平面向量及其应用试题及答案

合集下载

平面向量经典试题(含答案)

平面向量经典试题(含答案)

平面向量1如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,7BC =,由正弦定理得3sin 7C ∠=,则2cos 7C ∠=,在ADC ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则133AD =,由余弦定理得891coc ADC ∠=,1388||||cos ,7()3391AD BC AD BC AD BC ⋅=⋅=⨯⨯-=-. 〖答案〗83-.2.)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13B 、12C 、2D 、3〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tbAP t-+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB =12.〖答案〗B .3.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ .〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.〖答案〗5π12. 4.如右图,在ABC ∆中,04,30AB BC ABC ==∠=,AD 是边BC上的高,则AD AC ⋅的值等于( )ABDCAB O Pab (第2题图)A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB =⋅ B . 2BC BA BC =⋅C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于 ||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C . 6)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π解析 直接用代入法检验比较简单.或者设(,)a x y ''=根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '答案 B7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________. 答案: 4/3 解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+= 8在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32 B .97 C .98 D .1答案:B10.设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1] D.[-1,6]答案:A11.如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,OC =41OA ,OD =21OB ,AD 与BC 相交于点M ,设OA =a ,OB =b .试用a 和b 表示向量______OM a b =+. 解 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m-1)a +n b .AD =OD -OA =21OB -OA =-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t,使得AM =t AD , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵CM =OM -OC =m a +n b -41a =(m-41)a +n b .CB =OB -OC =b -41a =-41a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线. 8分∴存在实数t 1,使得CM =t 1CB ,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴OM =71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=BM ,e 2=CN , 则AM =AC +CM =-3e 2-e 1, BN =BC +CN =2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λAM =-3λe 2-λe 1,BP =μBN =2μe 1+μe 2,∴BA =BP -AP =(λ+2μ)e 1+(3λ+μ)e 2,另外BA =BC +CA =2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴AP =54AM ,BP =53BN ,∴AP ∶PM=4∶1. 方法二 设AP =λAM , ∵AM =21(AB +AC )=21AB +43AN , ∴AP =2λAB +43λAN . ∵B 、P 、N 三点共线,∴AP -AB =t(AB -AN ),∴AP =(1+t)AB -t ANa b ∴∴⎪⎪⎩⎪⎪⎨⎧-=+=tt λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1.16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C17.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 42- (B)32- (C) 422-+ (D)322-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB•22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()322PA PB •=-+.18.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)323,⎡-+∞⎣B. )323,⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得PABO220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。

平面向量及其应用经典试题(含答案)百度文库

平面向量及其应用经典试题(含答案)百度文库
C. D.
24.在 中, , 分别为 , 的中点, 为 上的任一点,实数 , 满足 ,设 、 、 、 的面积分别为 、 、 、 ,记 ( ),则 取到最大值时, 的值为()
A.-1B.1C. D.
25.在 中, , ,且 , ,则点P的轨迹一定通过 的()
A.重心B.内心C.外心D.垂心
26.在 中,内角 的对边分别是 ,若 ,则 一定是( )
A.若 ,则 在 上的投影为
B.若 ,则
C.若 是不共线的四点,则 是四边形 是平行四边形的充要条件
D.若 ,则 与 的夹角为锐角;若 ,则 与 的夹角为钝角
18. 中,内角A,B,C所对的边分别为 .①若 ,则 ;②若 ,则 一定为等腰三角形;③若 ,则 一定为直角三角形;④若 , ,且该三角形有两解,则 的范围是 .以上结论中正确的有()
A. B.
C. D. 在 方向上的投影为
7.在RtABC中,BD为斜边AC上的高,下列结论中正确的是()
A. B.
C. D.
8.在△ABC中,AB=AC,BC=4,D为BC的中点,则以下结论正确的是()
A. B.
C. D.
9.在 中,设 , , , ,则下列等式中成立的是()
A. B. C. D.
10.已知正三角形 的边长为2,设 , ,则下列结论正确的是()
A. B. C. D.1
21.在三角形 中,若三个内角 的对边分别是 , , , ,则 的值等于()
A. B. C. D.
22.在 中,设 ,则动点M的轨迹必通过 的( )
A.垂心B.内心C.重心D. 外心
23.在 中, 、 、 分别是 、 、 上的中线,它们交于点G,则下列各等式中不正确的是()

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析1.已知向量a=(2,1),b=(0,-1).若(a+λb)⊥a,则实数λ=.【答案】5【解析】因为(a+λb)⊥a,所以【考点】向量数量积2.在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆C上,且AB=2,则的最大值是.【答案】8【解析】设AB中点为M,则.因为圆C:,AB=2,所以,因此的最大值是8.【考点】直线与圆位置关系3.设P是△ABC所在平面内的一点,,则()A.B.C.D.【答案】B【解析】∵,∴P为AC的中点,∴.【考点】向量的运算.4.已知、是两个单位向量,那么下列结论正确的是()A.=B.•=0C.•<1D.2=2【答案】D【解析】A不正确,、的方向不确定.B不正确,当、垂直时,.C不正确,尽管、的长度都是1,但它们的方向不确定,,当两向量的方向相同时,.由于单位向量的模都等于1,但它们的方向不确定,故一定有,从而2=2,故D正确.故选 D.5.设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.8【答案】B【解析】∵A,B,C三点共线,∴,共线,∴存在实数λ,使得可解得,b=2﹣2a∵a>0,b>0∴0<a<1∴==当a=时,取最小值为4故选:B.6.已知直角△ABC中,AB=2,AC=1,D为斜边BC的中点,则向量在上的投影为。

【答案】【解析】在上的投影为.【考点】向量的射影问题.7.在△ABC所在的平面上有一点P满足++=,则△PBC与△ABC的面积之比是________.【答案】【解析】因为++=,所以+++=0,即=2,所以点P是CA边上的靠近A点的一个三等分点,故.8.如图,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,动点P在以点C为圆心,且与直线BD相切的圆上或圆内移动,设=λ+μ (λ,μ∈R),则λ+μ的取值范围是 ().A.(1,2)B.(0,3)C.[1,2]D.[1,2)【答案】C【解析】以A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则B(2,0),D(0,1),C(1,1),设P(x,y),则(x,y)=λ(0,1)+μ(2,0)=(2μ,λ),即令z=λ+μ=+y.由圆C与直线BD相切可得圆C的半径为.由于直线y=-+z与圆C有公共点,所以,解得1≤z≤2.9.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.10.已知点,点,向量,若,则实数的值为()A.5B.6C.7D.8【答案】C【解析】由已知得,又,所以存在实数,使,即,解得,所以正确答案为C.【考点】平行向量11.已知向量a,若向量与垂直,则的值为()A.B.7C.D.【答案】A【解析】由已知得,,又这两个向量垂直,所以,解得,所以正确答案为A.【考点】向量的运算与垂直关系12.直线与抛物线:交于两点,点是抛物线准线上的一点,记,其中为抛物线的顶点.(1)当与平行时,________;(2)给出下列命题:①,不是等边三角形;②且,使得与垂直;③无论点在准线上如何运动,总成立.其中,所有正确命题的序号是___.【答案】;①②③【解析】由抛物线方程知,焦点,准线为。

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题1.在中,是边上的高,给出下列结论:①;②;③;其中结论正确的个数是()A.B.C.D.【答案】D【解析】∵,∴,①;②取BC中点M,,而,∴;③,,所以;所以正确的个数为3个.【考点】向量的运算.2.设平面向量,,函数.(1)当时,求函数的取值范围;(2)当,且时,求的值.【答案】(1)(2).【解析】(1).当时,,则,,所以的取值范围是.(2)由,得,因为,所以,得,.3.已知、是两个单位向量,那么下列结论正确的是()A.=B.•=0C.•<1D.2=2【答案】D【解析】A不正确,、的方向不确定.B不正确,当、垂直时,.C不正确,尽管、的长度都是1,但它们的方向不确定,,当两向量的方向相同时,.由于单位向量的模都等于1,但它们的方向不确定,故一定有,从而2=2,故D正确.故选 D.4.设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.8【答案】B【解析】∵A,B,C三点共线,∴,共线,∴存在实数λ,使得可解得,b=2﹣2a∵a>0,b>0∴0<a<1∴==当a=时,取最小值为4故选:B.5.在Rt△ABC中,,,,则_____.【答案】2【解析】作,则,由题设可知是正三角形,所以.【考点】三角形与向量.6.在四边形ABCD中,=(1,2),=(-4,2),则该四边形的面积为()A.B.2C.5D.10【答案】C【解析】因为·=(1,2)·(-4,2)=1×(-4)+2×2=0,所以⊥,且||==,||==2,=||||=××2=5.故选C.所以S四边形ABCD7.已知点P为△ABC所在平面上的一点,且=+t,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()A.0<t<B.0<t<C.0<t<D.0<t<【答案】D【解析】如图,E,F分别为AB,BC的三等分点,由=+t可知,P点落在EF上,而=,∴点P在E点时,t=0,点P在F点时,t=.而P在△ABC的内部,∴0<t<.8.已知向量m,n满足m=(2,0),n=.在△ABC中,=2m+2n,=2m-6n,D为BC边的中点,则||等于().A.2B.4C.6D.8【答案】A【解析】由题意知,=(+)=2m-2n=(1,-).∴||=2.9.在平面四边形ABCD中,满足+=0,(-)·=0,则四边形ABCD是().A.矩形B.正方形C.菱形D.梯形【答案】C【解析】因为+=0,所以=-=,所以四边形ABCD是平行四边形,又(-)·=·=0,所以四边形的对角线互相垂直,所以四边形ABCD是菱形.10.已知点,则与向量同方向的单位向量是( )A.B.C.D.【答案】C【解析】与向量同方向的单位向量是.【考点】单位向量的求法.11.在直角梯形中,,,,,点在线段上,若,则的取值范围是()A.B.C.D.【答案】C【解析】由题意可求得。

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析1.已知向量,,则()A.B.C.D.【答案】B【解析】由题意得,故选B.【考点】本题考查平面向量的坐标运算,属于容易题.2.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足=2,则·(+)=________.【答案】【解析】由=2知,P为△ABC的重心,所以+=2,则·(+)=2·=2||||cos 0°=2×××1=.3.连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,则的概率是()A.B.C.D.【答案】C【解析】由题意知本题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=(m,n)与=(1,﹣1)不可能同向.∴夹角θ≠0.∵θ∈(0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.故选C.4.已知向量,,若与垂直,则实数 ( )A.B.C.D.【答案】A【解析】由题意,因为与垂直,则,解得.【考点】平面向量垂直的充要条件.5.在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为______.【答案】5【解析】建立如图所示的直角坐标系,设DC=m,P(0,t),t∈[0,m],由题意可知,A(2,0),B(1,m),=(2,-t),=(1,m-t),+3=(5,3m-4t),|+3|=≥5,当且仅当t=m时取等号,即|+3|的最小值是5.6.如图,在△ABC中,O为BC的中点,若AB=1,AC=3,〈,〉=60°,则||=________.【答案】【解析】因为〈,〉=60°,所以·=||||·cos 60°=3×=,又=(+),所以=(+)2=,即2= (1+3+9)=,所以||=.7.设P是△ABC所在平面内的一点,,则()A.B.C.D.【答案】B【解析】,故选B.【考点】向量的加减法,加法运算要首尾相接,减法运算要同起点.8.已知A、B、C是直线l上的三点,向量满足,则函数的表达式为.【答案】【解析】这题涉及到向量的一个性质(课本上有一个习题有类似的结论),不在直线上,,则三点共线.利用这个结论本题就有,两边对求导数得:,因此,从而,所以.【考点】三点共线的性质,导数.9.已知向量.(1)若,求;(2)求的最大值.【答案】(1)(2)【解析】(1)由向量垂直的充要条件:,这样就可得到关于的函数 ,化简得的值,结合题中所给的范围,不难确定出的的值; (2)由已知的坐标,可求出的坐标,在根据向量求模的公式由出题中的模的表达式,由三角函数的图象和性质,分析得由的范围求出的范围,进而得出的范围,即可求出的最大值.试题解析:解(1)若,则 3分即而,所以 6分(2) 12分当时,的最大值为 14分【考点】1.向量的运算;2.三角函数的图象和性质10.已知向量,的夹角为,且,则向量在向量方向上的投影是________.【解析】依题意,设,,如图,则,,由于,是直角三角形,且,故向量在向量方向上的投影是0.【考点】平面向量的夹角、模,一个向量在另一个向量上的投影.11.如图,已知圆:,为圆的内接正三角形,为边的中点,当正绕圆心转动,同时点在边上运动时,的最大值是。

平面向量及其应用经典试题(含答案)百度文库

平面向量及其应用经典试题(含答案)百度文库

一、多选题1.题目文件丢失!2.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=- 3.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 4.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)5.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<6.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-7.在ABC 中,15a =,20b =,30A =,则cos B =( )A .B .23C .23-D .38.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 9.下列各组向量中,不能作为基底的是( )A .()10,0e =,()21,1=eB .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=-⎪⎝⎭e D .()12,6=e ,()21,3=--e10.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=B .a d b +=C .b d a +=D .a b c +=11.给出下面四个命题,其中是真命题的是( ) A .0ABBA B .AB BC AC C .AB AC BC += D .00AB +=12.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=- 13.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同 14.下列命题中正确的是( )A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-B .对于实数,m n 和向量a ,恒有()m n a ma na -=-C .若()ma mb m =∈R ,则有a b =D .若(,,0)ma na m n a =∈≠R ,则m n =15.题目文件丢失!二、平面向量及其应用选择题16.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7217.若O 为ABC 所在平面内任意一点,且满足()20BC OB OC OA ⋅+-=,则ABC 一定为( )A .锐角三角形B .直角三角形C .等腰三角形D .钝角三角形18.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭ 19.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形20.ABC 中,内角A ,B ,C 所对的边分别为a b c ,,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则ABC 一定为直角三角形;④若3B π=,2a =,且该三角形有两解,则b的范围是)+∞.以上结论中正确的有( )A .1个B .2个C .3个D .4个21.若△ABC 中,2sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形22.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC的面积为1),则b c +=( )A .5B.C .4D .1623.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13-D .34-24.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能25.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +26.题目文件丢失!27.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12-B .12C .-2D .228.在矩形ABCD 中,3,2AB BC BE EC ===,点F 在边CD 上,若AB AF 3→→=,则AE BF→→的值为( )A .0B C .-4 D .429.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .430.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8331.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( )A .()8bc b c +>B .()ab a b +>C .612abc ≤≤D .1224abc ≤≤32.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( )A .(-∞B .)+∞C .(-∞D .)+∞33.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形34.题目文件丢失!35.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.BD 【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a ba b a b a b+=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD. 【点睛】本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.3.CD 【分析】对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题.【详解解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a ba b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.4.ABC 【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C .()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.5.ABD 【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.6.BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.7.AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,.故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos B ==. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.8.BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确; 对于C ,,则或与共线,故C 错误; 对于D ,在四边形中,若解析:BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,00a ⨯=,故A 错误; 对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD 【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.9.ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属于基础题.10.ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知成立, 故也成立;由向量加法的三角形法则,知成立,不成立. 故选:ABD 【点睛】 本题主要考查解析:ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知a b c +=成立, 故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立. 故选:ABD 【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.11.AB【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为,正确;,由向量加法知正确; ,不满足加法运算法则,错误; ,所以错误. 故选:A B. 【点睛】本题主要考查了向量加法的解析:AB 【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为0ABBA AB AB,正确;AB BCAC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误;0,AB AB +=,所以00AB +=错误.故选:A B . 【点睛】本题主要考查了向量加法的运算,属于容易题.12.AB 【分析】若,则反向,从而; 若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立. 【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得; 对于选解析:AB 【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=;若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-;对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB. 【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.13.AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据解析:AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据相等向量的概念知,D 正确. 故选:AD 【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.14.ABD 【详解】解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确. 对解析:ABD 【详解】解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:()m a b ma mb -=-,故A 正确.对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确. 对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确. 故选:ABD . 【点睛】本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.15.无二、平面向量及其应用选择题16.B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题. 17.C 【分析】由向量的线性运算可知2OB OC OA AB AC +-=+,所以()0BC AB AC ⋅+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案. 【详解】由题意,()()2OB OC OA OB OA OC OA AB AC +-=-+-=+, 所以()0BC AB AC ⋅+=,取BC 的中点D ,连结AD ,并延长AD 到E ,使得AD DE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=. 所以0BC AE ⋅=,即BC AD ⊥, 故AB AC =,ABC 是等腰三角形. 故选:C.【点睛】本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题. 18.C 【解析】 【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围.【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤,所以223ππθ<<,故选:C. 【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题. 19.D 【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状. 【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B , 所以()sin 0B A -=,所以A B =, 又因为2B A C B π=+=-,所以3B π=,所以3A B π==,所以ABC 是等边三角形.故选:D. 【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 20.B 【分析】由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误. 【详解】①由正弦定理及大边对大角可知①正确; ②可得A B =或2A B π+=,ABC 是等腰三角形或直角三角形,所以②错误;③由正弦定理可得sin cos sin cos sin A B B A C -=, 结合()sin sin sin cos sin cos C A B A B B A =+=+可知cos sin 0=A B ,因为sin 0B ≠,所以cos 0A =, 因为0A π<<,所以2A π=,因此③正确;④由正弦定理sin sin a b A B =得sin sin sin a B b A A==, 因为三角形有两解,所以2,332A B A πππ>>=≠所以sin A ⎫∈⎪⎪⎝⎭,即)b ∈,故④错误.故选:B 【点睛】本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形技巧,属于中档题. 21.A 【分析】已知等式左边第一项利用诱导公式化简,根据sin C 不为0得到sin()sin A B C -=,再利用两角和与差的正弦函数公式化简. 【详解】ABC ∆中,sin()sin A B C +=,∴已知等式变形得:2sin sin()sin C A B C -=,即sin()sin sin()A B C A B -==+,整理得:sin cos cos sin sin cos cos sin A B A B A B A B -=+,即2cos sin 0A B =,cos 0A ∴=或sin 0B =(不合题意,舍去),0A π<< 90A ∴=︒,则此三角形形状为直角三角形. 故选:A 【点睛】此题考查了正弦定理,以及三角函数中的恒等变换应用,熟练掌握公式是解本题的关键,属于中档题. 22.C 【分析】根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得6(2bc =,再代入余弦定理求解即可. 【详解】ABC 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈,∴4A π=.∵1sin 1)24ABCSbc A ===-, ∴bc=6(2,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--,∴2()4(2b c bc +=++4(26(216=++⨯-=,可得4b c +=.故选:C 【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题. 23.B 【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果. 【详解】13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+,56λ∴=-,16μ=,23λμ∴+=-.故选:B. 【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题. 24.C 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。

平面向量(含答案)

平面向量(含答案)

平面向量学校:___________姓名:___________班级:___________考号:___________1..若向量(1,2),(4,5)BA CA == ,则BC =A. (5,7)B. (3,3)--C. ()3,3D. ()5,7--2.已知向量2(1,1),(,2),x x ==+a b 若,a b 共线,则实数x 的值为( )A.1-B.2C.1或2-D.1-或23.已知向量(1,2),(2,)a b m ==- ,若//a b ,则|23|a b + 等于( )A B . C ..4.在ABC ∆中,已知D 是AB 边上的一点,若2AD DB = ,13CD CA CB λ=+ ,则λ=( ) A.23 B.13 C.13- D.23- 5.在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( )A. 2-B. 12-C. 12D. 2 6.已知||6a = ,||3b = ,12a b ⋅=- ,则向量a 在向量b 方向上的投影是( ) A .-4 B .4 C .-2 D .27.已知向量(3,4)OA =- ,(6,3)OB =- ,(2,1)OC m m =+ ,若//AB OC ,则实数m 的值为( )A .15B .-3C .35-D .17- 8.平面向量a 与b 的夹角为60°,1||),0,2(==b a ,则|2|b a +等于( )A B .C .4D .129.已知(3,4)a = ,(1,2)b = ,则a b -= . 10.已知平面向量)1,3(=a ,)3,(-=x b ,且b a ⊥,则x 的值为 .11.已知向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,向量c =2a +b .则向量c 的模为 .12.已知向量()()cos45,sin30,2sin 45,4cos60,b c =︒︒=︒︒ 则b c ⋅= .13.向量a ,b 满足则a 与b 的夹角为 .14.已知,,a b c 是同一平面内的三个向量,其中(1,2)a =(1)若||c = //c a ,求:c 的坐标(2)若||b = 2a b + 与2a b - 垂直,求a 与b 的夹角 15.已知平面向量(cos ,sin )a ϕϕ= ,(cos ,sin )b x x = ,(sin ,cos )c ϕϕ=- ,其中0ϕπ<<,且函数()()cos ()sin f x a b x b c x =⋅+⋅ 的图象过点)1,6(π. (1)求ϕ的值;(2)将函数)(x f y =图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数)(x g y =的图象,求函数)(x g y =在[0,]2π上的最大值和最小值.16.已知向量2(cos ,1),,cos )222x x x m n =-= ,设函数()f x m n = (1)求()f x 在区间[]0,π上的零点;(2)在ABC ∆中,角A B C 、、的对边分别是,,a b c ,且满足2b ac =,求()f B 的取值范围.17.向量)sin ,1(x m a +=→,))6cos(4,1(π+=→x b ,设函数→→⋅=b a x g )(,(R m ∈,且m 为常数)(1)若x 为任意实数,求)(x g 的最小正周期;(2)若)(x g 在⎪⎭⎫⎢⎣⎡3,0π上的最大值与最小值之和为7,求m 的值.18(1,)b y = ,已知//a b ,且有函数)(x f y =. (1)求函数)(x f y =的周期;(2)已知锐角ABC ∆的三个内角分别为C B A ,,,若有3)3(=-πA f ,边7=BC ,721sin =B ,求AC 的长及ABC ∆的面积. 19.已知向量x ),1,(sin -=)23,(cos x =,)()(x f ⋅+=(1)当[0,]2x π∈时,求函数)(x f 的值域:(2)锐角A B C ∆中,c b a ,,分别为角C B A ,,的对边,若1023)2(,27,245===B f b c a ,求边c a ,.参考答案1.B【解析】试题分析:()3,3BC BA AC =+=-- 考点:向量的坐标运算.2.D.【解析】试题分析:∵2(1,1),(,2)x x ==+a b ,,a b 共线,∴根据向量共线的充要条件知1×x 2-1×(x+2)=0,∴x=-1或2,选D.考点:平面向量共线(平行)的坐标表示.3.C【解析】试题分析:由//a b 可得()40221-=⇒=-⨯-⨯m m ,所以()54641628,432=+=+⇒--=+.考点:向量的坐标运算.4.A【解析】试题分析:2AD DB = ,即()2C D C A C B C D -=- ,解得1233CD CA CB =+ ,23λ∴=,故选A.考点:平面向量的线性表示5.C【解析】试题分析:因为,在平面直角坐标系xOy 中,点(0,0),(0,1),(1,2),(,0)O A B C m -,所以,(1,2),(,1)OB AC m =-=- ,又//OB AC ,所以,11,122m m -==-,选C. 考点:平面向量的概念,共线向量.6.A【解析】 试题分析:向量a 在向量b方向上的投影是θcos ⋅(θ是a ,b 的夹角),θcos ⋅=-4.考点:向量的数量积运算.7.B .【解析】试题分析:由题意知(3,1)AB OB OA =-= ,(2,1)OC m m =+ ,又//AB OC ,则3(1)120m m ⨯+-⨯=,即3m =-.考点:两向量平行的充要条件.8.B【解析】试题分析:因为,(2,0),a = 所以,||2a = ,2220|2|444421cos60412,|2|a b a a b b a b +=+⋅+=+⨯⨯⨯+=+= B. 考点:平面向量的数量积、夹角、模9.(2,2)【解析】试题分析:根据向量的减法等于横坐标、纵坐标分别对应相减,得到(31,42)(2,2).a b -=--= .向量的加减及数乘类似实数运算,一般不会出错,只需注意对应即可.考点:向量的减法运算10.1【解析】试题分析:b a ⊥10330=⇒=-⇒=⋅⇒x x b a .考点:平面向量数量积运算.11.【解析】试题分析:|c |2=(2a +b )2=4a 2+4a·b+b 2=4+4×1×2×cos60°+4=12,即|c |=考点:平面向量数量积、向量的模.12.2.【解析】试题分析:由向量数量积的坐标运算公式得112sin 45cos454sin30cos6024222b c ⋅=︒︒+︒︒=⨯⨯= . 考点:1.向量数量积的坐标运算公式;2.三角函数式求值.13.23π. 【解析】试题分析:由题意解得1a b ⋅=- ,则1cos ,2a b =- ,即a 与b 的夹角为23π. 考点:1.平面向量数量积运算;2.向量夹角公式.14.(1)(2,4)或(2,4)--;(2)π.【解析】试题分析:(1)设(,)c x y = ,利用两个已知条件||c = //c a 列出关于,x y 的方程组,解出,x y 即可;(2)由2a b + 与2a b - 垂直得(2)(2)0a b a b +⋅-= ,对此式进行化简,可求出a b ⋅ ,又,a b 的模易知,利用向量数量积的定义则可求出a 与b 的夹角.试题解析:设(,)c x y = 由//||c a c =及 2212022,4420y x x x y y x y ⋅-⋅===-⎧⎧⎧∴⎨⎨⎨==-+=⎩⎩⎩或 所以,(2,4)(2,4)c c ==-- 或 7分(2)∵2a b + 与2a b - 垂直,∴(2)(2)0a b a b +⋅-=即222320a a b b +⋅-= ;∴52a b ⋅=- ∴cos 1||||a b a b θ⋅==- ,∵[0,]θπ∈∴θπ= 14分 考点:向量的数量积、向量的模、向量的平行与垂直.15.(1)3πϕ=;(2)最小值12,最大值1. 【解析】 试题分析:(1)根据向量的数量积的坐标运算,求出,a b b c ⋅⋅ 代入:()()c o s ()s f x a b x b c x=⋅+⋅ 整理便得()cos(2)f x x ϕ=-,再根据()f x 过点)1,6(π可得ϕ的值;(2)将函数)(x f y =图象上各点的横坐标变为原来的的2倍,纵坐标不变,便将函数)(x f y =中的x 换成12x 便得函数)(x g y =的解析式:()cos()3g x x π=-. 由02x π≤≤得033236x πππππ-≤-≤-=.结合cos y x =的图象可得()cos()3g x x π=-在[0,]2π上的最大值和最小值. 试题解析:(1) cos cos sin sin cos()a b x x x ϕϕϕ⋅=+=- 1分cos sin sin cos sin(b c x x x ϕϕϕ⋅=-=- ()x -ϕ 2分()()cos ()sin f x a b x b c x ∴=⋅+⋅cos()cos sin()sin x x x x ϕϕ=-+-cos()x x ϕ=--cos(2)x ϕ=-, 4分即()cos(2)f x x ϕ=- ∴()cos()163f ππϕ=-=,而0ϕπ<<, ∴3πϕ=. 6分(2)由(1)得,()cos(2)3f x x π=-, 于是1()cos(2())23g x x π=-, 即()cos()3g x x π=-. 9分 当[0,]2x π∈时,336x πππ-≤-≤, 所以1cos()123x π≤-≤, 11分 即当0x =时,()g x 取得最小值12, 当3x π=时,()g x 取得最大值1. 13分考点:1、向量的坐标运算;2、三角变换;3、三角函数的图象变换;4、三角函数的最值16.(1)3π、π;(2)(1,0]-. 【解析】试题分析:(1)先由平面向量数量积的坐标表示得到()f x ,然后由三角函数的倍角公式进行降次,再将函数()f x 的解析式化为()()sin f x A x b ωϕ=++的形式.令()0f x =,在区间[]0,π解得3x π=或π,即得到零点3π、π;(2)由条件及余弦定理,通过基本不等式可得1cos 2B ≥,又根据角B 是三角形内角,从而得到其范围,再代入即可得()f B 的取值范围.试题解析:因为向量2(cos ,1),,cos )222x x x m n =-= ,函数()f x m n = .所以21cos ()cos cos 2222x x x x f x x +=-=-111cos sin()22262x x x π=--=--3分 (1)由()0f x =,得1sin()62x π-=. =+266x k πππ-∴, 5=+266x k k Z πππ-∈或, =+23x k ππ∴, =+2x k k Z ππ∈或,又[]0,x π∈,3x π∴=或π.所以()f x 在区间[]0,π上的零点是3π、π. 6分 (2)在ABC ∆中,2b ac =,所以222221cos 2222a cb ac ac ac B ac ac ac +-+-==≥=. 由1cos 2B ≥且(0,)B π∈,得(0,],3B π∈--666B πππ⎛⎤∈ ⎥⎝⎦从而,10分 11sin()(,]622B π-∈-∴, 1()sin()(1,0]62f B B π=-+∈-∴ 12分 考点:1.数量积的坐标表示;2.余弦定理;3.三角函数的性质.17.(1)T π=;(2)2m =.【解析】试题分析:(1)借助向量数量积运算,利用两角和与差公式化为一角一函数()2sin(2)6g x x m π=++,可求函数周期;(2)由x 的范围求出26x π+的范围,借助函数图象求出函数最值.试题解析:(1)()14sin cos()14sin (cos cos sin sin )666g x a b m x x m x x x πππ=⋅=+++=++-2cos2x x m ++2sin(2)6x m π=++ 5分 所以T π=.(2)因为03x π≤<,所以52666x πππ≤+<, 9分 所以6x π=时,()2max g x m =+;0x =时,min ()1g x m =+ 12分所以217,2m m m +++==. 14分考点:1.函数的性质:周期、最值;2.三角函数的化简.18.(1)2π;(2)2AC =,S =. 【解析】 试题分析:(1)利用//的充要条件得出)(x f y =,再化简成sin()y A x B ωϕ=++类型求周期;(2)先由条件3)3(=-πA f 求出角A ,再由正弦定理B AC A BC sin sin =求AC ,然后只需求出AB 或sin C 即可求ABC ∆的面积.试题解析:解:由//得0)cos 23sin 21(21=+-x x y 3分 即 )3sin(2)(π+==x x f y 5分 (1)函数)(x f 的周期为π2=T 6分(2)由3)3(=-πA f 得3)33sin(2=+-ππA 即23sin =A ∵ABC ∆是锐角三角形∴3π=A 8分由正弦定理:BAC A BC sin sin =及条件7=BC ,721sin =B 得2237217sin sin =⋅=⋅=A B BC AC , 10分又∵A AC AB AC AB BC cos 2222⋅⋅-+=即2122472⨯⨯⋅-+=AB AB 解得3=AB 11分 ∴ABC ∆的面积233sin 21=⋅⋅=A AC AB S 12分 考点:1、平面向量与三角函数结合,2、正弦定理与余弦定理综合运用,3、三角形面积公式.19.(1)1[22-;(2)8c a ==. 【解析】试题分析:(1)先利用倍角公式、两角差的正弦公式将解析式化简,将已知x 代入,求值域;本卷由【在线组卷网 】自动生成,请仔细校对后使用,答案仅供参考。

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题1. 在平面直角坐标系xOy 中,已知圆C :x 2+y 2-6x +5=0,点A ,B 在圆C 上,且AB =2,则的最大值是 .【答案】8【解析】 设AB 中点为M ,则.因为圆C :,AB =2,所以,因此的最大值是8. 【考点】直线与圆位置关系2. 在平面直角坐标中,的三个顶点A 、B 、C ,下列命题正确的个数是( ) (1)平面内点G 满足,则G 是的重心;(2)平面内点M 满足,点M 是的内心;(3)平面内点P 满足,则点P 在边BC 的垂线上;A.0B.1C.2D.3 【答案】B【解析】对(2),M 为的外心,故(2)错. 对(3),,所以点P 在的平分线上,故(3)错.易得(1)正确,故选B. 【考点】三角形与向量.3. 在△ABC 中,AB =2,D 为BC 的中点,若=,则AC =_____ __.【答案】1 【解析】假设.由.所以.由余弦定理可得.所以.【考点】1.解三角形知识.2.向量的运算.4. 在△ABC 中,D ,E 分别为BC ,AC 的中点,F 为AB 上的点,|AF|=|AB|。

若.【答案】3【解析】由题意可知,由平面向量加法的平行四边形法则可得,则,所以。

【考点】1平面向量的加法;2向量共线问题。

5. 已知e l 、e 2是两个单位向量,若向量a=e l -2e 2,b=3e l +4e 2,且a b=-6,则向量e l 与e 2的夹角是 A .B .C .D .【答案】C【解析】由已知,,所以,又,故,选.【考点】平面向量的数量积、模、夹角.6.直线与圆交于不同的两点,,且,其中是坐标原点,则实数的取值范围是()A.B.C.D.【答案】D【解析】设的重点为,则,,由得,,从而得,由点到直线的距离公式可得,解得.【考点】向量在几何中的应用;直线与圆相交的性质.7.在△ABC所在的平面上有一点P满足++=,则△PBC与△ABC的面积之比是________.【答案】【解析】因为++=,所以+++=0,即=2,所以点P是CA边上的靠近A点的一个三等分点,故.8.如图,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,动点P在以点C为圆心,且与直线BD相切的圆上或圆内移动,设=λ+μ (λ,μ∈R),则λ+μ的取值范围是 ().A.(1,2)B.(0,3)C.[1,2]D.[1,2)【答案】C【解析】以A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则B(2,0),D(0,1),C(1,1),设P(x,y),则(x,y)=λ(0,1)+μ(2,0)=(2μ,λ),即令z=λ+μ=+y.由圆C与直线BD相切可得圆C的半径为.由于直线y=-+z与圆C有公共点,所以,解得1≤z≤2.9.已知O是锐角△ABC的外心,若(x,y∈R),则()A.x+y≤-2B.-2≤x+y<-1C.x+y<-1D.-1<x+y<0【答案】C【解析】如图,点在直线上,若,则;点在直线的另一侧,若,则;而,所以中.当圆心到AB的距离接近0时,中的值将无限增大,故选C.【考点】向量.10.设、都是非零向量,下列四个条件中,一定能使成立的是()A.B.C.D.【答案】A【解析】因为,、都是非零向量,分别是的单位向量,意味着方向相反 .所以,一定能使成立的是,选A.【考点】单位向量,共线向量,向量的线性运算.11.如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若||=a,||=b,则=()A.b2-a2 B.a2-b2C.a2+b2 D.ab【答案】A.【解析】,【考点】向量的运算.12.△ABC的外接圆的圆心为O,半径为2,且,则向量在方向上的投影为( )A.B.3C.D.-3【答案】A【解析】过作的垂线,垂足为,,即,即,∴即为边长为2的菱形,,,,,由定义,在上的投影为.【考点】向量投影的定义.13.已知点、、不在同一条直线上,点为该平面上一点,且,则()A.点P在线段AB上B.点P在线段AB的反向延长线上C.点P在线段AB的延长线上D.点P不在直线AB上【答案】B.【解析】点在线段的反向延长线上,故选B.【考点】1.共线向量定理;2.向量加减法的三角形法则.14.设,向量,b=(3,—2),且则|a-b|=()A.5B.C.D.6【答案】B【解析】因为所以6-2x=0,解得x=3,=(-1,5),所以|a-b|=.故选C.【考点】向量垂直的充要条件和向量的模.15.在直角中,,,,为斜边的中点,则 .【答案】.【解析】由于为直角三角形,且,,所以,由正弦定理得,,.【考点】1.正弦定理;2.平面向量的数量积16.在平行四边形中,,,,则【答案】【解析】因为,,,所以,由平面向量的线性运算及,得到即由,得,即而平行四边形中,,所以,所以,.【考点】平面向量的线性运算17.设、都是非零向量,下列四个条件中,一定能使成立的是()A.B.C.D.【答案】A【解析】由得,而表示与同向的单位向量,表示与反向的单位向量,则与反向.故当,与反向,从而推出题中条件,易知都不正确.故选.【考点】1.向量的平行;2.单位向量的意义.18.已知向量的模为1,且满足,则在方向上的投影等于 .【答案】-3【解析】∵,∴①,∵,∴②,②-①得:,投影为:.【考点】1.模式的处理;2.投影的求解方式.19.中,边的高为,若,,,,,则A.B.C.D.【答案】D【解析】如图,在直角三角形中,,则,所以,所以,即,选D.20.已知向量,,,则与夹角的最小值和最大值依次是()A.B.C.D.【答案】C【解析】设与夹角为,∵,,∴点A在以点C(2,2)为圆心半径为的圆上,由题意点B在x轴上,可知直线OA为圆的切线时与夹角取得最小值和最大值,设切线为y=kx,则由得k=,故当k=时与夹角为最小,此时,=,当k=时与夹角为最大,此时,=,故选C21.在边长为1的等边中,设( )A.B.0C.D.3【答案】A【解析】本题考查向量的夹角的概念,向量的数量积.如图:为正三角形,所以的夹角为的夹角为的夹角为;又所以,则故选A22.在平行四边形中,与交于点是线段的中点,的延长线与交于点.若,,则()A.B.C.D.【答案】B【解析】本题考查加法的平行四边形法则及平面几何知识.因为是的中点,所以又因为所以即所以又则则故选B23.(本小题满分12分)将圆按向量平移得到,直线与相交于、两点,若在上存在点,使求直线的方程.【答案】或.【解析】解:由已知圆的方程为,按平移得到.(1分)∵∴.即. (5分)又,且,∴.∴. (7分)设,的中点为D.由,则,又.∴到的距离等于. (9分)即,∴.∴直线的方程为:或. (12分)24.已知是所在平面内一点,为边中点,且,那么()A.B.C.D.【答案】A【解析】略25.平面内有两定点A,B,且|AB|=4,动点P满足,则点P的轨迹是 .【答案】以AB为直径的圆【解析】略26.已知P为ΔABC所在平面内一点,若,则点P轨迹过ΔABC的()A.内心B.垂心C.外心D.重心【答案】D【解析】略27.设点P是ΔABC内一点,且,则x的取值范围是,y的取值范围是。

平面向量及其应用全章综合测试卷(基础篇)(教师版)

平面向量及其应用全章综合测试卷(基础篇)(教师版)

D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2

C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =

2022年高一下《第六章 平面向量及其应用》测试卷及答案解析

2022年高一下《第六章 平面向量及其应用》测试卷及答案解析

2022年高一下《第六章 平面向量及其应用》测试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设a →,b →是不共线的两个平面向量,已知AB →=a →−2b →,BC →=3a →+kb →(k ∈R),若A ,B ,C 三点共线,则k =( ) A .2B .﹣2C .6D .﹣62.(5分)在△ABC 中,点D 为AC 的中点,点E 在线段BC 上,且BC =3BE ,则DE →=( ) A .56AC →+23AB →B .−16AC →+23AB →C .56AC →+AB →D .−56AC →+43AB →3.(5分)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A .AD →B .12AD →C .BC →D .12BC →4.(5分)已知向量a →=(32,cosα),b →=(cosα,16),若a →∥b →,则锐角α为( )A .30°B .60°C .45°D .75°5.(5分)已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,且AD →=a →,BE →=b →,则BC →为( ) A .43a →+23b → B .23a →+43b →C .23a →−23b →D .23b →−43a →6.(5分)在△ABC 中,BD →=DC →,AP →=PD →,且BP →=λAB →+μAC →,则λ+μ=( ) A .1B .12C .−12D .147.(5分)已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a 等于( ) A .2B .1C .45D .538.(5分)在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN →=λAB →+μAC →,则λ+μ的值为( ) A .12B .13C .14D .1二、选择题:本题共4小题,每小题5分,共20分。

高一数学平面向量的应用试题

高一数学平面向量的应用试题

高一数学平面向量的应用试题1.如图所示,在中,,与与相交于点,设,,试用和表示向量.【答案】【解析】根据平面向量基本定理,可设,如何确定的值呢?,要用好共线定理,这里两次利用三点共线和三点共线,构建关于的两个方程,从而解出的值.试题解析:设则..又∵三点共线,∴与共线.∴存在实数,使得, 2分∴.,消去得:.即① 4分又∵..又∵三点共线,∴与共线.∴存在实数,使得,∴∴,消去得:② 6分由①②得8分注:本题解法较多,只要正确合理均可酌情给分.【考点】平面向量共线定理及平面向量基本定理.2.已知=4,=8,与的夹角为120°,则= .【答案】【解析】由,则.故答案为.【考点】平面向量的模长的求解;平面向量的数量积.3.在平面直角坐标系中,O为坐标原点,已知向量,又点, ,.(1)若,且,求向量.(2)若向量与向量共线,常数,当取最大值4时,求.【答案】(1)(24,8)或(-8,-8);(2)32【解析】(1)由可知,又即,解得,所以(24,8)或(-8,-8;(2) ,因为向量与向量共线,所以,则,①时,取最大值为,由=4,得,此时,②,时,取最大值为,由=4,得,(舍去).试题解析:(1),,又,得,所以或或(2),因为向量与向量共线,①时,取最大值为,由=4,得,此时,②,时,取最大值为,由=4,得,(舍去)综上所述,【考点】1.向量的运算与性质;2.函数的最值4.①设a,b是两个非零向量,若|a+b|=|a-b|,则a·b =0②若③在△ABC中,若,则△ABC是等腰三角形④在中,,边长a,c分别为a=4,c=,则只有一解。

上面说法中正确的是.【答案】①②.【解析】对于①中的式子,两边平方有:,所以①正确;:对于②有:,因此有,所以②正确;对于③,根据余弦定理有所以或,因此△ABC是等腰三角形或直角三角形,故③不正确;对于④,如图:有,所以④不正确.【考点】数量积的运算,,余弦定理,勾股定理,已知两边和其中一边的对角判断三角形解的个数.5.在△中,点是上一点,且,是中点,与交点为,又,则的值为()A.B.C.D.【答案】D【解析】因为三点共线,所以可设,又,所以,,将它们代入,即有,由于不共线,从而有,解得,故选择D.【考点】向量的基本运算及向量共线基本定理.6.在△ABC中,N是AC边上一点,且,P是BN上的一点,若,则实数m的值为( ).A.B.C.1D.3【答案】B.【解析】如图,因为,所以,又B,P,N三点共线,所以,则.【考点】平面向量基本定理,及重要结论:如上图当B,P,N共线时,且,则有.7.若A(-2,3),B(3,-2),C(,m)三点共线,则m的值(). A.B.C.-2D.2【答案】A【解析】三点共线,则;,,即.【考点】平面向量平行的判定、平面向量的线性运算.8.已知向量(1)证明:(2)若向量满足,且,求.【答案】(1)见解析;(2)或.【解析】(1)根据题中条件先求出向量与的坐标,再根据向量共线的充要条件进行判定;(2)设出向量的坐标,算出向量、、坐标,根据向量垂直的充要条件和模公式,列出关于向量坐标的方程组,通过解方程组解出向量.试题解析:(1)因为向量,,所以,, 3分5分所以 6分(2)设向量,,因为,所以即 (1) 8分又,所以即(2) 10分由(1)(2)得:或所以或 12分【考点】向量的坐标运算;向量平行的充要条件;向量垂直的充要条件;向量的模公式;方程思想9.设向量满足:,则向量与的夹角为().A.B.C.D.【答案】D.【解析】设向量与的夹角为,则,又,所以,故选D.【考点】向量的夹角公式,同时要注意角的范围限制.10.已知平面内不共线的四点满足向量,则等于()A.B.C.D.【答案】C.【解析】根据向量加减法的三角形法则知,进而得到两个向量共线即,再根据共线向量模的关系,即可求解.【考点】向量的共线定理;向量的模.11.在中, c, b.若点满足,则()A.B.C.D.【答案】A【解析】,又c, b故由【考点】平面向量12.已知为所在平面内一点,满足,则点是的( )A.外心B.内心C.垂心D.重心【答案】C【解析】设则,由题意,,化简可得,即,同理可得,故点是的垂心【考点】向量在几何中的应用;三角形五心13.平面上四边形ABCD中,若,则四边形ABCD的形状是。

平面向量及其应用单元测试题+答案

平面向量及其应用单元测试题+答案

一、多选题1.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=- 2.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知cos cos 2B bC a c=-,4ABC S =△,且b = )A .1cos 2B =B .cos B =C .a c +=D .a c +=3.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是4.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点时,点P 的坐标为( ) A .4,23⎛⎫⎪⎝⎭B .4,33⎛⎫⎪⎝⎭C .()2,3D .8,33⎛⎫ ⎪⎝⎭5.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB += D .0PA PB PC ++=6.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )A .10,45,70b A C ==︒=︒B .45,48,60b c B ===︒C .14,16,45a b A ===︒D .7,5,80a b A ===︒ 7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )A .B .C .8D .8.ABC 中,4a =,5b =,面积S =c =( )A BC D .9.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-10.在ABC 中,15a =,20b =,30A =,则cos B =( ) A .5-B .23C .23-D .5 11.下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=e B .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=-⎪⎝⎭e D .()12,6=e ,()21,3=--e12.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=B .a b ⊥C .()4a b b +⊥D .1a b ⋅=-13.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC =C .AB DC >D .BC AD ∥14.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形15.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量二、平面向量及其应用选择题16.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .102B .106C .103D .1017.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若3a =,则边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π 18.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:519.在ABC 中,若A B >,则下列结论错误的是( )A .sin sin AB >B .cos cos A B <C .sin2sin2A B >D .cos2cos2A B <20.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定 21.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形22.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与AC 交于E 点.若2AB =,则AE 的长为( )A 62B .1(62)2C 62D .1(62)223.在ABC ∆中,6013ABC A b S ∆∠=︒=,,,则2sin 2sin sin a b cA B C-+-+的值等于( ) A 239B 2633C 833D .2324.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7226.题目文件丢失!27.已知向量()22cos ,3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 28.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形 B .等腰三角形C .等腰直角三角形D .直角三角形29.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 30.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .1431.如图,在ABC 中,14AD AB →→=,12AE AC →→=,BE 和CD 相交于点F ,则向量AF →等于( )A .1277AB AC →→+B .1377AB AC →→+C .121414AB AC →→+ D .131414AB AC →→+ 32.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B .332C .33D 333.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形34.设ABC ∆中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( )A .1233AB AC -+ B .2133AB AC -C .1233AB AC -D .2133AB AC -+35.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-【参考答案】***试卷处理标记,请不要删除一、多选题 1.BD 【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a ba b a b a b+=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD. 【点睛】本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.2.AD 【分析】利用正弦定理,两角和的正弦函数公式化简,结合,可求,结合范围,可求,进而根据三角形的面积公式和余弦定理可得. 【详解】 ∵,整理可得:, 可得,∵A 为三角形内角,, ∴,故A 正确解析:AD 【分析】利用正弦定理,两角和的正弦函数公式化简cos cos 2B bC a c=-,结合sin 0A ≠,可求1cos 2B =,结合范围()0,B π∈,可求3B π=,进而根据三角形的面积公式和余弦定理可得a c += 【详解】 ∵cos sin cos 22sin sin B b BC a c A C==--, 整理可得:sin cos 2sin cos sin cos B C A B C B =-,可得()sin cos sin cos sin sin 2sin cos B C C B B C A A B +=+==, ∵A 为三角形内角,sin 0A ≠, ∴1cos 2B =,故A 正确,B 错误, ∵()0,B π∈, ∴3B π=,∵ABC S =△3b =,∴11sin 42224ac B a c ac ==⨯⨯⨯=, 解得3ac =,由余弦定理得()()2222939a c ac a c ac a c =+-=+-=+-,解得a c +=C 错误,D 正确. 故选:AD. 【点睛】本题主要考查正弦定理,余弦定理以及两角和与差的三角函数的应用,还考查了运算求解的能力,属于中档题.3.ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得3R =,所以ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()23B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.4.AD 【分析】设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,当点P 靠近点时,, 则, 解得, 所以,当点P 靠近点时,, 则, 解得, 所以, 故选:解析:AD 【分析】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,1212PPPP =, 则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得432x y ⎧=⎪⎨⎪=⎩,所以4,23P ⎛⎫⎪⎝⎭, 当点P 靠近点2P 时,122PP PP =, 则()()24124x x y y ⎧=-⎪⎨-=-⎪⎩, 解得833x y ⎧=⎪⎨⎪=⎩,所以8,33P ⎛⎫ ⎪⎝⎭, 故选:AD 【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.5.CD 【分析】转化为,移项运算即得解 【详解】 由题意: 故 即 , 故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.解析:CD 【分析】转化3AB AC AP +=为())(AB AP AC AP AP +=--,移项运算即得解 【详解】由题意:3AB AC AP += 故())(AB AP AC AP AP +=-- 即PB PC AP +=0C PA PB P ++=∴,PA AB PB +=故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.6.BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两解析:BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解;对于选项B 中:因为csin sin 115B C b ==<,且c b >,所以角C 有两解;对于选项C 中:因为sin sin 17b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b AB a=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.AC【分析】利用余弦定理:即可求解.【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:, 即,解得. 故选:AC 【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC 【分析】利用余弦定理:2222cos b a c ac B =+-即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:2222cos b a c ac B =+-,即216310a a -+=,解得8a = 故选:AC 【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.8.AB 【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解. 【详解】中,因为,,面积, 所以, 所以,解得或,当时,由余弦定理得:, 解得,当时,由余弦定理得:, 解得 所以或解析:AB 【分析】在ABC 中,根据4a =,5b =,由1sin 2ABCSab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABCS=所以1sin 2ABCSab C ==所以sin 2C =,解得60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB 【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题.9.BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.10.AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos 3B ==±. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.11.ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属于基础题.12.CD 【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案. 【详解】分析知,,与的夹角是. 由,故B 错误,D 正确; 由,所以,故A 错误; 由,所以,故C 正确. 故选:CD 【点睛】解析:CD 【分析】分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案. 【详解】分析知1a =,2=b ,a 与b 的夹角是120︒.由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;由()22221243a ba ab b +=+⋅+=-+=,所以3a b +=,故A 错误; 由()()2144440a b b a b b +⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确.故选:CD 【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.13.BD 【分析】根据向量的模及共线向量的定义解答即可; 【详解】解:与显然方向不相同,故不是相等向量,故错误; 与表示等腰梯形两腰的长度,所以,故正确; 向量无法比较大小,只能比较向量模的大小,故解析:BD 【分析】根据向量的模及共线向量的定义解答即可; 【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确; 向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确; 故选:BD . 【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.14.AD 【解析】 【分析】由条件可得,再两边平方即可得答案. 【详解】∵P 是所在平面内一点,且, ∴, 即, ∴,两边平方并化简得, ∴,∴,则一定是直角三角形,也有可能是等腰直角三角形, 故解析:AD 【解析】 【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.15.AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.二、平面向量及其应用选择题16.B 【分析】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有BC=3x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高. 【详解】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有x ,x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,sin sin BC CDBDC CBD=可得,BC=10sin 45sin 30x ==.则;所以塔AB 的高是米; 故选B . 【点睛】本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解. 17.A 【分析】 根据题意得出tan tan tan A B Ca b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长. 【详解】0a OA b OB c OC ⋅+⋅+⋅=,a bOC OA OB c c∴=--,同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c Cb Bc C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B Ca b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin 2aR A===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A. 【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 18.A 【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决. 19.C 【分析】由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD . 【详解】设ABC 三边,,a b c 所对的角分别为,,A B C , 由A B >,则,a b >∴sin sin 0A B >>,A 正确; 由余弦函数性质知cos cos A B <,B 正确;sin 22sin cos A A A =,sin 22sin cos B B B =, 当A 为钝角时就有sin 2sin 2A B <,C 错误,;2cos 212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确. 故选:C . 【点睛】本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题. 20.C 【分析】利用平面向量的数量积的运算性质可得(CA CB + 2222)()0CA CB CA CB b a -=-=-=,从而可得答案. 【详解】 解:在ABC 中,(CA CB + 2222)()0CA CB CA CB b a -=-=-=,a b ∴=,ABC ∴为等腰三角形, 故选:C . 【点睛】本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题. 21.D 【分析】由数量积的定义判断B 角的大小,得三角形形状. 【详解】由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D . 【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 22.A 【分析】由条件求得∠BCD =150°,∠CBE =15°,故∠ABE =30°,可得∠AEB =105°.计算sin105°,代入正弦定理sin30sin105AE AB=︒︒,化简求得AE =-. 【详解】由题意可得,AC =BC =CD =DA =BAC =45°,∠BCD =∠ACB +∠ACD =90°+60°=150°.又△BCD 为等腰三角形,∴∠CBE =15°,故∠ABE =45°﹣15°=30°,故∠BEC =75°,∠AEB =105°.再由 sin105°=sin (60°+45°)=sin60°cos45°+cos60°sin45°=, △ABE 中,由正弦定理可得sin30sin105AE AB=︒︒,∴12AE=,∴AE =), 故选:A . 【点睛】本题考查勾股定理、正弦定理的应用,两角和的正弦公式,属于中档题. 23.A 【解析】分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.详解:由题意,在ABC ∆中,利用三角形的面积公式可得011sin 1sin 6022ABC S bc A c ∆==⨯⨯⨯=, 解得4c =,又由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=,解得a =,由正弦定理得2sin 2sin sin sin a b c a A B C A -+===-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 24.C 【解析】 【分析】取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心,则0DW BC ⋅=, 再用AB 、AC 表示AW ,AG ,BC 再根据向量的数量积的运算律计算可得. 【详解】解:如图,取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心0DW BC ∴⋅=()()22113323AG AD AB AC AB AC ∴==⨯+=+ ()12AW AD DW AB AC DW =+=++ ()()()115326AW AG AB AC AB AC DW AB AC DW +=++++=++ ()()()5566AB AC DW AB AG AW BC BC B W C BC AC D ⎡⎤∴+⋅=⋅=⋅⋅⎢++++⎥⎣⎦()56AB A BC C =⋅+ ()()56C AC AB AB A =⋅+- ()()222242105566AC AB =-=-= 故选:C【点睛】本题考查平面向量的数量积的定义和性质,考查三角形的重心和外心的性质及向量中点的向量表示,考查运算能力,属于中档题. 25.B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题. 26.无27.D【详解】()22cos 2cos 2212sin(2)16f x x x x x x π=+=+=++,当12x π=时,sin(2)sin 163x ππ+=≠±,∴f (x )不关于直线12x π=对称; 当512x π=时,2sin(2)116x π++= ,∴f (x )关于点5(,1)12π对称; f (x )得周期22T ππ==, 当(,0)3x π∈-时,2(,)626x πππ+∈- ,∴f (x )在(,0)3π-上是增函数. 本题选择D 选项.28.D【分析】先根据向量减法与向量数量积化简得边之间关系,再判断三角形形状.【详解】因为()()()222BC BA AC BC BA BC BA BC BA AC +⋅=+⋅-=-=,所以222a c b -=,即ABC 是直角三角形,选D.【点睛】判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用πA B C ++=这个结论.29.D【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案.【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +, E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD 1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力.向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).30.D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+ 又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比所以BPC ∆与ABC ∆的面积之比为14故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目.31.B【分析】过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,由平行线得出三角形相似,得出线段成比例,结合14AD AB →→=,12AE AC →→=,证出37AM AC →→=和17AN AB →→=,最后由平面向量基本定理和向量的加法法则,即可得AB →和AC →表示AF →. 【详解】 解:过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N , 已知14AD AB →→=,12AE AC →→=, //FN AC ,则MFE ABE △△和MCF ACD △△, 则:MF ME AB AE =且MF MC AD AC=, 即:2MF ME AB AC =且14MF MC AC AB =,所以124MC MF ME AB AC AC ==, 则:8MC ME =,所以37AM AC =, 解得:37AM AC →→=, 同理//FM AB ,NBF ABE △△和NFD ACD △△, 则:NF NB AE AB =且NF ND AC AD=, 即:12NF NB AB AC =且14NF ND AC AB =,所以142NB NF ND AC AB AB ==, 则:8NB ND =,即()8AB AN AD AN -=-, 所以184AB AN AB AN ⎛⎫-=-⎪⎝⎭,即28AB AN AB AN -=-, 得:17AN AB =, 解得:17AN AB →→=, 四边形AMFN 是平行四边形,∴由向量加法法则,得AF AN AM →→→=+, 所以1377AF AB AC →→→=+. 故选:B.【点睛】本题考查平面向量的线性运算、向量的加法法则和平面向量的基本定理,考查运算能力. 32.B【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果.【详解】由条件可知:22226c a b ab =+-+,①由余弦定理可知:222222cos c a b ab C a b ab =+-=+-,②所以由①②可知,62ab ab -=-,即6ab =, 则ABC 的面积为11333sin 622S ab C ==⨯=. 故选:B【点睛】本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型.33.B【分析】利用两角和与差公式化简原式,可得答案.【详解】因为sin 2sin cos B A C =,所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C +=所以sin cos cos sin 0A C A C -=所以sin()0A C -=,所以0A C -=,所以A C =.所以三角形是等腰三角形.故选:B.【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.34.A【分析】作出图形,利用AB 、AC 表示AO ,然后利用平面向量减法的三角形法则可得出OC AC AO =-可得出结果.【详解】如下图所示:D 为BC 的中点,则()1122AD AB BD AB BC AB AC AB =+=+=+-1122AB AC =+, 2AO OD =,211333AO AD AB AC ∴==+, 11123333OC AC AO AC AB AC AB AC ⎛⎫∴=-=-+=-+ ⎪⎝⎭, 故选:A.【点睛】本题考查利用基底表示向量,考查了平面向量减法和加法三角形法则的应用,考查计算能力,属于中等题.35.D【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可.【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+, ∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=,因为22sin cos 1A A +=.解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D .【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.。

高二数学平面向量的应用试题答案及解析

高二数学平面向量的应用试题答案及解析

高二数学平面向量的应用试题答案及解析1.已知O是平面上的一个定点,A,B,C,是平面上不共线三个点,动点P满足,则动点P的轨迹一定通过△ABC的()A.重心B.垂心C.外心D.内心【答案】B【解析】如图所示,过点A作AD⊥BC,垂足为D点.则,同理,∵动点P满足∴∴所以,因此P的轨迹一定通过△ABC的垂心.【考点】向量的线性运算性质及几何意义.2.(2009•聊城一模)由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“•=•”;②“(m+n)t=mt+nt”类比得到“(+)•=•+•”;③“t≠0,mt=nt⇒m=n”类比得到“≠0,•=•⇒=”;④“|m•n|=|m|•|n|”类比得到“|•|=||•||”.以上类比得到的正确结论的序号是 _________ (写出所有正确结论的序号).【答案】①②.【解析】由向量的数量积运算的交换律和分配律可知①②正确∵,故③错误;∵|,故④错误.故应填入①②.【考点】1.向量数量积运算性质;2.类比推理.3.已知向量满足,则向量夹角的余弦值为()A.B.C.D.【答案】B【解析】,,【考点】向量夹角公式的应用.4.若向量为两个非零向量,且,则向量与的夹角为( )A.B.C.D.【答案】A【解析】由,结合平行四边形法则知与夹角为,与为平行四边形的两条对角线,与的夹角为.【考点】平面向量的四边形法则.5.在下列命题中:①若向量a,b共线,则向量a,b所在的直线平行;②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;③若三个向量a,b,c两两共面,则向量a,b,c共面;④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc.其中正确命题的个数是()A.0B.1C.2D.3【答案】A【解析】①a,b所在的直线也可能重合;②其中一向量为零向量时,可共面;③其中一向量为零量时,可能出现不共面的情况;④三个向量应该是不共面的向量才可作为空间向量的基底.【考点】空间向量.6.已知,则的最小值为【答案】【解析】,故【考点】向量的减法,向量的模7.已知,,若∥,则等于().A.B.C.D.【答案】B【解析】因为∥,所以,所以。

平面向量及其应用经典试题(含答案)

平面向量及其应用经典试题(含答案)

一、多选题1.题目文件丢失!2.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=-⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60° 3.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=4.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭5.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π6.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+7.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S =8.在ABC 中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,b =30A =︒,则B =( )A .30B .45︒C .135︒D .150︒9.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+10.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-11.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 12.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ= 13.在下列结论中,正确的有( )A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等 14.(多选题)下列命题中,正确的是( )A .对于任意向量,a b ,有||||||a b a b +≤+;B .若0a b ⋅=,则00a b ==或;C .对于任意向量,a b ,有||||||a b a b ⋅≤D .若,a b 共线,则||||a b a b ⋅=±15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得()11122122e e e e λμλλμ+=+D .若存在实数,λμ使得120e e λμ+=,则0λμ==二、平面向量及其应用选择题16.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34 B .58C .38D .2317.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若3a =边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π 18.若O 为ABC 所在平面内任意一点,且满足()20BC OB OC OA ⋅+-=,则ABC 一定为( )A .锐角三角形B .直角三角形C .等腰三角形D .钝角三角形19.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定D .若||b →确定,则θ唯一确定20.在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若2cosA 3cosB 5cosCa b c==,则∠B 的大小是( )A .12πB .6π C .4πD .3π 21.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若22sin cos sin a b cA B B===,则ABC ∆的面积为( ) A .2 B .4 C .2 D .2222.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边AB 相交于点D ,90C ∠=︒,1CD =.当直线CD AB ⊥时,+a b 值为M ;当D 为边AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为( ) A .MB .NC .22D .123.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13-D .34-24.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能25.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A 3B .1C .12D 326.设ABC ∆中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( )A .1233AB AC -+ B .2133AB AC - C .1233AB AC -D .2133AB AC -+ 27.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 28.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A .3π B .23π C .56π D .6π 29.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 30.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形31.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心D .外心重心内心32.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +>C .612abc ≤≤D .1224abc ≤≤33.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式ac bd T -+-≥恒成立,则实数T 的取值范围为( )A .(-∞B .)+∞C .(-∞D .)+∞34.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .435.在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形D .等腰或直角三角形【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵,,与的夹角为锐角, ∴ ,且(时与的夹角为0), 所以且,故A 错误; 对于B 解析:ACD 【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解. 【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角, ∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0),所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误; 对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a ab a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒, 得a 与a b λ+的夹角为30°,故D 项错误. 故错误的选项为ACD 故选:ACD 【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.3.BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, .,解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断【详解】解:A .向量数量积不满足结合律,故A 错误,B .1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD , 故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.4.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-,当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.5.CD 【分析】对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.6.AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可.【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.7.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错; ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB . 【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.8.BC 【分析】用正弦定理求得的值,由此得出正确选项. 【详解】解:根据正弦定理得: , 由于,所以或. 故选:BC. 【点睛】本题考查利用正弦定理解三角形,是基础题.解析:BC 【分析】用正弦定理求得sin B 的值,由此得出正确选项. 【详解】解:根据正弦定理sin sin a b A B=得:1sin 2sin 1b A B a ===,由于21b a =>=,所以45B =或135B =.故选:BC. 【点睛】本题考查利用正弦定理解三角形,是基础题.9.ABD 【分析】根据向量的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得为三等分点靠近点的点.对于A 选项,根据向量加法的平行四边形法则易得,故A 正确; 对于B 选项,,由于为三解析:ABD 【分析】根据向量的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.10.BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.11.BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确; 对于C ,,则或与共线,故C 错误; 对于D ,在四边形中,若解析:BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,00a ⨯=,故A 错误; 对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD 【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.12.AD 【分析】分别对所给选项进行逐一判断即可. 【详解】对于选项A ,当时,与不一定共线,故A 错误; 对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确; 对于选项C ,两个非零向量解析:AD 【分析】分别对所给选项进行逐一判断即可. 【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确;对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD 【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.13.BCD 【分析】根据向量的定义和性质依次判断每个选项得到答案. 【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确解析:BCD 【分析】根据向量的定义和性质依次判断每个选项得到答案.A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确;C. 相等向量方向相同,模相等,正确;D. 相反向量方向相反,模相等,故正确; 故选:BCD 【点睛】本题考查了向量的定义和性质,属于简单题.14.ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确; 当共线同向时,, 当共线反解析:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ⋅=,故选项B 错误;因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确; 当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确. 故选:ACD. 【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.15.AD 【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确. 【详解】由平面向量基本定理可知,A 、D 是正确的. 对于B,由平面向量基本【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为0时,λ有无数个,故不正确. 【详解】由平面向量基本定理可知,A 、D 是正确的.对于B ,由平面向量基本定理可知,如果一个平面的基底确定, 那么任意一个向量在此基底下的实数对是唯一的,所以不正确; 对于C ,当两向量的系数均为零,即12120λλμμ====时, 这样的λ有无数个,所以不正确. 故选:AD . 【点睛】本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.二、平面向量及其应用选择题16.A 【分析】设出()()()11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+, 因为2CF DF =,所以1133DF DC AB ==, 所以()2113m AP AB m AD +=+-. 因为E 是BC 的中点, 所以1122AE AB BC AB AD =+=+. 因为AP AE λ=, 所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭,则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩,解得34λ=. 故选:A 【点睛】本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 17.A 【分析】 根据题意得出tan tan tan A B Ca b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长. 【详解】0a OA b OB c OC ⋅+⋅+⋅=,a bOC OA OB c c∴=--,同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c Cb Bc C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B Ca b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin 2aR A===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A. 【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 18.C【分析】由向量的线性运算可知2OB OC OA AB AC +-=+,所以()0BC AB AC ⋅+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案. 【详解】由题意,()()2OB OC OA OB OA OC OA AB AC +-=-+-=+, 所以()0BC AB AC ⋅+=,取BC 的中点D ,连结AD ,并延长AD 到E ,使得ADDE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=. 所以0BC AE ⋅=,即BC AD ⊥, 故AB AC =,ABC 是等腰三角形. 故选:C.【点睛】本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题. 19.B 【分析】2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a aθ⋅==时,222min 244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案. 【详解】2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈,所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1,所以2||b ta -的最小值也为1,即222min244()()14a b a b f t a-⋅==,222||cos 1b b θ-=,所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B 【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题. 20.D 【分析】根据正弦定理,可得111tan tan tan 235A B C ==,令tan 2A k =,tan 3B k =,tan 5C k =,再结合公式tan tan()B A C =-+,列出关于k 的方程,解出k 后,进而可得到B 的大小. 【详解】 解:∵2cosA 3cosB 5cosCa b c ==, ∴sin sin sin 2cos 3cos 5cos A B CA B C ==,即111tan tan tan 235A B C ==, 令tan 2A k =,tan 3B k =,tan 5C k =,显然0k >, ∵tan tan tan tan()tan tan 1A CB AC A C +=-+=-,∴273101kk k =-,解得3k =, ∴tan 3B k ==B =3π.故选:D . 【点睛】本题考查正弦定理边角互化的应用,考查两角和的正切,用k 表示tan 2A k =,tan 3B k =,tan 5C k =是本题关键21.A 【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积. 【详解】 由正弦定理可知2sin sin sin a b cr A B C===已知sin cos sin a b cA B B===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC ,即等腰直角三角形的斜边长为所以122ABCS=⨯=. 故选:A 【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 22.C 【分析】当直线CD AB ⊥时,由直角三角形的勾股定理和等面积法,可得出222+=a b c ,1ab c =⨯,再由基本不等式可得出2c ≥,从而得出M 的范围.当D 为边AB 的中点时,由直角三角形的斜边上的中线为斜边的一半和勾股定理可得2c =,2224a b c +==,由基本不等式可得出2ab ≤,从而得出N 的范围,可得选项. 【详解】当直线CD AB ⊥时,因为90C ∠=︒,1CD =,所以222+=a b c ,由等面积法得1ab c =⨯,因为有222a b ab +≥(当且仅当a b =时,取等号),即()22>0c c c ≥,所以2c ≥,所以+M a b ===≥(当且仅当a b =时,取等号),当D 为边AB 的中点时,因为90C ∠=︒,1CD =,所以2c =,2224a b c +==, 因为有222a b ab +≥(当且仅当a b =时,取等号),即42ab ≥,所以2ab ≤,所以+N a b ===≤(当且仅当a b =时,取等号),当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为(此时,a b =); 故选:C. 【点睛】本题考查解直角三角形中的边的关系和基本不等式的应用,以及考查对新定义的理解,属于中档题. 23.B 【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果. 【详解】13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+,56λ∴=-,16μ=,23λμ∴+=-.故选:B. 【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题. 24.C 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(名师选题)(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题单选题1、魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=()A.表高×表距表目距的差+表高B.表高×表距表目距的差−表高C.表高×表距表目距的差+表距D.表高×表距表目距的差−表距答案:A分析:利用平面相似的有关知识以及合分比性质即可解出.如图所示:由平面相似可知,DEAB =EHAH,FGAB=CGAC,而DE=FG,所以DE AB =EHAH=CGAC=CG−EHAC−AH=CG−EHCH,而CH=CE−EH=CG−EH+EG,即AB =CG−EH+EG CG−EH ×DE =EG×DE CG−EH +DE = 表高×表距表目距的差+表高.故选:A.小提示:本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.2、已知单位向量a ⃗,b⃗⃗,则下列说法正确的是( ) A .a ⃗=b ⃗⃗B .a ⃗+b ⃗⃗=0⃗⃗C .|a ⃗|=|b ⃗⃗|D .a ⃗//b⃗⃗ 答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b⃗⃗的方向不一定相同,A 错误; 对于B ,向量a ⃗,b ⃗⃗为单位向量,但向量a ⃗, b⃗⃗不一定为相反向量,B 错误; 对于C ,向量a ⃗,b ⃗⃗为单位向量,则|a ⃗|=|b⃗⃗|=1,C 正确; 对于D ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b ⃗⃗的方向不一定相同或相反,即a ⃗与b⃗⃗不一定平行,D 错误. 故选:C.3、已知向量a ⃑=(−1,m ),b ⃗⃑=(2,4),若a ⃑与b⃗⃑共线,则m =( ) A .−1B .1C .−2D .2答案:C分析:根据平面向量共线坐标表示可得答案.由题意得2m =−4,即m =−2.故选:C4、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( )A .向东南走3√2kmB .向东北走3√2kmC .向东南走3√3kmD .向东北走3√3km答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km ,即向东北走3√2km .故选:B.5、已知向量a ⃑,b ⃗⃑满足|a ⃑|=2,|b ⃗⃑|=1,a ⃑⋅(a ⃑−2b ⃗⃑)=2,则a ⃑与b⃗⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:B分析:由题意,先求出a ⃑⋅b⃗⃑,然后根据向量的夹角公式即可求解. 解:因为a ⃑⋅(a ⃑−2b ⃗⃑)=a ⃑2−2a ⃑⋅b ⃗⃑=|a ⃑|2−2a ⃑⋅b ⃗⃑=4−2a ⃑⋅b ⃗⃑=2,所以a ⃑⋅b⃗⃑=1, 设a ⃑与b ⃗⃑的夹角为θ,则cosθ=a ⃗⃑⋅b ⃗⃑|a ⃗⃑||b ⃗⃑|=12, 因为θ∈[0°,180°],所以θ=60°,故选:B.6、已知非零平面向量a ⃗,b ⃗⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则a ⃗=b ⃗⃗;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗//b⃗⃗ (3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则a ⃗⊥b ⃗⃗(4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则a ⃗=b ⃗⃗或a ⃗=−b⃗⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃗⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则(a ⃗−b ⃗⃗)⋅c ⃗=0,所以a ⃗=b ⃗⃗或(a ⃗−b ⃗⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗与b ⃗⃗同向,所以a ⃗//b⃗⃗,即(2)正确;(3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则|a ⃗|2+|b ⃗⃗|2+2a ⃗⋅b ⃗⃗=|a ⃗|2+|b ⃗⃗|2−2a ⃗⋅b ⃗⃗,所以2a ⃗⋅b ⃗⃗=0,则a ⃗⊥b⃗⃗;即(3)正确; (4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则|a ⃗|2−|b ⃗⃗|2=0,所以|a ⃗|=|b⃗⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.7、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,C =30∘,c =10.如果△ABC 有两解,则a 的取值范围是( )A .[10,20]B .[10,10√3]C .(10,10√3)D .(10,20)答案:D分析:作出图形,根据题意可得出关于a 的不等式,由此可解得a 的取值范围.如下图所示:因为△ABC 有两解,所以asinC =12a <c =10<a ,解得10<a <20.故选:D.8、如图,四边形ABCD 是平行四边形,则12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=( )A .AB ⃗⃗⃗⃗⃗⃑B .CD ⃗⃗⃗⃗⃗⃑C .CB ⃗⃗⃗⃗⃗⃑D .AD ⃗⃗⃗⃗⃗⃑答案:D分析:由平面向量的加减法法则进行计算.由题意得AC ⃗⃗⃗⃗⃗⃑=AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑,BD ⃗⃗⃗⃗⃗⃗⃑=AD ⃗⃗⃗⃗⃗⃑−AB⃗⃗⃗⃗⃗⃑,所以12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=12(AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=AD ⃗⃗⃗⃗⃗⃑. 故选:D.9、向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b ⃗⃗|=√3,则b ⃗⃗在a ⃗方向上的投影为( )A .-1B .−12C .12D .1 答案:B解析:根据题条件,先求出a ⃗⋅b⃗⃗,再由向量数量积的几何意义,即可求出结果. 因为向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b⃗⃗|=√3, 所以|a ⃗|2+2a ⃗⋅b ⃗⃗+|b ⃗⃗|2=3,即4+2a ⃗⋅b ⃗⃗+1=3,则a ⃗⋅b⃗⃗=−1, 所以b ⃗⃗在a ⃗方向上的投影为|b →|cos <a →,b →>=a →⋅b→|a →|=−12. 故选:B.10、如图,正六边形ABCDEF 的边长为2,动点M 从顶点B 出发,沿正六边形的边逆时针运动到顶点F ,若FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑的最大值和最小值分别是m ,n ,则m +n =( )A .9B .10C .11D .12答案:D分析:连接AC ,根据正六边形的特征可得FD ⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑,从而可得FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,再根据当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,即可求得m ,n ,从而得出答案.解:连接AC ,在正六边形ABCDEF 中,FD ⃗⃗⃗⃗⃗⃑=AC⃗⃗⃗⃗⃗⃑,∴FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,∵正六边形ABCDEF 的边长为2,∴|AC⃗⃗⃗⃗⃗⃑|=2√3, 因为当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,所以当M 在CD 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最大值,为2√3,当M 移动到点F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最小值,为0.∴m =2√3×2√3=12,n =2√3×0=0,∴m +n =12.故选:D.小提示:填空题11、已知△ABC 中,AB =2,AC =1,AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=1,O 为△ABC 所在平面内一点,且OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,则AO⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑的值为___________ 答案:−1分析:在OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑中,将OB ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑,OC ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑代入,用AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑表示AO ⃗⃗⃗⃗⃗⃑,可得AO⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑,故AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑),展开根据已知条件代入数据计算即可. ∵OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,∴OA ⃗⃗⃗⃗⃗⃑+2(OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑)+3(OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑)=0⃗⃑,∴AO ⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑, ∴AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=12AC ⃗⃗⃗⃗⃗⃑2−13AB ⃗⃗⃗⃗⃗⃑2−16AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=−1.所以答案是:−1.小提示:关键点点睛:解答本题的关键点在于将AO ⃗⃗⃗⃗⃗⃑用AB⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑线性表示,将AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑转化为AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑之间的数量积运算问题来求解.12、若OA →=a →,OB →=b →,则∠AOB 平分线上的向量OM →可以表示为________.答案:λ(a →|a →|+b →|b →|),λ∈R分析:根据题意,以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则四边形为菱形,根据平面向量加法的平行四边形法则得OC →=OA→|OA →|+OB →|OB →|=a →|a →|+b →|b →|,由OM →,OC →共线,最后根据向量共线定理得OM →=λOC →,从而得出答案.解:∵ OA →=a →,OB →=b →,∴ OA→|OA →|=a→|a →|,OB →|OB →|=b →|b →|,∴以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则为菱形,∴OC 平分∠AOB ,∴根据向量加法的平行四边形法则可得:OC →=OA→|OA →|+OB→|OB →|=a →|a →|+b→|b →|,∵ OM →,OC →共线,∴由共线定理可得存在唯一的实数λ使得:OM →=λOC →=λ(a →|a →|+b →|b →|).所以答案是:λ(a →|a →|+b →|b →|),λ∈R .小提示:本题考查平面向量加法的平行四边形法则和向量共线定理,解题的关键是利用菱形的对角线平分对角这一重要性质.13、点A (−1,0),B(5,−4),AP⃗⃗⃗⃗⃗⃑=PB ⃗⃗⃗⃗⃗⃑,点P 的坐标为______. 答案:(2,−2)分析:设P(x,y),由已知条件,利用向量的坐标运算求解即可.由已知得,设P (x,y ),由已知得(x,y )−(−1,0)=(5,−4)−(x,y ),∴(x,y )=(2,−2),所以答案是:(2,−2).小提示:本题考查平面向量的坐标运算,属基础题.关键掌握向量的坐标等于终点的坐标减去起点的坐标.14、已知向量a ⃑、b ⃗⃗、c ⃑,且|a ⃑|=3,|b ⃗⃗|=5,|c ⃑|=1,a ⃑⋅b ⃗⃗=0,则|a ⃑+b ⃗⃗−c ⃑|的最小值为______.答案:√34−1##−1+√34分析:根据题意,建立直角坐标系,写出a ⃗、b ⃗⃗、a ⃗+b ⃗⃗坐标,求出c ⃑终点轨迹,数形结合即可求解.不妨设a ⃗=(3,0),b ⃗⃗=(0,5),a ⃗+b⃗⃗=(3,5), |c ⃑|=1,则c ⃑起点在原点,终点轨迹为单位圆x 2+y 2=1,∴当a ⃗+b ⃗⃗与c ⃑同向时,|a ⃑+b ⃗⃗−c ⃑|最小,为√32+52−1= √34−1.所以答案是:√34−1.15、已知a ⃑、b ⃗⃑是平面内两个互相垂直的单位向量,若c ⃑满足(a ⃑−c ⃑)⋅(b ⃗⃑−c ⃑)=0,则|c ⃑|的最大值为___________.答案:√2分析:首先根据数量积公式展开,再化简|c⃑|=√2cosα,利用三角函数的有界性求最值.(a⃗−c⃗)⋅(b⃗⃗−c⃗)=0⇔a⃑⋅b⃗⃑−(a⃑+b⃗⃑)⋅c⃑+c⃑2=0,∴|c⃗|2=(a⃗+b⃗⃗)⋅c⃗=|a⃗+b⃗⃗||c⃗|cosα=√2|c⃑|cosα,即|c⃑|=√2cosα,|c⃑|max=√2.所以答案是:√2解答题16、已知四边形ABCD是由△ABC与△ACD拼接而成的,且在△ABC中,2AB−BC=AC2+AB2−BC2AB.(1)求角B的大小;(2)若∠BAD=π3,∠ADC=5π6,AD=1,BC=2.求AB的长.答案:(1)B=π3 (2)AB=3分析:(1)由余弦定理结合2AB−BC=AC 2+AB2−BC2AB,即可求出角B的大小.(2)设AC=x,∠CAB=α,在△ABC中,由正弦定理可得√3=x sinα①,在△ADC中,由正弦定理可得x= 12sin(α−π6)②,联立①②,可得tanα=√32,在△ABC中,由正弦定理可求出AC,再由余弦定理即可求出AB的长.(1)∵2AB−BC=AC 2+AB2−BC2AB,∴整理可得,BC2+AB2﹣AC2=BC•AB,∴在△ABC中,由余弦定理可得cos B=BC2+AB2−AC22AB⋅BC =12,0<B<π,∴B=π3.(2)∵B=π3,∠BAD=π3,∠ADC=5π6,AD=1,BC=2,∴设AC=x,∠CAB=α,则在△ABC中,由正弦定理BCsin∠CAB =ACsinB,可得2sinα=xsinπ3,可得√3=x sinα,①在△ADC中,由正弦定理ACsinD =ADsin(π−∠D−∠DAC),可得xsin5π6=1sin[π6−(π3−α)],可得x=12sin(α−π6),②,∴联立①②,可得sinα=2√3sin(α−π6),可得tanα=√32,可得cosα=√11+tan2α=2√77,sinα=√217,∴在△ABC中,由正弦定理BCsinα=ACsinB,可得AC=2×sinπ3√217=√7,∵由余弦定理AC2=BC2+AB2﹣2AB•BC•cos B,可得7=4+AB2﹣2×2×AB×12,可得AB2﹣2AB﹣3=0,∴解得AB=3,(负值舍去).17、在锐角△ABC中,已知m⃗⃗⃑=(2sin(A+C),√3),n⃗⃑=(cos2B,2cos2B2−1),且m⃗⃗⃑//n⃗⃑.(1)求角B的大小;(2)若AC=1,求△ABC面积的最大值.答案:(1)π6(2)2+√34分析:(1)根据向量平行,结合二倍角正弦公式、降幂公式,化简整理,结合角B的范围,可求得答案;(2)根据(1)得角B,代入余弦定理,结合基本不等式,可得ac最大值,代入面积公式,即可得答案. (1)因为m⃗⃗⃑//n⃗⃑,所以2sin(A+C)(2cos2B2−1)=√3cos2B,因为A+B+C=π,所以sin(A+C)=sin(π−B)=sinB,所以2sinBcosB=sin2B=√3cos2B,所以tan2B=sin2Bcos2B=√3,因为锐角三角形,B∈(0,π2),所以2B∈(0,π),所以2B=π3,B=π6.(2)设角A、B、C所对的边为a,b,c,则AC=b=1,由余弦定理得cosB=a 2+c2−b22ac=√32,所以a2+c2−1=√3ac,即a2+c2=√3ac+1,又a2+c2≥2ac,所以√3ac+1≥2ac,解得ac≤2+√3,当且仅当a=c时等号成立,所以△ABC面积的最大值S max=12acsinB=12×(2+√3)×12=2+√34.18、已知向量a⃑=(1,1),b⃗⃑=(0,−2),在下列条件下分别求k的值:(1)a⃑+b⃗⃑与ka⃑−b⃗⃑平行;(2)a⃑+b⃗⃑与ka⃑−b⃗⃑的夹角为2π3.答案:(1)−1(2)−1±√3分析:(1)首先求出a⃑+b⃗⃑与ka⃑−b⃗⃑,再根据向量平行的坐标表示得到方程,解得即可;(2)首先利用向量数量积的坐标运算求出(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗),再根据平面向量数量积的定义得到方程,解得即可;(1)解:因为a⃑=(1,1),b⃗⃑=(0,−2),所以a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),又a⃗+b⃗⃗与ka⃗−b⃗⃗平行,所以−k=k+2,解得k=−1;(2)解:因为a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=1×k+(−1)×(k+2)=−2,因为a⃗+b⃗⃗与ka⃗−b⃗⃗夹角为2π3,所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=|a⃗+b⃗⃗||a⃗−b⃗⃗|cos2π3,即−2=−√2×√k2+(k+2)2×12,解得k=−1±√3.19、在△ABC中,a,b,c分别是角A,B,C的对边,B=π3,a=3.(1)若A=π4,求b.(2)若______,求c的值及△ABC的面积.请从①b=√13,②sinC=2sinA,这两个条件中任选一个,将问题(2)补充完整,并作答.答案:(1)3√62;(2)选①c=4,S△ABC=3√3;选②c=6,S△ABC=9√32分析:(1)根据正弦定理计算即可得出结果;(2)利用余弦定理或正弦定理求出c的值,再结合三角形的面积公式计算即可.(1)B=π3,a=3,A=π4,由正弦定理,得bsinB=asinA,所以b=asinA ×sinB=√22√32=3√62;(2)选①:由余弦定理,得b2=a2+c2−2accosB,即13=c2+9−2×3c×12,整理,得c2−3c−4=0,由c>0,得c=4,所以S△ABC=12acsinB=12×3×4×√32=3√3;选②:因为sinC=2sinA,由正弦定理,得c=2a,所以c=6,所以S△ABC=12acsinB=12×6×3×√32=9√32.。

第六章 平面向量及其应用(基础卷)高一数学单元提升卷(人教A版2019必修第二册)

第六章 平面向量及其应用(基础卷)高一数学单元提升卷(人教A版2019必修第二册)

第六章平面向量及其应用(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间1200分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题5分,共60分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理2.已知平面向量,满足|2+|=3,•(+)=1,则||=()A.5B.C.3D.【答案】B【分析】先将|2+|=3两边平方,化简后,再代入•(+)=1,即可得解.【解答】解:∵|2+|=3,•(+)=1,∴|2+|2=4+4•+=4(+)+=4+=9,∴=.故选:B.【知识点】平面向量数量积的性质及其运算3.已知向量=(2,2),=(x,4),若(3+4)∥(5﹣),则x=()A.2B.3C.4D.5【答案】C【分析】由平面向量的坐标运算和共线定理,列方程求出x的值.【解答】解:由向量=(2,2),=(x,4),所以3+4=(6+4x,22),5﹣=(5x﹣2,18);又(3+4)∥(5﹣),所以18(6+4x)﹣22(5x﹣2)=0,解得x=4.故选:C.【知识点】平面向量共线(平行)的坐标表示4.已知向量=(1,),向量在方向上的投影为﹣6,若(λ+)⊥,则实数λ的值为()A.B.﹣C.D.3【答案】A【分析】设=(x,y),由向量=(1,),向量在方向上的投影为﹣6,(λ+)⊥,列方程组,能求出λ的值.【解答】解:设=(x,y),∵向量=(1,),向量在方向上的投影为﹣6,(λ+)⊥,∴,解得λ=.故选:A.【知识点】数量积判断两个平面向量的垂直关系、平面向量数量积的含义与物理意义5.如图,在平行四边形ABCD中,下列结论中错误的是()A.=B.+=C.+=D.+=【答案】C【分析】根据向量加法的平行四边形法则以及平行四边形的性质解答即可.【解答】解:由平行四边形的性质,可得,选项A正确;由向量加法的平行四边形法则,可得,选项B正确;∵,∴选项D正确;∵,∴选项C错误.故选:C.【知识点】向量加减混合运算6.设向量,不共线,向量与2共线,则实数k=()A.﹣2B.﹣1C.1D.2【答案】A【分析】根据平面向量的线性运算和共线定理,利用向量相等列方程求出k的值.【解答】解:向量,不共线,向量与2共线,则2﹣k=λ(+),(2﹣λ)﹣(k+λ)=,,解得λ=2,k=﹣2.故选:A.【知识点】平行向量(共线)7.在△ABC所在的平面上有一点P,满足++=,设=,=,则=()A.+B.﹣C.+D.﹣【答案】C【分析】由向量加减的三角形法则结合相反向量的定义,可得P为线段AC的一个三等分点,再根据向量的加减的几何意义即可求出答案.【解答】解:∵++=,∴=﹣+﹣=++=2;即=2;故点P是CA边上的第二个三等分点;=+=+=(﹣)=+=+;故选:C.【知识点】向量数乘和线性运算8.设,,为非零不共线向量,若|﹣t+(1﹣t)|≥|﹣|(t∈R),则()A.(+)⊥(﹣)B.(+)⊥(+)C.(+)⊥(+)D.(﹣)⊥(+)【答案】D【分析】因为对任意的实数t∈R,不等式|﹣t+(1﹣t)|≥|﹣|(t∈R)恒成立,所以把不等式整理成关于t一元二次不等式.【解答】解:设,,为非零不共线向量,若|﹣t+(1﹣t)|≥|﹣|(t∈R),则≥|﹣|,∴|()+(1﹣t)()|2≥||2,化简得,(1﹣t)2()2+2(1﹣t)()•()≥0,即()2t2﹣2[()2+()()]t+()2+2()()≥0,∴△=4[()()]2≤0,∴()()=0,∴()⊥().故选:D.【知识点】两向量的和或差的模的最值9.如图,在△ABC中,,,若,则λ+μ的值为()A.B.C.D.【答案】A【分析】根据向量的基本定理结合向量加法的三角形分别进行分解即可.【解答】解:∵=,∴=又∵=+,∴=+,又∵=﹣=﹣∴=+=+(﹣)=+,∴λ=,μ=,则λ+μ=+=,故选:A.【知识点】平面向量的基本定理10.点P是△ABC内一点且满足,则△PBC,△P AC,△P AB的面积比为()A.4:3:2B.2:3:4C.1:1:1D.3:4:6【答案】A【分析】如图所示,过点C作CD∥P A交BP的延长线于点D,AC与PD交于点E.由于,可得.得到,.利用相似三角形的性质可得,同理.即可得出.【解答】解:如图所示,过点C作CD∥P A交BP的延长线于点D,AC与PD交于点E.∵,∴.∴,.∴,同理.∴S△PBC:S△P AC:S△P AB=4:3:2.故选:A.【知识点】向量数乘和线性运算11.已知P是边长为2的正六边形ABCDEF内的一点,则•的取值范围是()A.(﹣2,6)B.(﹣6,2)C.(﹣2,4)D.(﹣4,6)【答案】A【分析】画出图形,结合向量的数量积转化判断求解即可.【解答】解:画出图形如图,•=,它的几何意义是AB的长度与在向量的投影的乘积,显然,P在C处时,取得最大值,,可得•==2×3=6,最大值为6,在F处取得最小值,•==﹣2×=﹣2,最小值为﹣2,P是边长为2的正六边形ABCDEF内的一点,所以•的取值范围是(﹣2,6).故选:A.【知识点】平面向量数量积的性质及其运算12.,若对任意实数t,恒成立,则实数k的范围为()A.B.C.D.【答案】B【分析】根据条件由进行数量积的运算即可求出,然后根据可得出对任意实数t,9t2﹣3kt+4k2﹣1>0恒成立,然后根据△=9k2﹣36•(4k2﹣1)<0解出k的范围即可.【解答】解:∵,∴,,∴,∵对任意实数t,,∴对任意的实数t,,∴对任意实数t,9t2﹣3kt+4k2﹣1>0恒成立,∴△=9k2﹣36•(4k2﹣1)<0,解得或,∴实数k的范围为:.故选:B.【知识点】平面向量数量积的坐标表示、模、夹角二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.【答案】2或3【分析】根据题意,由向量平行的坐标表示方法可得(m﹣4)m﹣(m﹣6)=0,变形解可得m的值,即可得答案.【解答】解:根据题意,知向量=(m,1),=(m﹣6,m﹣4),若∥,则有(m﹣4)m﹣(m﹣6)=0,变形可得:m2﹣5m+6=0,解可得m=2或3,故答案为:2或3.【知识点】平面向量共线(平行)的坐标表示14.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算15.设,是两个不共线的向量,=2﹣,=4+k,A,B,C三点共线,则k=.【答案】-2【分析】由A,B,C三点共线,得,由此能求出k的值.【解答】解:∵,是两个不共线的向量,=2﹣,=4+k,A,B,C三点共线,∴,∴,解得k=﹣2.故答案为:﹣2.【知识点】平面向量共线(平行)的坐标表示16.如图所示,在直角梯形ABCD中,已知AD∥BC,,AB=AD=1,BC=2,M为BD的中点,设P、Q分别为线段AB、CD上的动点,若P、M、Q三点共线,则的最大值为.【答案】-2【分析】如图所示,建立直角坐标系.设P(0,m),m∈[0,1].设=k,可得=+k=(2﹣k,k),k∈[0,1].根据P、M、Q三点共线,可以设=λ+(1﹣λ)=(2λ﹣λk,λk+m﹣λm)=(,),利用向量相等消去λ可得:k=.代入=[﹣(m+1)]﹣2.令f (m)=[﹣(m+1)]﹣2.m∈[0,1].利用其单调性即可得出最大值.【解答】解:如图所示,建立直角坐标系.B(0,0),C(2,0),A(0,1),D(1,1),M(,).设P(0,m),m∈[0,1].设=k,则=+k=(2,0)+k(﹣1,1)=(2﹣k,k),k∈[0,1].∵P、M、Q三点共线,∴可以设=λ+(1﹣λ)=(2λ﹣λk,λk+m﹣λm)=(,),∴2λ﹣λk=,λk+m﹣λm=.消去λ可得:k=.则=(2﹣k,k﹣1)•(﹣2,m)=﹣4+2k+mk﹣m=﹣4+(2+m)×﹣m=[﹣(m+1)]﹣2.令f(m)=[﹣(m+1)]﹣2.m∈[0,1].则f(m)在m∈[0,1]上单调递减,因此m=0时,f(m)取得最大值f(0)=﹣2.【知识点】平面向量数量积的性质及其运算三、解答题(本大题共7小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.【分析】(1)设=λ=(2λ,0),由||=1可得2λ=1,解可得λ的值,即可得答案,(2)根据题意,由数量积的计算公式可得•=﹣1,设=(x,y),由数量积的坐标计算公式可得•=2x=﹣1,即可得x的值,由向量模的计算公式可得y的值,即可得的坐标,由向量的坐标计算公式计算可得答案.【解答】解:(1)根据题意,与同向,且,设=λ=(2λ,0),又由||=1,则有2λ=1,即λ=,则=(1,0);(2),则||=2,若与的夹角为120°,则•=||||cos120°=2×1×cos120°=﹣1,设=(x,y),则•=2x=﹣1,则x=﹣,又由||=1,则x2+y2=1,解可得y=±,故=(,±),则+=(,±).【知识点】平面向量数量积的性质及其运算、数量积表示两个向量的夹角18.已知向量,.(1)求向量与的夹角;(2)若(m∈R),且,求m的值【分析】(1)根据题意,由、的坐标求出•和||、||的值,由向量夹角公式计算可得答案;(2)根据题意,求出﹣2的坐标,由向量垂直的判断方法可得,代入向量的坐标可得(﹣4)×3+3m=0,计算可得答案.【解答】解:(1)根据题意,,,则,,,设向量与的夹角为θ,则,又由θ∈[0,π],,即向量与的夹角为(2)根据题意,,,则,若,则,又由,则有(﹣4)×3+3m=0,解可得m=4.【知识点】平面向量数量积的性质及其运算、数量积判断两个平面向量的垂直关系19.如图,在长方形ABCD中,E为边DC的中点,F为边BC上一点,且.设=.(Ⅰ)试用基底{,},表示;(Ⅱ)若G为长方形ABCD内部一点,且.求证:E,G,F三点共线.【分析】(Ⅰ)根据题意,由平面向量的线性运算法则即可用基底{,},表示;(Ⅱ)考虑三点共线时,=+(1﹣λ),经检验═+,∵,∴E,G,F三点共线.【解答】解:(Ⅰ)由题,=+=+=+=,=+=+=﹣=﹣.(Ⅱ)=+=+=+,=()+(+)=+,∵,∴E,G,F三点共线.【知识点】平面向量的基本定理20.在△ABC中,AB=6,AC=3,D为BC中点,=2,=.(1)若∠A=,求•的值;(2)若•=0,求•的值.【分析】(1)分别用,表示,,再利用数量积的定义,即可算出答案.(2)分别用,表示,,结合条件•=0,即可得到答案.【解答】解:(1)=()•()=(+)•(﹣)=(+﹣)•()=()•()=﹣+﹣=﹣+﹣×6×3×cos=﹣12.(2)=()•()=(﹣﹣)•(﹣)=(﹣+﹣)•(﹣﹣)=(﹣+)•(﹣﹣)=+﹣=+﹣×62=0,所以.【知识点】平面向量数量积的性质及其运算21.在平面直角坐标系中,已知A(﹣1,2),B(3,4),C(2,1).(1)若O为坐标原点,是否存在常数t使得成立?(2)设梯形ABCD,且AB∥DC,AB=2CD,求点D坐标;(3)若点E满足:=1,且=1,求点E坐标.【分析】(1)先假设存在,根据条件解出t的值,由此即可得出结论;(2)设D(x,y),由已知条件建立关于x,y的方程组,解出即可;(3)设E(a,b),由已知条件建立关于a,b的方程组,解出即可.【解答】解:(1)假设存在常数t使得成立,则(﹣1,2)+t(3,4)=(3t﹣1,4t+2)=(2,1),则,解得,故假设不成立,即不存在常数t使得成立;(2)设D(x,y),则,由AB∥DC可知,4(y﹣1)﹣2(x﹣2)=0,即x=2y①,由AB=2CD可得,②,由①②可得,或,即D(6,3)或D(﹣2,﹣1);(3)设E(a,b),则,依题意,,解得或,故点E的坐标为或.【知识点】平面向量数量积的性质及其运算22.如图,平行四边形ABCD中,=,N为线段CD的中点,E为线段MN上的点且=2.(1)若=+,求λμ的值;(2)延长MN、AD交于点P,F在线段NP上(包含端点),若=t+(1﹣t),求t的取值范围.【分析】(1)利用向量的加法及平面向量的基本定理即可求得λ,μ,从而得解;(2)利用共线向量定理可设=λ=λ(0≤λ≤1),由向量的加法法则可得=﹣λ+(1+λ),由平面向量的基本定理可得t=﹣λ,即可求得t的取值范围.【解答】解:根据题意可得=++=++=++(+)=++(﹣)=+,又=+,由平面向量的基本定理可得λ=,μ=,所以λμ=.(2)由题意可得=,因为F在线段NP上(包含端点),所以设=λ=λ(0≤λ≤1),所以=+=+(1+λ)=+(1+λ)(﹣)=﹣λ+(1+λ),又=t+(1﹣t),所以t=﹣λ∈[﹣1,0].【知识点】平面向量的基本定理23.某大型商场为迎接新年的到来,在自动扶梯AC(AC>5米)的C点的上方悬挂竖直高度为5米的广告牌DE.如图所示,广告牌底部点E正好为DC的中点,电梯AC的坡度∠CAB=30°.某人在扶梯上点P处(异于点C)观察广告牌的视角∠DPE=θ.当人在A点时,观测到视角∠DAE的正切值为.(1)求扶梯AC的长;(2)当某人在扶梯上观察广告牌的视角θ最大时,求CP的长.【分析】(1)设|BC|=a.由∠CAB=30°,则|AB|=a.可得tan∠EAB=,tan∠DAB=.利用tan∠DAE==tan(∠DAB﹣∠EAB),代入即可得出.(2)设=k,A(﹣5,0),C(0,5).则P(5k﹣5,5k).(0≤k≤1).作PF⊥BC,垂足为F点,则F(0,5k).tan∠DPF==,tan∠EPF==.可得tanθ=tan(∠DPF﹣∠EPF)===f(k),利用导数已经其单调性即可得出.【解答】解:(1)设|BC|=a.∵∠CAB=30°,则|AB|=a.tan∠EAB=,tan∠DAB=.∴tan∠DAE==tan(∠DAB﹣∠EAB)=.化为:2b2﹣15b+25=0,解得b=5或.∵AC>5.∴b=5.∴AC=10.(2)设=k,A(﹣5,0),C(0,5).则P(5k﹣5,5k).(0≤k≤1).作PF⊥BC,垂足为F点,则F(0,5k).∴tan∠DPF==,tan∠EPF==.tanθ=tan(∠DPF﹣∠EPF)===f(k),f′(k)=,k=时,f(k)取得最大值,CP==10(1﹣k)=5.【知识点】解三角形、三角形中的几何计算。

高一数学平面向量的几何应用试题答案及解析

高一数学平面向量的几何应用试题答案及解析

高一数学平面向量的几何应用试题答案及解析1.已知:是不共线向量,,,且,则的值为()A.B.C.D.【答案】B【解析】因为,故设,即,又是不共线向量,所以有,解得,故选择B.【考点】平面向量平行.2.设两个向量、,满足,,、的夹角为,若向量与向量的夹角为钝角,求实数的取值范围.【答案】【解析】夹角为钝角可通过数量积为负来解决,但它们之间并不等价,简洁地说,数量积为负排除反向,即可保证夹角为钝角;数量积为正排除同向,即可保证夹角为锐角.不作排除,就要犯错. 试题解析:由已知得,,.∴()() 6分欲使夹角为钝角,需.得. 8分设()() 10分∴,此时. 11分即时,向量与的夹角为.∴夹角为钝角时,的取值范围是. 13分【考点】向量数量积的应用之一:求夹角.3.平面向量与的夹角为60°,,,则().A.9B.C.3D.7【答案】B【解析】因为平面向量与的夹角为60°,,所以,则.【考点】平面向量的模长公式.4.已知,,且与的夹角为锐角,则实数的取值范围是________.【答案】且.【解析】因为,,且与的夹角为锐角,所以,即,解得且.【考点】平面向量的夹角.5.在△中,已知,向量,,且.(1)求的值;(2)若点在边上,且,,求△的面积.【答案】(1);(2).【解析】解题思路:(1)先由平面向量的垂直关系得出,再利用三角形的三角关系求角A;(2)先由(1)中的三角关系得出三边关系,再利用余弦定理求出有关边长,进而利用三角形的面积公式求三角形的面积.规律总结:解三角形问题,往往要综合正弦定理、余弦定理、三角形的面积公式以及三角恒等变形等知识,综合性较强,主要思路是利用有关定理实现边、角的合理互化.试题解析:(1)由条件可得,(方法一):由,A+B+C=π,所以,又,所以,所以,即(方法二):因为,所以因为,所以,而,因此;(2)由(1)得,由正弦定理得,设,则,在中,由余弦定理,得,解得,所以;所以 .【考点】1.三角形的三角关系、三边关系、边角关系2.正弦定理;3.余弦定理.6.已知向量,则向量和的夹角为_________ .【答案】.【解析】,因此【考点】向量的夹角.7.已知=(2,3),=(﹣1,2)当k为何值时,(Ⅰ)与垂直?(Ⅱ)与平行?平行时它们是同向还是反向?【答案】(1);(2).【解析】(1)当向量与是坐标形式给出时,若证明,则只需证明;(2)当是非坐标形式时,要把用已知的不共线的向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行证明;(3)利用向量垂直于平行的条件进行构造方程或函数是求参数或最值问题常用的方法与技巧.(4),当时,和方向相同,当时,和方向相反.试题解析:解:=(2,3)+(﹣1,2)=(2﹣1,3+2),=(5,﹣3)(1)与垂直,得()•()=10﹣5﹣9﹣6=﹣11=0,=11(2)与平行,得15+10=﹣6+3,=﹣此时=(﹣,1),=(5,﹣3),所以方向相反.【考点】(1)平面向量垂直;(2)平面向量共线.8.如图,在平面上,点,点在单位圆上,()(1)若点,求的值;(2)若,四边形的面积用表示,求的取值范围.【答案】(1)-3,(2).【解析】(1)本小题从三角函数的定义出发,当且,可得,,而,因此有;(2)因为,且均可用或表示,则可用含的式子表示,利用辅助角公式可化为一种名称的三角函数,结合角的范围即可求得此函数的范围.试题解析:(1)由于,,所以,,于是 .(2),由于,,所以,,则(),由于,所以,所以.【考点】三角函数的定义,正切的半角公式,两角和的正切公式,辅助角公式,三角函数的定义域与值域问题,转化与化归思想.9.已知,若的夹角为,则= .【答案】【解析】因为所以【考点】向量的模10.如图,平面直角坐标系中,已知向量,,且。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、多选题1.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=- 2.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知cos cos 2B bC a c=-,4ABC S =△,且b = )A .1cos 2B =B .cos B =C .a c +=D .a c +=3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列ABC 有关的结论,正确的是( ) A .cos cos 0A B +>B .若a b >,则cos2cos2A B <C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 4.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C5.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为26.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,不解三角形,确定下列判断错误的是( )A .B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解C .B =60°,c =4,b =3,有一解D .B =60°,c =4,b =2,无解7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )A .B .C .8D .8.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 9.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±10.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-11.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+ D .AD CD CD CB +=-12.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形 13.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=-14.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个15.题目文件丢失!二、平面向量及其应用选择题16.在ABC 中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫⎪=++ ⎪⎝⎭,m R ∈,则点P 的轨迹一定通过ABC 的( ) A .重心B .内心C .外心D .垂心17.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )A .a 与b 的夹角为αβ-B .a b ⋅的最大值为1C .2a b +≤D .()()a b a b +⊥-18.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若lg lg lg sin 2a c B -==-,且0,2B π⎛⎫∈ ⎪⎝⎭,则ABC 的形状是( )A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形19.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为3(21),则b c +=( )A . 5B .2C .4D .1620.已知非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,且1||||2AB AC AB AC =,则ABC ∆的形状是( ) A .三边均不相等的三角形 B .直角三角形 C .等腰(非等边)三角形D .等边三角形21.在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若2cosA 3cosB 5cosCa b c==,则∠B 的大小是( )A .12πB .6π C .4π D .3π 22.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m23.在ABC ∆中,设222AC AB AM BC -=⋅,则动点M 的轨迹必通过ABC ∆的( ) A .垂心B .内心C .重心D . 外心24.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶3B .1∶2∶1C .2∶1∶1D .1∶1∶225.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-26.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形27.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( ) A .35 B .107C .57D .521428.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A .3B .1C .12D .3229.已知向量()22cos ,3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数 30.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1B .2C .3D .431.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( )(注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心 D .外心重心内心32.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +> C .612abc ≤≤D .1224abc ≤≤33.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .434.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,BC 3EC =,F 为AE 的中点,则BF =( )A .2133AB AD - B .1233AB AD - C .2133AB AD -+ D .1233AB AD -+ 35.在ABC 中,若A B >,则下列结论错误的是( ) A .sin sin A B >B .cos cos A B <C .sin2sin2A B >D .cos2cos2A B <【参考答案】***试卷处理标记,请不要删除一、多选题 1.BD 【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a ba b a b a b+=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD. 【点睛】本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.2.AD【分析】利用正弦定理,两角和的正弦函数公式化简,结合,可求,结合范围,可求,进而根据三角形的面积公式和余弦定理可得. 【详解】 ∵,整理可得:, 可得,∵A 为三角形内角,, ∴,故A 正确解析:AD 【分析】利用正弦定理,两角和的正弦函数公式化简cos cos 2B bC a c=-,结合sin 0A ≠,可求1cos 2B =,结合范围()0,B π∈,可求3B π=,进而根据三角形的面积公式和余弦定理可得a c += 【详解】 ∵cos sin cos 22sin sin B b BC a c A C==--, 整理可得:sin cos 2sin cos sin cos B C A B C B =-,可得()sin cos sin cos sin sin 2sin cos B C C B B C A A B +=+==, ∵A 为三角形内角,sin 0A ≠, ∴1cos 2B =,故A 正确,B 错误, ∵()0,B π∈, ∴3B π=,∵4ABC S =△,且3b =,11sin 22ac B a c ==⨯⨯=, 解得3ac =,由余弦定理得()()2222939a c ac a c ac a c =+-=+-=+-,解得a c +=C 错误,D 正确. 故选:AD. 【点睛】本题主要考查正弦定理,余弦定理以及两角和与差的三角函数的应用,还考查了运算求解的能力,属于中档题.3.ABD 【分析】对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【解析:ABD 【分析】对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 12s S ab C =和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即cos2cos2A B <,故B 正确;对于C ,211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错误;对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B CA B C B C+=-+=--⋅,则tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.4.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 5.CD【分析】对于A ,利用平面向量的数量积运算判断;对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(解析:CD 【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为22a b b⋅=,错误;对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=(2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD. 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.6.ABC 【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解. 【详解】对于,因为为锐角且,所以三角解析:ABC 【分析】根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角形有唯一解.逐个判断即可得解. 【详解】对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;对于B ,因为B 为锐角且sin 4 3.92c B b c =⨯==<,所以三角形ABC 有两解,故B 错误;对于C ,因为B 为锐角且 sin 432c B b =⨯=>=,所以三角形ABC 无解,故C 错误;对于D ,因为B 为锐角且sin 42c B b ==>=,所以三角形ABC 无解,故D 正确. 故选:ABC. 【点睛】本题考查了判断三角形解的个数的方法,属于基础题.7.AC 【分析】利用余弦定理:即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:,即,解得.故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC【分析】利用余弦定理:2222cos b a c ac B =+-即可求解.【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:2222cos b a c ac B =+-,即216310a a -+=,解得8a =故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.8.BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确;对于C ,,则或与共线,故C 错误;对于D ,在四边形中,若解析:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,00a ⨯=,故A 错误;对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.9.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当时,,故选项B 错误;因为,故选项C 正确;当共线同向时,,当共线反解析:ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.10.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误;对于C 选项,解析:AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】 对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.故选:AB.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题. 11.BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为,,且, 所以,即C 结论正确;因为,解析:BCD【分析】 由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误; 因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.12.BCD【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误解析:BCD【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确;对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A B π+--∴-=-===cos 0cos cos C A B=->,cos cos cos 0A B C ∴<, 对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数,则ABC ∆为钝角三角形,D 选项正确.故选:BCD.【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 13.AB【分析】若,则反向,从而;若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立.【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得;对于选解析:AB【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=;若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立.【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-;对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ; 对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB.【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.14.BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,,设,若,所以解析:BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,设(,)B m n ,若10OA OB -=,所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.15.无二、平面向量及其应用选择题16.A【分析】设sin sin a B b A CH ==,则()m CP a b CH =+,再利用平行四边形法则可知,P 在中线CD 上,即可得答案;【详解】如图, sin sin a B b A CH ==,∴()m OP OC a b CH =++,()m CP a b CH =+, 由平行四边形法则可知,P 在中线CD 上,∴P 的轨迹一定通过ABC 的重心. 故选:A.【点睛】本题考查三角形重心与向量形式的关系,考查数形结合思想,考查逻辑推理能力、运算求解能力,求解时注意向量加法几何意义的运用.17.D【分析】由向量夹角的范围可判断A 选项的正误;计算出a b ⋅,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算()()a b a b +⋅-的值可判断D 选项的正误.综合可得出结论.【详解】 ()cos ,sin a αα=,()cos ,sin b ββ=,则22cos sin 1a αα=+=,同理可得1b =,a 与b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈. 对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且()k k Z αβπ-≠∈,A 选项错误; 对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,()cos cos 1,1a b a b θθ⋅=⋅=∈-,B 选项错误;对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误;对于D 选项,()()22220a b a b a b a b +⋅-=-=-=,所以,()()a b a b +⊥-,D 选项正确.故选:D.【点睛】本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题.18.C【分析】化简条件可得sin 2a B c ==,由正弦定理化边为角,整理cos 0C =,即可求解. 【详解】lg lg lg sin a c B -==-,sin 2a B c ∴==.0,2B π⎛⎫∈ ⎪⎝⎭, 4B π∴=.由正弦定理,得sin sin 2a A c C ==,3sin cos sin 422C A C C C π⎫⎛⎫∴==-=+⎪ ⎪⎪⎝⎭⎭, 化简得cos 0C =.()0,C π∈,2C π∴=, 则4A B C ππ=--=, ∴ABC 是等腰直角三角形.故选:C.【点睛】本题主要考查了正弦定理,三角恒等变换,属于中档题.19.C【分析】根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得6(2bc =,再代入余弦定理求解即可.【详解】ABC 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=, 又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈,∴4A π=.∵1sin 1)24ABC S bc A ===-,∴bc =6(2,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--,∴2()4(2b c bc +=++4(26(216=++⨯-=,可得4b c +=.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.20.D【分析】 先根据0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,判断出A ∠的角平分线与BC 垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C ,判断出三角形的形状.【详解】 解:0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,||AB AB ,||AC AC 分别为单位向量, A ∴∠的角平分线与BC 垂直,AB AC ∴=, 1cos ||||2AB AC A AB AC ==, 3A π∴∠=,3B C A π∴∠=∠=∠=, ∴三角形为等边三角形.故选:D .【点睛】本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题.21.D【分析】根据正弦定理,可得111tan tan tan 235A B C ==,令tan 2A k =,tan 3B k =,tan 5C k =,再结合公式tan tan()B A C =-+,列出关于k 的方程,解出k 后,进而可得到B 的大小.【详解】 解:∵2cosA 3cosB 5cosC a b c ==, ∴sin sin sin 2cos 3cos 5cos A B C A B C ==, 即111tan tan tan 235A B C ==, 令tan 2A k =,tan 3B k =,tan 5C k =,显然0k >, ∵tan tan tan tan()tan tan 1A C B A C A C +=-+=-,∴273101k k k =-,解得k =∴tan 3B k ==B =3π. 故选:D .【点睛】本题考查正弦定理边角互化的应用,考查两角和的正切,用k 表示tan 2A k =,tan 3B k =,tan 5C k =是本题关键22.D【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】 15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC 302sin 45203sin120BC 3tan 30203203ABBC故选D 【点睛】 本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题. 23.D【分析】 根据已知条件可得()222AC AB AC AB BC AM BC -=+⋅=⋅,整理可得()0BC MC MB ⋅+=,若E 为BC 中点,可知BC ME ⊥,从而可知M 在BC 中垂线上,可得轨迹必过三角形外心. 【详解】()()()222AC AB AC AB AC AB AC AB BC AM BC -=+⋅-=+⋅=⋅()20BC AC AB AM ∴⋅+-=()()0BC AC AM AB AM BC MC MB ⇒⋅-+-=⋅+=设E 为BC 中点,则2MC MB ME +=20BC ME ∴⋅= BC ME ⇒⊥ME ⇒为BC 的垂直平分线 M ∴轨迹必过ABC ∆的外心 本题正确选项:D 【点睛】本题考查向量运算律、向量的线性运算、三角形外心的问题,关键是能够通过运算法则将已知条件进行化简,整理为两向量垂直的关系,从而得到结论. 24.B 【分析】延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。

相关文档
最新文档