按键结构设计
弧面悬臂按键结构设计标准
弧面悬臂按键结构设计标准
弧面悬臂按键是一种常见的电子设备按键结构,常用于手机、平板电脑、电子游戏手柄等产品中。
其设计标准包括以下几个方面:
1. 悬臂形状:弧面悬臂按键的外形应呈现平滑的弧线形状,既保证手感舒适,又能让用户准确地触摸按键。
2. 按键行程:按键行程是指按键被按下时,从初始位置到触底的距离。
一般来说,弧面悬臂按键的行程应该适中,不宜过长或过短,以确保按键的稳定性和用户体验。
3. 按键力度:按键力度是指按下按键所需的力量大小。
弧面悬臂按键的设计中,力度应该适中,既要保证用户按键的舒适度,又不能过轻以至于误触。
4. 可靠性:弧面悬臂按键在设计中应考虑到长时间使用时的耐久性和可靠性。
按键结构应该具备良好的弹性和回弹力,以保证长时间使用不易疲劳变形或损坏。
5. 防水防尘:对于某些特殊环境下使用的电子设备,如手机和平板电脑,弧面悬臂按键的设计应考虑到防水防尘的需求,以保证设备的稳定性和使用寿命。
6. 触感反馈:弧面悬臂按键在被按下时,应该具备明显的触感反馈,让用户能够感知到按键是否被触摸到,以提高用户体验。
以上是一些常见的弧面悬臂按键设计标准,不同的产品和应用场景可能会有一些细微的差别,设计者需要根据具体情况进行合理的设计。
塑胶件结构设计之按键及旋钮设计
塑胶件结构设计之按键及旋钮设计常见的带有按键的塑胶产品有手机、MP3、相机等;旋钮之类等,在设计这些按键和旋钮之类的产品模型,可以使用以下资料做参考。
1、按键的设计1.1 按键(Button)大小及相对距离要求从实际操作情况分析,结合人体工程学知识,在操作按键中心时,不能引起相邻按键的联动,那么相邻按键中心的距离需作如下考虑:1)竖排分离按键中,两相邻按键中心的距离a≥9.0mm2)横排成行按键中,两相邻按键中心的距离b≥13.0mm3)为方便操作,常用的功能按键的最小尺寸为:3.0×3.0mm图11.2 按键(Button)与基体的设计间隙图2按键与面板基体的配合设计间隙如图2所示:1)按钮裙边尺寸C≥0.75mm,按钮与轻触开关间隙为B=0.20mm;2)水晶按钮与基体的配合间隙单边为A=0.10-0.15mm;3)喷油按钮与基体的配合间隙单边为A=0.20-0.25mm4)千秋钮(跷跷板按钮)的摆动方向间隙为0.25-0.30mm,需根据按钮的大小进行实际模拟;非摆动方向的设计配合间隙为A=0.2-0.25mm;5)橡胶油比普通油厚0.15 mm,需在喷普通油的设计间隙上单边加0.15 mm,如喷橡胶油按键与基体的间隙为0.3-0.4mm;6)表面电镀按钮与基体的配合间隙单边为A=0.15-0.20mm;7)按钮凸出面板的高度如图3所示:普通按钮凸出面板的高度D=1.20-1.40mm,一般取1.40mm;表面弧度比较大的按钮,按钮最低点与面板的高度D一般为0.80-1.20mm图32、旋钮的设计2.1 旋钮(Knob)大小尺寸要求旋钮(Knob)大小尺寸要求见如下所示图42.2 两旋钮(Knob)之间的距离两旋钮(Knob)之间的距离大小:C≥8.0mm。
图52.3 旋钮(Knob)与对应装配件的设计间隙1)旋钮与对应装配件的设计配合单边间隙为A≥0.50mm,如图6所示;2)电镀旋钮与对应装配件的设计配合单边间隙为A≥0.50mm;3)橡胶油比普通油厚0.15 mm,需在喷普通油的设计间隙上单边增加0.15 mm。
一种多方向导光按键结构设计
引言
目前 ,车载音响设备上 的多方向按键组件包括多个按键支架 、
多个装饰条及一个固定在 电路板上 的圆形 编码器 ,其中 ,多个按键 开关分别固定在 电路板上且位 于圆形 编码 器的中空位置处 ,按键支
架位于圆形编码器中空位置 的正上 方、且分别与按键开关对应设置 ,
按 键支架通常为黑色不透光材料制 成、为按键开关提供导 向和支撑
作用,装饰条固定在控制器 的前封 盖上,常分布在按键帽之 间、起
到装饰还有分隔各方 向按键帽 的作 用 ;因为受到圆形编码器的尺寸 限制,位于其 中空位置 处的多个按键相互之间的间距非 常小 ,从 而 图 l
直 接影 响背光 LED 的分布 ,由于按 键组件 整体结构过 于紧凑 ,常
LED发 出 的 光 源 进 导 出 。 本 文 提 出 的 设 计 有 益 效 果 在 于 :
光材料 制成,用于将 设置在 其尾端下方 的背光 LED发 出的光源 进
(1) 通过将分 隔条与按键 支架 合为一体 ,能够有效 的避 免按 导 出 。
错 键 帽 ,且 有 效 地 节 省 了 开 模 成 本 ;
题。图 l为一 实施例 中多方向导光按键结构 的分解 示意图。
成本 ;并且按键支架采用透光材 料制 成,从键 帽缝 隙间发出的背光
2具体 实施 方式
会直接照亮按键支架及其 顶端 的装饰 条,从而使得 整个按 键结构的 背光效果更佳绚丽 ,更有层次感 ,同时亦可掩 盖键 帽间隙漏光的问
请 参见 图 L 一种 多方 向导 光按键 结构 ,其至 少包 括编码 器 题 。 30、按键 支架 l0、键帽 组件 20和背光 LED40,其 中,编 码器 3O
按键结构设计有哪些形式
按键结构设计有哪些形式键盘是我们日常生活中常用的输入设备之一,而按键结构设计则是键盘设计的重要组成部分。
按键结构设计有以下几种形式:1.标准按键结构(Scissor-switch structure)标准按键结构是最常见的一种形式,主要用于笔记本电脑和薄型键盘。
该结构由两个交叠的金属片组成,按下按键时,这两个金属片被压缩,回弹力度较好,按键触感舒适,具有较高的稳定性和耐用性。
2.薄膜按键结构(Membrane switch structure)薄膜按键结构是一种较为简单的设计,主要用于廉价键盘和小号按键。
该结构由薄膜电路、按键盖板和顶针组成,按下按键时,薄膜电路下的两层触点接触,形成触发信号。
薄膜按键结构相对便宜、韧性好,但按键回弹不够灵敏,使用寿命相对较短。
3.开关阵列按键结构(Switch matrix structure)开关阵列按键结构采用矩阵排列方式,能够减少按键的数量,节省空间。
该结构由多个按键和开关阵列组成,按下按键会触发相应的开关,通过识别开关阵列的状态确定按下的是哪一个按键。
开关阵列按键结构适用于大型键盘,如电脑键盘,可以通过编程进行按键映射和功能设置。
4.滚动按键结构(Scrolling switch structure)滚动按键结构是一种特殊的设计形式,用于控制滚动屏幕或滚轮的方向和幅度。
该结构由一个旋转的滚轮和触发开关组成,旋转滚轮可以改变开关的状态,产生不同的输入信号。
滚动按键结构常见于鼠标和液晶显示器等设备上,可以方便地实现页面的上下滚动或调整音量大小。
除了上述几种常见的按键结构设计外,还有一些其他的特殊形式。
例如,机械按键结构采用机械轴和弹簧等部件实现按键触发,具有触感明显、耐用性好的特点,常用于游戏键盘和专业键盘。
还有静电感应按键结构、光学感应按键结构等,它们通过感应电流或光信号来实现按键触发,具有触发灵敏、无接触等特点。
总之,按键结构设计是键盘设计中非常重要的一部分,合理的按键结构设计可以提供良好的按键触感、稳定性和耐用性,同时还可以满足用户的不同需求。
按键结构设计
按键基本结构
如上图,此种按键通过固定悬臂达到固定按键的目的。
固定方法采用热熔。
此种按键结构简单,并且容易控制按键间隙。
故最常用。
2.跷跷板式按键
此种按键常为一对,在按键上有2个凸起小柱子,在cover上有相对应的2个“卡位”。
通过塑胶弹性变形,将按键卡在“卡位”里。
按键工作原理与“跷跷板”类似,以按键中间的凸起柱子为轴,旋转实现按键触发。
3.镶嵌式按键
“P+R”即为PLACTIC+RUBBER,是一种手机上常用的按键工艺。
多为许多按键部在一起。
如上图,有8颗按键,这种情况,多采用“P+R”工艺。
“P+R”就是把塑胶按键,通过一种专用胶水,粘到RUBBER上。
然后固定RUBBER,以此来固定按键。
手机按键结构设计
手机手机按键设计注意事项为避免因设计不统一而导致不必要的问题和错误,特对按键设计做如下统一规定:一.按键总高度低于2.5mm的按键(一般为翻盖机)设计如下:1.按键顶面要求高于按键周围的c件平面0.10mm;2.按键key形和c件的按键孔单边间隙为0.13mm,key形做负公差+0/-0.10mm,按键孔做正公差+0.10 /-0mm;3.按键键帽唇边厚设计为0.40mm,宽度设计为0.45mm;4.按键键帽唇边正面和c件高度方向(Z轴)的间隙设计为0.10mm,按键键帽唇边侧面和c件水平方向(XY平面)的让位间隙设计为0.20mm;5.对于低key按键,要求键帽设计为实心键,其底面设计为平面,底硅胶要求其顶面设计为平面,利于做印白印黑的遮光工艺;6.底硅胶的设计依照PCB板进行,要求LED灯、电容和各种元器件的顶面与底硅胶背面至少有0.30mm的活动空间,导航键处的底硅胶背面至少有0.40mm的活动空间,一般挖空底硅胶背面进行让位,硅胶小区域最薄可做到0.10mm-0.15mm;7.底硅胶导电基长设计至少为0.30mm,直径设计为2.00mm,其端面和metaldome的顶面接触;8.依据键帽的形状和导电基的位置设计相关平衡点,要求直径为1.00mm,高度比导电基端面沿Z轴正方向高0.10mm;9.按键键帽和底硅胶之间留0.05mm的胶水空间。
10.要求按键中软的硅胶片和C件的各配合骨位单边配合间隙为0.10mm,硬的键帽和各配合骨位单边配合间隙至少为0.20mm;以上设计可参照B52-D的按键结构设计。
二.按键总高度高于2.5mm的按键(一般为直板机)设计如下:1.按键顶面要求高于按键周围的c件平面0.80mm;2.按键key形和c件的按键孔单边间隙为0.15mm ,key形做负公差+0/-0.10mm,按键孔做正公差+0.10 /-0mm;3.按键键帽唇边厚设计为0.50mm,宽度设计为0.45mm;4.按键键帽唇边正面和c件高度方向(Z轴)的间隙设计为0.10mm,按键键帽唇边侧面和c件水平方向(XY平面)的让位间隙设计为0.20mm;5.对于高key按键,要求键帽设计为空心键,顶面配合间隙设计为0.02mm,侧面配合间隙设计为0.05mm,中间加遮光片达到遮光效果;6.空心键设计按压折弯处到背面的支撑位之间的横向弹性壁宽度距离至少为0.80mm,厚度为0.25mm,要求尽量保证每个按键周围都有一圈支撑位,支撑位和metaldome的薄膜面距离为0.10mm, 如果因0.80mm的避位导致支撑位不完整,可适当增加直径1.00mm的平横点,高度比导电基端面沿Z轴正方向高0.10mm,同时若采用0.10mm厚的遮光片遮光,要求按键唇边背面到硅胶正面之间有0.60mm厚的凸台,采用钢片设计或PC板设计等设计时依此类推,要求按键唇边外侧面到硅胶凸台外侧面的距离至少为0.50mm,以利于遮光;7.硅胶的设计依照PCB板进行,要求LED灯、电容和各种元器件的顶面与底硅胶背面至少有0.30mm的活动空间,导航键处的底硅胶背面至少有0.40mm的活动空间,一般挖空底硅胶背面进行让位,硅胶小区域最薄可做到0.10mm-0.15mm;8.硅胶导电基长设计至少为0.30mm,直径设计为2.00mm,底硅胶导电基长大于0.50mm的由底面开始做单边15度的锥度,以增强导电基的强度,其端面和metaldome的顶面接触;9.要求按键中软的硅胶片和C件的各配合骨位单边配合间隙为0.10mm,硬的键帽和各配合骨位单边配合间隙至少为0.20mm;。
按键结构设计有哪些形式
按键结构设计有哪些形式1.按钮结构:按钮结构是最常见的按键设计形式,主要包括凸起、平面或凹陷的按钮按键。
这种设计形式简单直接,易于操作和识别,广泛应用于各种电子设备上。
2.开关结构:开关结构是一种通过旋转、滑动或拨动来进行开关操作的按键设计形式。
这种设计形式便于进行多个状态的切换,如电源开关、音量调节开关等。
开关结构设计需要考虑到操作的便利性和稳定性。
3.触摸结构:触摸结构是一种无需物理按压即可进行触摸操作的按键设计形式。
触摸结构常用于触屏设备上,通过触摸屏幕的不同区域来实现不同的功能。
触摸结构设计需要考虑到触控灵敏度和精准性。
4. 带指示灯的按键结构:带指示灯的按键结构是一种在按键上添加指示灯的设计形式,通过指示灯的亮暗来提示按键状态。
这种设计形式在需要有明确状态提示的场合,如键盘上的Num Lock、Caps Lock按键等,能够提高用户的操作体验。
5.滚轮结构:滚轮结构是一种通过滚动操作来进行功能选择或调节的设计形式。
这种设计形式常用于鼠标、手机等设备上,可以方便快捷地进行页面的滑动、缩放等操作。
6.薄膜按键结构:薄膜按键结构是一种采用薄膜开关实现按键功能的设计形式。
这种按键结构具有体积小、重量轻、耐用性强等特点,广泛应用于电子产品和机械设备中。
7.机械按键结构:机械按键结构是一种采用机械开关实现按键功能的设计形式。
这种按键结构通过机械开关的触发来进行开关操作,具有触感明显、寿命长等特点,常用于游戏键盘、打印机等设备中。
8.弹簧按键结构:弹簧按键结构是一种采用弹簧机构实现按键复位的设计形式。
这种按键结构通过弹簧的弹力来保证按键的自动复位,具有复位力度均匀、寿命长等特点,常用于电子秤、计算器等设备中。
除了以上常见的按键结构设计形式,还可以根据实际需求进行创新设计。
在按键结构设计中,需要考虑到用户的使用习惯、舒适度、操作的便捷性和可靠性等因素,以提供良好的使用体验。
按键开关结构
按键开关结构按键开关是一种常见的电子元件,广泛应用于各种电子产品以完成开关功能。
按键开关结构多样,常见的包括推按钮开关、切换开关、拨动开关等。
本文将介绍按键开关的结构和原理,以及其在电子产品中的应用。
一、按键开关的结构按键开关的结构可以简单分为以下几个部分:开关体、齿轮、弹簧、触点等。
1. 开关体:开关体是按键开关的外壳,通常由塑料或金属材料制成。
开关体具有孔槽等结构,用于安装其他零部件。
2. 齿轮:齿轮是按键开关的核心组成部分,也是控制开关动作的关键。
齿轮可以使按键在被按下和弹起的过程中实现连续动作。
齿轮通常由塑料或金属材料制成。
3. 弹簧:弹簧是按键开关中的重要零部件,用于提供按键的回弹力。
弹簧通常由弹性材料制成,具有一定的弹性和稳定性。
4. 触点:触点是按键开关的关键部分,也是实现开关通断功能的重要组成部分。
按键开关通常包含两个触点,分别为常闭触点和常开触点。
当按键被按下时,触点闭合实现通断。
二、按键开关的原理按键开关的原理是通过按键的压力或动作来改变触点状态,从而实现电流的通断控制。
当按键被按下时,触点闭合,电流可以通过;当按键弹起时,触点断开,电流不再通过。
按键开关通常使用弹簧提供回弹力,使按键能够自动弹起。
同时,按键开关还可以利用齿轮等结构设计实现连续动作,例如长按功能、多段切换功能等。
三、按键开关的应用按键开关广泛应用于各种电子产品中,如手机、电脑、遥控器、家电等。
下面分别介绍几种常见的按键开关应用:1. 手机:手机上常见的按键开关有电源键、音量键等。
通过按下不同的按键,可以实现手机的开关、静音、调节音量等功能。
2. 电脑:电脑键盘是一个重要的按键开关应用。
通过键盘上的按键,可以输入字符、控制光标移动、实现快捷操作等功能。
3. 遥控器:遥控器上的按键开关用于控制电视、空调、音响等家电设备。
通过遥控器上的按键,可以实现开关机、频道切换、音量调节等操作。
4. 家电:家电中常见的按键开关包括空调遥控面板、洗衣机按钮面板等。
弧面悬臂按键结构设计标准
弧面悬臂按键结构设计标准摘要:1.弧面悬臂按键结构设计标准的概述2.弧面悬臂按键的结构设计3.弧面悬臂按键的功能设计4.弧面悬臂按键的制造流程5.弧面悬臂按键的设计标准及测试正文:一、弧面悬臂按键结构设计标准的概述弧面悬臂按键结构设计标准是针对一种具有弧面形状的悬臂按键进行结构、功能及制造流程的设计规范。
这种按键在电子设备中应用广泛,如手机、电视遥控器等。
其独特的弧面设计提供了舒适的触感,有效的避免了误触现象。
本文将对弧面悬臂按键的设计标准进行详细阐述。
二、弧面悬臂按键的结构设计1.材料选择:弧面悬臂按键通常采用优质的硅胶材料制成,具有良好的耐磨、抗老化、耐高低温性能。
同时,硅胶材料还具有较好的柔软性和触感,适合用于弧面设计。
2.结构设计:弧面悬臂按键的结构设计主要包括按键帽、按键柱和底座三部分。
按键帽为弧面设计,与手指接触,提供舒适的触感;按键柱负责承受按键帽的按压动作,将力传递给底座;底座则连接电路,将按键信号转换为电信号输出。
三、弧面悬臂按键的功能设计弧面悬臂按键的功能设计主要考虑按键的功能、布局和数量。
根据实际应用需求,合理设置按键的功能,如确定、取消、菜单等;按键布局要符合人体工程学原理,便于单手操作;按键数量要充分考虑设备的功能需求和操作便利性。
四、弧面悬臂按键的制造流程弧面悬臂按键的制造流程主要包括材料选择、模具制作、硅胶注塑、按键组装和检测等环节。
其中,硅胶注塑是关键环节,要保证按键帽的弧面形状和厚度均匀;按键组装时要确保按键帽、按键柱和底座的配合精度;检测环节要保证按键的性能和质量。
五、弧面悬臂按键的设计标准及测试弧面悬臂按键的设计标准主要包括尺寸、形状、材质、力学性能、电性能等方面。
设计标准要符合相关国家和行业的规定。
在设计过程中,要对按键进行多项测试,如尺寸检验、力学性能测试、电性能测试等,确保按键满足设计要求。
总之,弧面悬臂按键结构设计标准为设计者提供了一套完整的设计规范,包括按键的结构、功能、制造流程和设计标准等方面。
超薄P+R按键结构、工艺设计指南
超薄P+R的结构设计要点
塑料片沟槽设计注意点: •刀具切割路径之间不能太小,至少需要保证1.2mm,以免 在运输、装配过程断裂,在装上手机后,由于按键的活动 空间只有0.2mm,这时就不再有断裂危险。
•塑料片沟槽不能太小,因为沟槽都是用CNC切割而成, CNC刀具不能太小,一般情况下至少需要0.8mm。
该按键和镜片连在一 起,且镜面不和键盘在同 一个面上。
(3)
该按键的表面由模具 做成的拉丝纹,具有强烈 的防眩光作用。
超薄P+R按键产品实现
加工流程
开模 注塑 去应力 清洗 强化
多次丝印
退镀
烘干
丝印
反面溅镀
IPQC
烘干
CNC 切割
检查
装配
贴保护膜
包装出货
表面结构之--整片式按键
手感基本是困扰按键最大的问题,由于常觃按键是多粒的塑料 粘结在硅胶底板上,自身装配存在有误差,同手机外壳装配也有误 差,特别是按键在按压时要运动,更产生了种种问题。
塑料片
表面塑料片使用迚口的厚度由0.13mm- 0.5mm板材成品,再迚行印刷、溅镀、CNC 等一系列工序而成。但一般情况下建议使用 0.4mm的厚度,如果太薄,按键整体显得偏 软。
剖面结构之--平板P+R按键
按键结构
特点
结构设计中对表面结构变化的要求较少, 而对产品的工艺要求变化较多的情况,可体 现镀层拉丝、雾/亮面等表面效果。
表面结构之--连体式按键
连体式按键是指按键表面所有的功能键装饰区域虽然有沟槽 迚行切分,但整体还是连在一起一种按键结构。 它安装方便,不会出现安装偏位或安装好后存在相互移动的 现象,整体效果较佳。
表面结构之--分体式按键
几种按键的结构设计要点
2. 第三种为全浮双卡钩式按键� 图�3 为按键部份组装爆炸上往下观看立体透视彩图� 图��为按键部份组装爆炸下往上观看立体彩图�
现在针对按键问题说明请参考附图 15 之各指示处� 1.按键与按键孔间亦需保持适当间隙�又按键卡钩与���间之 A 处需保持净空�以免按键按 下时�卡钩勾到其他电子零件而弹不回� 2.上盖设有如 B 处之挡片�按键不致下陷脱落� 3.上盖设有如 C1 处之限高肋�防止���位置上偏又如按键与���� ��间之 d 处保持 一小段安全间隙�上盖与卡钩间之�处亦保持一小段安全间隙即可防止���� ��顶住按 键� 4.按键与上盖挡片 B 之间距离如 D 处�需大于 d����� ��之压缩行程(�在可允许的 范围内�尽可能适当的大�只有好处�没有坏处)� 5.d 处之一小段安全间隙�可使�处之高度缩小�可减少稍为碰触到就误动作之机会� 6.全浮双卡钩式按键容不容易装入上盖�全凭借着两种设计重点� A�卡钩是否有足够的弹性�韧性�当按键压入上盖按键孔时�两片卡钩能够容易的往内缩� 到达定位后�卡钩又能轻易的自动弹回原状�达到组立之目的� B�按键之卡钩与十字肋间的距离 a�设计时之距离需能在卡钩装入上盖时所用掉之距离�后� 又有剩余之距离 ��此目的在于防止当按键压入上盖按键孔时�卡钩碰到十字肋后而无有效 空间及距离使卡钩能够进入按键孔内如上右附图 1�所示� 7.有按键双卡钩�如附图 15 之�处�钩住上盖不致脱出于机台外部�
第二种亦为半固定杠杆式按键� 图��为按键部份组装爆炸下往上观看立体彩图� 图��为按键部份组装爆炸上往下观看立体透视彩图
1. 如�处�无保持适当间隙�致使按键按到���� � �时�此处按键与上盖就早已发生干涉(如 E 处)而卡住弹不回� 2.按键�处曾发生过断裂�使用时按键用力按下发生�及按键与上盖接合之�处是先用溶剂涂 抹接合处再用卯合�此处亦也会脱落�解决之道为增厚按键�处�及加大加粗卯合处之上盖圆 柱� 3.按键与���� ��间之�处保持一小段安全间隙�即可防止���� ��顶住按键� 4.当�处距离不够�按键按到底(如 F 处)时�还是接触不到���� ��(如 G 处)�解决之 道一样是设计出正确之�距离� 5.按键高度没有延伸到上盖之顶面缘�如此就不会因稍为碰触到就误开机� 6.虽然是采取半固定式�按键周围间隙照理讲都能保持固定而不飘移�如右上图��但因为之 前������处卡键�所以此处距离就加大,因模具全部都已开好�且考虑之下只有将按键 偏一边,即 D<A�按键卯合用孔距离缩短最好改模� 设计时�需最少距离=[�距离�������� ��之压缩行程�]÷�距离
塑胶按键的设计
塑胶按键的设计按键是电子产品中极其重要的结构件,常用按键按材质分为:塑料按键(Plastic key)、橡胶按键(Rubber key)、塑料+橡胶按键(P+R key)。
随着塑料制造工艺的提高,塑料按键(Plastic key)尤其连体塑料按键以它整体造型好、后处理方便、组装简单等特点受到设计者欢迎。
连体塑料按键结构要素主要包括按键的悬臂、定位及间隙。
连体塑料按键在试装和使用中常出现按键手感僵硬、按键联动、卡键等问题,主要是由于上述结构要素的设计缺陷造成。
本文结合作者多年的设计和注塑加工实践,给出连体塑料按键主要结构要素的设计经验,旨在为结构设计工作者提供设计经验。
一、悬臂(一)悬臂尺寸。
一般电子产品的按键悬臂厚度0.8-1mm,宽度1.2-2.5mm,长度10-20mm较合适。
悬臂厚度小于0.8mm注塑时冲胶慢导致悬臂强度降低,厚度大于1mm悬臂弹性较差。
根据悬臂的设计空间、弹性和强度要求,悬臂宽度可以设计等宽的;也可以设计渐变宽度的,悬臂长度大于10mm弹性较好,小于10mm会感觉按键手感僵硬。
为提高短悬臂弹性,在悬臂与按键体连接处进行变壁厚处理,局部最薄壁厚0.5~0.6mm,变壁厚悬臂连接处一定采用圆角过渡,注塑浇口宜设计在悬臂附近,否则容易出现注塑不全缺陷。
当然悬臂越薄,长度越长弹力越好,但长度超过20mm会给注塑走胶带来困难,同时出模、包装、运输极易变形,因此设计时要综合考虑上述因素。
(二)悬臂形状。
以直臂设计最简单,如图1,如果悬臂不能伸的很长,可以做成S形或弧形悬臂,以增加悬臂长度,如图2、3。
悬臂转弯和受力处须采用圆角过渡,避免注塑时材料在直角处受到剪切而产生应力集中,造成悬臂先天强度不良。
如果做S形空间不够,可以做成上文提到的变壁厚悬臂,这样也能达到较好的手感效果。
(三)悬臂数量。
最好采用双悬臂结构,这样按键不易变形。
如果只能采用单臂,单臂最好靠近按键长轴方向,按键上触动开关的柱子设计在长轴另一边,即使悬臂较短,但整个活动臂依然较长,按动也会很轻松,由于长单悬臂按键在注塑、后处理、运输等过程极易变形,因此尽量设计辅助悬臂,在装配前剪掉,这可以有效保护按键不变形,如图2。
手机按键结构设计
12、尺寸L-按键塑胶KEY下表面位同硅胶基片材避空位高度:至少大于0.40mm,当然视硅胶凸台高度而定,若是过高,避空位应相应增加
13、尺寸M—按键高于壳体表面距离:0.20-0.30mm
A、TY641和TY845 常用 一般40度硅胶;
B、TY651和TY856 常用 一般50度硅胶;
C、TY661和TY866 常用 一般60度硅胶;
D、TY881 常用 一般80度硅胶;
E、TY1751和TSE260-5U 常用 高撕裂50度硅胶。 胶导电基与DOM之间的间隙:0.05mm
◆、设计注意要点
1、按键硅胶背部在适当的地方长出支撑筋或支撑柱,以防止按键下陷,便需考虑图示中显示之弹性臂长度是否足够。
2、按键硅胶背部和塑胶件考虑是否有和PCB上LED灯位产生干涉,以防按键接不动或手感弱。
3、RUBBER按键硅胶凸台太较高时,喷涂按键根部和侧壁下半部分时不均匀或喷不到位,这时就会产生漏光现象。
4、按键做拨模角度为1-1.5度,但在没有要求的情况下,1.5度最佳。
5、按键数字”5”顶部需加盲点,勿遗漏。
6、硅胶硬度尽量啤大,在70度以上为佳。硬度偏小,手感就不好。
二、典型P+R手机按键设计要点(如示图二)
◆、按键设计与机壳相配的基本尺寸
1、尺寸A—按键KEY与KEY之间的间隙:0.15-0.20mm
6、尺寸F—接RUBBER厚度,即硅胶基片厚度:0.30mm,便可取到0.20-0.30mm之间
7、尺寸G—导电基高度:0.30mm,但至少大于0.25mm
8、尺寸H-导电基直径:1.80-2.33mm.
开关按键的结构设计的注意事项
开关按键的结构设计的注意事项开关按键是我们日常生活中经常使用的一种电子元件,它的结构设计对于产品的使用体验和寿命有着至关重要的影响。
在进行开关按键的结构设计时,我们需要注意以下几个方面。
开关按键的外观设计要符合人体工学原理,使用户使用起来更加方便舒适。
按键的形状、大小、凸起高度等都需要考虑人手的握持习惯和按压力度,以便用户能够轻松操作。
此外,按键的表面要光滑平整,避免刺激用户的手指。
按键的材质选择也是一个关键因素。
常见的按键材质包括塑料、金属、橡胶等。
塑料材质可以提供较为丰富的颜色选择,而金属材质则具有更高的耐磨性和质感。
橡胶材质可以提供更好的触感和防滑性能。
根据产品的使用环境和用户需求,选择合适的材质可以提升产品的品质和稳定性。
按键的触感设计也是需要考虑的因素之一。
触感设计包括按键的按下力度、行程距离等。
按键的按下力度应该适中,既不会过于轻松导致误操作,也不会过于沉重造成使用的不便。
行程距离则需要根据产品的需求和用户体验进行合理的调整,以确保按键的灵敏度和稳定性。
按键的耐久性也是需要考虑的重要因素。
开关按键在长时间的使用过程中会频繁被按下,因此需要具备一定的耐久性。
在结构设计上,可以采用弹簧、接触片等机械结构来增强开关按键的耐久性。
同时,在材料选择上,可以使用耐磨、耐腐蚀的材料,以延长按键的使用寿命。
按键的防水性能也是需要重视的。
特别是在一些户外和潮湿环境下的使用场景,按键的防水性能可以保护内部电路免受液体侵入而造成的损坏。
在结构设计上,可以采用密封圈、防水胶等措施来提高按键的防水性能。
按键的安装方式也需要考虑。
根据产品的使用需求和结构特点,可以选择表面贴装、插装等不同的安装方式。
在安装过程中,需要注意按键与电路板的连接可靠性和稳定性。
开关按键的结构设计需要考虑人体工学原理、外观设计、材质选择、触感设计、耐久性、防水性能和安装方式等多个方面。
通过合理的结构设计,可以提升产品的使用体验和寿命,满足用户的需求。
手机按键模具设计指南
案例二:某品牌手机电源键模具设计
总结词:个性创意
详细描述:该品牌手机电源键模具设计别具一格,采用长条形设计,表面刻有独特的纹理,使按键看起来更加时尚。按键布 局合理,符合人体工学原理,方便用户单手操作。在材质方面,选用高硬度的金属材料,确保按键经久耐用,同时也提升了 手机的整体质感。
案例三:某品牌手机音量键模具设计
05
设计案例与实战经验
案例一:某品牌手机Home键模具设计
总结词:简约时尚
详细描述:该品牌手机Home键模具设计简洁大方,采用圆形设计,表面略微凸 起,方便用户识别和操作。材质选用耐磨、耐刮的工程塑料,确保按键经久耐用 。同时,通过优化模具结构,实现了按键的快速生产和组装,有效降低了生产成 本。
表面处理
对材料表面进行涂层、电镀等处理,以提高耐磨性、 耐腐蚀性。
切割与加工
采用机械加工或激光切割技术,对材料进行精确加工。
03
模具结构设计
模具结构类型与特点
整体式模具
结构紧凑,强度高,适用 于形状简单、批量大的产 品。
组合式模具
易于拆装和维修,适用于 形状复杂、批量小的产品。
复合式模具
兼具整体式和组合式的特 点,适用于形状复杂、批 量适中的产品。
• 质量是产品的生命线:在手机按键模具设计中,质量是至关重要的。要选用优 质的原材料和先进的生产工艺,确保按键经久耐用。同时,要加强品质控制和 检测,确保每个环节都符合标准要求,为用户提供可靠的产品。
THANKS
感谢观看
模具结构设计要点
确定模具类型
确定模具布局
确定分模面
根据产品特点和生产要 求,选择合适的模具类
型。
合理安排模具各部分的 位置,确保模具结构的 稳定性和操作的便捷性。
几种按键的结构设计要点
;内边孔盖上在卡�时下压力用边 单键按生发易容最�时当失计设在键按胶橡硅�示所图如
先首为道之 止防他其�常正属是作动会才�� ����量力大极需�下按此在�侧定固属是处��如.4 �键按住顶�� ����止防可即 �隙间全安段小 一持保处�之间�� ����与键按如又偏上置位���止防�肋高限之处�如有设盖上.3 �落脱陷下致不键按�片挡之处�如有设盖上.2 �回不弹而件零子电他其到勾钩 卡�时下按键按免以�空净持保需处�之间���与 钩卡键按又�隙间当适持保需处�之间孔键按与键按如 .1
� 示 所 图 如 � 通 相 其 使 电 导 路 线 结 连 粒 电 导 由 藉 �箔铜金镀之通导相不本原条两上���使�下压粒电导之着附部底内键按用利为理原用作其 �样 一到制控易不隙间�键按性软之中键 按式定固全于属是种此�制控易不较隙间围周键按�� �来回不弹�份部盖上在卡易较�时下按力用键按�� �作动有否是别判音声用法无较�声响脆清之�� ����用有无�时下按作操键按�� �为点缺其 �水 缩会不面表���时工省节�快较也时立组台机�多较也量产且�快较时作制商货供�色颜之 同不有可 键按个每且�型成时同起一键按个数将可���服舒较感手�时摸触作操�性软为顶键按�� �为点优其 �型 成起一粒电导颗一着附部底内�出押������� ��������胶硅用是都个整键按 � �计设的键按胶硅是要主�计设键按的类胶橡说先在现 。AEMFD 做要计设的说常们我是就也这�好能可才品产的来出计设�全周虑考的能可尽有只 到达可才度精当相需还键按式 定固全或半于对 �的免避可无是键按式动浮于对项此�均平不隙间围周键按即�心中孔键按于置未键按�十� �部外台机于出落脱键按�九� �盖上入装于易不键按�八� � �呆防虑考未�错装置位是或亦�反装向方右左是者或下上键按�七� �作动误成造易极时用使�键按之出计设构机使致�详周虑考未计设观外�六� � �生发易较键按型大是其尤�作动�� ����得获均�下按处一每面键按在法无�五� �作操法无使致��� ����到不触接�时下按键按�四� �效失���� ��成造�程行缩压无毫键按使致�键按住顶接直就�� �����后成完立组键按�三� �部内台机于落脱陷下键按个整�时下按力用键按�二� �效失�� ����成造�来回不弹�份部盖上在卡�时下按键按�一� �)点几 下以了结总我�题问么什生发能可�时想理未计设键按当�是虑考要先首�时键按计设在们我 。等 CP�SBA 如比�料料塑的用常们我是的指类料塑�胶硅是的多最的用类胶橡 。类料塑和类胶橡�种两分说来般一键按 ;构结种这键按到用会都�上子电性费消的数多大绝 。助帮有家大对会望希�考参家大供�来出拿构结键按的过计设所我把我里这在 点要计设构结的键按种几
简述蓝牙耳机按键设计ppt课件
QCY T1自动拿取开机
苹果 TWS 红外入耳停播音乐
4
5.传统机械按键、触摸按键和行为方式自动按键设计的优缺点有哪些?
项目
成本
工艺
特点
适用机型 产品适用
1.工艺成熟,1.产品设计简单。
设计简单, 2.防尘,很难做到
传统机械 研发成本 测试简单。 IPX4防水,耐用度 适用所有 中低端耳
按键 低
2.生产作业 低。
sensor
苹果耳机 AirPods
这款苹果耳机在耳柄转弯处放置Sensor和Lens,通过红外线感应方式进
行入耳检测,当使用者带上耳机的时候,sensor接近人脸会转达指令给
IC,IC分析后执行歌曲自动播放,同理,当使用者取下耳机后,歌曲暂
停播放,非常的方便。
10
8.蓝牙耳机按键结构设计实际应用。
针对按键 a . 按键材料不能含有金属,如:PC、PMMA、玻璃等。若按键需要 喷涂,需要保证油漆不含有金属。 b . 按键尽量不做电镀,但可以做NCVM(不导电电镀)。 c . 按键厚度理论上不能大于10mm,不同的材料对应不同的厚度。 例如:亚克力一般在2~4mm,普通玻璃一般在3~6mm之间。
所以平时耳机研发过中优秀的设计者应当在满足产品的款式定位价格id外观的前提下合理的选择按键设计方式尽可能多种按键方式灵活使用设计处高端美观新颖的新耳机小米redmiai真无线蓝牙耳机采用电容式触摸多功能按键天猫月销量
主题:简述蓝牙耳机按键结构设计
按键结构设计是蓝牙耳机设计过程中很重要的一部分。按键设计直接影 响着耳机实现功能的方式,例如:蓝牙耳机开关机的方式,音量大小调整 的方式等完全是设计者在做按键结构设计时决定下来的。所以说一款成功 的耳机离不开巧妙的按键结构设计。目前,蓝牙耳机的按键结构设计主要 有:传统机械按键、触模按键和TWS耳机中行为方式自动按键设计。本次 课题主要研究这3中设计方式的优缺点和在实际蓝牙耳机设计中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按键基本结构
如上图,此种按键通过固定悬臂达到固定按键的目的。
固定方法采用热熔。
此种按键结构简单,并且容易控制按键间隙。
故最常用。
此种按键常为一对,在按键上有2个凸起小柱子,在cover上有相对应的2个“卡位”。
通过塑胶弹性变形,将按键卡在“卡位”里。
按键工作原理与“跷跷板”类似,以按键中间的凸起柱子为轴,旋转实现按键触发。
如图,按键被上盖和一个装饰件夹在中间,悬臂做在上盖上。
“P+R”即为PLACTIC+RUBBER,是一种手机上常用的按键工艺。
多为许多按键部在一起。
如上图,有8颗按键,这种情况,多采用“P+R”工艺。
“P+R”就是把塑胶按键,通过一种专用胶水,粘到RUBBER上。
然后固定RUBBER,以此来固定按键。