一次函数的图像与性质 (3)

合集下载

一次函数的图像和性质

一次函数的图像和性质

课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。

一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。

一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。

(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。

2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。

反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。

(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。

(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。

即该函数为减函数。

3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。

4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。

第03讲 一次函数的图像与性质(知识解读+题型精讲+随堂检测)(原卷版)

第03讲 一次函数的图像与性质(知识解读+题型精讲+随堂检测)(原卷版)

第03讲 一次函数的图像与性质1. 理解一次函数的定义2. 学会观察一次函数图像并分析,判断函数值随自变量的变化而变化3. 掌握求一次函数解析式方法并解决简单的几何面积问题;4.掌握一次函数与方程组及不等式的关联。

知识点1:一次函数的定义如果 y=kx+b (k ,b 是常数,k ≠0 )的函数,叫做一次函数,k 叫比例系数。

注意:当b=0时,一次函数y=kx+b 变为y=kx ,正比例函数是一种特殊的一次函数。

知识点2:一次函数图像和性质一次函数图象与性质用表格概括下:增减性 k >0 k <0从左向右看图像呈上升趋势,y 随x 的增大而增大从左向右看图像呈下降趋势,y 随x 的增大而较少图像(草图)b >0 b=0b <0b <0 b=0b <0经过象限一、二、三一、三 一、三、四 一、二、四 二、四 二、三、四与y 轴的交点位置b >0,交点在y 轴正半轴上;b=0,交点在原点;b <0,交点在y 轴负半轴上 【提分要点】:1. 若两直线平行,则;2. 若两直线垂直,则知识点3:一次函数的平移1、一次函数图像在x 轴上的左右平移。

向左平移n 个单位,解析式y=kx+b 变化为y=k (x+n )+b ;向右平移n 个单位解析式y=kx+b 变化为y=k (x-n )+b 。

口诀:左加右减(对于y=kx+b 来说,对括号内x 符号的增减)(此处n 为正整数)。

2、一次函数图像在y 轴上的上下平移。

向上平移m 个单位解析式y=kx+b 变化为y=kx+b+m ;向下平移m 个单位解析式y=kx+b 变化为y=kx+b-m 。

口诀:上加下减(对于y=kx+b 来说,只改变b )(此处m 为正整数) 知识点4:求一次函数解析式用待定系数法求一次函数解析式的步骤: 基本步骤:设、列、解、写 ⑴设:设一般式y=kx+b⑵列:根据已知条件,列出关于k 、b 的方程(组) ⑶解:解出k 、b ; ⑷写:写出一次函数式知识点5:一次函数与一元一次方程的关系直线 y=kx+b (k ≠0)与 x 轴交点的横坐标,就是一元一次方程 kx+b=0(k ≠0)的解.求 直线 y=kx+b (k ≠0)与 x 轴交点时,(1)可令 y=0,得到方程 kx+b=0(k ≠0),解方程得 __kb-=x ____________ ,(2)直线 y=kx+b 交 x 轴于点_(0,kb-)_______ , 就是直线 y=kx+b 与 x 轴交点的横坐标.知识点6:一次函数与一元一次不等式(1)由于任何一个一元一次不等式都可以转化为>0或<0或≥0或≤0(、为常数,≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.ax b +ax b +ax b +ax b +a b a y ax b =+(2)如何确定两个不等式的大小关系(≠,且)的解集的函数值大于的函数值时的自变量取值范围直线在直线的上方对应的点的横坐标范围.知识点7:一次函数与二元一次方程组1.一次函数与二元一次方程组的关系2.一次函数与二元一次方程的数形结合【题型1:一次函数的定义】【典例1-1】(2023春•安化县期末)下列关于x 的函数是一次函数的是( ) A .B .C .y =x 2﹣1D .y =3x【典例1-2】(2023春•博兴县期末)一次函数y =(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m ≠2且n =2 B .m =2且n =2C .m ≠2且n =1D .m =2且n =1【变式1-1】(2023春•兴城市期末)若函数y =(a ﹣2)x |a |﹣1+4是一次函数,则a 的值为( ) A .﹣2 B .±2C .2D .0【变式1-2】(2023春•易县期末)下列函数中,y 是x 的一次函数的是( )ax b cx d +>+a c 0ac ≠⇔y ax b =+y cx d =+x ⇔y ax b =+y cx d =+A.y=1B.C.y=2x﹣3D.y=x2【变式1-3】(2023•南关区校级开学)函数y=(2m﹣1)x n+3+(m﹣5)是关于x的一次函数的条件为()A.m≠5且n=﹣2 B.n=﹣2C.m≠且n=﹣2D.m≠【题型2:判断一次函数图像所在象限】【典例2】(2023春•岳阳县期末)一次函数y=x﹣1的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【变式2-1】(2023春•长沙期末)一次函数y=3x﹣5的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【变式2-2】(2023春•郧西县期末)在平面直角坐标系xOy中,函数y=2x﹣1的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【变式2-3】(2023春•黔东南州期末)一次函数y=3x﹣2的图象经过的象限是()A.第一、二、四象限B.第一、二、三象限C.第一、三、四象限D.第二、三、四象限【题型3:一次函数图像的性质】【典例3】(2023春•西城区校级期中)关于一次函数y=2x﹣4的图象和性质,下列叙述正确的是()A.与y轴交于点(0,2)B.函数图象不经过第二象限C.y随x的增大而减小D.当时,y<0【变式3-1】(2023春•启东市期末)下列关于一次函数y=﹣2x+2的图象的说法中,错误的是()A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小【变式3-2】(2022秋•罗湖区期末)关于函数y=﹣2x﹣5,下列说法不正确的是()A.图象是一条直线B.y的值随着x值的增大而减小C.图象不经过第一象限D.图象与x轴的交点坐标为(﹣5,0)【变式3-3】(2023春•邓州市期末)下列四个选项中,不符合直线y=﹣x﹣3的性质特征的选项是()A.经过第二、三、四象限B.y随x的增大而减小C.与x轴交于(3,0)D.与y轴交于(0,﹣3)【变式3-4】(2023春•建华区期末)关于函数y=﹣x+3的图象,下列结论错误的是()A.图象经过一、二、四象限B.与y轴的交点坐标为(3,0)C.y随x的增大而减小D.图象与两坐标轴相交所形成的直角三角形的面积为【题型4:根据一次函数增减性求含参取值范围】【典例4】(2023秋•射阳县校级月考)若一次函数y=﹣3mx﹣4(m≠0),当x的值增大时,y的值也增大,则m的取值范围为()A.m>0B.m<0C.0<m<3D.无法确定【变式4-1】(2023春•铜仁市期末)已知一次函数y=(m+1)x﹣2,y的值随x的增大而减小,则点P(﹣m,m)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【变式4-2】(2023•雁塔区校级四模)若一次函数y=(k﹣2)x+1的函数值y随x增大而增大,则()A.k>0B.k<0C.k<2D.k>2【变式4-3】(2023•贵阳模拟)已知函数y=(2m﹣1)x是正比例函数,且y 随x的增大而增大,那么m的取值范围是()A.m>B.m<C.m>0D.m<0【题型5:根据k、b值判断一次函数图像的】【典例5】(2023春•港北区期末)两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是()A.B.C.D.【变式5-1】(2023春•富锦市期末)同一平面直角坐标系中,函数y=ax+b与y =bx+a的图象可能是()A.B.C.D.【变式5-2】(2023春•易县期末)已知kb>0,且b<0,则一次函数y=kx+b 的图象大致是()A.B.C.D.【变式5-3】(2023春•商城县期末)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【题型6:比较一次函数值的大小】【典例6】(2023春•丹江口市期末)一次函数y=4x+m的图象上有三个点A(﹣2,a),B(3,b),C(﹣0.5,c),据此可以判断a,b,c的大小关系为()A.a<c<b B.a<b<c C.c<a<b D.b<c<a【变式6-1】(2023春•甘井子区期末)已知点A(﹣2,m),B(3,n)在一次函数y=2x+1的图象上,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定【变式6-2】(2023春•庐江县期末)若点M(﹣1,y1),N(2,y2)都在直线y=﹣x+b上,则下列大小关系成立的是()A.y1>y2>b B.y2>y1>b C.y2>b>y1D.y1>b>y2【变式6-3】(2022秋•太仓市期末)已知点,(1,y2),(﹣2,y3)都在直线上,则y1,y2,y3的大小关系是()A.y2<y3<y1B.y2<y1<y3C.y1<y3<y2D.y3<y2<y1【题型7:一次函数的变换问题】【典例7】(2023春•东兰县期末)在平面直角坐标系中,将直线y=2x+b沿y 轴向下平移2个单位后恰好经过原点,则b的值为()A.﹣2B.2C.4D.﹣4【变式7-1】(2023春•通河县期末)直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2【变式7-2】(2023春•卫滨区校级期末)一次函数y=﹣2x+b的图象向下平移3个单位长度后,恰好经过点A(2,﹣3),则b的值为()A.4B.﹣4C.2D.﹣2【变式7-3】(2023•娄底)将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3【变式7-4】(2023•临潼区一模)在平面直角坐标系中,若将一次函数y=2x+m ﹣1的图象向右平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣7B.7C.﹣6D.6【题型8:求一次函数解析式】【典例8】(2023春•西华县期末)已知直线l1:y=x+3与x轴、y轴分别交于点A、点B.(1)求A、B两点的坐标;(2)将直线l1向右平移8个单位后得到直线l2,求直线l2的解析式;(3)设直线l2与x轴的交点为P,求△P AB的面积.【变式8-1】(2023春•庐江县期末)已知某一次函数的图象与y轴的交点坐标为(0,﹣4),当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象沿x轴向右平移3个单位,求平移后的图象与坐标轴围成三角形面积.【变式8-2】(2023春•商南县校级期末)如图,直线y=﹣2x+2与x轴交于点A,与y轴交于点B.(1)求点A,B的坐标.(2)若点C在x轴上,且S△ABC =2S△AOB,求点C的坐标.【变式8-3】(2023春•鼓楼区校级期末)已知一次函数y=kx+4的图象过点B (2,3).(1)求k的值;(2)直线y=kx+b与x轴的交点为C点,点P在该函数图象上,且点P在x 轴上方,△POC的面积为4,求P点的坐标.【题型9:一次函数与一元一次方程】【典例9】(2022春•围场县期末)一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=﹣2B.y=﹣2C.x=1D.y=1【变式9-1】(2022秋•固镇县校级月考)如图,直线y=ax+b过点(0,﹣2)和点(﹣3,0),则方程ax+b+1=0的解是()A.x=﹣3B.x=﹣2C.x=﹣1.5D.x=﹣1【变式9-2】(2022春•冠县期末)如图所示,一次函数y=kx+b(k≠0)的图象经过点P(3,2),则方程kx+b=2的解是()A.x=1B.x=2C.x=3D.无法确定【变式9-3】(2022秋•广饶县校级期末)已知关于x的一次函数y=3x+n的图象如图,则关于x的一次方程3x+n=0的解是()A.x=﹣2B.x=﹣3C.D.【典例10】(2022秋•城关区校级期末)如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是()A.x=B.x=1C.x=2D.x=4【变式10-1】(2022秋•余姚市校级期末)如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是.【变式10-2】(2022秋•高陵区期末)在平面直角坐标系xOy中,函数y=kx和y=﹣x+b的图象,如图所示,则方程kx=﹣x+b的解为.【题型10:一次函数与一元一次不等式】【典例11】(2023春•阿克苏地区期末)如图,直线y=﹣2x+b与x轴交于点(3,0),那么不等式﹣2x+b<0的解集为()A.x<3B.x≤3C.x≥3D.x>3【变式11-1】(2023春•两江新区期末)如图,一次函数y=kx+b的图象与x轴和y轴的交点分别为(﹣2,0)、(0,1),求关于x的不等式kx+b<1的解集.【变式11-2】(2023春•松江区期末)如图:点(﹣2,3)在直线y=kx+b(k ≠0)上,则不等式kx+b≥3关于x的解集是.【变式11-3】(2021秋•建邺区期末)表1、表2分别是函数y1=k1x+b1与y2=k2x+b2中自变量x与函数y的对应值.则不等式y1>y2的解集是.表1x﹣4﹣3﹣2﹣1y﹣1﹣2﹣3﹣4表2x﹣4﹣3﹣2﹣1y﹣9﹣6﹣301.(2023•乐山)下列各点在函数y=2x﹣1图象上的是()A.(﹣1,3)B.(0,1)C.(1,﹣1)D.(2,3)2.(2023•兰州)一次函数y=kx﹣1的函数值y随x的增大而减小,当x=2时,y的值可以是()A.2B.1C.﹣1D.﹣2 3.(2023•鄂州)象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点(﹣2,﹣1)的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为()A.y=x+1B.y=x﹣1C.y=2x+1D.y=2x﹣14.(2023•沈阳)已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 5.(2023•益阳)关于一次函数y=x+1,下列说法正确的是()A.图象经过第一、三、四象限B.图象与y轴交于点(0,1)C.函数值y随自变量x的增大而减小D.当x>﹣1时,y<06.(2023•娄底)将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 7.(2023•台湾)坐标平面上,一次函数y=﹣2x﹣6的图象通过下列哪一个点()A.(﹣4,1)B.(﹣4,2)C.(﹣4,﹣1)D.(﹣4,﹣2)8.(2023•通辽)在平面直角坐标系中,一次函数y=2x﹣3的图象是()A.B.C.D.9.(2023•荆州)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是()A.(2,5)B.(3,5)C.(5,2)D.(,2)10.(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m相交于点P(3,n),则关于x,y的方程组的解为()A.B.C.D.11.(2023•丹东)如图,直线y=ax+b(a≠0)过点A(0,3),B(4,0),则不等式ax+b>0的解集是()A.x>4B.x<4C.x>3D.x<3 12.(2023•宁夏)在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是()A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组的解为13.(2023•盘锦)关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.14.(2023•西宁)一次函数y=2x﹣4的图象与x轴交于点A,且经过点B(m,4).(1)求点A和点B的坐标;(2)直接在图的平面直角坐标系中画出一次函数y=2x﹣4的图象;(3)点P在x轴的正半轴上,若△ABP是以AB为腰的等腰三角形,请直接写出所有符合条件的P点坐标.15.(2023•温州)如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.1.(2023秋•白银期中)下列函数中是一次函数的是()A.y=B.y=x2C.y=1D.y=x+1 2.(2023秋•济南期中)若函数y=(m﹣1)x+3是一次函数,则m的值为()A.﹣1B.1C.0D.﹣1或1 3.(2023•船营区一模)一次函数y=﹣2x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(2023•东莞市校级一模)已知点(﹣1,y1),(3,y2)在一次函数y=2x+1的图象上,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定5.(2023•雁江区校级模拟)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx﹣k的图象大致是()A.B.C.D.6.(2023秋•叶县期中)已知一次函数y=kx+k过点(1,﹣4),则下列结论正确的是()A.y随x增大而增大B.k=2C.直线过点(﹣1,0)D.与坐标轴围成的三角形面积为27.(2023秋•青羊区校级期中)一次函数y=5x﹣2的图象经过的()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限8.(2023秋•福田区校级期中)下列关于函数y=3x+2的结论中,错误的是()A.图象经过点(﹣1,﹣1)B.点A(x1,y1),B(x2,y2)在该函数图象上,若x1>x2,则y1>y2C.将函数图象向下平移2个单位长度后,经过点(0,1)D.图象不经过第四象限9.(2023秋•青岛期中)若一次函数y=2x﹣b的图象经过点(0,﹣3),则下列各点在该一次函数图象上的是()A.(2,1)B.(2,3)C.(﹣1,1)D.(1,5)10.(2023秋•榆次区期中)小磊在画一次函数的图象时列出了如下表格,小颖看到后说有一个函数值求错了.这个错误的函数值是()x…﹣3﹣2﹣1012…y…852﹣2﹣4﹣7…A.5B.2C.﹣2D.﹣4 11.(2023秋•碑林区校级期中)在平面直角坐标系中,将直线l1:y=﹣3x﹣2平移后,得到直线l2:y=﹣3x+4,则下列平移的做法正确的是()A.将l1向下平移6个单位B.将l1向下平移2个单位C.将l1向右平移6个单位D.将l1向右平移2个单位12.(2023秋•滕州市期中)若点P(a,b)在直线y=2x+1上,则代数式1﹣4a+2b的值为()A.3B.﹣1C.2D.0 13.(2023秋•雁塔区校级月考)已知直线与直线l关于x轴对称,则直线l与y轴的交点坐标是()A.(0,﹣1)B.(0,1)C.(2,0)D.(﹣2,0)14.(2023秋•市南区校级期中)已知函数y1=﹣x﹣3,y2=2x+9,当y1>y2时,x的取值范围为.15.(2023•西和县一模)直线y=kx+b经过点A(0,﹣4),且与坐标轴围成的三角形面积为4,则k=.16.(2023秋•紫金县期中)如图,已知直线y=kx+b的图象经过点A(0,﹣4),B(3,2),且与x轴交于点C.(1)求直线y=kx+b的解析式;(2)求△BOC的面积.17.(2023春•鼓楼区校级期末)如图,在平面直角坐标系xOy中,已知点A(﹣2,0),点B(0,1).(1)求直线AB的解析式;(2)若点C在直线AB上,且点C到x轴的距离为2,求点C的坐标.。

第19章专题12:一次函数的图像与性质(三)-通用版八年级下册数学专题练

第19章专题12:一次函数的图像与性质(三)-通用版八年级下册数学专题练

19章专题12:一次函数的图像与性质(三)1. 如图,已知直线l :y=-x+4,在直线l 上取点B 1,过B 1分别向x 轴,y 轴作垂线,交x 轴于A 1,交y 轴于C 1,使四边形OA 1B 1C 1为正方形;在直线l 上取点B 2,过B 2分别向x 轴,A 1B 1作垂线,交x 轴于A 2,交A 1B 1于C 2,使四边形A 1A 2B 2C 2为正方形;按此方法在直线l 上顺次取点B 3,B 4,…,B n ,依次作正方形A 2A 3B 3C 3,A 3A 4B 4C 4,…,A n-1A n B n C n ,则A 3的坐标为 ,B 5的坐标为 。

【答案】(27,0),(831,81)2. 直线y=x+1与x 轴交于点D ,与y 轴交于点A 1,把正方形A 1B 1C 1O 1、A 2B 2C 2C 1和A 3B 3C 3C 2按如图所示方式放置,点A 2、A 3在直线y=x+1上,点C 1、C 2、C 3在x 轴上,按照这样的规律,则正方形A 2020B 2020C 2020C 2019中的点B 2020的坐标为 。

【答案】(22020-1,22019)3. 在平面直角坐标系中,直线l :y=x-1与x 轴交于点A 1,如图所示,依次作正方形A 1B 1C 1O 、正方形A 2B 2C 2C 1、…、正方形A n B n C n C n-1,使得点A 1、A 2、A 3、…在直线l 上,点C 1、C 2、C 3、…在y 轴正半轴上,则点B 2020的横坐标是 。

【答案】220194. 已知A (x 1,y 1)、B (x 2,y 2)是一次函数y=(2-m )x+3图象上两点,且(x 1-x 2)(y 1-y 2)<0,则m 的取值范围为 。

【答案】m >2.5. 如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y=kx+4(k≠0)图象的距离相等,则k 的值为 。

初中数学一次函数的图象和性质

初中数学一次函数的图象和性质

一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。

4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。

三是用待定系数法求函数解析式,如例2的第二小题、例7。

其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。

二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。

分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。

解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。

例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。

(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。

辅导讲义3(一次函数的图像及性质)

辅导讲义3(一次函数的图像及性质)
15.如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y= x+b恰好将矩形OABC分成
面积相等的两部分,那么b的值为
16.(2011湖北黄石)已知梯形ABCD的四个顶点的坐标分别为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为
考点4用待定系数法求一次函数的解析式
[例4](2011广东株洲)直线L过A、B两点,A( , ),B( , ),
则直线L的解析式为.
22.(桂林)如图,是一个正比例函数的图像,把该图像向左平移
一个单位长度,得到的函数图像的解析式为.
23.(天津)已知一次函数的图象过点 与 ,则该函数的图象与 轴交点的坐标为__________.
A.y=x+1B.y=x-1C.y=xD.y=x-2
19.把直线一次函数y=6x+1向下平移2个单位,再向右移动3个单位得到的图像解析式为________
20.(湖北黄石)将函数y=-6x的图象 向上平移5个单位得直线 ,则直线 与坐标轴围成的三角形面积为.
21.直线L1经过点A(-3,1)、B(0,2),该直线向右平移3个单位得到直线L2,则直线L2的解析式为.
2.已知直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______;
与两条坐标轴围成的三角形的面积是__________.
3.一次函数 与x轴和y轴的交点的坐标分别是_______、_______;
与两条坐标轴围成的三角形的面积是__________.
考点2一次函数y=kx+b(k 0)图像与性质
学员编号:年级:课时数:3课时
学员姓名:辅导科目:学科教师:

考点03 一次函数的图像与性质(解析版)

考点03 一次函数的图像与性质(解析版)

考点三一次函数的图像与性质知识点整合一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数.(4)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.(5)一次函数的一般形式可以转化为含x、y的二元一次方程.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b(k≠0)k>0,b>0一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b(k≠0)k<0,b>0一、二、四y随x的增大而减小k<0,b<0二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.考向一一次函数和正比例函数的定义1.正比例函数是特殊的一次函数.2.正比例函数解析式y=kx(k≠0)的结构特征:①k≠0;②x的次数是1.典例引领二、填空题变式拓展6.已知y 与1x +成正比,当1x =时,2y =.考向二一次函数的图象及性质1.通常画正比例函数y=kx(k≠0)的图象时只需取一点(1,k),然后过原点和这一点画直线.2.当k>0时,函数y=kx(k≠0)的图象从左向右,呈上升趋势;当k<0时,函数y=kx(k≠0)的图象从左向右,呈下降趋势.3.正比例函数y=kx中,|k|越大,直线y=kx越靠近y轴;|k|越小,直线y=kx越靠近x轴.4.一次函数图象的位置和函数值y的增减性完全由b和比例系数k的符号决定.典例引领【答案】A【分析】本题考查的是一次函数的性质.根据一次函数的性质以及图像上点的坐标特征对各选项进行逐一判断即可.【详解】解:A 、当0x =时,2y =,图象必经过点()0,2,故本选项符合题意;B 、∵10k =-<,20b =>,∴图象经过第一、二、四象限,故本选项不符合题意;C 、∵10k =-<,∴y 随x 的增大而减小,故本选项不符合题意;D 、∵y 随x 的增大而减小,当2x =-时,0y =,∴当2x >时,0y <,故本选项不符合题意;故选:A .4.若一次函数21y x =-+的图象经过点()13,y -,()24,y ,则1y 与2y 的大小关系()A .12y y <B .12y y >C .12y y ≤D .12y y ≥【答案】B【分析】本题主要考查了比较一次函数值的大小,根据函数解析式得到y 随x 增大而减小,据此可得答案.【详解】解:∵一次函数解析式为21y x =-+,20-<,∴y 随x 增大而减小,∵一次函数21y x =-+的图象经过点()13,y -,()24,y ,34-<,∴12y y >,故选:B .5.已知一次函数(2)=-+y k x k ,且y 随x 的增大而减小,则k 的取值范围是()A .2k >B .0k <C .2k <D .2k ≤【答案】C【分析】此题主要考查一次函数的性质,根据一次函数的增减性即在y kx b =+中,k >0时y 随x 的增大而增大;k <0时,y 随x 的增大而减小即可求解.【详解】依题意得20k -<,解得2k <故选C .变式拓展三、解答题9.已知一次函数(2)312y k x k =--+.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,求k 的取值范围.【答案】(1)1(2)2k <【分析】(1)将点(0,9)代入一次函数(2)312y k x k =--+,可得关于k 的一元一次方程,求解即可获得答案;(2)根据该函数的增减性,可得20k -<,求解即可获得答案.【详解】(1)解:将点(0,9)代入一次函数(2)312y k x k =--+,可得3129k -+=,解得1k =,∴当1k =时,函数图象经过点(0,9);(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,则有20k -<,解得2k <,∴k 的取值范围为2k <.【点睛】本题主要考查了求一次函数解析式、根据一次函数的增减性求参数、解一元一次方程和解一元一次不等式等知识,熟练掌握一次函数的图象与性质是解题关键.10.已知2y -与x 成正比,且当2x =-时,8y =.(1)求y 与x 的函数关系式;(2)当x 取什么范围时,4y >-.【答案】(1)32y x =-+(2)2x <【分析】本题考查待定系数法求解析式,一次函数图象及性质.(1)设y 与x 的函数关系式为2y kx -=,再待定系数法求解即可;(2)利用一次函数图象及性质,代入4y =-后即可得到本题答案.【详解】(1)解:设y 与x 的函数关系式为2y kx -=,将当2x =-时,8y =代入2y kx -=中得:822k -=-,即:3k =-,∴32y x =-+;(2)解:∵32y x =-+,∴30k =-<,y 随x 增大而减小,当4y =-时,432x -=-+,即:2x =,∴4y >-时,2x <,综上所述:当2x <时,4y >-.考向三用待定系数法确定一次函数的解析式运用待定系数法求一次函数解析式的步骤可简单记为:一设,二代,三解,四回代.典例引领1.《国务院关于印发全民健身计划(2021-2025年)的通知》文件提出,加大全民健身场地设施供给,建立健全场馆运营管理机制,提升场馆使用效益.某健身中心为答谢新老顾客,举行大型回馈活动,特推出两种“冬季唤醒计划”活动方案.方案1:顾客不购买会员卡,每次健身收费30元.方案2:顾客花200元购买会员卡,每张会员卡仅限本人使用一年,每次健身收费10元.设王彬一年内来此健身中心健身的次数为x (次),选择方案1的费用为1y (元),选择方案2的费用为2y (元).(1)分别写出1y ,2y 与x 之间的函数关系式;(2)在如图的平面直角坐标系中分别画出它们的函数图象;(3)预计王彬一年内能来此健身中心12次,选择哪种方案比较合算?并说明理由.【答案】(1)130y x =,210200y x =+(2)见解析(3)他选择方案二比较合算,理由见解析【分析】(1)本题主要考查了列函数关系式,根据两种方案分别列出函数关系式即可,理解题意是解题的关键;(2)本题主要考查了画函数图像,分别确定两个函数图像上的两个点,然后连接即可;理解函数图像上的点满足函数解析式是解题的关键;(2)本题主要考查了不等式的应用,解不等式3010200x x <+,即可确定来此健身中心12次费用较小的方案.正确求解不等式是解题的关键.【详解】(1)解:根据题意得:130y x =,210200y x =+;所以12y y ,与x 之间的函数表达式分别为130y x =,210200y x =+.(2)解:当0x =时,10y =,2200y =;当4x =时,1120y =,2240y =.据此描点、连线画出函数图像如下:(3)解:王斌择方案二比较合算,理由如下:解不等式3010200x x >+,解得:10x >,所以当10x >时,方案二优惠,因为1210>,王斌择方案二比较合算.2.已知4y +与3x -成正比例,且1x =时,0y =(1)求y 与x 的函数表达式;(2)点(1,2)M m m +在该函数图象上,求点M 的坐标.【答案】(1)22y x =-+(2)点M 的坐标为(1,0)【分析】(1)利用正比例函数的定义,设4y +=(3)k x -,然后把已知的对应值代入求出k 即可;(2)把(1,2)M m m +代入(1)中的解析式得到关于m 的方程,然后解方程即可.【详解】(1)设y 与x 的表达式为4(3)y k x +=-,把1x =时,0y =代入4(3)y k x +=-得24k -=,解得2k =-,由题意,得52024x x ≥⎧⎨-≥⎩,解这个不等式组,得58x ≤≤,因为x 为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆.【点睛】本题考查了列出实际问题中的函数关系式和一元一次不等式组的应用,正确理解题意、列出函数关系式和不等式组是解题的关键.5.习主席在二十大报告中提到“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对甲、乙两个水稻品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩,收获后甲、乙两个品种的售价均为2.8元/千克,且甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元.(1)请求出甲、乙两个品种去年平均亩产量分别是多少;(2)今年,科技小组加大了水稻种植的科研力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加20x 千克和10x 千克.由于甲品种深受市场的欢迎,预计售价将在去年的基础上每千克上涨0.05x 元,而乙品种的售价将在去年的基础上每千克下降0.1x 元.若甲、乙两个品种全部售出后总收入为y 元,请写出y 与x 的关系式;若今年甲、乙两个品种全部售出后总收入比去年增加9500元,水x 的值.【答案】(1)甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克(2)x 的值为5【分析】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据:甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元,即可求解;(2)根据总收入等于甲乙两个品种的收入之和即可列出y 与x 的关系式,进而得到关于x 的方程,解方程即得答案.【详解】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据题意得1002.8100 2.8100644000n m m n -=⎧⎨⨯+⨯=⎩,解得m 11001200n =⎧⎨=⎩.答:甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克.(2)根据题意得:()()()()2.80.0510******* 2.80.1100120010y x x x x =+⨯++-⨯+,整理得1900644000y x =+,∴y 与x 的关系式1900644000y x =+.∵今年甲、乙两个品种全部售出后总收入比去年增加9500元,可得6440095001900644000x +=+,解得5x =.答:x 的值为5.【点睛】本题考查了二元一次方程组的应用,列出实际问题中的函数关系式,正确理解题意、找准相等关系是解题的关键.变式拓展c<时,如图2.②当0综上所述,d的取值范围是t≥时:当x t=时,①当0之间的关系如图所示.(1)求出图中a 、b 、c 的值;(2)在乙出发多少秒后,甲、乙两人相距60米?【答案】(1)8a =,92b =,123c =;(2)乙出发68秒或者108秒后,甲、乙两人相距60米.【分析】(1)由函数图象可以分别求出甲的速度为4米/秒,乙的速度为5米/秒,就可以求出乙追上甲的时间a 的值,b 表示甲跑完全程时甲、乙之间的距离,c 表示乙出发后多少时间,甲走完全程就用甲走完全程的时间−2就可以得出结论;(2)分别求出8秒到100秒和100秒到123秒的解析式,再把60y =代入即可解出x 值.【详解】(1)解:由题意及函数图象可以得出:甲的速度为:824÷=(米/秒),乙的速度为:500÷100=5(米/秒),8548a ÷-=()=(秒);500410292b -⨯==(米),50042123c ÷-==(秒),所以8,92,123a b c ===.(2)设8~100秒和100~123秒的解析式分别为11y k x b =+和22y k x b =+,把()()8010092,、,代入11y k x b =+得11110892100k b k b =+⎧⎨=+⎩解得1118k b =⎧⎨=-⎩,把()()123010092,、,代入22y k x b =+得2222012392100k b k b =+⎧⎨=+⎩解得224492k b =-⎧⎨=⎩,8~100秒解析式:8y x =-,100~123秒的解析式4492y x =-+,当60y =时,则68108x =或者,所以在乙出发68秒或者108秒后,甲、乙两人相距60米∵0<x ≤1000,∴860≤x ≤1000.故答案为:y 1=0.5x ;y 2=0.3x +40;0<x ≤200;200≤x ≤860;860≤x ≤1000.(2)根据题意可得,推出优惠活动后,y 1=0.5a +0.25(x ﹣a )=0.25x +0.25a ,则有,0.257000.250.3700400.258600.250.386040a a ⎧⨯+≥⨯+⎨⨯+≤⨯+⎩解得300≤a ≤332.∴此时a 的取值范围为:300≤a ≤332.【点睛】本题主要考查了一元一次不等式组的应用,明确题意,列出不等式组是解题的关键.考向四一次函数与方程、不等式1.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)中,y =k 时x 的值.2.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)的图象与直线y =k 的交点的横坐标.3.一次函数y =ax +b (a ≠0)与一元一次不等式ax +b >0(或ax +b <0)的关系:ax +b >0的解集⇔y =ax +b 中,y >0时x 的取值范围,即直线y =ax +b 在x 轴上方部分图象对应的x 的取值范围;4.ax +b <0的解集⇔y =ax +b 中,y <0时x 的取值范围,即直线y =ax +b 在x 轴下方部分图象对应的x 的取值范围.5.二元一次方程kx -y +b =0(k ≠0)的解与一次函数y =kx +b (k ≠0)的图象上的点的坐标是一一对应的.6.两个一次函数图象的交点坐标,就是相应二元一次方程组的解,体现了数形结合的思想方法.典例引领1.直线1l :1y kx b =+过点()0,4A 和()1,3D ,直线2l :225y x =-和y 轴交于点B 和直线1l 交于C 点.(1)求两条直线交点C 的坐标及ABC 的面积;(2)x 取何值时,120y y >>.∵()0,4A ,()0,5B -,()3,1C ,∴9AB =,3CN =,∴112793222ABC S AB CN =⋅=⨯⨯= .(2)∵14y x =-+,225y x =-,∴当120y y >>时,4250x x -+>->,解得:532x <<.2.已知直线443y x =-+与x 轴,y 轴分别交于点且把AOB 分成两部分.(1)若AOB 被分成的两部分面积相等,求k 与b ;⎩3.如图,在平面直角坐标系中,直线轴于点C和点D,两条直线交于点(1)求点A的坐标;(2)在直线CD上求点M【答案】(1)点A的坐标为(2)点M的坐标为44⎛∵3ABC MAB S S = ,∴23MBC ABC S S =△△,∵12ABC A S BC y =⋅△,121∵3ABC MAB S S = ,∴43MBC ABC S S =△△,(1)求点C的坐标;(2)求AOB的面积;(3)点D在直线122y x =+求点D的坐标.变式拓展(1)求点A,B,C的坐标.(2)若点P在直线1l上,且(3)根据图象,直接写出当【答案】(1)48, A⎛-(1)直接写出点A的坐标为。

一次函数图像和性质(例3)

一次函数图像和性质(例3)
一些悲剧也会发生,历史的车轮按部就队的前进,大时代下小小的人儿只能顺应时代.但是自己可以先知先去,是应该为自己和家人的未来考虑. 妻子它么年幼,自己就不说了,她遭遇了一系列可怕的事,全家罹难.当和平到了,作为丈夫,必须带着她去长期和平稳定的地域生活,白俄罗斯那 里或许是最合适的. 那些考虑,李小克没有说明,不过他的它句"白俄罗斯是我第二故乡"无疑感动了很多人. 以至于耶莲京娜问道:"别列科夫,你有没有想要加入苏力国籍,加入白俄罗斯社会主义人民共和国?" 苏力那是一个大联盟,其中白俄罗斯在联盟里的地位十分重要.在苏维埃联盟 中他有很大的自主权和话语权.只不过现在的白俄罗斯全境被认为沦陷,白俄罗斯的席位也干脆被取消,政府人员全部流亡,所以才有后来的战争时代的游击共和国的诞生. 那话把李小克问住了."我可是新中国的公民,遁入那个时代身不由己,难道要背离自己的祖国?"不过转念一想,现在 太祖爷还在窑洞里运筹帷幄呢,就算是新中国也是几年后才建立. 自己的身份其实是民国人士,在那样的时代如此身份令人憋愤(民国积贫积弱令国人悲痛),只不过还有一个抗联士兵的身份,而正式的身份则是苏力红军军官. 在那里都是自己人,耶莲京娜继续说:"别列科夫,其实上级 很容易就调查清楚你的身份是伪造的,你是中国人,军籍确实布里亚特蒙古人.你要为你的未来想想.只有你加入了苏力,法理上成为我们,你才有更大的作为." 耶莲京娜很隐晦的点拨了李小克一下,那意思无外乎"非我族类其心必异".老毛子也是一贯的种族歧视,除非那个人对他们有着极 大的益处. 李小克没有做出直接答复. "别列科夫,我劝你还是好好想一想.在那里咱们都是出生入死的战友,你其实比耶夫洛夫更有能力,但是你还是外国人,上级不可能给你更高的职务."耶莲京娜故意看了看耶夫洛夫的表情,见

一次函数的图像与性质

一次函数的图像与性质

例2:已知正比例函数y=x和y=3x,过点A (2,0)作x轴的垂线,与这两个正比 例函数的图象分别交于B、C两点,求三 角形OBC的面积。(O为坐标原点) y=3x y C y=x B
O
A(2,0) x
一次函数图象和性质的应用
练习1 直线y =2x-3 与x 轴交点的坐标为 ( ________ 1. 5, 0) ; 一、三、四 与y 轴交点的坐标为( ________ ;图象经过____________ 0, - 3) 增大 . 象限, y 随x 的增大而________
5、函数y=(k-2)x - 1+k
经过第一、二、四象限, k的范围是 1<k<2
6、函数y=2x - 4 与y轴的交点为(0,-4), 与x轴的交点为( 2,0 ),
与坐标轴围成三角形面积为 ( 4 )
归纳结论: 一次函数图象的性质
y
x y
· o · x
y=2x+1
o
·x ·
· o ·x
y=-2x+1
K>o K<0 b<0 b=0 b>0 b<0
b=0
b>0
一,三
一,二,三 一,三,四
二,四
一,二,四 二,三,四
当k>0时,y的值随x的增大而增大
当k<0时,y的值随x的增大而减小
一次函数性质的应用
例 1 已知△ABC的底边BC=8cm,当BC边上的高 线从小到大变化时, △ABC的面积也随之变化。 (1)写出△ABC的面积y(cm2)与高线x的函数 解析式,并指明它是什么函数; (2)当x=7时,求出y的值。
y=-x-1
K决定直线的变化趋势 b决定直线与y轴交点的位置

《一次函数的图像和性质》课件 新人教版 3

《一次函数的图像和性质》课件 新人教版 3
1 | b | | b | 4 22 b2 16 b 4
例3 如图所示,一次函数的图象与
x轴、y轴分别相交于A,B两点,如
果A点的坐标为A(2,0),且
OA=OB,试求一次函数的解析式。
y
解:设解析式 y kx b
∵OA=OB,A(2,0)∴B(0,-2)
A
O
x
仔细观察,y=kx+b中的b有什么作用?
两直线平行,k有什么关系?
y
2. 0
2
-2 .
y=x+2 向上平移或向下平移是由
y=x
常量b来决定的。+2时向 上平移2个单位,-2时向
y=x-2 下平移2个单位。 “上加下减”
x 两直线平行时,它们 的k值相等
推广:
(1)所有一次函数y=kx+b的图象都是_一_条_直__线_ (2)直线 y=kx+b与直线y=kx__互__相__平_行___;
C. y=√3 x– 4
D. y= –2x-7
2. 一次函数y=(a+1)x+5中,y的值随x的值增大而
减小,则a满足__a_<__–_1__ .
3. 设下列函数中,当x=x1时,y=y1,当x=x2时,
y=y2,用“<”,“>”填空:
对于函数y=5x,若x2>x1,则y2 _>__ y1 对于函数y=-3x+5,若x2 _>_x1,则y2 < y1
y
0
x
b<0
一、三、四
函数图象
y
0
x
y
0
x
k的符号 b的符号 图象经过象限 函数图象性质

一次函数的图象和性质教案3

一次函数的图象和性质教案3

《一次函数的图象和性质》教案例1已知正比例函数且它的图像通过第二、四象限,求m 的值及函数解析式.分析:与y=kx(k ≠0)相比较,则m-2≠0且m 2-2m-14=1.从而建立关于m 的方程.又由正比例的性质和已知,有m-2<0,最后求出m . 解:由此得m=-3,m=5又已知它的图象通过第二、四象限 所以m-2<0得m=-3合适m=5应舍去 函数的解析式为y=-3x说明:在确定函数解析式中系数时要根据函数的概念,有时还要根据函数性质,在求正比例函数y=kx 时一定要使x 的次数为1且k ≠0,还要根据图象或性质确定k 为正或负,图象过一、三象限k 为正,图象过二、四象限k 为负,y 随x 的增大而增大k 为正,y 随x 的增大而减小k 为负.例2 已知一次函数图象过点(4,1)和点(-2,4).求函数解析式且画出图象.根据图象回答:(1)当x=-1时y 的值;(2)当y=2时x 的值;(3)图象与x 轴交点A 的坐标,与y 轴交点B 的坐标;⑷当x 为何值时0,0,0<=>y y y ;⑸当41≤<-x 时y 的取值范围;⑹当41<≤-y 时x 的取值范围;⑺求AOB ∆的面积;⑻方程0321=+-x 的解。

分析:一次函数的图象是一条直线,由两点很容易就得到图象,用待定系数法可以求出解析式,利用图象或解析式可解答许多问题. 解:列表:描点连线得图象(2)当y=2时,x=2;(3)A(6,0)、B(0,3);(4)x<6时,y>0;x=6时,y=0;x>6时,y<0;(6)当-1≤y<4时,-2<x≤8;说明:从图象上对应点的坐标来求(1)已知x值可求y的值;(2)已知y的值可求x的值;(3)已知x的变化范围可求y的变化范围,反之也可求.的解,函数、方程、不等式三者是紧密联系的.例3一次函数y=-kx-k的图象大致是 [ ]分析:一次函数y=kx+b,对于y=kx-k即b=-k所以k与b互为相反数,由定义知k≠0图象不过原点.解:∵b=-k,k与-k是互为相反数且k≠0∵(A)中正比例函数图象b=0,不合要求说明:k>0时一次函数的图象从左至右是向上的即y的值随x值的增大而增大,k <0时相反.b>0时一次函数的图象与y轴的交点在x轴上方,b<0时在下方.一般情况下要判断一次函数图象的大致情况就是根据k、b的正负.例4正比例函数或一次函数(y=kx+b)的图象如图所示,请确定k、b的情况:分析:看图象自左向右是上升还是下降来决定k的正负由图象与y轴的交点在x轴的上方还是下方来决定b的正负.正比例函数过原点b=0.解:图(1)中k>0,b=0;图(2)中k<0,b=0;图(3)中k<0,b>0;图(4)中k<0,b<0.例5已知两条直线y1=2x-3和y2=5-x.(1)在同一坐标系内作出它们的图象;(2)求出它们的交点A的坐标;(3)求出这两条直线与x轴围成的三角形ABC的面积.分析:作一次函数的图象,只需描出图象上两个点,过这两点的直线就是,一般情况下两点可选直线与坐标轴的交点.求两直线交点的坐标可从图象上求,但为精确起见常用解方程组的方法求得.解:(1)列表:函数图象:(2)因为A点同时在两条直线上,所以A点坐标同时满足这两个函数的解析式,即A点坐标就是方程组点,则C(5,0).说明:求两条直线与x轴(y轴)所围成三角形的面积可用两直线分别与x轴(y轴)交点坐标差的绝对值为底边长,用两直线交点的纵坐标的绝对值(横坐标的绝对值)为高即可求得.例6 k在为何值时,直线2k+1=5x+4y与直线k=2x+3y的交点在第四象限.分析:此题中已知两直线的交点在第四象限,实际上就是知道两个一次函数图象交点在第四象限,因此如何求两个一次函数的图象的交点及第四象限点应满足的条件就成了解此题的关键.另外因为涉及待定系数k的值,所以要先求它们的交点,其中交点的坐标是可以用待定系数来表示,最后再确定第四象限的点的坐标满足的条件.解:∵已知两个一次函数有交点解关于x,y的二元一次方程组,得∵它们交点在第四象限,∴x>0,y<0例7已知一次函数的图象交正比例函数图象于M点,交x轴于点N(-6,0),又知点M位于第二象限,其横坐标为-4,若△MON面积为15,求正比例函数和一次函数的解析式.分析:要确定一次函数的解析式,必须知道图象的两个已知点的坐标,而要确定正比例函数又必须知道图象上一个点的坐标,但题设中都缺少条件,它们交点坐标中不知道纵坐标的值.已知条件中给出了△MON的面积,而△MON的面积,因底边NO可以求到,因此实际上需要把△MON的面积转化为M点的纵坐标解:根据题意画示意图,过点M作MC⊥ON于C∵点N的坐标为(-6,0)∴|ON|=6∴MC=5∵点M在第二象限∴点M的纵坐标y=5∴点M的坐标为(-4,5)x+b∵一次函数解析式为y=k1x正比例函数解析式为y=k2x+b经过(-6,0)直线y=k1x图象经过(-4,5)点,∵正比例函数y=k2例8在直角坐标系中,一次函数在y轴上的交点坐标是B(0,5),与x轴交点A的横坐标是图象与y轴交点到原点距离的2倍,点C的坐标是(6,0),点P 的坐标是(0,y),若四边形ABPC的面积为S,求S关于y的函数解析式,并求出自变量的取值范围;若∠PCO=30°时,求四边形ABPC的面积.分析:根据题意画出示意图因为要求面积S与y的函数关系式,所以要考虑ABPC四边形的构成,确定四边形ABPC,其中三点A,B,C的坐标已给出,只要考虑P点的位置即可.点P 的位置有两种可能,其一是P点在O,B之外,其二在O,B之间,如果P点在OB之外,则不满足四边形ABPC的条件,所以点P只能在O,B之间,所以S=S△AOB -S△COP,故只要求出两个三角形面积即可.解:∵一次函数在y轴上交点B的坐标是(0,5)根据题意:得A(10,0)∴OB=5,OA=10∵点C坐标为(6,0),点P坐标是(0,y)∴OC=6,OP=y∵S=S△AOB-S△COP∴S=25-3y即S=-3y+25∵点P在O与B之间∴自变量y的取值范围是0<y<5∴当∠PCO=30°时,在Rt△COP中说明:解这类题时先画出示意图,并看图进行分析,示意图的关键是位置关系要正确,要学会数形结合.例9已知一次函数y=kx+b的图象经过第一象限的点P,且与y轴的正半轴相交于这个一次函数的解析式(如图).分析:一次函数的图象过P、Q两点,求出P、Q的坐标就可以求出函数的解析式,又因OP已知∠α也已知P点坐标可求,再利用△POQ面积可求Q点坐标.解:设点P的坐标为(x1,y1),由已知,x1>0,y1>0,解得x1=1(舍去负根),根据题意,有整理,得2b2-3b-2=0,说明:有不少学生不会建立点p 的坐标()11,y x p ,即使建立,也得不出11x y tga =错误发生的原因,对直角坐标系及点的坐标没有深刻的认识,对倾斜角α的含意纠正错误的办法,给学生渗透一些解析几何的知识,如直线方程、倾斜角、斜率等有关概念.一次函数在解析几何中叫直线方程,其表达式y=kx+b ,k 即为倾角的正切,倾角的正切即为斜率.这样,学生能对问题的本质更深入理解.例10 已知如图1,⊙O 是△ABC 的外接圆,且BC 为直径,⊙O '和⊙O 内切于点A ,与AB ,AC 分别交于点D ,E ,AB=8,AC=6,设BD=x ,DE=y . 求:(1)y 与x 间的函数关系式,以及自变量x 的取值范围; (2)求当⊙O '与BC 相切时y 的值.分析:两圆内切有一条公切线,一个公共的弦切角要建立x 、y 的关系,常利用几何性质列出含x 、y 的比例式.(1)过点A作⊙O和⊙O'的公切线AT,A为切点.∵BC为⊙O的直径,∴∠BAC=Rt∠.∵AB=8,AC=6,又∠BAT=∠DEA=∠BCA,∴DE∥BC,(2)当⊙O'与BC相切于F时,如图2,连结AF,∴∠TAF=∠BFA,即∠BAT+∠BAF=∠BCA+∠FAC.∵∠BAT=∠BCA,∴∠BAF=∠FAC,∵BF切⊙O'于F,BA为⊙O'的割线,∴BF2=BD·BA,说明:有部分学生对两圆内切在本题的情况下,两个圆有同一的切线,同一的弦没有分辨出来,因而没有发现“弦切角等于同弧所对的圆周角.”对大圆、小圆均如此,列不出比例式,也有的学生因不会使用圆幂定理而解题失败.错误产生的原因,对两个圆或者两个以上的圆,组合起来建立新的题型,由于创造思维、发散思维没有建立起来“顾了东边顾不了西边”而发生错误,有不少学生对单一圆的问题解决尚感困难,何况两个圆的综合题了.纠正错误的办法,加强圆的内切、圆的外切同类题型的学习.在平面几何中,圆最后学习,临近中考,各科都紧张,应该边讲圆边复习,把常见圆的习题归总在一起,突出重点难点.例11 如图,在平面直角坐标系xOy中,以原点O为圆心,1为半径作圆与x轴交于A,C两点,与y轴交于B,D两点,点P在BD上,CP的延长线交⊙O于E,且S△AEC =3S△COP.求CP所在直线的函数解析式.分析:要求CP所在直线的函数解析式,只需求出C、P两点坐标,而C是(-1,0)所以只需求出P点纵坐标,利用相似三角形可求出OP的长,要注意P点还可能在OD上.解:设P 点坐标为( 0,y ).。

第三章 考点11 一次函数的图像与性质

第三章 考点11 一次函数的图像与性质

x,
2
x
0,
2x 1, x 0.
例1 变1 例2 变2 例3 变3 例4 变4
【变式训练1】 作出函数y=|x+1|+1的图像.
例1 变1 例2 变2 例3 变3 例4 变4
解:y=|x+1|+1=
x 2,
x,
x
x 1 1,
取点(-2,2),(-1,1),(0,2),连线,得函数图像如下图 所示:
【提示】h=20-5t(0≤t≤4).
123456
6.若函数f(x)=(k-2)x+3在R上单调递减,则k的取值范围 是( D ) A.{k|k>0} B.{k|k>2} C.{k|k<0} D.{k|k<2}
【提示】由k-2<0得k<2.
例1 变1 例2 变2 例3 变3 例4 变4
【例1】已知函数y=f(x)的图像如图11-1所示,求此函数的解析 式.
2.一次函数
(1)函数y=kx+b(k≠0)叫作一次函数,一次函数的图像是经过
点(0, b
)和点(
b k
,0)的一条直线.
(2)当k>0时,函数在R上是 增 函数;当k<0时,函数在
R上是 减 函数.
(3)当k>0,b>0时,图像经过第 一、二、三 象限;
当 k>0,b<0 时,图像经过第一、三、四象限;当 k<0,b>0 时
A.[-3,5]
B.[-5,3]
C.(-3,5)
D.(-5,3)
【提示】∵f(x)在[-2,2]上是单调递减函数,∴当x=2时, 函数f(x)的最小值为-3;当x=-2时,函数f(x)的最大值为5. 故函数的值域为[-3,5].
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数图象与性质
y=kx+b b≠0)

次 函
图象

y
b
ox
y ox
b
y
b
ox
y ox
b
k,b的符号
k>0 b>0
k>0 b<0
k<0 k<0 b>0 b<0
( 经过象限 一、二、三 一、三、四 一、二、四 二、三、四
增减性
y随x的增 y随x的增 大而增大 大而增大
y随x的增 y随x的增 大而减少 大而减少
1、列表:分别选取若干对自变量与函数的对应 值,列成下表.
X …. -2 -1 0 1 2 ….
Y=2X …. -4 -2 0 2
4
….
Y=2X+1 …. -3 -1 1 3
5
….
这两个函数的图象形状 都是 直线 ,并且倾斜程 度 相同 .函数y=2x 的图象经过原点,函数
Y
88 Y=2X+1
7
66
2、当k<0时,y随x 的增大而减小; 图像必经过二、四象限,当b>0时,还经过第一象限, 当b<0时,图像还经过第三象限。
练一练
练习1 直线y =2x-3 与x 轴交点的坐标为(__1_._5_,__0_); 与y 轴交点的坐标为_(__0_,__-_3_);图象经过___一__、__三__、__四_ 象限, y 随x 的增大而__增__大____. 课本107页第3题
19.2.2
一次函数的图像与性质
想一想
正比例函数 解析式 y =kx(k≠0)
图象:经过原点和
(1,k)的一条直线
k>0 k<0
y
y
Ox
O
x
一次函数 解析式 y =kx+b(k≠0)
? ?
性质:k>0,y 随x 的 增大而增大;k<0,y 随 x 的增大而减小.
作出一次函数y=2x和Y=2X+1的图象
1在平面直角坐标系中,函数y=-2x+3的图象经过( D )
A.一、二、三象限 B.二、三、四象限 C.一、三、四象限 D.一、二、四象限
2已知一次函数y=x-2的大致图像为 ( C )
y
y
y
y
x x
x
x
A
B
C
D
3、直线y1=k1x+b1与直线y2=k2x+b2相交于y轴上同一点, 则必有( B ) A、 k1= k2 B、 b1= b2 C、 k1= b2 D、 k2 = b1
大大不过 四
大小不过 二
小大不过 三
小小不过 一
-2 -2 -3
可看成是由直线y=2x向
-4 -4
-5
下平移2个单位长度得到。
-6 -6
-7 -8 -8
◆ y = kx+b (k≠0) 它的图象是将y =kx 进行平移得到的
o
y=kx+b
y=kx
y
特性:
▲k1=k2=k3 b1≠b2≠b3三 线平行
x
o y = k1x+b1 y = k2x+b2
y = k3x+b3
一次函数的图像
1、一次函数y=kx+b(k,b都是常数,k≠0)的图像
是经过点(0,b)且平行于直线y=kx的一条直线。
2、直线y=kx 向上(b>0)或向下(b<0) 直线y=kx+b 平移|b|个单位。
(1)直线y=3x-2可由直线y=3x向 下 平 移 2 单位得到。
(2)直线y=x+2可由直线y=x-1向 上 平 移 3 单位得到。
做一做
请用简便方法画出下列一次函数的图象:
(1)y =x+1; (2)y =3x+1;
(3)y =-x+1; (4)y =-3x+1.
解:列表:
y =-3x+1
y y =3x+1
x
01
y =x+1 1 2
6 5
y =-x+1 4 3
y =x+1
y =3x+1 1 4 y =-x+1 1 0 y =-3x+1 1 -2
X … -2 -1 0 1 2 …. .
y=2x-2 … -6 -4 -2 0 2 …. .
Y
88 Y=2X+1
7 66
5 44 3 22 1
Y=2X Y=2X-2
1
-10-10 -9 -8 -7 -6 --55 -4 -3 -2 -
O 1 2 3 4 55 6 -1
X
10
一次函数y=2x-2的图像
2
1
o -4 -3 -2 -1
1
23Leabharlann 45x-1
-2
-3
-4
-5
-6
做一做
请用简便方法画出下列一次函数的图象:
(1)y =x+1; (2)y =3x+1;
(3)y =-x+1; (4)y =-3x+1.
y
k>0时,直线左低右高,
y =-3x+1 6
y 随x 的增大而增大; y =-x+1
4
y =3x+1
Y=2X
y=2x+1的图象与y轴交
5 44
于点 (0,1) ,
3
22
即它可以看作
1
-10-10 -9 -8 -7 -6 --55 -4 -3 -2 -1 O 1 2 3 4 55 6
直线y=2x向 上 平移
-1 -2 -2
X
10
-3
1 个单位长度而得
-4 -4

-5
-6 -6
-7 -8 -8
在同一平面直角坐标系中画出 y=2x-2的图像
C
y =x+1
k<0时,直线左高右低,
y 随x 的增大而减小.
-5
B 2 A
O
D
E -2
5x
一次函数y=kx+b (k‡0)的性质: 当k>0时,y随x的增大而增大;
y
x
一次函数y=kx+b (k‡0)的性质: 当k<0时,y随x的增大而减小.
y
x
一次函数的性质:
1、当k>0时,y随x 的增大而增大; 图像必经过一、三象限,当b>0时,还经过第二象限, 当b<0时,图像还经过第四象限。
2 、 有 下 列 函 数 : ①y=2x+1, ②y=-3x+4,③y=0.5x, ④y=x-6;
其中过原点的直线是__③______; 函数y随x的增大而增大的是_①___③__④____; 函数y随x的增大而减小的是____②_______; 图象在第一、二、三象限的是___①_____ 。
抢答题
相关文档
最新文档