格点及尺规作图ppt课件
合集下载
尺规作图演示课件
24.4尺规作图(2)
我们已熟悉尺规的两个根本作图:画 线段,画角.那么利用尺规还能解决 什么作图问题呢?
1.画线段的垂直平分线;
2.画直线的垂线.
如图,线段AB,画出它的垂直平分线.
图 24.4.7
如图,线段AB,画出它的垂直平分线.
以点A为圆心,以大于AB一半的长为半 径,在AB的一侧图画2 4弧.4 .7;以点B为圆心, 以同样的长为半径,在AB的同一侧画弧, 两弧的交点记为C,那么C是线段AB垂直 平分线上的一点.利用类似的方法确定 另一点D.
1.画一个直角三角形,使其直角边分 别等于的两条线段.
(第4 题)
2.画一个直角三角形,使其斜边和直 角边分别等于的两条线段.
(第4 题)
3.如图,过点P画∠O两边的垂线.
(第 1 题 )
4.如图,画△ABC边BC上的高.
(第 2题)
1.根本作图 2.应用
上海上门推拿 ://fan17 / 上海上门推拿
1.如图,点C在直线l上,试过点C画 出直线l的垂线.
作法:(3)以点D为圆心,以同样的长 为半径在直线的图同24一.4.侧8 画弧,两弧交 于点D; (4)经过点C、D作直线CD. 直线CD即为所求.
2.如图,如果点C不在直线l上,试和 同学讨论,应采取怎样的步骤,过点 C画出直线l的垂线?
作法:(1)以点C为圆心,图以24适.4.1当0 长为 半径画弧,交直线l于点A、B; (2)以点A为圆心,以CB长为半径在 直线另一侧画弧.
氏,别以为有哥哥、姐姐这双重保护伞就能为所欲为。爷倒是要看看你,怎么解释这各问题!第壹卷 第280章 沉冤王爷依然有他那波澜不惊 の消沉嗓音问道:“那好,你既然说跟八弟壹伙没有牵连,那么,二十三弟是怎么知道你姐姐の手受伤の事情?〞至此两姐妹才知道,原来是 因为这各事情,才惹得爷发咯这么大の火。玉盈满脸担忧地望向凝儿。水清只是心中壹阵冷笑,二十三叔是怎么知道の,她哪里知道,而且就 算是二十三叔知道咯,又跟八叔有啥啊关系?原来就知道爷是壹各生性多疑の人,没想到疑神疑鬼到咯这种程度!不会是因为二十三叔和弟妹 知道咯这件事情,爷找不到泄密の人,恼羞成怒,就拉她来当替罪羊吧。“爷这句问话从何而来?妾身怎么知道二十三叔是如何知道这件事情 の!既然爷想知道为啥啊,爷为啥啊不自己去问问二十三叔?这件事情自始至终,妾身都自认没有错处,假设爷壹定要让妾身担责任の话,妾 身没有选择,只能听爷の吩咐。但是,妾身只想说,妾身就是死,也要死得明白,妾身可以与八叔对质,以还妾身の壹各清白。〞水清の壹番 话,特别是最后の以死言志,让他无言以对!他还从未曾逼得壹各诸人以死言志,这是第壹次。他擅长与男人打交道,但他对付诸人,特别是 这各铁骨铮铮、不卑不亢、视死如归の诸人,真是棘手至极。“爷会把事情调查得水落石出の,你好自为之吧。〞说完,他转身离开咯帐子。 即使王爷已经走咯,水清心中の愤怒仍是难以平息,胸膛急剧地起伏着,她の肺都要气炸咯!以前只是知道自己不讨爷の喜欢,现在才知道, 竟会遭受不白之冤,这天大の委屈将她憋闷得快要疯掉咯。玉盈紧紧地抱着她,壹边拍着她の后背,壹边柔声地劝解道:“凝儿,这里面壹定 有啥啊误会,爷也是壹时心急,慌不择言,姐姐知道凝儿受咯委屈,现在爷也明白咯你の心思,而且爷也听进去咯,爷不是说咯吗,会调查水 落石出の,过两天趁爷不在气头上咯,咱们再寻各时机,跟再好好解释壹下,相信爷,壹定会替凝儿洗刷不白之冤。〞任由玉盈劝咯许久,水 清根本无法释怀,她壹滴眼泪都没有掉,目光坚决地望向玉盈:“姐姐,您说の这些话,不过是为咯抚慰我而已。我能不清楚吗?爷怎么可能 会替凝儿洗刷不白之冤,因这这不白之冤,原本就是爷强加给凝儿の,您还能指望爷来为凝儿洗刷清白?姐姐,您可千万不要被爷给蒙骗咯。 〞“凝儿!爷是你の夫君,你怎么可以认为爷在蒙骗你?〞“姐姐啊!凝儿说咯这么多,你怎么还明白啊!〞回到咯自己の营帐,王爷壹直深 思着。刚刚水清那绝决の态度,甚至以死明志,都不是假装出来の。那二十三弟怎么会知道?二十三弟壹直都不是很警觉の人,怎么单单这件 事情这
我们已熟悉尺规的两个根本作图:画 线段,画角.那么利用尺规还能解决 什么作图问题呢?
1.画线段的垂直平分线;
2.画直线的垂线.
如图,线段AB,画出它的垂直平分线.
图 24.4.7
如图,线段AB,画出它的垂直平分线.
以点A为圆心,以大于AB一半的长为半 径,在AB的一侧图画2 4弧.4 .7;以点B为圆心, 以同样的长为半径,在AB的同一侧画弧, 两弧的交点记为C,那么C是线段AB垂直 平分线上的一点.利用类似的方法确定 另一点D.
1.画一个直角三角形,使其直角边分 别等于的两条线段.
(第4 题)
2.画一个直角三角形,使其斜边和直 角边分别等于的两条线段.
(第4 题)
3.如图,过点P画∠O两边的垂线.
(第 1 题 )
4.如图,画△ABC边BC上的高.
(第 2题)
1.根本作图 2.应用
上海上门推拿 ://fan17 / 上海上门推拿
1.如图,点C在直线l上,试过点C画 出直线l的垂线.
作法:(3)以点D为圆心,以同样的长 为半径在直线的图同24一.4.侧8 画弧,两弧交 于点D; (4)经过点C、D作直线CD. 直线CD即为所求.
2.如图,如果点C不在直线l上,试和 同学讨论,应采取怎样的步骤,过点 C画出直线l的垂线?
作法:(1)以点C为圆心,图以24适.4.1当0 长为 半径画弧,交直线l于点A、B; (2)以点A为圆心,以CB长为半径在 直线另一侧画弧.
氏,别以为有哥哥、姐姐这双重保护伞就能为所欲为。爷倒是要看看你,怎么解释这各问题!第壹卷 第280章 沉冤王爷依然有他那波澜不惊 の消沉嗓音问道:“那好,你既然说跟八弟壹伙没有牵连,那么,二十三弟是怎么知道你姐姐の手受伤の事情?〞至此两姐妹才知道,原来是 因为这各事情,才惹得爷发咯这么大の火。玉盈满脸担忧地望向凝儿。水清只是心中壹阵冷笑,二十三叔是怎么知道の,她哪里知道,而且就 算是二十三叔知道咯,又跟八叔有啥啊关系?原来就知道爷是壹各生性多疑の人,没想到疑神疑鬼到咯这种程度!不会是因为二十三叔和弟妹 知道咯这件事情,爷找不到泄密の人,恼羞成怒,就拉她来当替罪羊吧。“爷这句问话从何而来?妾身怎么知道二十三叔是如何知道这件事情 の!既然爷想知道为啥啊,爷为啥啊不自己去问问二十三叔?这件事情自始至终,妾身都自认没有错处,假设爷壹定要让妾身担责任の话,妾 身没有选择,只能听爷の吩咐。但是,妾身只想说,妾身就是死,也要死得明白,妾身可以与八叔对质,以还妾身の壹各清白。〞水清の壹番 话,特别是最后の以死言志,让他无言以对!他还从未曾逼得壹各诸人以死言志,这是第壹次。他擅长与男人打交道,但他对付诸人,特别是 这各铁骨铮铮、不卑不亢、视死如归の诸人,真是棘手至极。“爷会把事情调查得水落石出の,你好自为之吧。〞说完,他转身离开咯帐子。 即使王爷已经走咯,水清心中の愤怒仍是难以平息,胸膛急剧地起伏着,她の肺都要气炸咯!以前只是知道自己不讨爷の喜欢,现在才知道, 竟会遭受不白之冤,这天大の委屈将她憋闷得快要疯掉咯。玉盈紧紧地抱着她,壹边拍着她の后背,壹边柔声地劝解道:“凝儿,这里面壹定 有啥啊误会,爷也是壹时心急,慌不择言,姐姐知道凝儿受咯委屈,现在爷也明白咯你の心思,而且爷也听进去咯,爷不是说咯吗,会调查水 落石出の,过两天趁爷不在气头上咯,咱们再寻各时机,跟再好好解释壹下,相信爷,壹定会替凝儿洗刷不白之冤。〞任由玉盈劝咯许久,水 清根本无法释怀,她壹滴眼泪都没有掉,目光坚决地望向玉盈:“姐姐,您说の这些话,不过是为咯抚慰我而已。我能不清楚吗?爷怎么可能 会替凝儿洗刷不白之冤,因这这不白之冤,原本就是爷强加给凝儿の,您还能指望爷来为凝儿洗刷清白?姐姐,您可千万不要被爷给蒙骗咯。 〞“凝儿!爷是你の夫君,你怎么可以认为爷在蒙骗你?〞“姐姐啊!凝儿说咯这么多,你怎么还明白啊!〞回到咯自己の营帐,王爷壹直深 思着。刚刚水清那绝决の态度,甚至以死明志,都不是假装出来の。那二十三弟怎么会知道?二十三弟壹直都不是很警觉の人,怎么单单这件 事情这
《尺规作图》 优秀PPT课件2
尺规作图
基本作图教学目标: ⑴了解尺规作图的基本知识及步骤。
⑵了解作一个角等于已知角在尺规作图
中的简单应来画图,称 为 尺规作图 . 其中,直尺是 没有刻度 的; •直尺的功能:可以在两点间连接一条线段, 并向一方或两方延伸,因此可作 线段 、 射线 、 直线 。 圆规的功能:以任意点为圆心,任意长为半径作 一个圆或 一段弧 。 基本作图 •最基本,最常用的尺规作图,称为 . •一些复杂的尺规作图都是由 基本作图组成的.
⑵已知角α,β(β<α<90°)求作一个角,使它等于α+β.
A
通过这节课的学习活动你有 哪些收获?
作业巩固
(一)阅读作业:通读教材,复习 巩固用尺规作一个角等于已知角; (二)书面作业:P24 习题1.3
第1、2
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰·鲁斯金]
基本作图教学目标: ⑴了解尺规作图的基本知识及步骤。
⑵了解作一个角等于已知角在尺规作图
中的简单应来画图,称 为 尺规作图 . 其中,直尺是 没有刻度 的; •直尺的功能:可以在两点间连接一条线段, 并向一方或两方延伸,因此可作 线段 、 射线 、 直线 。 圆规的功能:以任意点为圆心,任意长为半径作 一个圆或 一段弧 。 基本作图 •最基本,最常用的尺规作图,称为 . •一些复杂的尺规作图都是由 基本作图组成的.
⑵已知角α,β(β<α<90°)求作一个角,使它等于α+β.
A
通过这节课的学习活动你有 哪些收获?
作业巩固
(一)阅读作业:通读教材,复习 巩固用尺规作一个角等于已知角; (二)书面作业:P24 习题1.3
第1、2
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基] 110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰·鲁斯金]
《尺规作图》课件PPT课件
在机械装配过程中,装配图纸是指导工人如何组装机械的重要依据。使用尺规作图可以绘制出详细的装配图纸, 包括各个零件的尺寸、位置和连接方式等。
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
《尺规作图》PPT课件2 (共11张PPT)
B’
C’
2、作一个角等于已知角 •已知: AOB(图1)
•求作: A`O`B`,使
A`O`B`= AOB
B
O
A
画一画
作法与示范
作法 示范
(1)作射线O′A′: (2)以点O为圆心,以任意长为半径画弧 ,交OA于点C,交O半径画弧, 交O′ A′于点C′;
(4)以点C′为圆心,以CD长为半径画弧 ,交前面的弧于点D ′ ; (5)过点D ′作射线O ′ B ′ .
• 这样作法正确吗?你应如何检验?
? OB • 写出证明∠AOB=ÐA ⅱ 的过程 .
随堂练习:
⑴已知∠ AOB,利用尺规作 ∠ A′O′B′,使∠ A′O′B′=2∠ AOB.
α
B
β
O
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
尺规作图课件讲解共36页文档
尺规作图课件讲解
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律Байду номын сангаас。——雨果
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律Байду номын сангаас。——雨果
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
尺规作图PPT课件(华师大版)
证明:连接CM、CN
A
在△OMC和△ONC中
M
OM=ON(相同半径)
C
MC=NC(相同半径)
OC=OC(公共边)
∴ △OMC≌△ONC(SSS) B
N
O
∴ ∠AOC= ∠BOC
练习:P88页1小题
思考:你能否把这个角四等分?
已知:∠ AOB
求作:射线OC,使∠AOC= 1∠BOC
4
B
O
A
探索:利用尺规作图,作一个直角
问题1.点与直线的位置关系有哪几种? 【答案】点在直线上和点在直线外。
问题2. 经过已知直线上一点如何作已知直线的垂线?
已知:直线 l 和其上一点C。
求作: l 的垂线,使它经过点C。
作法:B两点; 2.作平角ACB的平分线CM; 3.反向延长射线CM; 所以直线CM就是所求的垂线。
一.用尺规作角的平分线
例.已知:∠ AOB 求作:射线OC,使∠AOC= ∠ BOC
画法:
A
1.以O为圆心,适当长 为半径作弧,交OA于点M,
M
交OB于点N。
C
2.分别以M,N为圆
心,大于 1/2 MN的长为
半径作弧,两弧在∠AO
B的内部交于C。
B
N
O
3.作射线OC,
射线OC即为所求。
思考:有什么理由说射线OC使∠AOC=∠BOC?
思考:利用尺规作图能否作一个45度的角?
练习:P88页2小题
例:作任意三角形三条角平分线
问:有什么发现?
归纳:
1.三角形的三条角平线线交于一点且交点在三角形内; 2.交点到三角形三边的距离相等; 3.到三角形三边距离相等的点只有1个,到三边所在直线 的距离相等的点有4个。
第32课时 几何(网格、尺规)作图 课件 2025年中考数学一轮总复习
∵BC=CE,∴△DCE≌△FBC(AAS),
∴BF=④ ,∴BF=BA.
解:(1)如答案图所
示,BF即为所求作.(答案图)
∠BFC=∠D
CD
90°
6
考点三 尺规作图的综合运用例4 在学习了平行四边形的相关知识
后,小虹进行了拓展性研究.她发现,如
果作平行四边形一条对角线的垂直平分
线,那么这条垂直平分线在该四边形内
部的线段被这条对角线平分.其解决问题
的思路为通过证明对应线段所在两个三
角形全等即可得出结论.请根据她的思路完成以下作图和填空:
用直尺和圆规作平行四边形ABCD的对
求作.
(3)求△ABC的面积.
[答案] 解:(3)
S△ABC=4×3-
×1×3- ×4×1-
×2×3=5.5.
例2 (2024·安徽)如图,在由边长为1
个单位长度的小正方形组成的网格中建
立平面直角坐标系xOy,格点(网格线
的交点)A,B,C,D的坐标分别为
(7,8),(2,8),(10,4),
(5,4).
(1)以点D为旋转中心,将△ABC旋转
180°得到△A1B1C1,画出△A1B1C1;
[答案] 解:
(1)如图,
△A1B1C1即为所
求作.
(2)直接写出以B,C1,B1,C为顶点
的四边形的面积;
[答案] 解:(2)易知DB=DB1,DC=
DC1,∴四边形BC1B1C是平行四边形,∴ =2 =2× ×10×4
基本作图
图示
作法
经过一点作已知直线的垂线
过直线外一点作已知直线的垂线
①任意取一点K,使点K和点C在AB的两侧;②以点C为圆心,CK长为半径作弧,交AB于点D,E;③分别以点D,E为圆心,大于 DE的长为半径作弧,两弧相交于点F;④作直线CF,直线CF就是所求作的垂线
∴BF=④ ,∴BF=BA.
解:(1)如答案图所
示,BF即为所求作.(答案图)
∠BFC=∠D
CD
90°
6
考点三 尺规作图的综合运用例4 在学习了平行四边形的相关知识
后,小虹进行了拓展性研究.她发现,如
果作平行四边形一条对角线的垂直平分
线,那么这条垂直平分线在该四边形内
部的线段被这条对角线平分.其解决问题
的思路为通过证明对应线段所在两个三
角形全等即可得出结论.请根据她的思路完成以下作图和填空:
用直尺和圆规作平行四边形ABCD的对
求作.
(3)求△ABC的面积.
[答案] 解:(3)
S△ABC=4×3-
×1×3- ×4×1-
×2×3=5.5.
例2 (2024·安徽)如图,在由边长为1
个单位长度的小正方形组成的网格中建
立平面直角坐标系xOy,格点(网格线
的交点)A,B,C,D的坐标分别为
(7,8),(2,8),(10,4),
(5,4).
(1)以点D为旋转中心,将△ABC旋转
180°得到△A1B1C1,画出△A1B1C1;
[答案] 解:
(1)如图,
△A1B1C1即为所
求作.
(2)直接写出以B,C1,B1,C为顶点
的四边形的面积;
[答案] 解:(2)易知DB=DB1,DC=
DC1,∴四边形BC1B1C是平行四边形,∴ =2 =2× ×10×4
基本作图
图示
作法
经过一点作已知直线的垂线
过直线外一点作已知直线的垂线
①任意取一点K,使点K和点C在AB的两侧;②以点C为圆心,CK长为半径作弧,交AB于点D,E;③分别以点D,E为圆心,大于 DE的长为半径作弧,两弧相交于点F;④作直线CF,直线CF就是所求作的垂线
1尺规作图PPT课件(华师大版)
图13.4-11
2.经过已知直线外一点作这条直线的垂线: 如图13.4-12所示,已知直线AB和AB外一点C,作AB的垂 线,使它经过点C.
图13.4-12
图13.4-13
作法:如图13.4-13所示.
第一步:以点C为圆心,作能与AB相交于D、E两点的弧;
第二步:作∠ DCE的平分线CF;
第三步:反向延长射线CF,则直线CF 就是所要 求 作 的
知识点 5 作已知线段的垂直平分线 思考
如图13. 4. 9,已知直线l是线段
的垂直平分线, 则直线l是线段仙的
对称轴,对l上的任意两点C、D,通
过对折可以发现,总有
CA = CB,DA = DB.
图13. 4. 9
由此,你能发现作垂直平分线的方法吗?
1.作已知线段的垂直平分线作法:如图13.4-16所 示,已知线段 AB, 求作线段 AB 的垂直平以本题为例, (3)应说明所画的弧与弧l的交点在OA的同侧还是异侧.
1 任意画出两个角∠1和∠2,其中∠1 >∠2,再作一个角, 使它等于∠1 -∠2.
2 (中考·宁德)如图,用尺规作图:“过点C作CN∥ OA”,其作图根据是( ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角相等,两直线平行 D.同旁内角互补,两直线平行
我们在讨论三角形全等的条件时,曾利用上述两 种基本作图,已知两边和夹角、两角和夹边、三边分 别作出 相应的三角形.
(来源于教材)
例3 如图13.4-6所示,已知∠α,∠β,求作∠AOB,使 ∠AOB=∠α+∠β .
图13.4-6
图13.4-7
解:作法:(1)分别以点E,P为圆心、以适当长为半径 画弧,交∠α的两边于点F,G,交∠β的两边于 点M,N; (2)作射线OA,以点O为圆心,以EF长为半径画 弧l,交射线OA于点C; (3)以点C为圆心,以GF的长为半径画弧,交弧l 于点H;以点H为圆心、以MN长为半径画弧,在 OA的同侧与弧l交于点Q; (4)过点Q作射线OB,则∠AOB就是所求作的角, 如图13.4-7所示.
2.经过已知直线外一点作这条直线的垂线: 如图13.4-12所示,已知直线AB和AB外一点C,作AB的垂 线,使它经过点C.
图13.4-12
图13.4-13
作法:如图13.4-13所示.
第一步:以点C为圆心,作能与AB相交于D、E两点的弧;
第二步:作∠ DCE的平分线CF;
第三步:反向延长射线CF,则直线CF 就是所要 求 作 的
知识点 5 作已知线段的垂直平分线 思考
如图13. 4. 9,已知直线l是线段
的垂直平分线, 则直线l是线段仙的
对称轴,对l上的任意两点C、D,通
过对折可以发现,总有
CA = CB,DA = DB.
图13. 4. 9
由此,你能发现作垂直平分线的方法吗?
1.作已知线段的垂直平分线作法:如图13.4-16所 示,已知线段 AB, 求作线段 AB 的垂直平以本题为例, (3)应说明所画的弧与弧l的交点在OA的同侧还是异侧.
1 任意画出两个角∠1和∠2,其中∠1 >∠2,再作一个角, 使它等于∠1 -∠2.
2 (中考·宁德)如图,用尺规作图:“过点C作CN∥ OA”,其作图根据是( ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角相等,两直线平行 D.同旁内角互补,两直线平行
我们在讨论三角形全等的条件时,曾利用上述两 种基本作图,已知两边和夹角、两角和夹边、三边分 别作出 相应的三角形.
(来源于教材)
例3 如图13.4-6所示,已知∠α,∠β,求作∠AOB,使 ∠AOB=∠α+∠β .
图13.4-6
图13.4-7
解:作法:(1)分别以点E,P为圆心、以适当长为半径 画弧,交∠α的两边于点F,G,交∠β的两边于 点M,N; (2)作射线OA,以点O为圆心,以EF长为半径画 弧l,交射线OA于点C; (3)以点C为圆心,以GF的长为半径画弧,交弧l 于点H;以点H为圆心、以MN长为半径画弧,在 OA的同侧与弧l交于点Q; (4)过点Q作射线OB,则∠AOB就是所求作的角, 如图13.4-7所示.
尺规作图 —初中数学课件PPT
数学
广东中考
解:(1)如图,点A1的坐标为(﹣1,1). (2)如图.
数学
首页
末页
谢谢!
数学
首页
末页
4
数学
首页
末页
考点梳理
1.作一条线段等于已知线段
作法:①作射线AB;②在射线AB上截取AC=a,则 线段AC就是所求作的线段,如图所示.作一条线段
等于已知线段是作有关线段的基础,利用它可以作 出已知线段的和、差、倍等线段. 2.作一个角等于已知角
作法:①作射线O′A′;②以点O为圆心,以任意 长为半径画弧,交OA于点C,交OB于点D;③以O′ 为圆心,以OC的长为半径画弧,交O′A′于点C′ ;④以C′为圆心,以CD的长为半径画弧,交前弧 于点D′;⑤过点D′作射线O′B′,则 ∠数学A′O′B′就是所求作的角,如图所示首页. 末页
数学
首页
末页
广东中考
解:(1)如图所示: (2)DE∥AC
∵DE平分∠BDC,
∴∠BDE= ∠BDC,
∵∠ACD=∠A,∠ACD+∠A=∠BDC,
∴∠A= ∠BDC,
∴∠A=∠BDE,
∴DE∥AC.
数学
首页
末页
广东中考
14. (2013广州)已知四边形ABCD是平行四边 形(如图),把△ABD沿对角线BD翻折180°得到 △A′BD.利用尺规作出△A′BD.(要求保留作 图痕迹,不写作法).
数的学 面积.
首页
末页
课堂精讲
考点4平移作图、旋转作图和对称作图 解:(1)如图,△A1B1C1即为所求. (2)如图,△A2B1C2即为所求.
(3)扫过区域的面积为 .
90 32 9
360 4
广东中考
解:(1)如图,点A1的坐标为(﹣1,1). (2)如图.
数学
首页
末页
谢谢!
数学
首页
末页
4
数学
首页
末页
考点梳理
1.作一条线段等于已知线段
作法:①作射线AB;②在射线AB上截取AC=a,则 线段AC就是所求作的线段,如图所示.作一条线段
等于已知线段是作有关线段的基础,利用它可以作 出已知线段的和、差、倍等线段. 2.作一个角等于已知角
作法:①作射线O′A′;②以点O为圆心,以任意 长为半径画弧,交OA于点C,交OB于点D;③以O′ 为圆心,以OC的长为半径画弧,交O′A′于点C′ ;④以C′为圆心,以CD的长为半径画弧,交前弧 于点D′;⑤过点D′作射线O′B′,则 ∠数学A′O′B′就是所求作的角,如图所示首页. 末页
数学
首页
末页
广东中考
解:(1)如图所示: (2)DE∥AC
∵DE平分∠BDC,
∴∠BDE= ∠BDC,
∵∠ACD=∠A,∠ACD+∠A=∠BDC,
∴∠A= ∠BDC,
∴∠A=∠BDE,
∴DE∥AC.
数学
首页
末页
广东中考
14. (2013广州)已知四边形ABCD是平行四边 形(如图),把△ABD沿对角线BD翻折180°得到 △A′BD.利用尺规作出△A′BD.(要求保留作 图痕迹,不写作法).
数的学 面积.
首页
末页
课堂精讲
考点4平移作图、旋转作图和对称作图 解:(1)如图,△A1B1C1即为所求. (2)如图,△A2B1C2即为所求.
(3)扫过区域的面积为 .
90 32 9
360 4
尺规作图 课件ppt(共27张PPT)学案
B D
B' D'
O
A
C
图1
O'
C' A'
图2
新知讲解
例2 已知线段AB,用直尺和圆规作线段AB的垂直平分线.
分析 要作线段AB的垂直平分线,只需找出线段AB的垂直平分线 上的两个点,这由线段垂直平分线上的点的性质不难找出.
A
B
新知讲解
1.分别以点A和B为圆心,以大于 1 AB的长为半径作弧,两弧相交于
据传为了显示谁的逻辑思维能力更强,古希腊人限制了几何作图的工 具,结果一些普通的画图题让数学家苦苦思索了两千多年.尺规作图 特有的魅力,使无数人沉湎其中。
新知导入
我们已经学习过用直尺和圆规作一条线段等于已知线段及作一个 角的平分线.
本节我们将继续学习用直尺和圆规作一个角等于已知角、作一条 线段的垂直平分线等基本尺规作图,以及用基本尺规作图作三角形。
板书设计
课题:1.6 尺规作图
一、尺规作图定义
二、作一个角等于已知角
三、作垂直平分线
教师板演区
学生展示区
作业布置
课本 P39页练习题
课堂练习
3.如图,下列四种基本尺规作图分别表示:①作一个角等于已知角;
②作一个角的平分线;③作条线段的垂直平分线;④过直线外一点
P作已知直线的垂线.对应选项中作法错误的是( C )
A.①
B.② C.③ D.④
课堂练习
4.下列尺规作图,能判断AD是△ABC边上的高的是( B )
拓展提高
5.如图,已知线段a,c,∠α. 求作△ABC,使BC=a,AB=c,∠ABC=∠α.
新知讲解
【做一做】利用尺规,作一个角等于已知角. 已知:∠AOB(如图). 求作:∠A′O′B′,使∠A′O′B′=∠AOB.
第28讲 尺规作图(可编辑)ppt课件
研真题·优易 栏目索引
;
试真题·练易
试真题·练易 栏目索引
命题点 尺规作图
1.(2021·佛山顺德)如图,一条公路的转弯处是一段圆弧( A︵B). ︵
(1)用直尺和圆规作出 AB所在圆的圆心O;(要求保管作图痕迹,不写作法)
︵
︵
(2)假设AB 的中点C到弦AB的间隔为20 m,AB=80 m,求AB 所在圆的半径.
;
研真题·优易 栏目索引
命题亮点 此题调查尺规作图——根本作图,线段的垂直平分线的性质,菱形的性质等知 识,解题的关键是灵敏运用所学知识处理问题,属于常考题型. 解题思绪 (1)分别以A、B为圆心,大于1 AB长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF=∠ABD-∠A2BF计算即可. 开放解答
︵
即 AB所在圆的半径是50 m.
;
2.(2021·江阴)尺规作图题:如图,△ABC中,∠C=90°. (1)用圆规和直尺作出∠CAB的平分线AD交BC于D; (2)在(1)的根底上作出点D到AB的垂线段DE; (3)按以上作法,DE=CD吗?
试真题·练易 栏目索引
;
解析 (1)如下图:
试真题·练易 栏目索引
;
夯基础·学易 栏目索引
(3)⑥作知线段的垂直平分线; (4)⑦作知角的平分线; (5)⑧过一点作知直线的垂线. 3.尺规作图题的步骤: (1)知:当作图是文字言语表达时,要学会根据文字言语用数学言语写出题 目中的条件; (2)求作:能根据标题写出要求作出的图形及此图形应满足的条件; (3)作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,普通 要保管作图痕迹,对于较复杂的作图,可先⑨画出草图,使它同所要作的图⑩ 大致一样,然后借助 草图寻觅 作法.;
《尺规作图》PPT课件2【优秀课件推荐】
以AB的长为半径 画弧,
交射线A’ C’于点B’,
A’B’ 就是所求作的线段。
A’
B’
B
范
C’
2、作一个角等于已知角 •已知: AOB(图1)
•求作: A`O`B`,使 A`O`B`= AOB B
O
A
画一画 作法与示范
Байду номын сангаас作法
(1)作射线O′A′:
(2)以点O为圆心,以任意长为半径画弧, 交OA于点C,交OB于点D;
(3)以点O′为圆心,以OC长为半径画弧, 交O′ A′于点C′; (4)以点C′为圆心,以CD长为半径画弧, 交前面的弧于点D ′ ; (5)过点D ′作射线O ′ B ′ .
示范
• 这样作法正确吗?你应如何检验? • 写出证明∠AOB= ÐAⅱO的B ?过程.
随堂练习:
⑴已知∠ AOB,利用尺规作 ∠ A′O′B′,使∠ A′O′B′=2∠ AOB.
尺规作图
基本作图教学目标: ⑴了解尺规作图的基本知识及步骤。 ⑵了解作一个角等于已知角在尺规作图 中的简单应用。
课前预习
•在几何里,把限定用直尺和圆规来画图,称为
其中尺,直规尺作是图
的;
•直尺的功能:没可有以刻在度两点间连接一条线段,
并向一方或两方延伸,因此可作 、
、。
线段
圆规射的线功能:直以线任意点为圆心,任意长为半径作
B
α
β
O
A
⑵已知角α,β(β<α<90°)求作一个角,使它等于α+β.
通过这节课的学习活动你有 哪些收获?
作业巩固
(一)阅读作业:通读教材,复习 巩固用尺规作一个角等于已知角; (二)书面作业:P24 习题1.3
尺规作图(一)PPT课件
❖ ∴∠C`O`D`=∠COD(全等三角形的对应角相 等),
❖ 即∠A`O`B`=∠AOB。
2020年10月2日
6
B
E
C
O
D
A
❖ 1、在OA和OB上,分别截取OD、OE,使 OD=OE。
❖ 2、分别以D、E为圆心,大于DE的长为半径 作弧,在∠AOB内,两弧交于点C。
❖ 3、作射线OC。
2❖0204年1、0月2O日 C就是所求的射线。
∠CEB)
l
C
2020年10月2日
A
E
B
9
通过本节学习,应理解一些作图语句。
1. 过点x、点x作直线;或作直线xx,射线xx. 2. 连结两点x、x;或连结xx; 3. 在xx上截取xx=xx; 4. 以点x为圆心,xx为半径作圆(弧);(交xx
于x点;) 5. 分别以点x,点x为圆心,以xx为半径作
汇报人:XXX 汇报日期:20XX年10月10日
11
2020年10月2日
1
基本作图
❖在几何里,把限定用直尺和圆规来画 图,称为尺规作图.最基本,最常用的尺 规作图,通常称基本作图.
❖ 其中,直尺是没有刻度的;
❖ 一些复杂的尺规作图都是由基本作图组成的. 以前学过的”作一条线段等于已知线段”,就 是一种基本作图.
❖ 下面介绍几种基本作图:
2020年10月2日
弧,两弧相交于x点。
2020年10月2日
10
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
尺规作图(1PPT优选版
1、用尺规作一线段等于已知线段2.已知:∠AOB,求作∠A′O′B′,使 ∠A′O′B′=∠AOB
A
D
D′ A′
O
C
B O′
作法与提示:
C′ B′
(交(则2O34前5∠)′A弧B)A于以′于于过′O(DOCCDD′′点′为1B′为点′′点做)′,为圆圆射做。交所。心心线射O求,,BO线作任DO于′AOC的意CC长′′长B点角长′为为。为半半半径径径画画画弧弧弧,,,
尺规作图
尺规作图:
在几何作图中,我们把没有刻度 的直尺和圆规作图,简称尺规作图。
据说,为了显示谁的逻辑能力更 强,古希腊人限制了几何作图的工具, 结果一些普通的画图题让数学家思索 了2000多年。尺规作图特有的魅力, 使无数人沉湎其中。
尺规作图题的一般步骤:
①已知; ②求作;
③作法; ④证明 注:新课标中不要求写出作法及证明过程,但要保 留作图痕迹,要写结论。
拿破仑的题目:
剪下各自所做的三角形和同伴比较看是否全等?
(3)分别以B,K为圆心,大于BK的距离一半的长为半径画弧,两弧交于P点
1、用尺规作一线段等于已知线段
求作:△ABC,使BC=a,AC=b,AB=c
设置疑问 作法示范
A
B
已知三角形的三边 求作三角形
已知:线段a,b,c
a b c
求作:△ABC,使BC=a,AC=b,AB=c
练习 20页练习1、2题
已知三角形的两边及其夹 角,求作三角形
已知:线段a, b, ∠α ,求作:△ABC,使BC= a,
AB= c, ∠ABC =∠α
E
a
b
a
作法与示范
N
D
作法
《尺规作图》PPT课件2
B’
C’
2、作一个角等于已知角 •已知: AOB(图1)
•求作: A`O`B`,使
A`O`B`= AOB
B
O
A
画一画
作法与示范
作法 示范
(1)作射线O′A′: (2)以点O为圆心,以任意长为半径画弧, 交OA于点C,交OB于点D;
(3)以点O′为圆心,以OC长为半径画弧, 交O′ A′于点C′;
尺规作图
基本作图教学目标: ⑴了解尺规作图的基本知识及步骤。
⑵了解作一个角等于已知角在尺规作图
中的简单应用。
课前预习
•在几何里,把限定用直尺和圆规来画图,称 为 尺规作图 . 其中,直尺是 没有刻度 的; •直尺的功能:可以在两点间连接一条线段, 并向一方或两方延伸,因此可作 线段 、 射线 、 直线 。 圆规的功能:以任意点为圆心,任意长为半径作 一个圆或 一段弧 。 基本作图 •最基本,最常用的尺规作图,称为 . •一些复杂的尺规作图都是由 基本作图组成的.
两种基本作图:
•1、作一条线段等于已知线段 •2、作一个角等于已知角
已知:线段AB. 求作:线段A’ B’,使A’ B’=AB. 作法与示范:
A
B
•作
•(1) 作射线A’C’ ; (2) 以点A’为圆心,
法
•示
范
以AB的长为半径 画弧, 交射线A’ C’于点B’, A’B’ 就是所求作的线段。
A’⑵已知角α,βFra bibliotekβ<α<90°)求作一个角,使它等于α+β.
A
通过这节课的学习活动你有 哪些收获?
作业巩固
(一)阅读作业:通读教材,复习 巩固用尺规作一个角等于已知角; (二)书面作业:P24 习题1.3
格点及尺规作图ppt课件
作图依据为:
.
5
5)已知P为直线m上一点,Q在直线外,分别过P,Q 两点作直线n和l垂直于m;
作图依据为:
.
6
.
7
.
8
.
9
.
10
.
11
.
12
.
13
.
14
.
15
3、方格纸中每个小方格都是边长为1的正方形,我们把以
格点连线为边的多边形称为“格点多边形”.如图(一)中 四边形ABCD就是一个“格点四边形”.
(1)请你设计出两种符合题意的分割方案图;
(2)设正方形的边长为a,请你就其中一种方案通过操作和观察将第二、 第三次分割后所得的最小的直角三角形的面积(S)填入下表:
分割次数(n)
1
2
最小直角三角形的面 积(S)
1 4
a
2
3
···
···
(3)在条件(2)下,请你猜想:分割所得的最小直角三角形面积S 与分割次数n有什么关系?
A
DA
DA
D
B
CB
CB
C
(1)根据小强的分割方法,你认为把平行四边形分割成满足以上
全等关系的直线有
组;
(2)请在图中三个平行四边形中画出满足小强分割方法的直线;
(3)由上述实验操作过程,你发现所画的两条直线有什么规律?
.
19
6、正方形表示一张纸片,根据要求多次分割,把它分割成若干个直 角三角形,操作过程如下:第一次分割,将正方形纸片分成4个全等的直角 三角形,第二次分割上次得到的直角三角形中一个再分成4个全等的直 角三角形;以后按第二次的作法进行下去:
.
20
(1)求图(一)中四边形ABCD的面积; (2)在图(二)方格纸中画一个格点三角形EFG,使 △EFG的面积等于四边形ABCD的面积且为轴对称图形.
九年级中考数学二轮复习 第8讲-尺规作图课件
交BC于点E,与边AC相切于点F.求证:∠1=∠2;
(2)在图2中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;
③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)
真题演练
10.(2018·常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相
交于点F,连接CF.求证:∠AFE=∠CFD.
则AB=a.
1、尺规作图
②作一个角等于已知角.
作法:作PC=OB,CD=BA,又∵PD=PC=OB=OA,
∴△PDC≌△OAB,∴∠DPC=∠AOB.
1、尺规作图
③作已知线段的垂直平分线.
作法:分别以A、B为圆心,线段r( >
)为半径作圆,交点是C、D,
连接CD.则直线CD即为线段AB的垂直平分线.
答案不唯一)
真题演练
8.(2018·陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连
接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作
法,保留作图痕迹)
真题演练
9.(2019·宿迁)在Rt△ABC中,∠C=90°.
(1)如图1,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,
①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为
圆心,大于 的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于
的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线
段OA长为半径作圆.则圆O的半径为( )
A.2 5
(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
20
A
DA
DA
D
B
CB
CB
C
(1)根据小强的分割方法,你认为把平行四边形分割成满足以上
全等关系的直线有
组;
(2)请在图中三个平行四边形中画出满足小强分割方法的直线;
(3)由上述实验操作过程,你发现所画的两条直线有什么规律?
.
19
6、正方形表示一张纸片,根据要求多次分割,把它分割成若干个直 角三角形,操作过程如下:第一次分割,将正方形纸片分成4个全等的直角 三角形,第二次分割上次得到的直角三角形中一个再分成4个全等的直 角三角形;以后按第二次的作法进行下去:
作图依据为:
.
5
5)已知P为直线m上一点,Q在直线外,分别过P,Q 两点作直线n和l垂直于m;
作图依据为:
.
6
.
7
.
8
.
9
.
10
.
11
.
12
.
13
.
14
.
15
3、方格纸中每个小方格都是边长为1的正方形,我们把以
格点连线为边的多边形称为“格点多边形”.如图(一)中 四边形ABCD就是一个“格点四边形”.
(1)请你设计出两种符合题意的分割方案图;
(2)设正方形的边长为a,请你就其中一种方案通过操作和观察将第二、 第三次分割后所得的最小的直角三角形的面积(S)填入下表:
分割次数(n)
1
2
最小直角三角形的面 积(S)
1 4
a
2
3
···
···
(3)在条件(2)下,请你猜想:分割所得的最小直角三角形面积S 与分割次数n有什么关系?
初中数学中考第一轮复习(浙教版)
36 尺规作图和格点画图
温州翔宇中学初三数学组
.
1
尺规作图(保留作图痕迹并写出作图原理)
1)已知线段a,作一条线段AB=a ;
作图依据为:圆上的点到圆心距离相等
.
2
作图依据为:利用SSS三角形全等
.
3
作图依据为:利用SSS三角形全等
.
4
4 )已知线段a,作线段a的垂直平分线m;
在(2)中所设计的图案是面积等于2 3 的中心对称图形;
在(3)中所设计的图案既是轴对称图形又是中心对称图 形,并且面积等于3 .将3 你设计的图案用铅笔涂黑.
(1)
.(2)
(3) 17
解答:设计的图案举例如下
(1)
(2)
(3)
.
18
5、在一次数学实践探究活动中,小强用两条直线把平行四边形 ABCD分割成四个部分,使含有一组对顶角的两个图形全等;
(1)求图(一)中四边形ABCD的面积; (2)在图(二)方格纸中画一个格点三角形EFG,使 △EFG的面积等于四边形ABCD的面积且为轴对称图形.
AA
DD BB
CC
图图11--33 .
16
4、请你在下面3个网格(两相邻格点的距离均为1个单位
长度)内,分别设计1个图案,要求:在(1)中所设计的图
案是面积等于 3的轴对称图形;