高一数学(空间几何体单元复习)

合集下载

高一数学知识点总结_空间几何体的结构知识点

高一数学知识点总结_空间几何体的结构知识点

高一数学知识点总结_空间几何体的结构知识点高一数学空间几何体的结构知识点篇1空间几何体的结构知识点1、静态的观点有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,象这样的旋转体称为圆柱。

2、定义:以矩形的一边所在直线为旋转轴,其余各边旋转而形成的的曲面所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于圆柱轴的边旋转而成的面叫圆柱的侧面,圆柱的侧面又称圆柱的面。

无论转到什么位置,不垂直于轴的边都叫圆柱侧面的母线。

表示:圆柱用表示轴的字母表示。

规定:圆柱和棱柱统称为柱体。

3、静态观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角旋转形成的面围成的旋转体,像这样的旋转体称为圆锥。

4、定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥。

旋转轴叫圆锥的轴;垂直于旋转轴的边旋转而成的圆面成为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫圆锥的侧面,圆锥的侧面又称圆锥的面,无论旋转到什么位置,这条边都叫做圆锥侧面的母线。

表示:圆锥用表示轴的字母表示。

规定:圆锥和棱锥统称为锥体。

5、定义:以半直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆台。

还可以看成用平行于圆锥底面的平面截这个圆锥,截面于底面之间的部分。

旋转轴叫圆台的轴。

垂直于旋转轴的边旋转而形成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫圆台侧面的母线。

表示:圆台用表示轴的字母表示。

规定:圆台和棱台统称为台体。

6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称为球。

半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径。

表示:用表示球心的字母表示。

高一数学空间几何体的三视图知识点归纳

高一数学空间几何体的三视图知识点归纳

高一数学空间几何体的三视图知识点归纳高一数学空间几何体的三视图知识点归纳知识点是知识、理论、道理、思想等的相对独立的最小单元。

下面是店铺给大家带来的高一数学空间几何体的三视图知识点归纳,希望能帮到大家!光由一点向外散射形成的投影叫做中心投影,其投影的大小随物体与投影中心间距离的变化而变化。

平行投影:在一束平行光线照射下形成的投影叫做平行投影。

在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。

空间几何体的`三视图:光线从几何体的前面向后面正投影,得到投影图,叫做几何体的正视图;光线从几何体的左面向右面正投影,得到投影图,叫做几何体的侧视图;从几何体的上面向下面正投影,得到投影图,高考地理,叫做几何体的俯视图。

几何体的正视图、侧视图、俯视图统称为几何体的三视图。

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

平行投影与中心投影的区别和联系:①平行投影的投射线都互相平行,中心投影的投射线是由同一个点发出的.如图所示,②平行投影是对物体投影后得到与物体等大小、等形状的投影;中心投影是对物体投影后得到比原物体大的、形状与原物体的正投影相似的投影.③中心投影和平行投影都是空间图形的基本画法,平行投影包括斜二测画法和三视图.中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原来的物体.④画实际效果图时,一般用中心投影法,画立体几何中的图形时一般用平行投影法.画三视图的规则:①画三视图的规则是正侧一样高,正俯一样长,俯侧一样宽.即正视图、侧视图一样高,正视图、俯视图一样长,俯视图、侧视图一样宽;②画三视图时应注意:被挡住的轮廓线画成虚线,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示,尺寸线用细实线标出;D表示直径,R表示半径;单位不注明时按mm计;③对于简单的几何体,如一块砖,向两个互相垂直的平面作正投影,就能真实地反映它的大小和形状.一般只画出它的正视图和俯视图(二视图).对于复杂的几何体,三视图可能还不足以反映它的大小和形状,还需要更多的投射平面.【高一数学空间几何体的三视图知识点归纳】。

立体几何第一章空间几何体单元测试题(含详细标准答案解析)

立体几何第一章空间几何体单元测试题(含详细标准答案解析)

第一章综合素能检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2016·菏泽市高一检测)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于错误!()A.2πﻩB.πC.2ﻩD.1[答案] A[解析]所得旋转体是底面半径为1,高为1的圆柱,其侧面积S侧=2πRh=2π×1×1=2π.2.(2016·全国卷Ⅲ,文)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为\x(导学号)()A.18+36\r(5) B.54+18错误!C.90 D.81[答案] B[解析]由三视图,知该几何体是一个斜四棱柱,所以该几何体的表面积S=2×3×6+2×3×3+2×3×35=54+18错误!,故选B.3.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是导学号()A.3034 B.60\r(34)C.30错误!+135ﻩD.135[答案] A[解析]由菱形的对角线长分别是9和15,得菱形的边长为错误!=错误!错误!,则这个菱柱的侧面积为4×错误!错误!×5=30错误!.4.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=错误!()A.1:3ﻩB.1:1C.2:1ﻩD.3:1[答案]D[解析]V1:V2=(Sh):(错误!Sh)=3:1.5.(2016·寿光现代中学高一月考)若两个球的表面积之比为1:4,则这两个球的体积之比为导学号( )A.1:2ﻩB.1:4C.1:8 D.1:16[答案]C[解析]设两个球的半径分别为r1、r2,∴S1=4πr2,1,S2=4πr错误!.∴\f(S1,S2)=错误!=错误!,∴错误!=错误!.∴错误!=错误!=(错误!)3=错误!.6.如图,△O′A′B′是水平放置的△OAB的直观图,则△OAB的面积为错误!()A.6ﻩB.3 2C.6\r(2) D.12[答案] D[解析]△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB=\f(1,2)×6×4=12.7.(2015·北京文)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为导学号( )A.1B .\r(2)C .\r(3)ﻩD .2[答案] C[解析] 根据三视图,可知几何体的直观图为如图所示的四棱锥V -ABCD ,其中VB ⊥平面AB CD ,且底面AB CD 是边长为1的正方形,VB =1.所以四棱锥中最长棱为VD.连接BD ,易知BD =\r(2),在Rt △VBD 中,VD =错误!=错误!.8.若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比为错误!( )A .1 ﻩB .\f (1,2)C .\f(\r (3),2)D.34 [答案] D[解析] 设圆柱与圆锥的底半径分别为R,r ,高都是h ,由题设,2R ·h=\f (1,2)×2r ·h , ∴r=2R ,V 柱=πR 2h ,V锥=13πr 2h =错误!πR 2h , ∴错误!=错误!,选D .9.半径为R 的半圆卷成一个圆锥,则它的体积为错误!( )D .错误!πR 3 ﻩB.错误!πR3C.错误!πR 3 ﻩD .错误!πR 3[答案] A[解析] 依题意,得圆锥的底面周长为πR ,母线长为R ,则底面半径为错误!,高为错误!R ,所以圆锥的体积为\f(1,3)×π×(错误!)2×错误!R =错误!πR 3.10.(2015·全国卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问。

专题10第一章空间几何体知识点与综合提升题—(解析版)高一数学复习巩固练习(人教A版)

专题10第一章空间几何体知识点与综合提升题—(解析版)高一数学复习巩固练习(人教A版)
2.如图, 是水平放置的 的直观图,则 的面积为()
A.6B.32C.12D.62
【答案】C
【分析】
结合斜二测法的画法原理求出 , ,再结合面积公式求解即可.
【详解】
由斜二测画法特点得 ,
为直角三角形,

故选:C.
【点睛】
本题考查由直观图求平面图的面积,属于容易题.
3.如图所示的几何体是()
A.圆锥B.棱锥C.圆台D.棱柱
三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”
二.空间几何体的直观图
斜二测画法的基本步骤:①建立适当直角坐标系 (尽可能使更多的点在坐标轴上)
②建立斜坐标系 ,使 =450(或1350)
③画对应图形
在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;
在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;
(1)绳子的最短长度的平方f(x).
(2)绳子最短时,顶点到绳子的最短距离.
(3)f(x)的最大值.
【答案】(1) f(x)=AM2=x2+16(0≤x≤4). (2) SR= = (0≤x≤4),(3) f(4)=32.
【解析】试题分析:将圆锥的侧面沿SA展开在平面上,如图,则该展开图为扇形,且弧AA′的长度L就是⊙O的周长,
∴L=2πr=2π.∴∠ASA′= ×360°= ×360°=90°,
(1)由题意知,绳长的最小值为展开图中的AM,其值为AM= (0≤x≤4),
∴f(x)=AM2=x2+16(0≤x≤4).
故选:A
【点睛】
已知三棱锥的三条侧棱两两相互垂直,即可将三棱锥的外接球扩展为长方体的外接球是解题的关键.

高一数学课件:第1章 立体几何初步复习与小结

高一数学课件:第1章  立体几何初步复习与小结

面面平行 常用面面平行的判定定理或垂直于同一条直线
线线垂直 常用勾股定理与线面垂直的定义
垂 直
线面垂直 常用线面垂直的定义、判定定理与面面垂直性质 面面垂直 常用面面垂直的定义、判定定理
数学思想
转化 线线平行 线线垂直 面面平行 线面垂直
线面平行


面面垂直
直线与平面垂直的定义:
如果直线a垂直于平面内任一条直线,我们称直线a与平面垂直. 线面垂直 线线垂直 直线与平面垂直的判定定理: 如果一条直线垂直于平面内的两条相交直线,那么这条直线和这个平面垂直. 线线垂直 线面垂直 直线与平面垂直的性质定理: 如果两条直线垂直于同一个平面,那么这两条直线互相平行. 斜线与平面所成角: 线面垂直 线线平行
当两条异面直线成直角,还可借助于线面垂直.
复习回顾:
3.直线与平面平行.
直线与平面平行的定义:
如果一条直线a和一个平面没有公共点,我们就说直线a与平面平行.
直线与平面平行的判定定理: 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线 和这个平面平行. 线线平行 线面平行
直线与平面平行的性质定理:
1Байду номын сангаас
B
P D A B C
典型例题:
如图,在正方体ABCD―A1B1C1D1中,E为DD1的中点.求证: (1)BD1∥平面EAC; (2) 平面EAC⊥平面AB1C. A1 D1 B1 C1
E
C B
A
D
小结:
线线平行 常用公理4,线面、面面平行与线面垂直的性质 平 行 线面平行 常用线面平行的性质与面面平行的定义
典型例题:
如图,在正方体ABCD―A1B1C1D1中,M,N分别为A1B和CC1的 中点.求证:MN∥平面ABCD. D1 A1 M D P B B1 N C C1

高考数学复习—空间几何体的表面积与体积

高考数学复习—空间几何体的表面积与体积
• 8.2 空间几何体的表面 积与体积
1.柱体、锥体、台体的表面积
(1)直棱柱、正棱锥、正棱台的侧面积 S 直棱柱侧=__________,S 正棱锥侧=__________, S = 正棱台侧
__________(其中 C,C′为底面周长,h 为高,h′为斜高).
(2)圆柱、圆锥、圆台的侧面积 S 圆柱侧=________,S 圆锥侧=________,S 圆台侧=________
故正方体的体积为 223= 42,所以三棱锥 P-CDE 的体积为 42-
4×13×12× 22× 22× 22= 122.故填122.
类型四 空间旋转体的体积问题
已知球的外切圆台上、下底面的半径分别为 r,
R,求圆台的体积.
解:如图,图①是该几何体的直观图,图②是该几何体的轴
截面平面图.
圆台轴截面为等腰梯形,与球的大圆相切,根据切线长定理, AC=AO1,BO=BC,得梯形腰长为 R+r,梯形的高即球的直径 长为 OO1= AB2-(OB-O1A)2= (R+r)2-(R-r)2
则 AD1= 32+42+122=13,所以直三棱柱外接球的半径为123.故选
C.
点 拨: 求解几何体外接球的半径主要从两个方面考 虑:一是根据球的截面的性质,利用球的半径 R、 截面圆的半径 r 及球心到截面圆的距离 d 三者的关 系 R2=r2+d2 求解,其中确定球心的位置是关键; 二是将几何体补成长方体,利用该几何体与长方体 共有外接球的特征,由外接球的直径等于长方体体
=123.即直三棱柱外接球的半径为123.
解法二:(补体法)如图所示,将直三棱柱 ABC-A1B1C1 的底面补
成矩形,得到长方体 ABDC-A1B1D1C1.显然,直三棱柱 ABC-A1B1C1 的 外 接 球 就 是 长 方 体 ABDC-A1B1D1C1 的 外 接 球 . 而 长 方 体

人教版数学高一第一章空间几何体单元测试精选(含答案)3

人教版数学高一第一章空间几何体单元测试精选(含答案)3

【答案】 2 1 3 4 2
评卷人 得分
三、解答题
试卷第 8页,总 11页
40.一张长为10cm ,宽为 5cm 的矩形纸,以它为侧面卷成一个圆柱,求该圆柱的体积.
125
【答案】
cm3 或 125
cm3 .
π

41.如图所示,在四边形 ABCD 中, A0, 0 , B 1,0 , C 2,1 , D 0,3 ,将四边
A.等边三角形
B.直角三角形
C.三边中只有两边相等的等腰三角形
D.三边互不相等的三角形
【答案】A
8.如图所示,观察四个几何体,其中判断正确的是( ).
A.(1)是棱台 C.(3)是棱锥 【答案】C
B.(2)是圆台 D.(4)不是棱柱
试卷第 2页,总 11页
9.一个球的内接正方体的表面积为 54,则球的表面积为( )
1
PB1= A1B1,则多面体 P-BCC1B1 的体积为( )
4
A.
8 3
C.4
【答案】B
16
B.
3
D.5
评卷人 得分
二、填空题
27.圆台的上底面半径为 2,下底面半径为 3,截得此圆台的圆锥的高为 6,则此圆台
的体积为____________.
【答案】 38 π 3
28.已知在三棱锥 P ABC 中,侧面与底面所成的二面角相等,则点 P 在平面 ABC 内的射影一定是 ABC 的__________心.
所示),则其侧视图的面积是 ( )
A.4 3cm2
B.2 3 cm2
C.8 cm2
D.4 cm2
【答案】A 21.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为( )

单元复习13 立体几何初步(课件)高一数学单元复习(苏教版2019必修第二册)

单元复习13 立体几何初步(课件)高一数学单元复习(苏教版2019必修第二册)

4.空间中面面关系 两个平面之间的位置关系有且只有平行、相交两种. (1)证明面面平行的方法 ①面面平行的定义; ②面面平行的判定定理:a∥β,b∥β,a⊂α,b⊂α,a∩b= A⇒α∥β; ③线面垂直的性质定理:a⊥α,a⊥β⇒α∥β; ④基本事实4的推垂直的定义:两个平面相交所成的二面角是直二面角; ②面面垂直的判定定理:a⊥β,a⊂α⇒α⊥β.
顶点:各侧面的_公__共__顶__点___
按底面多边形的边数分:三棱锥、四棱锥……,其中三棱锥又叫 分类 __四__面__体__.底面是__正__多__边__形__,并且顶点与底面中心的连线__垂__直__于
底面的棱锥叫做正棱锥
6.棱台的结构特征:
用一个__平__行__于__棱__锥__底__面___的平面去截棱锥,底面和截面之间那部分多 定义
(1)证明直线与平面平行的方法 ①线面平行的定义; ②判定定理:a⊄α,b⊂α,a∥b⇒a∥α; ③平面与平面平行的性质:α∥β,a⊂α⇒a∥β.
(2)证明直线与平面垂直的方法 ①线面垂直的定义; ②判定定理 1: ml⊥,mn,⊂lα⊥,nm∩n=A⇒l⊥α; ③判定定理 2:a∥b,a⊥α⇒b⊥α; ④面面平行的性质定理:α∥β,a⊥α⇒a⊥β; ⑤面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.
[答案] (1)C (2)B
空间位置关系的证明 [例3] 如图,在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是 AC,B1C的中点.
(1)求证:EF∥平面AB1C1; (2)求证:平面AB1C⊥平面ABB1.
[证明] (1)因为E,F分别是AC,B1C的中点, 所以EF∥AB1. 又EF⊄平面AB1C1,AB1⊂平面AB1C1, 所以EF∥平面AB1C1. (2)因为B1C⊥平面ABC,AB⊂平面ABC, 所以B1C⊥AB. 又AB⊥AC,B1C⊂平面AB1C, AC⊂平面AB1C,B1C∩AC=C, 所以AB⊥平面AB1C. 又因为AB⊂平面ABB1, 所以平面AB1C⊥平面ABB1.

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析1.某三棱锥的三视图如图所示,该三棱锥的体积为()A.B.C.D.【答案】A【解析】由三视图知,几何体是一个三棱锥,底面是直角边长为的直角三角形,面积是,三棱锥的一条侧棱与底面垂直,且长度是,这是三棱锥的高,三棱锥的体积是.故选A.【考点】本题考查由三视图求面积、体积.2.已知一空间几何体的三视图如图所示,它的表面积是()A.B.C.D.3【答案】C【解析】该几何体是三棱柱,如下图,,其表面积为。

故选C。

【考点】柱体的表面积公式点评:由几何体的三视图来求出该几何体的表面积或者体积是一个考点,这类题目侧重考察学生的想象能力。

3.已知某一几何体的正(主)视图与侧(左)视图如图,则在下列图形中,可以是该几何体的俯视图的图形有()A.①②③⑤B.②③④⑤C.①③④⑤D.①②③④【答案】D【解析】俯视图为⑤的几何体的侧视图如下,这与题目不相符,而①②③④符合题意。

故选D。

【考点】三视图点评:本题考查简单空间图形的三视图,考查空间想象能力,是基础题.4.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)若是的中点,求证:∥平面;(3)求证:平面⊥平面.【答案】(1)4 (2)主要证明∥ (3)主要证明平面【解析】解:(1)由题意可知,四棱锥中,平面平面,,所以,平面,又,,则四棱锥的体积为.(2)连接,则∥,∥,又,所以四边形为平行四边形,∴∥,∵平面,平面,所以,∥平面.(3)∵,是的中点,∴⊥,又在直三棱柱中可知,平面平面,∴平面,由(2)知,∥,∴平面,又平面,所以,平面平面.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.点评:本题考查的知识点是直线与平面平行的判定,棱锥的体积,平面与平面垂直的判定,其中(1)的关键是由面面垂直的性质定理可得AB⊥平面ACDE,(2)的关键是分析出四边形ANME为平行四边形,即AN∥EM,(3)的关键是熟练掌握空间线线垂直,线面垂直与面面垂直之间的相互转化.5.如图是长方体被一平面所截得到的几何体,四边形为截面,长方形为底面,则四边形的形状为( )A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【答案】B【解析】因为,长方体中相对的平面互相平行,所以,被平面截后,EF,GH平行且相等,GF,EH 平行且相等,故四边形的形状为平行四边形,选B。

高一数学立体几何考点例题(全章)

高一数学立体几何考点例题(全章)

高一数学立体几何例题(全章)考点一 空间向量及其运算1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++, 试判断:点P 与,,A B C 是否一定共面?解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y 使AP x AB y AC =+或对空间任一点O ,有OP OA x AB y AC =++。

答案:由题意:522OP OA OB OC =++,∴()2()2()OP OA OB OP OC OP -=-+-,∴22AP PB PC =+,即22PA PB PC =--,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2. 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE . 解析:要证明//MN 平面CDE ,只要证明向量NM 可以用平面CDE 内的两个不共线的向量DE 和DC 线性表示.答案:证明:如图,因为M 在BD 上,且13BM BD =,所以111333MB DB DA AB ==+.同理1133AN AD DE =+,又CD BA AB ==-,所以MN MB BA AN =++ 1111()()3333DA AB BA AD DE =++++2133BA DE =+2133CD DE =+.又CD 与DE 不共线,根据共面向量定理,可知MN ,CD ,DE 共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开. 考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E转化转化是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1, ∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x轴、y 轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵=(-23,0,2),1AC =(-3,0,4),∴121AC =,∴DE ∥AC 1.点评:2.平行问题的转化: 面面平行线面平行线线平行;主要依据是有关的定义及判定定理和性质定理.4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点。

(完整版)高一数学必修2_第一章空间几何体知识点

(完整版)高一数学必修2_第一章空间几何体知识点

第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。

(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。

(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。

(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。

3. 棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。

正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。

(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析

高一数学空间几何体试题答案及解析1.两个球的体积之比是,那么这两个球的表面积之比是()A.B.C.D.【答案】B【解析】设半径分别为r,R;则故选B2.一个表面积为36π的球外切于一圆柱,则圆柱的表面积为()A.45πB.27πC.36πD.54π【答案】D【解析】因为球的表面积为36π,所以球的半径为3,因为该球外切于圆柱,所以圆柱的底面半径为3,高为6,所以圆柱的表面积.3.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为 .【答案】或0【解析】依题意可得,三棱锥中较长的两条棱长为,设这两条棱所在直线的所成角为。

若这两条棱相交,则这两条棱长所在面的第三条棱长为,由余弦定理可得。

若这两条棱异面,如图,不妨设,取中点,连接。

因为,所以有,从而有面,所以,则4.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为,体积为,则这个球的表面积是()A.B.C.D.【答案】C【解析】正四棱柱的底面积为,正四棱柱的底面的边长为,正四棱柱的底面的对角线为,正四棱柱的对角线为,而球的直径等于正四棱柱的对角线,即,5.将一个边长为a的正方体,切成27个全等的小正方体,则表面积增加了()A.B.12a2C.18a2D.24a2【答案】B【解析】27个全等的小正方体的棱长为边长为a的正方体的表面积为27个全等的小正方体的表面积和为则表面积增加了。

故选B6.两个球体积之和为12π,且这两个球大圆周长之和为6π,那么这两球半径之差是()A.B.1C.2D.3【答案】B【解析】7.直径为10cm的一个大金属球,熔化后铸成若干个直径为2cm的小球,如果不计损耗,可铸成这样的小球的个数为()A.5B.15C.25D.125【答案】D【解析】设个数为则故选D8.与正方体各面都相切的球,它的表面积与正方体的表面积之比为()A.B.C.D.【答案】B【解析】设正方体棱长为a,球半径为r;由条件知则球表面积正方体的表面积之比为故选B9.球的表面积扩大为原来的4倍,则它的体积扩大为原来的___________倍【答案】8【解析】设球半径为扩大后球半径为则于是扩大后体积为所以它的体积扩大为原来的8倍.10.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是()A.①②B.①C.③④D.①②③④【答案】A【解析】由斜二测画法规则知:①正确;平行性不变,故②正确;正方形的直观图是平行四边形,③错误;因为平行于y′轴的线段长减半,平行于x′轴的线段长不变,故④错误.故选A11.下列说法中正确的是()A.互相垂直的两条直线的直观图仍然是互相垂直的两条直线B.梯形的直观图可能是平行四边形C.矩形的直观图可能是梯形D.正方形的直观图可能是平行四边形【答案】D【解析】坐标轴上的两条直线的直观图是成角的两条直线;梯形的直观图不可能是平行四边形,平行的一组对边长度不相等,它们的直观图的长度也不相等;矩形的直观图是平行四边形,不可能是梯形;正方形的直观图是平行四边形。

高一数学空间几何体知识点

高一数学空间几何体知识点

高一数学空间几何体知识点空间几何体是数学中一个重要的概念,它是指由几个平面或曲面组成的三维图形。

在高一数学中,学习空间几何体的知识是非常重要的。

本文将对高一数学空间几何体的知识点进行详细介绍,包括立体图形的定义、性质以及相关计算方法等。

一、立体图形的定义与分类立体图形是由平面或曲面所围成的有体积的图形。

按照定义和性质的不同,可以将立体图形分为以下几类:1.1. 三棱柱和四棱柱三棱柱是由一个底面为三角形,三个侧面为三个矩形的立体图形。

四棱柱是由一个底面为四边形,四个侧面为四个矩形的立体图形。

1.2. 三棱锥和四棱锥三棱锥是由一个底面为三角形,三个侧面为三个三角形的立体图形。

四棱锥是由一个底面为四边形,四个侧面为四个三角形的立体图形。

1.3. 圆柱和圆锥圆柱是由一个底面为圆形,一个侧面为一个长方形的立体图形。

圆锥是由一个底面为圆形,一个侧面为一个三角形的立体图形。

1.4. 球体和圆面球体是由一个圆面绕着直径旋转而成的立体图形。

圆面是平面上的一个圆,没有厚度。

二、立体图形的性质与计算方法2.1. 表面积立体图形的表面积是指该图形各个面的面积之和。

计算不同立体图形的表面积需要根据其性质进行具体计算。

2.2. 体积立体图形的体积是指该图形所围成的空间的大小。

计算不同立体图形的体积也需要根据其性质进行具体计算。

2.3. 相似性如果两个立体图形的对应部分对应边成比例,并且对应边夹角相等,则它们是相似的。

2.4. 平行截面的性质如果一个平面与一个立体图形的底面和顶面都相交,并且与立体图形的侧面都平行,则这个平面截下的截面与底面、顶面以及相应的侧面都相似。

2.5. 空间几何体的投影空间几何体的投影是指在一个平面上,与这个几何体平行的直线与几何体相交形成的图形。

三、例题与解析为了更好地理解空间几何体的知识,我们来通过几个例题进行解析。

例题1:已知一个三棱柱的底面是一个边长为5的正三角形,侧面的高度为8,请求出该三棱柱的体积和表面积。

人教B版高一数学《空间几何体》知识点总结

人教B版高一数学《空间几何体》知识点总结

人教B版高一数学《空间几何体》知识点总结
查字典大学网为大家整理了空间几何体知识点总结,供大家参考和学习,希望对大家的数学学习和数学成绩的提高有所帮助。

空间几何体是存在的在我们的周围的大量的现实里,大千世界,纷纷扰扰,无奇不有,似有似无的规律,令人着迷,事实上,只要我们用心,功夫定不负人,一定会发现空间几何体的真谛,当你发现了空间几何体奥秘,你对数学中的那团迷雾将一去不复返。

你将在未来的学习中更有冲劲。

高一数学第一章空间几何体知识点,考点总结。

1.1 空间几何体的结构
1、柱体的特征
(4)首先,棱柱的特征:有互相平行的大小相同的两个面,其他的面都是平行四边形(这次并不要求大小相同),这些面的公共边互相平行,综合起来这就是棱柱的概念。

引导学生对棱柱进行归类,比如斜棱柱和直棱柱,直至正棱柱;由学生得出自己的高和斜高。

接着,让学生观察的得到圆柱的特征。

通过类比。

比较棱柱和圆柱异同点。

两者称为柱体。

2、锥体的特征
3、台体的特征
4、球的特征
1.2 空间几何体的三视图和直观图
1.3 空间几何体的表面积与体积
看了上文为大家整理的空间几何体知识点总结是不是感觉轻松了许多你呢?一起与同学们分享吧。

高一数学空间几何体讲义

高一数学空间几何体讲义

空间几何体讲义知识总结:1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高一期末复习:第一部分立体几何初步

高一期末复习:第一部分立体几何初步

【同步教育信息】一. 本周教学内容:高一期末复习:第一部分立体几何初步二、教学目的:1、梳理各单元基本知识2、总结各单元基本题型及各基础知识的基本应用三、知识分析:【本章知识网络】【本章学法点拨】1、必须明确本章内容的复习目标(1)联系实际,从实图下手,加强由模型到图形,再由图形到模型的基本训练,有序地建立图形、文字、符号这三种数学语言的联系,能由一种语言转释成另外两种语言,逐步达到融会贯通的程度.(2)准确理解和系统掌握空间直线和平面的各种位置关系(特别是平行与垂直的位置关系),能够运用概念、公理、定理等进行严密的推理判断和逻辑论证.(3)正确理解空间的各种角和距离的概念,能将其转化为平面角和线段的长度,并能熟练地运用平面几何及三角知识来计算.(4)通过图形能迅速判断几何元素的位置关系,能熟练绘制符合要求的空间图形的直观图、截面图,熟练地处理折叠、截面的问题.但要注意立体几何中的示意图不反映元素关系的真实结构,逻辑论证仍是关键.(5)理解用反证法证明命题的思路,会证一些简单的问题.2、要掌握解题的通法,推理严谨,书写规范(1)转化法是空间直线和平面的位置关系的判断与证明的常用方法,线线关系(主要指平行和垂直)、线面关系、面面关系三者中,每两者都存在着依存关系,充分、合理地运用这些关系是解题的关键;另外,转化法还常常运用在求距离时点的位置的变化,以及线面距、面面距间的转化;(2)求角或距离的步骤是“一作、二证、三计算”,即先作出所求角或表示距离的线段,再证明它就是所要求的角或距离,然后再进行计算,尤其不能忽视第二步的证明.专题一几种简单几何体的结构一、棱柱的结构特征观察下图可以看出,上面各图中都有两个面互相平行,其余各面都是平行四边形.1、定义一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.2、棱柱的分类底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……3、棱柱的记法(1)用表示底面各顶点的字母表示棱柱.如图(1)可表示为棱柱ABCD—A1B1C1D1;图(2)可表示为棱柱ABCDEF—A1B1C1D1E1F1;图(3)可表示为棱柱ABCDE-A1B1C1D1E1.(2)用棱柱的对角线表示棱柱.如图(1)可表示为棱柱AC1或棱柱BD1等;图(2)可表示为棱柱AC1或棱柱AD1或棱柱AE1等;图(3)可表示为棱柱AC1或棱柱AD1等.二、棱锥的结构特征观察下图,可以看出,上面三个图中的共同特点:(1)均由平面图形围成;(2)其中一个面为多边形;(3)其他各面都是三角形;(4)这些三角形有一个公共顶点.1、定义一般地,有一个面是多边形,其余各面都是有一公共顶点的三角形,由这些面所围成的几何体叫做棱锥.棱锥是多面体中重要的一种,它有两个本质特征:(1)有一个面是多边形;(2)其余的各面是有一个公共顶点的三角形.两者缺一不可,因此棱锥有一个面是多边形,其余各面都是三角形,但是也要注意:“有一个面是多边形,其余各面都是三角形”的几何体未必是棱锥.2、棱锥的分类底面为三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥……,其中三棱锥又叫做四面体.3、棱锥的记法(1)用顶点和底面各顶点的字母表示.如图(4)可记为三棱锥P—ABC;图(5)可记为四棱锥P—ABCD;图(6)可记为五棱锥P一ABCDE等.(2)用对角面表示.如图(5)可记为四棱锥P—AC;图(6)可记为五棱锥P—AC等.三、圆柱的结构特征观察图(7)可知:它有两个互相平行的平面,且这两个“平面”是等圆.图形可以看作是矩形AOO'A'绕OO' 旋转而成的.1、定义以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.2、圆柱的记法用表示它的轴的字母表示,如图(7)可记为圆柱OO'.四、圆锥的结构特征观察图(8)可以看出:它有一个圆面,一个顶点,其他为曲面;可看作是直角△AOS 绕其直角边OS旋转而成的.1、定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥. 2、圆锥的记法用表示它的轴的字母表示.如图(8)的圆锥可记为圆锥SO .五、圆台和棱台的结构特征观察图(9)(10)可以看出图形是由平行于底面的平面去截锥体而得到的.1、定义用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分所构成的几何体叫做棱台(圆台)。

人教版高一下册数学知识点总结:空间几何体

人教版高一下册数学知识点总结:空间几何体

精心整理
人教版高一下册数学知识点总结:空间几何体
(一)空间几何体的结构特征
(1)多面体——由若干个平面多边形围成的几何体.
(2)1.11.2其锥。

余各边旋转而形成的曲面所围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.
4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图
1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察
3.
4.
面积
面积
②面积
④圆台的表面积S
rlr2Rl&#614 83;R2⑤球的表面积S4R2
⑥扇形的面积公式S扇形nR236012
lr(其中l表示弧长,r表示半径)2、空间几何体的体积
①柱体的体积VSh②锥体的体积V1 底3
S底h
③台体的体积
S上
S
3。

高一数学知识点总结_空间几何体知识点

高一数学知识点总结_空间几何体知识点

高一数学知识点总结_空间几何体知识点高一数学怎么学?预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,今天小编在这给大家整理了高一数学知识点总结,接下来随着小编一起来看看吧!高一数学知识点总结(一)高一数学知识点总结(二)高一数学知识点总结(三)一、柱体、锥体、台体的表面积1.旋转体的表面积2.多面体的表面积多面体的表面积就是各个面的面积之和,也就是展开图的面积.棱锥、棱台、棱柱的侧面积公式间的联系:二、柱体、锥体、台体的体积1.柱体、锥体、台体的体积公式2.柱体、锥体、台体体积公式间的关系3.必记结论(1)一个组合体的体积等于它的各部分体积之和或差;(2)等底面面积且等高的两个同类几何体的体积相等. 三、球的表面积和体积1.球的表面积和体积公式设球的半径为R,它的体积与表面积都由半径R唯一确定,是以R 为自变量的函数,高一数学知识点总结(四)空间几何体知识点1.多面体及其结构特征(1)棱柱:①有两个平面(底面) 互相平行;②其余各面都是平行四边形 ;③每相邻两个平行四边形的公共边互相平行 .(2)棱锥:①有一个面(底面)是多边形 ;②其余各面(侧面)是有一个公共顶点的三角形.(3)棱台:①上下底面互相平行 ,且是相似图形;②各侧棱延长线相交于一点 .2.旋转体及其结构特征(1)圆柱:①圆柱的轴垂直于底面;②圆柱的轴截面是矩形 ;③圆柱的所有母线相互平行且相等 ,且都与圆柱的轴平行 ;④圆柱的母线垂直于底面.(2)圆锥:①圆锥的轴垂直于底面;②圆锥的轴截面为等腰三角形 ;③圆锥的顶点与底面圆周上任一点的连线都是圆锥的母线 ,圆锥的母线有无线条;④圆锥的底面是一个圆面 .(3)圆台:①圆台的上、下底面是两个半径不等的圆面;②圆台两底面圆所在平面互相平行且和轴垂直 ;③有无数条母线;④母线的延长线交于一点 .3.三视图(1)三视图表达的意义:正、俯视图都反映物体的长度——“ 长对正”;正、侧视图都反映物体的高度——“ 高平齐”;俯、侧视图都反映物体的宽度——“ 宽相等”.(2)三视图的画法规则:画三视图时,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.4.斜二测画法的意义及建系原则(1)斜二测画法中“斜”和“二测”:“斜”是指在已知图形的xOy平面内与x轴垂直的线段,在直观图中均与x′轴成45°或135° ;“二测”是指两种度量形式,即在直观图中,平行于x′轴或z′轴的线段长度不变 ;平行于y′轴的线段长度变为原来的一半 .(2)斜二测画法中的建系原则:在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线或图形的对称直线为坐标轴,图形的对称点为原点或利用原有互相垂直的直线为坐标轴等.5.空间几何体的表面积和体积(1)多面体的表面积:各个面的面积之和,也就是展开图的面积.(2)旋转体的表面积:圆柱:S=2πr2+2πrl=2πr(r+l)圆锥:S=πr2+πrl =πr(r+l)圆台:S=π(r′2+r2+r′l+rl)球:S=4πR2 .(3)柱体、锥体、台体的体积公式①柱体的体积公式:V柱体=Sh (S为底面面积,h为高).②锥体的体积公式:V锥体=?Sh (S为底面面积,h为高).③台体的体积公式:V台体=(S′、S分别为上、下底面面积,h为高).④球的体积公式:V球=易错提醒1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.高一数学知识点总结(五)空间几何体公式知识点总结1、高中数学知识点总结空间几何体公式知识点直棱柱和正棱锥的表面积设棱柱高为h、底面多边形的周长为c、则得到直棱柱侧面面积计算公式:S=ch、即直棱柱的侧面积等于它的底面周长和高的乘积、正棱锥的侧面展开图是一些全等的等腰三角形、底面是正多边形、如果设它的底面边长为a、底面周长为c、斜高为h'、则得到正n 棱锥的侧面积计算公式S=1/2_nah'=1/2_ch'、即正棱锥的侧面积等于它的底面的周长和斜高乘积的一半、2、空间几何体公式知识点正棱台的表面积正棱台的侧面展开图是一些全等的等腰梯形、设棱台下底面边长为a、周长为c、上底面边长为a'、周长为c'、斜高为h'则得到正n棱台的侧面积公式:S=1/2_n(a+a')h'=1/2(c+c')h'、3、空间几何体公式知识点球的表面积S=4πR2、即球面面积等于它的大圆面积的四倍、4.空间几何体公式知识点圆台的表面积圆台的侧面展开图是一个扇环,它的表面积等于上,下两个底面的面积和加上侧面的面积,即S=π(r'2+r2+r'l+rl)空间几何体公式知识点空间几何体体积计算公式1、长方体体积V=abc=Sh2、柱体体积所有柱体V=Sh、即柱体的体积等于它的底面积S和高h的积、圆柱V=πr2h、3、棱锥V=1/3_Sh4、圆锥V=1/3_πr2h5、棱台V=1/3_h(S+(√SS')+S')6、圆台V=1/3_πh(r2+rr'+r'2)7、球V=4/3_πR3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
正视图
侧视图
俯视图
例2 有一个几何体由8个面围成,每
一个面都是正三角形,并且有四个顶点A,
B,C,D在同一个平面内,ABCD是边长为
30cm的正方形.说明这个几何体的结构特
征,画出其直观图和三视图,并求出它
的表面积和体积.
P
D
两个共底四棱锥 A
C
B
Q
P
D A
C B
Q
S 1800 3cm2
V 9000 2cm3
正视图 俯视图
侧视图
思考6:在台体的体积公式中,若S′=S, S′=0,则公式分别变形为什么?Leabharlann V 1 (S SS S)h 3
S′=S
S′=0
V Sh V 1 Sh
3
三、理论迁移:
例1 如图,圆柱的底面直径与高都等 于球的直径,求证: (1)球的体积等于圆柱体积的 2 ;
3
(2)球的表面积等于圆柱的侧面积.
思考4:你能由此推导出半径为R的球的 表面积公式吗?
S 4 R2
思考5:经过球心的截面圆面积是什么? 它与球的表面积有什么关系?
球的表面积等于球的大圆面积的4倍
知识探究(二)柱体、锥体、台体的体积
思考1:你还记得正方体、长方体和圆柱 的体积公式吗?它们可以统一为一个什 么公式?
思考2:推广到一般的棱柱和圆柱,你猜 想柱体的体积公式是什么?
例2 已知正方体的八个顶点都在球O 的球面上,且正方体的表面积为a2,求 球O的表面积和体积.
例3 有一种空心钢球,质量为142g (钢的密度为7.9g/cm3),测得其外径 为5cm,求它的内径(精确到0.1cm).
例4 已知A、B、C为球面上三点, AC=BC=6,AB=4,球心O与△ABC的外心M 的距离等于球半径的一半,求这个球的 表面积和体积.
V Sh
高h
底面积S
思考3:关于体积有如下几个原理: (1) 相同的几何体的体积相等; (2)一个 几何体的体积等于它的各部分体积之和; (3)等底面积等高的两个同类几何体的 体积相等; (4)体积相等的两个几何体叫做等积体.
将一个三棱柱按如图所示分解成三 个三棱锥,那么这三个三棱锥的体积有 什么关系?它们与三棱柱的体积有什么 关系?
3 2
1 1
3 2
思考4:推广到一般的棱锥和圆锥,你猜 想锥体的体积公式是什么?
V 1 Sh 3
高h
底面积S
思考5:根据棱台和圆台的定义,如何计 算台体的体积?
设台体的上、下底面面积分别为S′、 S,高为h,那么台体的体积公式是什么?
上底面 积S′
高h V 1 (S SS S)h 3
下底面 积S
O A
C M B
R 3 6 , S 54 ,V 27 6
2
综合应用
例1 直角三角形的三边长分别为3cm、 4cm、5cm,绕三边旋转一周分别形成三 个几何体.说明它们的结构特征,画出 其直观图和三视图,并求出它们的表面 积和体积.
5 4
3
正视图
侧视图
俯视图
3
5
4
正视图
侧视图
俯视图
4 5
相关文档
最新文档