数学史家E.T.贝尔(E.T.Bell)考证,高斯 的老师布特纳当时给孩子们出的是一道更难的加法题:81 297+81 495+81 693+…+100 899.当布特纳刚写完这道题 时,高斯也算完了,并把答案写在了小石板上.你知道高 斯是如何计算的吗?
个常数叫做等差数列的公差.应当注意的是:
栏
(1)在定义中,之所以说“从第2项起”,首先是因为首项 没有“前一项”,其次是如果一个数列,不是从第2项起,
目 链 接
而是从第3项起,每一项与它的前一项的差是同一个常数
(an+1-an=d,n∈N*,且n≥2),那么这个数列不是等差数 列,但可以说这个数列从第2项起(即去掉第1项后)是一个
(7)下标成等差数列且公差为m的项ak,ak+m,ak+
栏 目
2m,…(k,m∈N*)组成公差为md的等差数列.
高一数学数列求通项公式的几类方法课件
![高一数学数列求通项公式的几类方法课件](https://img.taocdn.com/s3/m/f368e56158fb770bf78a556e.png)
②叠加法,如 an1 an f (n)
③叠乘法:如
an1 f (n) an
④构造新数列:如 an1 kan b
an1 r k (an r)
(5)取倒数:如
a1
3, an
3an1 3 an1
(n
2)
类型二:在数列中已知 Sn 求an :
设数列an 前 n 项的和 Sn 2n2 3n 1,
为等差数列
2),a1
1,
(2) 求 {an}的通项公式
变题2:已知an
2Sn2 2Sn 1
(n 2),a1 1,
1
求证: S1n
为等差数列
(2) 求 {an}的通项公式
2
解:∵an
Sn2 2Sn2
1
2Sn2 2Sn 1
且an
Sn
Sn1
(n
2Sn Sn1 Sn Sn1 Sn
2)
方法一:直接利用an Sn Sn1求出an
方法二:利用an Sn Sn1消去an,得出Sn与Sn1的 递推关系式,求出Sn,再求an
题型1.等比数列的判断
例1 已知数列bn是等差数列, a 0, 求证:数列 abn 是等比数列.
例2 已知数列an 的前n项和 Sn 满足条件
已知递推关系式求通项
从二只兔子起,每只兔子的体重是它的前 一只 兔子的二分之一加一斤,第一只的 体重为十六斤,其它兔子的体重呢?
你能根据提议写出它的递推关系式吗? 你能求出通项吗?
一、公式法
已知数列ana1 1,an1 an 3,求an
已知数列an a1
1,an1 an
3,求an
二、叠加法
2Sn1 1
整理得:1
【高中数学】第1课时数列的概念及通项公式课件 高二下学期数学人教A版(2019)选择性必修第二册
![【高中数学】第1课时数列的概念及通项公式课件 高二下学期数学人教A版(2019)选择性必修第二册](https://img.taocdn.com/s3/m/d6cf682453d380eb6294dd88d0d233d4b14e3f8a.png)
上升(下降)趋势,即数列递增(减).
典例精析
题型二:归纳通项公式
例2
写出下列数列的一个通项公式,使它的前4项分别是下列各数:
1 1
1
(1)1,- , ,- ;
2 3
4
解
1
9
(2) ,2, ,8;
2
2
(1)这个数列的前4项的绝对值都是 (2)数列的项,有的是分数,
序号的倒数,并且奇数项为正,
偶数项为负,
跟踪练习
2.在数列1,1,2,3,5,8,13,x,34,…中,x的值是(
A.19
B.20
C.21观察数列可得规律
1+1=2,1+2=3,2+3=5,…,8+13=x=21,13+21=34,
∴x=21,故选C.
跟踪练习
3.数列0,1,0,-1,0,1,0,-1,…的一个通项公式为(
解
(3) 各项加1后,
(4)2,0,2,0.
(4) 这个数列的前4项构成一个摆动数列,
变为10,100,1 000,10 000,…,
奇数项是2,偶数项是0,所以,
此数列的通项公式为10n,可得原数列
它的一个通项公式为an=(-1)n+1+1,n∈N*.
的一个通项公式为an=10n-1,n∈N*.
典例精析
(2)符号{an}和an是不同的概念,{an}表示一个数列,而an表示数列中的第n项.
新知探索
数列的分类
[提出问题]
问题:观察上面4个例子
中对应的数列,它们的项数分
别是多少?这些数列中从第2
项起每一项与它前一项的大小
关系又是怎样的?
提示:数列1中有6项,数
典例精析
题型二:归纳通项公式
例2
写出下列数列的一个通项公式,使它的前4项分别是下列各数:
1 1
1
(1)1,- , ,- ;
2 3
4
解
1
9
(2) ,2, ,8;
2
2
(1)这个数列的前4项的绝对值都是 (2)数列的项,有的是分数,
序号的倒数,并且奇数项为正,
偶数项为负,
跟踪练习
2.在数列1,1,2,3,5,8,13,x,34,…中,x的值是(
A.19
B.20
C.21观察数列可得规律
1+1=2,1+2=3,2+3=5,…,8+13=x=21,13+21=34,
∴x=21,故选C.
跟踪练习
3.数列0,1,0,-1,0,1,0,-1,…的一个通项公式为(
解
(3) 各项加1后,
(4)2,0,2,0.
(4) 这个数列的前4项构成一个摆动数列,
变为10,100,1 000,10 000,…,
奇数项是2,偶数项是0,所以,
此数列的通项公式为10n,可得原数列
它的一个通项公式为an=(-1)n+1+1,n∈N*.
的一个通项公式为an=10n-1,n∈N*.
典例精析
(2)符号{an}和an是不同的概念,{an}表示一个数列,而an表示数列中的第n项.
新知探索
数列的分类
[提出问题]
问题:观察上面4个例子
中对应的数列,它们的项数分
别是多少?这些数列中从第2
项起每一项与它前一项的大小
关系又是怎样的?
提示:数列1中有6项,数
高中数学选择性必修二(人教版)《4.1 数列的概念 第二课时 数列的通项公式与递推公式》课件
![高中数学选择性必修二(人教版)《4.1 数列的概念 第二课时 数列的通项公式与递推公式》课件](https://img.taocdn.com/s3/m/8011b452f68a6529647d27284b73f242326c3115.png)
题型二 由前 n 项和 Sn 求通项公式 an [学透用活]
[典例 2] 设数列{an}的前 n 项和为 Sn.已知 2Sn=3n+3,求{an}的通项 公式.
[解] 因为 2Sn=3n+3,所以 2a1=3+3,故 a1=3. 当 n≥2 时,2Sn-1=3n-1+3, 两式相减得 2an=2Sn-2Sn-1=3n-3n-1=2×3n-1, 即 an=3n-1,所以 an=33n,-1n,=n1≥,2.
题型三 数列中的最大项、最小项 [学透用活]
[典例 3] 已知数列{an}的通项公式为 an=n2-5n+4. (1)数列中有多少项是负数? (2)n 为何值时,an 有最小值?并求出最小值. [解] (1)由 n2-5n+4<0,解得 1<n<4.
∵n∈N *,∴n=2,3.∴数列中有两项是负数.
(二)基本知能小试
1.判断正误
(1)已知数列{an}的前 n 项和 Sn,若 Sn=n2-n,则 an=2n-2. ( ) (2)已知数列{an}的前 n 项和 Sn,若 Sn=3n-2,则 an=2×3n-1.
答案:(1)√ (2)×
()
2.已知数列{an}的前 n 项和 Sn 满足 Sn+Sm=Sn+m,且 a1=1,那么 a10
(2)法一:∵an=n2-5n+4=n-522-94, 可知对称轴方程为 n=52=2.5.
又∵n∈N *,故 n=2 或 3 时,an 有最小值, 且 a2=a3,其最小值为 22-5×2+4=-2.
法二:设第 n 项最小,由aann≤ ≤aann+ -11, , 得nn22--55nn++44≤≤nn-+1122--55nn-+11++44, . 解不等式组,得 2≤n≤3, ∴n=2 或 3 时 an 有最小值且 a2=a3, ∴最小值为 22-5×2+4=-2.
数列{an}的通项公式的求法(全)
![数列{an}的通项公式的求法(全)](https://img.taocdn.com/s3/m/d8d15bb3960590c69fc3760e.png)
如:通项公式为an1 2an 3n 3可化为an 1 m 3n1 +s 2(an m 3n s ) 解得 m=-1,s 3 即化为an1 3n1 3 2(an 3n 3)
(其中,k, b, c, m, s为常数)
(4)通项公式为an1 kan ban1可化为an1 san t (an san1 ) (其中,k, b, s, t为常数)
(2)通项公式为an1 kan c bn可化为an1 mbn1 k (an mbn ) (其中,k, b, c, m为常数)
(3)通项公式为an1 kan c bn +t可化为an1 mbn1 s k (an mbn s ) (其中,k, b, c, m, s为常数)
如:通项公式为an1 2an 3n 可化为an1 m 3n1 2(an m 3n ) 解得 m 1 即化为an1 3n1 2(an 3n )
(3)通项公式为an1 kan c bn +t可化为an1 mbn1 s k (an mbn s )
(4)通项公式为an1 kan ban1可化为an1 san t (an san1 ) (其中,k, b, s, t为常数)
八、倒数法>>
适用于an1 k1an 的形式,(其中,k1 ,k 2 ,b1 ,b2为常数). k2an b2
本节作业
1、数列{an }中, a1 2, an1 an 2n , 求{an }的通项公式.
an 2 n 3 an 3 n 1
.........................
n1 n 2 n 3 3 2 1 1 ... n1 n n1 5 4 3 2 1 n( n 1)
(其中,k, b, c, m, s为常数)
(4)通项公式为an1 kan ban1可化为an1 san t (an san1 ) (其中,k, b, s, t为常数)
(2)通项公式为an1 kan c bn可化为an1 mbn1 k (an mbn ) (其中,k, b, c, m为常数)
(3)通项公式为an1 kan c bn +t可化为an1 mbn1 s k (an mbn s ) (其中,k, b, c, m, s为常数)
如:通项公式为an1 2an 3n 可化为an1 m 3n1 2(an m 3n ) 解得 m 1 即化为an1 3n1 2(an 3n )
(3)通项公式为an1 kan c bn +t可化为an1 mbn1 s k (an mbn s )
(4)通项公式为an1 kan ban1可化为an1 san t (an san1 ) (其中,k, b, s, t为常数)
八、倒数法>>
适用于an1 k1an 的形式,(其中,k1 ,k 2 ,b1 ,b2为常数). k2an b2
本节作业
1、数列{an }中, a1 2, an1 an 2n , 求{an }的通项公式.
an 2 n 3 an 3 n 1
.........................
n1 n 2 n 3 3 2 1 1 ... n1 n n1 5 4 3 2 1 n( n 1)
高考数学微专题3 数列的通项课件(共41张PPT)
![高考数学微专题3 数列的通项课件(共41张PPT)](https://img.taocdn.com/s3/m/24fbff15a9956bec0975f46527d3240c8447a10b.png)
内容索引
内容索引
目标1 根据规律找通项公式
1 (2023吉林三模)大衍数列,来源于《乾坤谱》中对易传“大
衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,
数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总
和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项
依 次 是 0,2,4,8,12,18,24,32,40,50 , 则 此 数 列 的 第 25 项 与 第 24 项 的 差 为
高考命题方向: 1. 根据前几项来寻找序号 n 与项之间的关系. 2. 根据前几项所呈现的周期性规律,猜想通项. 3. 抓住相邻项的关系转化为熟悉问题.
内容索引
内容索引
说明: 1. 解决方案及流程 (1) 归纳猜想法: ①确定数列的前几项; ②分析序号 n 与项有何关系,初步确定分类标准; ③研究数列整体或部分规律; ④归纳数列的项用序号 n 表示的规律; ⑤证明归纳的正确性.
内容索引
内容索引
1. (2022泰安三模)已知数列{an}满足:对任意的m,n∈N*,都有aman
=am+n,且a2=3,则a20的值为( )
A. 320
B. 315
C. 310
D. 35
【解析】 因为对任意的 m,n∈N*,都有 aman=am+n,所以 a1a1=a2, a1an=a1+n.又 a2=3,所以 a1=± 3,所以aan+n 1=a1,所以数列{an}是首项 为 a1,公比为 a1 的等比数列,所以 an=a1·an1-1=an1,所以 a20=a210=310.
重复循环,2 022=674×3,恰好能被3整除,且a3为偶数,所以a2 022也 为偶数,故B错误;对于C,若C正确,又a2 022=a2 021+a2 020,则a2 021= a1+a2+…+a2 019,同理a2 020=a1+a2+…+a2 018,a2 019=a1+a2+…+ a2 017,依次类推,可得a4=a1+a2,显然错误,故C错误;对于D,因为 a2 024=a2 023+a2 022=2a2 022+a2 021,所以a2 020+a2 024=a2 020+2a2 022+a2 021=2a2 022+(a2 020+a2 021)=3a2 022,故D正确.故选AD.
内容索引
目标1 根据规律找通项公式
1 (2023吉林三模)大衍数列,来源于《乾坤谱》中对易传“大
衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,
数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总
和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项
依 次 是 0,2,4,8,12,18,24,32,40,50 , 则 此 数 列 的 第 25 项 与 第 24 项 的 差 为
高考命题方向: 1. 根据前几项来寻找序号 n 与项之间的关系. 2. 根据前几项所呈现的周期性规律,猜想通项. 3. 抓住相邻项的关系转化为熟悉问题.
内容索引
内容索引
说明: 1. 解决方案及流程 (1) 归纳猜想法: ①确定数列的前几项; ②分析序号 n 与项有何关系,初步确定分类标准; ③研究数列整体或部分规律; ④归纳数列的项用序号 n 表示的规律; ⑤证明归纳的正确性.
内容索引
内容索引
1. (2022泰安三模)已知数列{an}满足:对任意的m,n∈N*,都有aman
=am+n,且a2=3,则a20的值为( )
A. 320
B. 315
C. 310
D. 35
【解析】 因为对任意的 m,n∈N*,都有 aman=am+n,所以 a1a1=a2, a1an=a1+n.又 a2=3,所以 a1=± 3,所以aan+n 1=a1,所以数列{an}是首项 为 a1,公比为 a1 的等比数列,所以 an=a1·an1-1=an1,所以 a20=a210=310.
重复循环,2 022=674×3,恰好能被3整除,且a3为偶数,所以a2 022也 为偶数,故B错误;对于C,若C正确,又a2 022=a2 021+a2 020,则a2 021= a1+a2+…+a2 019,同理a2 020=a1+a2+…+a2 018,a2 019=a1+a2+…+ a2 017,依次类推,可得a4=a1+a2,显然错误,故C错误;对于D,因为 a2 024=a2 023+a2 022=2a2 022+a2 021,所以a2 020+a2 024=a2 020+2a2 022+a2 021=2a2 022+(a2 020+a2 021)=3a2 022,故D正确.故选AD.
第四章数列求通项公式专题课件-高二下学期数学人教A版(2019)选择性必修第二册
![第四章数列求通项公式专题课件-高二下学期数学人教A版(2019)选择性必修第二册](https://img.taocdn.com/s3/m/d0238ce7db38376baf1ffc4ffe4733687e21fc3e.png)
由已知 an+1=3an+4 ,得 2r =4, 即 r =2.
∴ an+1+2=3(an+2), 令bn an 2, 则bn1 3bn ,
又 a1 2 3 0, an 2 0
bn1 3. bn
∴数列{bn}是首项为b1=a1+2=3,公比为3的等比数列.
∴ bn=an+2=3×3n-1 ∴ an=3n+1-2. 5. 形如an1 pan q ,利用待定系数法构造等比数列:
足 a1 4, Sn Sn1
5
5
3 an1 3 (Sn1
又 S1 a1 4,
Sn
5
3
),
an1
,
求 an.
谁简单化掉谁
故数列{Sn } 是首项为 4, 公比为 4 的等比数列,
Sn 4 4n1 4n ,
当 n 2 时, an Sn Sn1 4n 4n1 3 4n1 ,
n n
3 2
1 2
1
1 (n 2). n
a1
1满足 上式,
an
1 n
.
求数列通项常用方法—5.待定系数法
例5.已知数列{an}, an+1=3an+4, 且a1=1. 求an. 解:设a证n+明1+数r =列3(a{na+n+r)2,}则是等an+比1=数3a列n+,2r并. 求出an.
1,
公
比
为
1 2
的
等
比
数
列,
bn
2
(
1 2
)n1
,
bn
2
1 n1 2
2n 1 2n1
4.2.1 第1课时 等差数列的概念及通项公式课件ppt
![4.2.1 第1课时 等差数列的概念及通项公式课件ppt](https://img.taocdn.com/s3/m/cdf97b1bcdbff121dd36a32d7375a417866fc1ce.png)
变式训练 3已知数列{an}中,a1=a2=1,an=an-1+2(n≥3).
(1)判断数列{an}是不是等差数列,并说明理由;
(2)求{an}的通项公式.
解 (1)当n≥3时,an=an-1+2,即an-an-1=2,
而a2-a1=0不满足an-an-1=2,
∴{an}不是等差数列.
(2)由(1)得,当n≥2时,an是等差数列,公差为2,
是首项为2,公差为2的等差数列,
1
1
(n-1)=2n,故
2
1
2
2
an= .
a1=2,
素养形成
构造等差数列解题
中的任意两项,就可以求出其他的任意一项.
微练习
(1)等差数列{an}:5,0,-5,-10,…的通项公式是
.
(2)若等差数列{an}的通项公式是an=4n-1,则其公差d=
答案 (1)an=10-5n (2)4
解析 (1)易知首项a1=5,公差d=-5,所以an=5+(n-1)·(-5)=10-5n.
微练习
判断下列各组数列是不是等差数列.如果是,写出首项a1和公差d.
①1,3,5,7,9,…;
②9,6,3,0,-3,…;
③1,3,4,5,6,…;
④7,7,7,7,7,…;
1 1 1 1
⑤1, , , , ,….
2 3 4 5
解 ①是,a1=1,d=2;②是,a1=9,d=-3;③不是;④是,a1=7,d=0;⑤不是.
2
2
1
a=2,
所以这个等差数列的每一项均为 1.故选 B.
(2)因为 a,b,c 成等差数列, , , 也成等差数列,
2 = + ,
数列等比数列等比数列的概念及通项公式ppt
![数列等比数列等比数列的概念及通项公式ppt](https://img.taocdn.com/s3/m/55e73836591b6bd97f192279168884868762b81c.png)
电路设计
在电路设计中,电阻、电容、电感等元件的参数 可以用等比数列表示。
计算机领域的应用
数据压缩
在数据压缩过程中,等比数列可以用来表示重复的数据模式,从 而减少数据的大小。
加密算法
在加密算法中,等比数列可以用来生成密钥序列,提高加密的安 全性。
图像处理
在图像处理中,等比数列可以用来表示像素值的变化情况,从而 实现图像的缩放和平移等操作。
等比数列的特性
等比数列的每一项都是前一项 的常数倍。
在等比数列中,常数被称为公 比(ratio),通常用字母 q 表示
。
如果第一项为 a1,公比为 q, 那么第 n 项 an = a1 × q^(n-
1)。
等比数列的应用
1
等比数列在金融领域的应用:如复利计算、投 资回报等。
2
等比数列在物理和工程领域的应用:如放射性 衰变、电路中的电阻等。
05
等比数列的拓展知识
等比数列与等差数列的关联
等比数列和等差数列是两种常见的数列类型,它们之 间存在一定的关联。
如果一个等差数列的公差为0,那么它就变成了一个等 比数列,其中每一项都等于前一项乘以1。
等差数列的每一项与其前一项的差是一个常数,而等 比数列的每一项与其前一项的比值是一个常数。
在等比数列中,如果存在一项为0,那么这个等比数列 就变成了一个有有限项的等差数列。
应用场景
变形的通项公式可以用于解决一些特定的问题,例如求解等 比数列的前n项和,或者在密码学中生成伪随机数等。
03
等比数列的求和公式
等比数列求和公式的推导
定义初始项和公比
通常设等比数列的初始项为 a1,公比为r。
推导求和公式
等比数列的求和公式可以通过错 位相减法推导得到,即利用等比 数列的通项公式和求和公式之间 的迭代关系进行推导。
在电路设计中,电阻、电容、电感等元件的参数 可以用等比数列表示。
计算机领域的应用
数据压缩
在数据压缩过程中,等比数列可以用来表示重复的数据模式,从 而减少数据的大小。
加密算法
在加密算法中,等比数列可以用来生成密钥序列,提高加密的安 全性。
图像处理
在图像处理中,等比数列可以用来表示像素值的变化情况,从而 实现图像的缩放和平移等操作。
等比数列的特性
等比数列的每一项都是前一项 的常数倍。
在等比数列中,常数被称为公 比(ratio),通常用字母 q 表示
。
如果第一项为 a1,公比为 q, 那么第 n 项 an = a1 × q^(n-
1)。
等比数列的应用
1
等比数列在金融领域的应用:如复利计算、投 资回报等。
2
等比数列在物理和工程领域的应用:如放射性 衰变、电路中的电阻等。
05
等比数列的拓展知识
等比数列与等差数列的关联
等比数列和等差数列是两种常见的数列类型,它们之 间存在一定的关联。
如果一个等差数列的公差为0,那么它就变成了一个等 比数列,其中每一项都等于前一项乘以1。
等差数列的每一项与其前一项的差是一个常数,而等 比数列的每一项与其前一项的比值是一个常数。
在等比数列中,如果存在一项为0,那么这个等比数列 就变成了一个有有限项的等差数列。
应用场景
变形的通项公式可以用于解决一些特定的问题,例如求解等 比数列的前n项和,或者在密码学中生成伪随机数等。
03
等比数列的求和公式
等比数列求和公式的推导
定义初始项和公比
通常设等比数列的初始项为 a1,公比为r。
推导求和公式
等比数列的求和公式可以通过错 位相减法推导得到,即利用等比 数列的通项公式和求和公式之间 的迭代关系进行推导。
等比数列的概念和通项公式17页PPT
![等比数列的概念和通项公式17页PPT](https://img.taocdn.com/s3/m/70953eb8e45c3b3566ec8be8.png)
(3)a3 20, a6 160, an
(4 )a2 1 0, a3 2 0, a40
(5)a2 10, a4 40, a3
数学必修五第二章
数列
2.已知等比 an的 数通 列项公式
为an 32n,求首a1和 项公q比
补补充充为 思 12..an考 在 在等 等a: 比 比qn数 数,如 其 列 列{{果 中 aaann,q}}都 一 中中aaannn是 个 的 ==222n3不 数 通 -1n0,,的 则则为 列 项a常 a11==公数式,, ,qq==
. .
那么这个数列比 一数 定列 是吗 等?
当a, q其中有一个为0时,
这个数列就不是等比数列
数学必修五第二章
数列
课时小结
1.等比数列定义:
an1 an
q,(q0,nN*)
an q,(q0.n2,nN*) an1
2.等比数列通项公式:
a n a 1q n 1(a 1 0 ,q 0 )
3.等比数列公式的推导方法:累乘法
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
是一个关于n的"一次函数"
数学必修五第二章
数列
国王要奖赏国际象棋的发明者,让发明者自己提要求,发明者提的要 求是:“请在棋盘的第1个格子里放上1颗麦粒,在第2个格子里放上2颗 麦粒,第3个格子里放上4颗麦粒,第4个格子里放上8颗麦粒,依此类推, 每个格子里放置的麦粒数都是前一个格子里的2倍,直到第64个格子.” 国王听了很高兴,觉得这太容易了,你觉得国王是否真的很容易就能满 足发明者的要求了吗?
一个新数列,这个数 还列 是等比数列吗? 如果是,它的首项和 比公 是多少?
(2)数列can(其中常数c 0)是等比数列吗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中为待定系数, 化为等比数列
{an }求通项.
例6:数列 an 满足a1 1,an1 2an 1 ,求an.
解:由题意可知:an+1+1=2(an+1) 所以数列{an+1}是以a1+1=2为首项,2为公比 的等比数列. 所以an+1=2n,即an=2n-1
练:已知an中,a1 2,an1 3an +2,求通项an .
或利用等差、等比数列的通项公式)
S1 (n=1n=2n2-1,求通项an
解:当n≥2时,an=Sn-Sn-1=(2n2-1) -[2(n-1)2-1] =4n-2
当n=1时, a1=1 不满足上式
因此 an=
1 (n=1) 4n -2(n≥2,
反思:待定系数法如何确定x?
待定系数法: 即
令an+1+x=p(an+x)
an+1=pan+px-x
an
(1根 据pq已1)知 pnx1=
q p1
所以数列{ an
q p1
}是等比数列.
形如递推式为an1 p • an f (n),(f (n)为一次或二次函数) 方法一:如an1 p • an a • n b, 令an1 x(n 1) y p(an xn y)
1
n
注意:累乘法与累加法有些相
似,但它是n个等式相乘所得
类型四、累乘法形如 an1 f (n) an 的递推式
练习1:已知 an 中,a1 2,an1 3n an,求通项an.
解: an 3n1, an1
an1 3n2 , an2
an2 3n3 , an3
an3 3n4 an4
n N*)
不要遗漏n=1的情形哦!
2.已知{an}中,a1+2a2+3a3+ •••+nan=3n+1,求通项an
解: ∵ a1+2a2+3a3+···+nan=3n+1 (n≥1) ∴ a1+2a2+3a3+···+(n-1)an-1=3n(n≥2)
两式相减得: nan=3n+1-3n=2·3n
解: ∵(n+1)an+12 +an+1an-nan2=0 ∴( an+1+ an)[(n+1) an+1 - nan]=0
∵ an+1+ an>0
∴ (n+1) an+1 = nan
∴ an1 n (n≥1)
∴
a
an=
n
an a n1
n1
an1 an2
...
a2 a1
a1
n 1 n 2 n 3 ... 2 1 1 n n1 n2 3 2
解出x, y转化为an xn y以公比为p的等比数列,若f (n) an2 bn c
转化为 an An2 Bn C 以公比为p的等比数列
例;数列an满足a1 4, an 3an1 2n 1(n 2),求an
解:令an xn y 3(an1 x(n 1) y)(n 2), an 3an1 2xn 2 y 3x与an 3an1 2n 1对比
n-1 n n2 n 2
1
2
2
求法:累加法 an1 an f (n)
练习: 在数列{an }中,已知a1 1,当n 2时, 有an an1 2n 1(n 2), 求数列 的通项公式.
四、累乘法 (形如an+1 =f(n)•an型)
例4.已知{an}是首项为1的正项数列,且(n+1)an+12 +an+1an-nan2=0, 求{an}的通项公式
求数列的 通项公式
学习目标
• 在了解数列概念的基础上,掌握几种常见 递推数列通项公式的求解方法
• 理解求通项公式的原理 • 体会各种方法之间的异同,感受事物与事
物之间的相互联系
二、公式法(利用an与Sn的关系 或利用等差、等比数列的通项公
式)
主要是公式an
s1 sn
sn1
(n 1)的运用 (n 2)
a1 = 1 a2 -a1 = 1
a3 -a2 = 2 a4 -a3 = 3
•••
n个等式 相加得
(1)注意讨 论首项;
(2)适用于 an+1=an+f(n)型递推
an-an-1 = n -1
公式
an=( an-an-1)+(an-1-an-2)+ •••+ (a2 -a1)+ a1
=(n - 1)+(n -2)+ •••+2+1+1
∴an=
2·3n n
(n≥2) 而n=1时,a1=9
9 (n=1)
∴an=
2·3n n
(n≥2,
n N)*
注意n的范围
三、累加法 (递推公式形如an+1=an+ f(n)型的数列)
例3.已知{an}中, an+1=an+ n (n∈N*),a1=1,求通项
解an:由an+1=an+ n (n∈N*) 得 an+1 - an= n (n∈N*)
.......
a3 32 , a2 3
a2
a1
以上各式相乘得an a1 3 32 33 3n2 3n1
2 3123(n-1)
n( n-1)
23 2
n( n-1)
an 2 3 2
四、累乘法适用于an+1=an f(n)型的递推公式
练习2
六待定系数法(构造法)
形如an1 pan q( p 0, p 1)的递推式 求法 : 待定系数法.令an1 p(an ),
例8:数列 an 满足:a1 3, an1 3an 3n1 , 求 an 通项公式.
解: Q an 3an1 3n
an 3n
an1 3n1
1
an 3n
是以
a1 3
为首项,以1为公差的等差数列
an 3n
a1 3
(n - 1)1
得22xy
2 3x
1 xy
1
1
an
n
1
3(an1
n)
令bn an n 1bn 3bn1
bn是以3为公比,以b1 a1 11 6为首项的等比数列
bn 6 3n1 2 3n,而bn an n 1
an 2 3n n 1
类型七、相除法形如 an1 Aan B An1 的递推式
注意:(1)这种做法适用于所有数列; (2)用这种方法求通项需检验a1是否满足an.
例2、已知数列{an }的前几项和为Sn,点(n, Sn) (n N *)在函数f ( x ) 3x 2 2x的图象上。
(1)求数列{an }的通项公式;
an 6n 5.
二、公式法(利用an与Sn的关系an=
{an }求通项.
例6:数列 an 满足a1 1,an1 2an 1 ,求an.
解:由题意可知:an+1+1=2(an+1) 所以数列{an+1}是以a1+1=2为首项,2为公比 的等比数列. 所以an+1=2n,即an=2n-1
练:已知an中,a1 2,an1 3an +2,求通项an .
或利用等差、等比数列的通项公式)
S1 (n=1n=2n2-1,求通项an
解:当n≥2时,an=Sn-Sn-1=(2n2-1) -[2(n-1)2-1] =4n-2
当n=1时, a1=1 不满足上式
因此 an=
1 (n=1) 4n -2(n≥2,
反思:待定系数法如何确定x?
待定系数法: 即
令an+1+x=p(an+x)
an+1=pan+px-x
an
(1根 据pq已1)知 pnx1=
q p1
所以数列{ an
q p1
}是等比数列.
形如递推式为an1 p • an f (n),(f (n)为一次或二次函数) 方法一:如an1 p • an a • n b, 令an1 x(n 1) y p(an xn y)
1
n
注意:累乘法与累加法有些相
似,但它是n个等式相乘所得
类型四、累乘法形如 an1 f (n) an 的递推式
练习1:已知 an 中,a1 2,an1 3n an,求通项an.
解: an 3n1, an1
an1 3n2 , an2
an2 3n3 , an3
an3 3n4 an4
n N*)
不要遗漏n=1的情形哦!
2.已知{an}中,a1+2a2+3a3+ •••+nan=3n+1,求通项an
解: ∵ a1+2a2+3a3+···+nan=3n+1 (n≥1) ∴ a1+2a2+3a3+···+(n-1)an-1=3n(n≥2)
两式相减得: nan=3n+1-3n=2·3n
解: ∵(n+1)an+12 +an+1an-nan2=0 ∴( an+1+ an)[(n+1) an+1 - nan]=0
∵ an+1+ an>0
∴ (n+1) an+1 = nan
∴ an1 n (n≥1)
∴
a
an=
n
an a n1
n1
an1 an2
...
a2 a1
a1
n 1 n 2 n 3 ... 2 1 1 n n1 n2 3 2
解出x, y转化为an xn y以公比为p的等比数列,若f (n) an2 bn c
转化为 an An2 Bn C 以公比为p的等比数列
例;数列an满足a1 4, an 3an1 2n 1(n 2),求an
解:令an xn y 3(an1 x(n 1) y)(n 2), an 3an1 2xn 2 y 3x与an 3an1 2n 1对比
n-1 n n2 n 2
1
2
2
求法:累加法 an1 an f (n)
练习: 在数列{an }中,已知a1 1,当n 2时, 有an an1 2n 1(n 2), 求数列 的通项公式.
四、累乘法 (形如an+1 =f(n)•an型)
例4.已知{an}是首项为1的正项数列,且(n+1)an+12 +an+1an-nan2=0, 求{an}的通项公式
求数列的 通项公式
学习目标
• 在了解数列概念的基础上,掌握几种常见 递推数列通项公式的求解方法
• 理解求通项公式的原理 • 体会各种方法之间的异同,感受事物与事
物之间的相互联系
二、公式法(利用an与Sn的关系 或利用等差、等比数列的通项公
式)
主要是公式an
s1 sn
sn1
(n 1)的运用 (n 2)
a1 = 1 a2 -a1 = 1
a3 -a2 = 2 a4 -a3 = 3
•••
n个等式 相加得
(1)注意讨 论首项;
(2)适用于 an+1=an+f(n)型递推
an-an-1 = n -1
公式
an=( an-an-1)+(an-1-an-2)+ •••+ (a2 -a1)+ a1
=(n - 1)+(n -2)+ •••+2+1+1
∴an=
2·3n n
(n≥2) 而n=1时,a1=9
9 (n=1)
∴an=
2·3n n
(n≥2,
n N)*
注意n的范围
三、累加法 (递推公式形如an+1=an+ f(n)型的数列)
例3.已知{an}中, an+1=an+ n (n∈N*),a1=1,求通项
解an:由an+1=an+ n (n∈N*) 得 an+1 - an= n (n∈N*)
.......
a3 32 , a2 3
a2
a1
以上各式相乘得an a1 3 32 33 3n2 3n1
2 3123(n-1)
n( n-1)
23 2
n( n-1)
an 2 3 2
四、累乘法适用于an+1=an f(n)型的递推公式
练习2
六待定系数法(构造法)
形如an1 pan q( p 0, p 1)的递推式 求法 : 待定系数法.令an1 p(an ),
例8:数列 an 满足:a1 3, an1 3an 3n1 , 求 an 通项公式.
解: Q an 3an1 3n
an 3n
an1 3n1
1
an 3n
是以
a1 3
为首项,以1为公差的等差数列
an 3n
a1 3
(n - 1)1
得22xy
2 3x
1 xy
1
1
an
n
1
3(an1
n)
令bn an n 1bn 3bn1
bn是以3为公比,以b1 a1 11 6为首项的等比数列
bn 6 3n1 2 3n,而bn an n 1
an 2 3n n 1
类型七、相除法形如 an1 Aan B An1 的递推式
注意:(1)这种做法适用于所有数列; (2)用这种方法求通项需检验a1是否满足an.
例2、已知数列{an }的前几项和为Sn,点(n, Sn) (n N *)在函数f ( x ) 3x 2 2x的图象上。
(1)求数列{an }的通项公式;
an 6n 5.
二、公式法(利用an与Sn的关系an=