自动控制原理 第五章(第四和五次)

合集下载

自动控制原理 自控第五章

自动控制原理     自控第五章

【授课时间】:2013.11.18、11.20上午三四节【授课形式】:多媒体 【授课地点】:4306 4114 【授课时数】:2 【授课题目】:频率特性及典型环节的频率特性 【教学目标】1、正确理解频率特性的概念;2、熟练掌握典型环节的频率特性,熟记其幅相特性曲线及对数频率特性曲线。

【教学重难点】重点:典型环节的频率特性难点:典型环节的幅相特性曲线及对数频率特性曲线【教学内容】复数的表示形式: (1) 代数式:A =a +bj (2) 三角式:A =R (cos φ+j sin φ) (3) 指数式:A =Re j φ (4) 极坐标式:A =R ∠φ 5.1 频率特性 一、频率特性定义频率特性是控制系统在频域中的一种数学模型,是研究自动控制系统的一种工程求解方法。

系统频率特性能间接地揭示系统的动态特性和稳态特性,可简单迅速地判断某些环节或参数对系统性能的影响,指出系统改进方向。

频率特性的定义(1)频率响应: 在正弦输入作用下,系统输出的稳态值称为频率响应。

(2)频率特性: 频率响应c(t)与输入正弦函数r(t)的复数比。

()()()()()()j Q P e A A j j R j C j ωωωωϕωωωωωϕ+==∠=Φ=)()()(⎪⎪⎩⎪⎪⎨⎧=∠=Φ∠==Φ)()()()()()()()(ωϕωωωωωωωj R j C j A j R j C j()|()|A G j ωω==幅频特性:输出响应中与输入同频率的谐波分量与谐波输入的幅值之比A(ω)为幅频特性相频特性: 输出响应中与输入同频率的谐波分量与谐波输入的相位之差φ(ω)为相频特性实频特性: 虚频特性: 例5-1 已知u i (t )=A ·sin ωt 。

()()()t u t u dt t du RC r C C =+()()11+=Ts s U s U i C 其中,T =RC ()22ωω+=s A s U i()()22221111ωωωω+⎪⎭⎫ ⎝⎛+⋅=+⋅+=s T s T A s A Ts s U C零初始条件())arctan sin(112222T tT Ae AT uT tt c ωωωωτω-+++=-()()()()ωϕωωωωω+∙=-+=t A A T t TA t u s c sin )arctan sin(122上式表明:对于正弦输入,其输出的稳态响应仍然是一个同频率正弦信号。

《自动控制原理》胡寿松自动控制原理简明教程第5章详解

《自动控制原理》胡寿松自动控制原理简明教程第5章详解

bm1s bm an1s an
➢ 惯性环节:1/(Ts+1),式中T>0
➢ 一阶微分环节:(Ts+1),式中T>0
➢ 积分环节:1/s
➢ 微分环节:s
➢ 振荡环节:1/[(s/ωn)2+2ξs/ωn+1];式中ωn>0,0 < ξ <1 ➢ 二阶微分环节:(s/ωn)2+2 ξ s/ωn+1;式中ωn>0,0 < ξ <1
线性分度,单位是分贝(dB);对数相频曲线的纵坐标按 φ(ω) 线性分度,单位是度(°)。由此构成的坐标系称为 半对数坐标系。
ω和lgω的关系表
① ω轴为对数分度, 即采 用相等的距离代表相等的 频率倍增,在伯德图中横 坐标按μ=lgω均匀分度。 ② ω=0在对数分度的坐标系中的负无穷远处,ω =0不可能 在横坐标上表示出来,横坐标上表示的最低频率由所感兴 趣的频率范围确定。 ③ 从表中可以看出,ω的数值每变化10倍, 在对数坐标 上lgω相应变化一个单位。 频率变化10倍的一段对数刻度 称为“十倍频程”, 用“dec”表示。
arctg
2
曲线起自幅角
为-v90°的
无穷远处。
1. 极坐标图的起点
2T T 2
2
tan
1
2T T 2 2
1
0 L 0dB
-40
0 90
0
180
L 20 lgT 2 40 lgT
180
n
1 T
90
1 10 TT
40dB dec
(a) (b)
➢ 延迟环节
Gs eTs
G j e jT G j 1 G j T
精确曲线

自动控制原理第五章习题及答案

自动控制原理第五章习题及答案

第五章习题与解答5-1试求题5-1图(a)、(b)网络的频率特性。

u r R1u cR2CR2R1u r u c(a) (b)题5-1图R-C网络解(a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(RRCRRTCRRRRKsTsKsCRsCRRRsUsUrcττωωτωωωωω11121212121)1()()()(jTjKCRRjRRCRRjRjUjUjGrca++=+++==(b)依图:⎩⎨⎧+==++=+++=CRRTCRsTssCRRsCRsUsUrc)(1111)()(2122222212ττωωτωωωωω2221211)(11)()()(jTjCRRjCRjjUjUjGrcb++=+++==5-2某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(tcs和稳态误差)(tes(1)tt r2sin)(=(2))452cos(2)30sin()(︒--︒+=ttt r题5-2图反馈控制系统结构图解 系统闭环传递函数为: 21)(+=Φs s 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ(2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m ss ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m ss ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应h t e e t tt ()..=-+≥--11808049试求系统频率特性。

《自动控制原理》5章课后习题参考答案.

《自动控制原理》5章课后习题参考答案.
G S S S =
+
1(
10000(6
.311
2e +=
S S S G
1001.0(11.0(1(1.0(d +++=
S S S S S G 61
.054
.0154.0,
11(2
2
=+==+=
K K
A ω
ωω010
s
900.257.3180 2.16rad
tg ωωω----∙︒=-=,(
(
5
.1,
(5
(6 (7
5.12
K增大和T减少
((1(1(1m K
K s s Ts Ts K
s T s K
Φ=

+++++
K
T m 21=
ζ ,不变(稳定裕度不变
2
22
(12(121b n ωωξξ=-+
-+
5.13
11=+=
p
ssr K e 35
.01
12
416==
=
v
ssr K e %
8.4%100%2
1=⨯=--ξ
πξ
σe 05
.006.13
==≈
ቤተ መጻሕፍቲ ባይዱεξ
ω,S t n s s
rad n n c 8.2707.0707.02=∙=ωωω=0
63
=γdB K g s rad g ∞=∞=ω0,1==r r M ωs
rad n b 4==ωω0
1
1
11006
.787.53.841001.01001.0180180=-=∙-=-+-=----tg

自动控制原理第五章

自动控制原理第五章

1第五章 频域分析法目的:①直观,对高频干扰的抑制能力。

对快(高频)、慢(低频)信号的跟踪能力。

②便于系统的分析与设计。

③易于用实验法定传函。

§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n -+⋅⋅+⋅⋅⋅+=2t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1 若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t 稳态响应为:t j t j ss e A eA t y ωω⋅+⋅=-)( 而)(21)()(22ωωωωωj G R j j s s R s G A m j s m -⋅-=+⋅+⋅⋅=-= )(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m t j m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即3φωωj e j G j G )()(=φωωj e j G j G -=-)()( ∴][)(21)()()(φωφωω+-+--⋅=t j t j m ss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m=)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。

自动控制原理第五章

自动控制原理第五章

KT j 1 2T 2
0 : U(0) K
V (0) 0
1: T
:
U(1) K T2
U() 0
V(1) K T2
V() 0


K

0.707K
V(ω)
K/2 K


U(ω)
-K/2

10
3 由零、极点分布图绘制
1)在[s]上标出开环零极点;
G( j ) K K / T 1 jT j 1 / T
低频段 1
T
L( ) 20lg A( ) 20lg () arctgT 0
10
高频段
1
T
20lg A() 20lgT ( ) arctgT 900
转折频率 1
T
20lg A( ) 20lg 2 3.01 0db
( ) arctgT 450
15
20 0 -20 -40 -60 90 45 0 -45 -90
3) 振荡环节
1
G(s) (s / n )2 2 (s / n ) 1
n
1 T
0
4) 一阶微分 G(s) Ts 1 (T>0)
0 1
5) 二阶微分 G(s) (s / n )2 2 (s / n ) 1 (n 0, 0 1)
6) 纯滞后环节 G(s) e s
19
5-3-2 最小相位典型环节的频率特性
0.01
0.1
T
10
T




0.1
1/T1
10
T 0.1 () arctg0.1 5.70
T 1 ( ) arctg10 84.30

《自动控制原理》第五章:系统稳定性

《自动控制原理》第五章:系统稳定性

5.2 稳定的条件
当σi和λi均为负数,即特征根的 σi和λi均为负数, 均为负数 实部为负数,系统是稳定的; 实部为负数,系统是稳定的; 或极点均在左平面。 或极点均在左平面。
5.3 代数稳定性判据
定常线性系统稳定的充要条件 定常线性系统稳定的充要条件是特征方程的根具有负 充要条件是特征方程的根具有负 实部。因此,判别其稳定性,要解系统特征方程的根。为 实部。因此,判别其稳定性,要解系统特征方程的根。 避开对特征方程的直接求解,可讨论特征根的分布, 避开对特征方程的直接求解,可讨论特征根的分布,看其 是否全部具有负实部,并以此来判别系统的稳定性,这样 是否全部具有负实部,并以此来判别系统的稳定性, 也就产生了一系列稳定性判据。 也就产生了一系列稳定性判据。 其中最主要是E.J.Routh(1877 )h和Hurwitz( 其中最主要是E.J.Routh(1877年)h和Hurwitz(1895 E.J.Routh(1877年 年)分别提出的代数判据。 分别提出的代数判据 代数判据。
习题讲解: 习题讲解:
µ
G1
Q21
G1
h2
k1 k1 G1 ( s ) = , G1 ( s ) = (T1s + 1) (T1s + 1) k1k 2 G0 ( s ) = (T1s + 1)(T2 s + 1)
kp
G0 ( s ) G(s) = 1 + G0 ( s ) K p
5.4 Nyquist稳定性判据 Nyquist稳定性判据
系统稳定的条件? 系统稳定的条件?
5.2 稳定的条件
d n y (t ) d ( n −1) y (t ) dy (t ) 线性系统微分方程: 线性系统微分方程: n a + an −1 + L + a1 + a0 y (t ) n ( n −1) dt dt dt d m x(t ) d ( m −1) x(t ) dx(t ) = bm + bm−1 + L + b1 + b0 x(t ) m ( m −1) dt dt dt d n y (t ) d ( n −1) y (t ) dy (t ) + a( n −1) + L + a1 + a0 y (t ) = 0 齐次微分方程: 齐次微分方程: an n ( n −1) dt dt dt an s n + an −1s n −1 + L + a1s + a0 = 0 设系统k 设系统k个实根

自动控制原理 第五章 频率法

自动控制原理 第五章 频率法

频率特性
在稳态下输出:e2 = E2Sin(wt +υ ) 仍是正弦信号, 频率不变, 幅值和相角发生变化. 变化与w有关. 1/jwC 1 写成矢量形式:e2 = ————— e1 = ———— e1 R + 1/jwC 1+jwRC e2 1
-— = ———— e1 1+jwRC
与电路参数RC有关、与输入电压的频率有关
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
输出输入的振幅比(幅频特性): A(w) = Ac/Ar = | G(jw)| = G(S) | 输出输入的相位差(相频特性): υ (w) = υ - 0 =∠G(jw) =∠G(S) | 所以:G(jw) = G(S)|S=jw 频率特性 传递函数 证毕
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10

(a )
( )
0o
90o

(b)
180o
图5-20 一阶不稳定环节 的对数频率特性
自动控制原理
蒋大明
时滞环节
传递函数: G(S) = e-τ
S
幅相频率特性:
G(jw) = e-jτ
A(w) = 1 υ (w) = -τ w
w
自动控制原理
蒋大明
时滞环节
对数频率特性: L(w) = 20 lg A(w) = 20lg 1 = 0 υ (w) = -τ w
(横坐标对数分度,曲线)
自动控制原理
蒋大明
第三节
1.

自动控制原理(胡寿松版)完整第五章ppt课件

自动控制原理(胡寿松版)完整第五章ppt课件

-20
φ (ω )
ω=0.1 L(ω )=20lg0.1=-20dB 90
对数相频特性:φ (ω )=90o 0 0.1
1
10ω
第二节 典型环节与系统的频率特性
4).惯性环节
G(s)=Ts1+1
G(ωj
)=

1 T+1
(1) 奈氏图
A(ω
)=
1 1+(ω T)2
φ (ω )= -tg-ω1 T
取特可殊以点证:绘明ω制:=0奈氏图近似方I法m : AA图心半A点(ω(ω(是 , 圆ω,))=以 以 。惯=)0然=根ωω0(1性.171==/后据0/环2∞27为T将幅1节φ,jφo半φ它频的(ω)(ω径为(ω奈们特))=的圆)=氏平-性=09-o0滑4和o5连o相ω接频起∞特来0性-。求45ω=出T1特殊ω1=0Re
5)二阶微分环节 s 2 /n 2 2s /n 1(n 0 ,0 1 )
6)积分环节 1 / s
7)微分环节 s
第二节 典型环节与系统的频率特性
(2)非最小相位系统环节
1)比例环节 K (K0)
2)惯性环节 1/( T s1 ) (T0) 3)一阶微分环节 Ts1 (T0)
4)振荡环节 1 /( s 2 /n 2 2 s /n 1 )(n 0 ,0 1 )
第一节 频率特性
系统输入输出曲线 定义频率特性为:
r(t) c(t)
r(t)=Asinωt
G(ωj )
=|G(jω)|e j G(jω) =A(ω )e φj (ω )
A 0
幅频特性: t A(ω )=|G(jω)|
G(jω)
A G(jω )
相频特性: φ (ω )= G(jω)

自动控制原理第五章

自动控制原理第五章

L( )
Im
c
-1
1


0
ωc
(c )
Re
( )

90
180

2.增益裕度
定义:开环频率特性曲线相位为-π 时对应幅值的
倒数。
计算:
GM
1 1 1 , Kg Wk ( j ) A( j ) 1
或h 20 lg

20 lg
含义:
增益裕度含义
① 乃图上 WK ( j ) A( ) 1 的单位图对应于Bode图 的零分贝线。 ② 单位图以外对应L(ω )>0 ③ 乃图上负实轴对应于Bode图上相频特性的-π 线。
三、系统稳定裕度
稳定裕度:衡量闭环系统相对稳定性的指标。
相位裕度: 开环频率特性曲线上模值
等于1的矢量与负实轴的夹角。
增益裕度:开环频率特性曲线与负实轴相
交点模值的倒数。
1.相位裕度
定义:在频率特性上对应于幅值A(ω )=1的角频
率称为剪切频率,用 ω c表示。在剪切频率ω c使系统 达到稳定的临界状态所要附加的相角迟后量,称为相 位裕度。
计算: 含义:
( c ) 180 ( c )
相位裕度含义
L( )
1.BODE图
-2
20 lg K
1
-1
10
c
20 lg h

( )
-3
90
180
270

2.稳定分析图
L( )
-2
20 lg K
1
-1
10
c
20 lg h

( )
-3

自动控制原理第五章频域分析法

自动控制原理第五章频域分析法
一 由传递函数求系统的频率响应
第19页/共187页
频率特性
对应的幅值和相角:
同理,可求得对应于2的|G(j2)|和(j2) 。
若对取所有可能的值,则可得到一系列相应的幅值和相位。 其中幅值随频率变化而变化的特性称为系统的幅频特性。 相角随频率变化而变化的特性称为系统的相频特性。
第20页/共187页
每当ω增加十倍, L(ω)减少20dB负20分贝十倍频程 -20dB/ dec
第34页/共187页
5-3典型环节和开环系统频率特性
第35页/共187页
积分环节L(ω)
[-20]
[-20]
[-20]
第36页/共187页
5-3典型环节和开环系统频率特性
三、微分环节
幅频特性与ω成正比,相频特性恒为90°
第12页/共187页
5-2频率特性
以RC网络为例,说明频率特性的基本概念。
取拉氏变换,求网络的传递函数
如果输入为正弦量:
由电路分析,电路达到稳态时,输出也是以ω为角频率的正弦量。
在传递函数中G(s)中,只要令s=jω,则可由⑴式得到⑵式。
第13页/共187页
5-2频率特性
控制系统的三种数学模型:微分方程、传递函数、频率特性可以相互转换,它们的关系见右图。
交接频率将近似对数幅频特性曲线分为二段:低频段和高频段。
第41页/共187页
惯性环节G(jω)
φ(ω) = -tg-10.5 ω
ω
0
0.5
1
2
4
5
8
20
φo(ω)
A(ω)
0
1
-14.5
0.97
-26.6
0.89

自动控制原理第5章

自动控制原理第5章

自动控制原理
第五章 频域分析法-频率法
1 sin(t arctanT ) 1 2T 2
1
e jarctanT
j 1
e 1 jT
1 2T 2
jT
1
1 jT
RC网络的频率特性
只要把传递函数式中的s以j置换,就可以 得到频率特性,即
1
1
1 jT 1 Ts sj
自动控制原理
第五章 频域分析法-频率法
对数相频特性:( ) arctan 特征点: 1 , L( ) 3dB, 45
自动控制原理
第五章 频域分析法-频率法
一阶微分环节的伯德图 幅相曲线
自动控制原理
第五章 频域分析法-频率法
六、振荡环节
传递函数: 频率特性:
G(s)
2 n
s2 2n s n2
1
s
n
2
2 n
s1
G( j
M ( ) G(j )
G1(j ) G2 (j ) G3(j ) M1( ) M2 ( ) M3 ( )
( ) G(j ) G1(j ) G2(j ) G3(j ) 1( ) 2( ) 3( )
自动控制原理
第五章 频域分析法-频率法
1.开环幅相特性曲线的绘制
例 某0型单位负反馈控制系统,系统开环
频率特性: G(j) 2 j 2 2 j 1
对数幅频特性:
L() 20lg G j 20lg 1 22 2 2 2
对数相频特性:
arctan
1
2 2
2
自动控制原理
第五章 频域分析法-频率法
幅相曲线: 0时,M 1, 0 ; 时,M =, =180
自动控制原理

自动控制原理课件第五章

自动控制原理课件第五章

1 幅相频率特性
• • •
曲线或极坐标图。 在复平面,把频率特性的模和角同时表示出来的图就是 幅相曲线或极坐标图。 它是以 为参变量,以复平面上的矢量 G ( j ) 表示的一 种方法。 例 惯性环节幅相频率特性
G ( j ) k 1 jT k 1 T
2 2
•幅相频率特性曲线:又称奈奎斯特(Nyquist)
模从- 相角从-/2-3/2
-1
Im
ω

Re
ω ω
0
系统开环对数频率特性例题2
系统开环对数频率特性
系统开环对数频率特性例题3
系统开环传函:
G (s)
-1 -1 0.05 0.1 1 2 10 100 -2 -90°
20 lg 40 20 lg 1 0 . 05 20 lg
L( )
为横坐标,
为纵坐标。
5-3 典型环节及开环频率特性 一、典型环节的频率特性p177
•要求掌握以下各环节幅相频率特性及对数频率 特性。
比例环节、微分环节、 积分环节、 惯性环 节、 振荡环节、 一阶微分环节、 二阶微分 环节、 延时环节。 非最小相位环节 开环传函中包含右半平 面 的零点或极点。
比例 G( s ) k , G( j ) k , 积分 ( s ) , G ( j ) G , s j 微分
1 1
k, 0
1


, 90

G( s ) s, G( j ) j ,
, 90

惯性环节(对比一阶微分环节)
G( s) 1 Ts 1 1 1 T
s
G ( j ) e
j
cos j sin

05_自动控制原理—第五章(4)讲解

05_自动控制原理—第五章(4)讲解
当系统开环频率特性曲线及其镜像通过(-1,j0)点时,表明在s平面 虚轴上有闭环极点,系统处于临界稳定状态,属于不稳定。
例5-3 一个闭环系统如图所示。其开环 传递函数为
G(s)=K/(Ts-1),K>1 这是一个不稳定的惯性环节,开环特征 方程式在右半s平面有一个根,P=1。闭 环传递函数为
(s)=K/(Ts+K-1) 由于K>1,闭环特征方程式的根在左半s 平面,所以利用代数方法可以判断闭环 是稳定的。
特别是,如果知道了开环特性,要研究闭环系统的稳定性, 还需要求出闭环特征方程,无法直接利用开环特性判断闭环系统 的稳定性。而对于一个自动控制系统,其开环数学模型易于获取, 同时它包含了闭环系统所有环节的动态结构和参数。
除劳斯判据外,分析系统稳定性的另一种常用判据为 奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,它是频率法的重要内容,简称奈氏 判据。奈氏判据的主要特点有
1. 只绘制由0变到+ 时的开环幅相频率特性G(j)
因为(0,+∞)与(-∞,0)的曲线完全关于实轴对称,则0变到
+ 时的开环幅相频率特性G(j)顺时针包围(-1,j0)点的圈数N’满

N’= N/2 N是当从-∞变化到+∞时,系统开环频率特性曲线及其镜像G(j)
顺时针包围(-1,j0)点的圈数。 因此,简化奈奎斯特稳定判据可改为
Z = N + P=2 Nˊ+P
2.采用穿越的概念简化复杂曲线包围次数的 计算
由0变到+ 时开环频率特性曲线要形成对 (-1,j0)点的一次包围,势必穿越(-∞,-1)区 间一次。
开环频率特性曲线逆时针穿越(-∞,-1)区 间时,随ω增加,频率特性的相角值增大,称为 一次正穿越N+。

《自动控制原理》 第五章习题解答

《自动控制原理》 第五章习题解答
胡寿松自动控制原理习题解答第五章
5-2 若系统单位阶跃响应为
h(t) = 1−1.8e −4t + 0.8e −9t
试确定系统的频率特性。 解:对单位阶跃响应取拉氏变换得:
1 − 1.8 + 0.8 =
36
s s + 4 s + 9 s(s + 4)(s + 9)
(t ≥ 0)
即: C(s) = G(s) =
K,T1,T2 > 0
当取ω = 1时, ∠G( jω ) = −1800 , G( jω ) = 0.5 。当输入为单位速度信号时,系统的稳
态误差为 0.1,试写出系统开环频率特性表达式。
解: KV
= lim sG(s) = s→0
K
= 10
当ω = 1时 G( jω ) = K (T2ω )2 + 1 = 10 (T2 )2 + 1 = 0.5
T2
=
1 20
T1 = 20
T1
=
1 T2
代入到
G(
j)
=
10
(T2 )2 + 1 (T1 )2 + 1
=
0.5 中得到:
所以系统的开环传递函数为: G(s) = 10(−s / 20 + 1) s(20s + 1)
系统开环频率特性表达式为: G( jω ) = 10(− jω / 20 + 1) jω(20 jω + 1)
ω
2 n
=1

2 n
− 1)
+
(2ζω n )2
∠GB
(

)
=

arctan
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
5-5 频域稳定判据(奈氏判据)
自动控制原理
G(s)H(s)
K
(10s 1)(2s 1)(0.2s 1)
Im
K=100
P=0; R=-2;
Z=0-(-2)=2 闭环系统在 s 右半平面有两个 极点,系统不稳定
-1
+∞
ω=0
Re
闭环传递函数在复平面右半平面有Z个极点
Z PR
R(>0)为Nyquist曲线逆时针包围(-1,j0)点的圈数; R(<0)为Nyquist曲线顺时针包围(-1,j0)点的圈数;
➢只要在这个闭合曲线 内没有F(s)的零点,系 统即为稳定的。
+∞ Im ∞
O Re
-∞
3
5-5 频域稳定判据(奈氏判据)
自动控制原理
➢对于真有理分式,s等于无穷
大的时候,|G(s)H(s)|=0,在
+∞ Im
G(s)H(s)曲线中对应坐标原点。

➢我们只需考察S在虚轴上取值
O
的情况
Re
➢ s j 在复平面上的
自动控制原理
(2)开环传递函数含ν 个积分环节 ν型系统
Ga (S )
K S (TS 1)
Im
-1
0
(a)ν=1,从 0 点逆时针
0 Re
补画半径为无穷大的1/4圆。
0
P=0, N=0,Z=0,
所以,闭环系统稳定。
22
5-5 频域稳定判据(奈氏判据)
自动控制原理
Im
0 -1 0
=0
曲线G,( j就)是HN( jyq)uist曲线
-∞
4
5-5 频域稳定判据(奈氏判据)
自动控制原理
2. Nyquist稳定判据
如果系统的开环传递函数G(s)H(s)在右半平面有P个
极点,则闭环系统稳定的充分必要条件为:当ω从-∞
连续地变化到+∞时,开环频率特性G(jω)H(jω)的
Nyquist图逆时针方向包围复平面的-1点P圈。 Im
-1
0 (b) K Re
K Gb(S) (T1S 1)(T2S 1)(T3S 1)
P=0, NN N 011
闭环不系统稳定。 Z=P-2N=2
Im
0 0
K -1
Re
(c)
Gc
(S)
K (TS1)
P=1,
N
N
N
1 2
0
1 2
Z=P-2N=1-1=0
闭环系统稳定。
21
5-5 频域稳定判据(奈氏判据)
11
5-5 频域稳定判据(奈氏判据)
自动控制原理
例1.某最小相位系统的开环Nyqusit曲线如图所示 试确定其闭环系统的稳定性
N 1; N 1
Im
Z P 2N
C
P 2(N N ) -2
0 2(11)
0
B
A
-1.5 -1 0.5 0 Re
闭环系统稳定
12
5-5 频域稳定判据(奈氏判据)
33
5-5 频域稳定判据(奈氏判据)
自动控制原理
G(s)H(s)
K
(10s 1)(2s 1)(0.2s 1)
Im
K=100
P=0; R=-2;
Z=0-(-2)=2 闭环系统在 s 右半平面有两个 极点,系统不稳定
-1
+∞
ω=0
Re
闭环传递函数在复平面右半平面有Z个极点
Z PR
R(>0)为Nyquist曲线逆时针包围(-1,j0)点的圈数; R(<0)为Nyquist曲线顺时针包围(-1,j0)点的圈数;
19
5-5 频域稳定判据(奈氏判据)
自动控制原理
稳定性分析举例
(1)开环传递函数不含积分环节(0型系统)
Ga
(S)
(T1S
K 1)(T2S
1)
P=0, N=0 Z=P-2N=0 该闭环系统稳定。
Im
0 0
-1
K Re
(a)P=0 奈氏曲线
20
5-5 频域稳定判据(奈氏判据)
自动控制原理
Im
0
➢只要在这个闭合曲线 内没有F(s)的零点,系 统即为稳定的。
+∞ Im ∞
O Re
-∞
30
5-5 频域稳定判据(奈氏判据)
自动控制原理
➢对于真有理分式,s等于无穷
大的时候,|G(s)H(s)|=0,在
+∞ Im
G(s)H(s)曲线中对应坐标原点。

➢我们只需考察S在虚轴上取值
O
的情况
Re

s j在复平面上的
➢1+G(s)H(s)曲线包围原点的圈数就是G(s)H(s)包围-1 点的圈数;
➢因此,闭环系统的稳定性可以通过研究开环传递函 数G(s)H(s)的曲线包围复平面上-1点的圈数来判断, 而无需画1+G(s)H(s)的曲线
2
5-5 频域稳定判据(奈氏判据)
自动控制原理
(3)复平面上闭合曲线的选择
➢选择闭合曲线包围复 平面的右半部
Re
Gb (S)
S
2
K (TS
1)
(b)由于ν=2,从 0点逆时针 补画半径为无穷大的半园。 P=0, N=-1,Z=2 该闭环系统不稳定。
23
5-5 频域稳定判据(奈氏判据)
自动控制原理
0 Im
10 Gc (S) S(TS 1)
0
(c)ν=1,从 0 点逆时针
=0
ReLeabharlann 补画半径为无穷大的1/4圆。
P为开环传递函数在S右半平面的极点个数
Z P 2N
10
5-5 频域稳定判据(奈氏判据)
自动控制原理
G(s)H(s)
K
(10s 1)(2s 1)(0.2s 1)
N 0; N 1
Im K=100
-1
+∞
ω=0
Re
Z P 2N P 2( N N ) 0 2(0 1) 2
闭环系统不稳定
G(s)H(s)
K
(10s 1)(2s 1)(0.2s 1) -1
K=20
_+∞∞
ω=0
Re
32
5-5 频域稳定判据(奈氏判据)
G(s)H(s)
K
(10s 1)(2s 1)(0.2s 1)
-1
K=20
自动控制原理
Im
_∞
+∞
Re
ω=0
G( j) a() jb() G( j) e j () c() jd ()
R=P-Z
其中:R为圈数,正表示逆时针方向:负表示顺时针 方向。
28
5-5 频域稳定判据(奈氏判据)
自动控制原理
(2)F(s)有理分式函数的选择
F(s) 1 G(s)H (s)
1 B(s) A(s) B(s)
A(s)
A(s)
F(s)的零点为闭环传递函数的极点,F(s)的极点为开
环传递函数的极点。
(
arctgx
)
0
dx
x2
( arctg 3) 1.21
3
27
5-5 频域稳定判据(奈氏判据)
自动控制原理
1. 奈氏判据的数学基础
设s为复变量,F(s)为有理分式函数
(1)幅角原理:
设在s平面上任一闭合曲线包围了F(s)的Z个零点 和P个极点,并且不经过F(s)的任一零点和极点,则 当s沿闭合曲线顺时针方向旋转一圈时,映射到F(s) 平面内的F(s)曲线逆时针绕原点( P–Z )圈。即
7
5-5 频域稳定判据(奈氏判据)
自动控制原理
G(s)H(s)
K
(10s 1)(2s 1)(0.2s 1)
Z PR
R的确定方法
Im K=100
-1
+∞
ω=0
Re
G(jω)H(jω)曲线包围(-1,j0)点的圈数,仅仅与幅相曲线 穿越实轴区间(-,-1)的次数有关。
根据对称性,只需考察 0 时的情况
解:
自动控制原理
P194 例5-9
2
(x ) x arctgx (2k 1) k 0,1, 2,.....
( arctgx ) / x 取k 0
26
5-5 频域稳定判据(奈氏判据)
A(x )
2 1
1 x2
x 3
自动控制原理
( arctgx ) x
减函数
d
(0
x 1 x2
)
➢1+G(s)H(s)曲线包围原点的圈数就是G(s)H(s)包围-1 点的圈数;
➢因此,闭环系统的稳定性可以通过研究开环传递函 数G(s)H(s)的曲线包围复平面上-1点的圈数来判断, 而无需画1+G(s)H(s)的曲线
29
5-5 频域稳定判据(奈氏判据)
自动控制原理
(3)复平面上闭合曲线的选择
➢选择闭合曲线包围复 平面的右半部
G(s)H(s)
K
(10s 1)(2s 1)(0.2s 1) -1
K=20
_+∞∞
ω=0
Re
5
5-5 频域稳定判据(奈氏判据)
G(s)H(s)
K
(10s 1)(2s 1)(0.2s 1)
-1
K=20
自动控制原理
Im
_∞
+∞
Re
ω=0
G( j) a() jb() G( j) e j () c() jd ()
5-5 频域稳定判据(奈氏判据)
相关文档
最新文档