【教育资料】专题训练(一) 分式化简求值常见题型归纳学习精品
中考分式化简求值专项练习与答案(可编辑修改word版)
,代入值得:-1
a2
12、化简得: 2 ,代入值得: 2 1
x2
2
14、化简得: a a2 ,代入值得: 7 2
第 7 页(共 7 页)
2
x
5
的整
1
数解.
第 2 页(共 7 页)
7、化简求值:
a2
6ab 9b2 a 2 2ab
5b 2 a 2b
a
2b
1 a
,其中
a,b
满足
ab4 ab2
8、先化简,再求值:
1 x
x2 x2
1 x
x
2
1
1
,其中
x 1
x
的值为方程 2x
5x
1 的解.
9、先化简,再求值: (x 1 3 ) x2 4x 4 ,其中 x 是方程 x 1 x 2 0 的解。
中考专题训练——分式化简求值
1、先化简,再求值:
x2 2x x2 1
x
1
2x 1 x 1
,其中
x
1 2
a2 2、先化简,再求值: (
5a
2
1)
a 2 4 ,其中a 2 3
a2
a2 4a 4
3、先化简,再求值: (1 1 ) x 2 2x 1 ,其中 x 3
x2
x2 4
第 1 页(共 7 页)
x 1
x 1
25
第 3 页(共 7 页)
10、先化简,再求值:
a2
a2 4 4a
4
a
2
2
a2 a
2a 2
,
其中
a
3
1 11、先化简,再求值: (
a2)
专题训练(一) 分式化简求值常见题型归纳
专题训练(一) 分式化简求值常见题型归纳► 类型一 代入求值型一、直接代入型1.先化简,再求值:⎝ ⎛⎭⎪⎫a 2a -1+11-a ·1a,其中a =-12. 二、选择代入型2.先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你喜欢的x 值代入求值.3.若a 满足-3≤a≤3,请你选取一个合适的数a 使得代数式a 2-1a ÷⎝ ⎛⎭⎪⎫1-1a 的值是一个奇数.三、整体代入型4.已知x ,y 满足x =5y ,求分式x 2-2xy +3y 24x 2+5xy -6y 2的值. 5.已知a +b b =52,求a -b b的值. 6.若1a -1b =12,求a -b ab -ab a -b的值. 7.已知1x +1y =5,求2x -3xy +2y x +2xy +y的值. 8.已知a 满足a 2+2a -15=0,求1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1的值. 9.已知t +1t =3,求t 2+⎝ ⎛⎭⎪⎫1t 2的值. 10.已知x +1x =4,求x 2x 4+x 2+1的值. ► 类型二 设比例系数或用消元法求值11.已知2a -3b +c =0,3a -2b -6c =0,abc ≠0,则a 3-2b 3+c 3a 2b -2b 2c +3ac 2=________. 12.已知x 2=y 3=z 4≠0,求xy +yz +zx x 2+y 2+z 2的值.► 类型三 利用非负数的性质挖掘条件求值13.已知x 2-4x +4与|y -1|互为相反数,则式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值为________. 14.已知⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭⎪⎫3y +1y +42=0,求32x +1-23y -1的值. ► 类型四 值恒不变形15.已知y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3,试说明不论x 为任何使原式有意义的值,y 的值均不变. 详解详析1.解:原式=⎝⎛⎭⎫a 2a -1-1a -1·1a =a 2-1a -1·1a =(a +1)(a -1)a -1·1a =a +1a . 当a =-12时,a +1a =-12+1-12=-1. 2.解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1. 由题意,可取x =2代入上式,得x 2x -1=222-1=4.(注意:x 不能为0和±1) 3.解:原式=a +1.由原代数式有意义,得a ≠0且a ≠1,又代数式的值是奇数,且-3≤a ≤3,所以a =±2.4.解:由已知可得y ≠0,将分式的分子、分母同除以y 2,得原式=⎝⎛⎭⎫x y 2-2·x y +34·⎝⎛⎭⎫x y 2+5·x y-6. 又已知x =5y ,变形得x y =5,将其代入原式,得⎝⎛⎭⎫x y 2-2·x y +34·⎝⎛⎭⎫x y 2+5·x y -6=52-2×5+34×52+5×5-6=18119. 5.[解析] 由a -b b =a +b -2b b =a +b b-2,再将已知条件代入该式即可求解. 解:a -b b =a +b -2b b =a +b b -2,又知a +b b =52,将其代入上式,得 a -b b =52-2=12. 6.解:由1a -1b =12, 得b -a ab =12, 所以a -b ab =-12,ab a -b=-2, 所以a -b ab -ab a -b=-12+2=32. 7.[解析] 由条件1x +1y =5,通分化简,得x +y =5xy ,代数式可化为2(x +y )-3xy x +2xy +y,从而整体代入求值.解:∵1x +1y =x +y xy=5, ∴x +y =5xy ,∴2x -3xy +2y x +2xy +y =2(x +y )-3xy x +2xy +y =10xy -3xy 5xy +2xy=1. 8.[解析] 对要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -15=0进行配方,得到a +1的值,再把它整体代入即可求出答案.解:1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1=1a +1-a +2(a +1)(a -1)·(a -1)2(a +1)(a +2)=1a +1-a -1(a +1)2=2(a +1)2. ∵a 2+2a -15=0,∴(a +1)2=16,∴原式=216=18.9.[解析] 利用t 2+⎝⎛⎭⎫1t 2=⎝⎛⎭⎫t +1t 2-2的形式,将已知条件整体代入求解. 解:因为t 2+⎝⎛⎭⎫1t 2=⎝⎛⎭⎫t +1t 2-2, 又t +1t=3,将其代入上式,得原式=32-2=7. 10.解:因为x +1x=4,所以⎝⎛⎭⎫x +1x 2=42, 即x 2+2+1x 2=16,所以x 2+1x 2=14. 因为x 4+x 2+1x 2=x 2+1+1x 2=x 2+1x 2+1=14+1=15, 所以x 2x 4+x 2+1=115. 11.1142[解析] 由已知条件不能求出a ,b ,c 的具体值,但是我们可以把已知等式组成方程组,用其中一个字母(如c)来表示另两个字母,把分式转化为只含一个字母的分式,再约分.由已知,得⎩⎨⎧2a -3b =-c ,3a -2b =6c , 解这个方程组得 ⎩⎨⎧a =4c ,b =3c ,代入原式,得a 3-2b 3+c 3a 2b -2b 2c +3ac 2= (4c )3-2·(3c )3+c 3(4c )2·3c -2·(3c )2c +3×4c·c 2=11c 342c 3=1142. 12.解:设x 2=y 3=z 4=k ,则x =2k ,y =3k ,z =4k ,所以xy +yz +zx x 2+y 2+z 2=6k 2+12k 2+8k 24k 2+9k 2+16k 2=2629. 13.12[解析] 代数式x 2-4x +4=(x -2)2.因为x 2-4x +4与|y -1|互为相反数,所以由非负数的性质,得x -2=0,y -1=0,解得x =2,y =1,所以⎝⎛⎭⎫x y -y x ÷(x +y)=⎝⎛⎭⎫21-12÷(2+1)=12.14.解:由⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭⎪⎫3y +1y +42=0,得x -12x -3=0,3y +1y +4=0,所以x =1,y =-13, 所以原式=32×1+1-23×⎝⎛⎭⎫-13-1=2. 15.[解析] 先化简分式,再通过分析化简结果得出结论.解:y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3 =(x +3)2(x +3)(x -3)·x (x -3)x +3-x +3 =x -x +3=3.由化简结果,可知y 的值为常数3,与x 的取值无关,故不论x 为任何使原式有意义的值,y 的值均不变.。
分式的化简求值经典练习题(带答案)
分式的化简一、比例的性质:⑴ 比例的基本性质:a cad bc b d=⇔=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩交换内项 交换外项 同时交换内外项⑶ 反比性(把比例的前项、后项交换):a c b db d a c=⇒=⑷ 合比性:a c a b c d b d b d ±±=⇒=,推广:a c a kb c kdb d b d±±=⇒=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m ab d n b+++=+++(...0b d n +++≠)二、基本运算分式的乘法:a c a cb d b d⋅⋅=⋅分式的除法:a c a d a db d bc b c ⋅÷=⨯=⋅乘方:()n nn n n a a aa a aa ab b bb b bb b⋅=⋅=⋅个个n 个=(n 为正整数) 整数指数幂运算性质:⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1n n a a-=(0a ≠),即n a -(0a ≠)是n a 的倒数 分式的加减法法则:知识点睛中考要求同分母分式相加减,分母不变,把分子相加减,a b a bc c c+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.一、分式的化简求值【例1】 先化简再求值:2111x x x---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南郴州【解析】原式()()111x x x x x =---()111x x x x-==-当2x =时,原式112x ==【答案】12【例2】 已知:2221()111a a a a a a a ---÷⋅-++,其中3a =【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =- 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭- 当1a =-时,原式112123a a -===---【答案】1例题精讲【例4】 先化简,再求值:2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭其中13x =. 【考点】分式的化简求值【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题【解析】原式()()()33133x x x x x +-=⋅-+ 1x=当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式()()()111121x x x x x +-=⋅+-+-+ ()()12x x x =-+-22x =-当x 时,原式224=-=.【答案】4【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +- 当5-=x 时,原式21x x =+-521512+-=-=-. 【答案】12【例7】 先化简,再求值:532224x x x x -⎛⎫--÷⎪++⎝⎭,其中3x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省武汉市中考试题【解析】原式2453(3)(3)2(2)22(2)22(3)3x x x x x x x x x x ---+-+=⨯=+++-=÷+,当3x =-时,原式=【答案】【例8】 先化简,再计算:231124a a a +⎛⎫+÷ ⎪--⎝⎭,其中3a =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省岳阳市中考试题【解析】原式()()2223221a a a a a a +--⎛⎫=+⨯ ⎪--+⎝⎭()()22121a a a a a +-+=⨯-+ 2a =+【答案】2a +【例9】 当12x =-时,求代数式22226124111x x x x x x x x ⎛⎫++-+-+÷ ⎪--+⎝⎭的值 【考点】分式的化简求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(1)1(1)(1)2413x x x x x x x x x x -++=⨯==+--+- 【答案】13【例10】 先化简分式22222936931a a a a a a a a a ---÷-+-+-,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省深圳市中考试题【解析】原式()()()()223332313a a a a a a a a a a a a +-+-=⋅-=+=--+ 当0123a =,,,时,原式0246=,,, 【答案】0,2,4,6【例11】 先化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,再从22a -<<的范围内选取一个合适的整数a 代入求值.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,贵州省贵阳市中考试题【解析】原式()()()()22221a b a b a ab b a b a a a b a a a ba b +-+++=÷=⋅=-++在22a -<<中,a 可取的整数为101-,,,而当1b =-时, ①若1a =-,分式222a b a ab--无意义;②若0a =,分式22ab b a +无意义;③若1a =,分式1a b+无意义. 所以a 在规定的范围内取整数,原式均无意义(或所求值不存在)【答案】a 在规定的范围内取整数,原式均无意义(或所求值不存在)【例12】 已知212242xA B C x x x ===--+,,将它们组合成()A B C -÷或A B C -÷的形式,请你从中任选一种进行计算,先化简,再求值其中3=x .【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,河南省中考试题【解析】选一:()()()21221242222x x x A B C x x x x x x x +⎛⎫-÷=-÷=⨯= ⎪--++--⎝⎭ 当3x =时,原式1132==- 选二:()21212124222x A B C x x x x x x x -÷=-÷=-=--+--,当3x =时,原式13=【答案】选一:当3x =时,原式1132==- 选二:当3x =时,原式13=【例13】 先化简,再求值:224125(2)2[2()](34)(2)a a a a a a a a +++÷--÷-+,其中4a = 【考点】分式的化简求值【难度】3星【题型】解答【关键词】【解析】原式2224(3)5(2)(2)[2](34)(2)a a aaa a a a+++=÷--÷-+4(3)(2)(2)5(34)(2)2a a aa a a+-+-=÷-++ 4(3)2(34)(2)(3)(3)a aa a a a++=⋅-+-+4(34)(3)a a=--当4a=时,原式441(34)(3)(344)(43)2a a=== --⨯--本题含分式乘方、加、减、乘、除混合运算;与分式四则混合运算类似,分式的四则混合运算的顺序是:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【答案】1 2【例14】已知20102009x y==,,求代数式22xy y x yxx x⎛⎫---⎪⎝⎭÷的值.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,顺义一模试题【解析】22xy y x y xx x ⎛⎫---⎪⎝⎭÷222x xy y xx x y-+=-2()x y xx x y-=-x y=-当2010x=,2009y=时,原式=201020091x y-=-=.【答案】1【例15】已知22a b==a bb a-的值.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖北荆门市中考试题【解析】∵22a b=+=∴4a b+=,a b-=,1ab=而a bb a-22()()a b a b a bab ab-+-==∴a bb a-=()()a b a bab+-==【答案】【例16】 先化简,再求值:()()x yy x y x x y -++,其中11x y ==,. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南湘潭市中考试题【解析】原式()()22x y xy x y xy x y =-++ ()22x y xy x y -=+()()()x y x y xy x y -+=+x y xy-=当 11x y ==,时,11221x yxy--=== 【答案】2【例17】 化简,再求值:11-a b b a ⎛⎫+ ⎪+⎝⎭ab a b÷+.其中1a =, b =. 【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,黄石市中考试题【解析】原式()()()()()2b a a b a b a b b a ab a b b++-+=⋅=-+-∵1a b ==,∴原式1b ==,∴=【例18】 先化简,再求值:22112b a b a b a ab b ⎛⎫-÷ ⎪-+-+⎝⎭,其中11a b ==-【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,宣武一模试题【解析】原式()()()()()()22a b a b a b a b a b a b b a b+----=⋅=-++当11a b ==-==【答案】【例19】 先化简,再求值:22211x yx y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中11x y ==, 【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,广西桂林中考试题 【解析】原式2222222x y x y x yx y x y x y ⎛⎫+-=+÷ ⎪---⎝⎭ 22222x y x y x y x y x y++--=⨯- 222x x y xy==当11x y ==,原式22131xy====-【答案】1【例20】 求代数式()()22222222222a b c a b c ab ac a a ab ab a b a b -----+⋅÷-++-的值,其中1a =,12b =-,23c =- 【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】()()22222222222a b ca b c ab ac a a ab ab a b a b -----+⋅÷-++- ()()()()()()()()()2a b c a a b c a b c a b a b a a b a b c a b c a b -+-+--+-=⋅⋅-+--++a b c a b --=+. ∴当1a =,12b =-,23c =-时,原式12123112++=-1313263=⨯=. 【答案】133二、条件等式化简求值1. 直接换元求值【例21】 已知:2244a b ab +=(0ab ≠),求22225369a b a b ba b a ab b a b--÷-++++的值. 【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,石景山二模【解析】由2244a b ab+=得2b a=原式2 a ba b-=+当2b a=时,原式42a aa a-=+1=-【答案】1-【例22】已知x y z,,满足235x y z z x==-+,则52x yy z-+的值为()A.1B.13C.13- D.12【考点】分式的化简求值【难度】4星【题型】选择【关键词】2007年,全国初中数学联赛试题【解析】B;由235x y z z x==-+得332y x z x==,,∴5531 2333 x y x xy z x x--== ++【答案】1 3【例23】已知:34xy=,求2222222x y xy yx xy y x xy-+÷-+-的值【考点】分式的化简求值【难度】3星【题型】解答【关键词】【解析】2222222()()()3 2()()4 x y xy y x y x y y x y xx xy y x xy x y x x y y -++-+÷=÷== -+---【答案】3 4【例24】已知:220x-=,求代数式222(1)11x xx x-+-+的值.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,丰台一模【解析】原式=22 (1)1)(1)1 x x x x x-++-+(=2111 x x x x-+++=211x xx+-+.∵220x-=,∴22x=.∴原式=211111x x x x +-+==++.【答案】1【例25】 已知12=x y ,求2222222-⋅+-++-x x y y x xy y x y x y 的值. 【考点】分式的化简求值【难度】2星 【题型】解答【关键词】2010年,海淀一模【解析】y x y y x y x y xy x x-++-⋅+-2222222 22()()2()x x y x y yx y x y x y -+=⋅++-- 22()x y x y x y =+--2()()x y x y +=-.当21=y x 时,x y 2=. 原式2(2)6(2)x x x x +==--.【答案】6-【例26】 已知221547280x xy y -+=,求xy的值. 【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】221547280x xy y -+=,∴(37)(54)0x y x y ++=,∴370x y +=或540x y +=,由题意可知:0y ≠,73x y =-或45x y =-. 【答案】45-【例27】 已知22690x xy y -+=,求代数式2235(2)4x yx y x y +⋅+-的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,海淀二模【解析】22690x xy y -+=,2(3)0x y -=.∴ 3x y =. ∴原式35(2)(2)(2)x yx y x y x y +=⋅++-352x yx y +=-3(3)52(3)y yy y+=-145=. 【答案】145【例28】 已知x =,求351x x x++的值. 【考点】分式的化简求值 【难度】4星 【题型】解答【关键词】降次,整体置换【解析】21x -=21x x =+,0x ≠.则()233245555111x x x x x x x x x x x++++=====【例29】 已知20x y -=,求22()2x y xyy x x xy y -⋅-+的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,东城二模【解析】22()2x y xyy x x xy y -⋅-+=22222x y xyxy x xy y-⋅-+ =2()()()x y x y xyxy x y -+⋅- =x y x y+-. ∵20x y -=, ∴2x y =.∴x y x y +-=2332y y yy y y+==-. ∴原式3.=【答案】3【例30】 已知3a b =,23a c =,求代数式a b c a b c+++-的值. 【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】(法1)注意将未知数划归统一,2,33a a b c ==,123331233a a aa b c a b c a a a++++==+-+- (法2)3a b =,223233a c b b ==⨯=,32332a b c b b ba b c b b b ++++==+-+-【答案】3【例31】 已知123a b c a c ==++,求ca b+的值. 【考点】分式的化简求值【难度】4星 【题型】解答【关键词】第8届,华罗庚金杯复赛【解析】23b c a a c a +=⎧⎨+=⎩22b c a c a +=⎧⇒⎨=⎩02b c a =⎧⇒⎨=⎩,所以220c aa b a ==++.【答案】2【例32】 已知2232a b ab -=,0a >,0b >,求证:252a b a b +=- 【考点】分式的化简求值 【难度】4星 【题型】解答 【关键词】【解析】由已知可得22230a ab b --=,则(3)()0a b a b -+=,所以3a b =或a b =-∵0a >,0b >,∴3a b =,则23255322a hb b b a b b b b ++===--【答案】52【例33】 已知:2232a b ab -=,求2a ba b+-的值.【考点】分式的化简求值 【难度】3星【题型】解答【关键词】清华附中暑假作业【解析】变形可得:()(3)0a b a b +-=,所以a b =-或3a b =,所以212a b a b +=--或52. 【答案】12-或52【例34】 已知22(3)0x y a b -+-=,求32223322232332a x ab y b xya x ab y b xy++++的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】第9届,华罗庚金杯总决赛1试 【解析】由已知可得:2y x =,3a b =,故原式7297=. 【答案】7297【例35】 已知分式1x yxy+-的值是m ,如果用x ,y 的相反数代入这个分式,那么所得的值为n ,则m 、n 是什么关系?【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】由题可知:()()()1.1x ym xy x y n x y +⎧=⎪-⎪⎨-+-⎪=⎪---⎩,①②由②得:11x y x yn m xy xy--+==-=---.∴m n =-,∴0m n +=. 所以m n ,的关系为互为相反数.【答案】m n ,的关系为互为相反数【例36】 已知:233mx y +=,且()22201nx y x y -=≠≠-,.试用x y ,表示m n. 【考点】分式的化简求值 【难度】4星 【题型】解答 【关键词】【解析】∵0x ≠,∴由233mx y +=,得:()()231133y y y m x x+--==. 由222nx y -=,得:()222122y y n x x++==. ∵1y ≠-,∴0n ≠,∴231121y y y m n x x +-+=÷()231121y y x x y +-=⋅+312x y -=. 【答案】()312x y -【例37】 已知:230a b c -+=,3260a b c --=,且0abc ≠,求3332223273a b c ab bc a c-++-的值.【考点】分式的化简求值 【难度】4星 【题型】解答 【关键词】【解析】由题意可知:2303260a b c a b c -+=⎧⎨--=⎩,解得43a c b c =⎧⎨=⎩,333322233215173453a b c c ab bc a c c -+-==-+- 【答案】13-【例38】 已知方程组:230230x y z x y z -+=⎧⎨-+=⎩(0xyz ≠),求:::x y z【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】把z 看作已知数,解关于x 、y 的方程组,解得5y z =,7x z =,所以::7:5:1x y z =. 【答案】::7:5:1x y z =【例39】 若4360x y z --=,270x y z +-=(0xyz ≠),求222222522310x y z x y z +---的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】全国初数数学竞赛【解析】由43627x y z x y z -=⎧⎨+=⎩,得32x zy z =⎧⎨=⎩,代入得原式13=-.【答案】13-【例40】 设自然数x 、y 、m 、n 满足条件58x y m y m n ===,求的x y m n +++最小值. 【考点】分式的化简求值 【难度】5星 【题型】解答【关键词】黄冈市初中数学竞赛【解析】58x y =,58y m =,85m y =,864525n m y ==,从而y 是825200⨯=的倍数,当200y =586412520032051211578525x y m n y y y y +++=+++=+++=【例41】 设有理数a b c ,,都不为0,且0a b c ++=,则222222222111b c a c a b a b c+++-+-+-的值为___________。
分式化简求值练习题库(经典精心整理)
分式化简求值练习题库(经典精心整理)1.先化简,再求值:frac{-2x-1}{x-1},\text{其中}x=-2.$$2.先化简,再求值:frac{12}{2x^2-1},\text{其中}x=-2.$$3.(2011·綦江县)先化简,再求值:frac{a^2+3a+2}{a^2-3a},\text{其中}a=-1.3.$$4.先化简,再求值:frac{x^2-4}{x^2-5x+6},\text{其中}x=3.$$5.先化简,再求值:frac{2x^2-2x-4}{x^2-3},\text{其中}x=-2.$$6.化简:frac{2x^2+4x+2}{x^2+2x+1}.$$7.(2011·曲靖)先化简,再求值:frac{2x^2-2x+1}{x^2+2x+1},\text{其中}x=-1.$$8.(2011·保山)先化简,其中:frac{a-3b}{a+b}+\frac{a-b}{a- b},\text{其中}a=1,\text{且}b=2.$$frac{x^3+x}{x^2-x-1},\text{其中}x=\frac{1+\sqrt{5}}{2}.$$9.(2011·新疆)先化简,再求值:frac{x-3}{x^2-9},\text{其中}x=10^{-3}.$$10.先化简,再求值:frac{x^2-6x+9}{x^2-5x+6},\text{其中}x=3.$$11.(2011·雅安)先化简下列式子,再从2,-2,1,-1中选择一个合适的数进行计算:frac{2x^2-4x-3}{x^2-x-2}.$$12.先化简,再求值:frac{a^2-4a+4}{a^2-2a+1},\text{其中}a=2.$$13.(2011·泸州)先化简,再求值:frac{3x+18}{x^2-5x+6},\text{其中}x=3.$$14.先化简,然后从不等组$\begin{cases}-x-5\leq 3x\\x^2-5x+2<5x-12\end{cases}$的解集中,选取一个符合题意的x的值代入求值:frac{x-5}{5-x}-\frac{x^2-2x-25}{x^2-25}.$$15.先化简,再求值:frac{a^2-4a-2}{2a^2+10a+12},\text{其中}a=-5.$$16.(2011·成都)先化简,再求值:frac{3x}{x^3-2x},\text{其中}x=\frac{\sqrt{3}+1}{2}.$$17.先化简,再求值:frac{2a+1}{a^2-2a+1},\text{其中}a=-1.$$18.先化简,再求值:frac{1}{x-2}+\frac{x-2}{x^2-4},\text{其中}x=-5.$$19.先化简再计算:frac{x}{x+1}+\frac{x+1}{x},\text{其中}x\neq 0,-1.$$20.化简,求值:其中$m=3$.frac{m^2-2m+1}{m^2-1}-\frac{m^2-m-2}{m^2-4}.$$21.(1)化简:frac{a-b}{a^2-ab},\text{其中}a\neq b.$$2)化简:frac{x+3}{2x^2+6x+9}.$$22.先化简,再求值:其中$a=2b$.frac{a^2-b^2}{a^2+ab},\text{其中}b\neq 0.$$23.请你先化简分式:frac{2x-1}{x^2-2x-3}-\frac{2x+1}{x^2+2x-3}.$$24.(本小题8分)先化简再求值,其中$a=3+1$. frac{a^2-1}{2a^2-6a+4}.$$25.化简,其结果是:x-8)^2-64x+1024.$$51、先化简,再求值:$\frac{x^2+2x+11}{x^2}$,其中$x$所取的值是在$-2<x\leq 3$内的一个整数。
分式化简求值练习题库(经典精心整理)
1 21.先化简,再求值:x2,其中 x=- 2.x 1 12、先化简,再求值:,其中 a= ﹣ 1.3、( 2011?綦江县)先化简,再求值:,其中 x= .4、先化简,再求值:,其中.5 先化简,再求值,其中 x 满足 x2﹣ x﹣ 1=0 .a 3b a b6、化简:a b a b7、( 2011?曲靖)先化简,再求值:,其中 a= .8、( 2011?保山)先化简(x 1 ) 1,再从﹣ 1、 0、1 三个数中,选择一个你认x 1 x 1 x2 1为合适的数作为x 的值代入求值.9、( 2011?新疆)先化简,再求值: ( +1) ÷ ,其中 x=2 .10、先化简,再求值: 318 ,其中 x =10–3 x –3 – 2–9x11、( 2011?雅安)先化简下列式子,再从2,﹣ 2, 1, 0,﹣ 1中选择一个合适的数进行计算..12、先化简,再求值:x x 12 1 ( -2), 其中 x=2.x x13、(2011?泸州)先化简,再求值: ,其中 .14、先化简 (x x ) 2x ,然后从不等组 x 2 3 的解集中,选取一个你认 x 5 5 x x 2 25 2x 12 为符合题意的x 的值代入求值.15、先化简,再求值: 2 a 2 4 a 2,其中 a5 .a 6a 9 2a616、( 2011?成都)先化简,再求值: ( 3x x ) x2,其中 x 3 . 17 先化简。
再求1 a2 x 1 x 1 x 212 值: 2aa 2 2a 11 ,其中 a1 。
a2 1 a a 1 21x 2- 2x + 1 x =- 5. .先化简,再求值: 1+÷2,其中18 x - 2x -419. 先化简再计算:x 2 1 x 2x 1,其中 x 是一元二次方程 x 22 x 2 0的正数根 .x 2 xx20 化简,求值:m 2 2m 1 m 1 ) 其中 = 3 .m 2 1 (m 1 1 m m ,21、( 1)化简: ÷ .( 2)化简:ab a 2ab b 2 ( ab )a a22、先化简,再求值: ,其中 .23请你先化简分式x3 x 2 6x 91, 再取恰的 x 的值代入求值 . x 21 x2 2 x 1x 124、(本小题 2a 2a 2 1其中 a= 3 +18 分)先化简再求值 a 1a 2 2a 1 a125、化简,其结果是.26.( 11·辽阜新)先化简,再求值:x x2-16,其中 x= 3-4.( - 2) ÷2-2xx- 2x27、先化简,再求值:x2+ 4x+4x+ 2-2x,其中 x=2. 2-16÷x+x2x-8428、先化简,再求值: ( 3x x ) 2x ,其中 x 3 4 .x 2 x 2 x2 429.先化简,再求值:2a a( ) a ,其中 a2 1.a 1 1 a2a 1 130、先化简,再求值: ( 21 ) a ,其中 a2a 1 a31、( 1)化简:.( 2) 1 1x2 1x x ( 3) (a 1 ) a 1a a32.( 1) (a b b2) a b。
冀教版八年级上册专题训练(一) 分式化简求值常见题型归纳
专题训练(一) 分式化简求值常见题型归纳► 类型一 代入求值型 一、直接代入型1.先化简,再求值:⎝ ⎛⎭⎪⎫a 2a -1+11-a ·1a ,其中a =-12.二、选择代入型2.先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你喜欢的x 值代入求值.3.若a 满足-3≤a≤3,请你选取一个合适的数a 使得代数式a 2-1a ÷⎝ ⎛⎭⎪⎫1-1a 的值是一个奇数.三、整体代入型4.已知x ,y 满足x =5y ,求分式x 2-2xy +3y24x 2+5xy -6y 2的值.5.已知a +b b =52,求a -bb 的值.6.若1a -1b =12,求a -b ab -ab a -b 的值.7.已知1x +1y =5,求2x -3xy +2yx +2xy +y 的值.8.已知a 满足a 2+2a -15=0,求1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1的值.9.已知t +1t =3,求t 2+⎝ ⎛⎭⎪⎫1t 2的值.10.已知x +1x =4,求x2x 4+x 2+1的值.► 类型二 设比例系数或用消元法求值11.已知2a -3b +c =0,3a -2b -6c =0,abc ≠0,则a 3-2b 3+c3a 2b -2b 2c +3ac2=________.12.已知x 2=y 3=z 4≠0,求xy +yz +zxx 2+y 2+z 2的值.► 类型三 利用非负数的性质挖掘条件求值13.已知x 2-4x +4与|y -1|互为相反数,则式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值为________.14.已知⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭⎪⎫3y +1y +42=0,求32x +1-23y -1的值.► 类型四 值恒不变形15.已知y =x 2+6x +9x 2-9÷x +3x 2-3x -x +3,试说明不论x 为任何使原式有意义的值,y 的值均不变.详解详析1.解:原式=⎝ ⎛⎭⎪⎫a 2a -1-1a -1·1a =a 2-1a -1·1a =(a +1)(a -1)a -1·1a =a +1a . 当a =-12时,a +1a =-12+1-12=-1.2.解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1.由题意,可取x =2代入上式,得x 2x -1=222-1=4.(注意:x 不能为0和±1)3.解:原式=a +1.由原代数式有意义,得a ≠0且a ≠1,又代数式的值是奇数,且-3≤a ≤3,所以a =±2.4.解:由已知可得y ≠0,将分式的分子、分母同除以y 2,得原式=⎝⎛⎭⎫x y 2-2·x y +34·⎝⎛⎭⎫x y 2+5·x y -6. 又已知x =5y ,变形得x y =5,将其代入原式,得⎝⎛⎭⎫x y 2-2·x y +34·⎝⎛⎭⎫x y 2+5·x y -6=52-2×5+34×52+5×5-6=18119. 5.[解析] 由a -b b =a +b -2b b =a +b b -2,再将已知条件代入该式即可求解.解:a -b b =a +b -2b b =a +bb -2,又知a +b b =52,将其代入上式,得a -b b =52-2=12. 6.解:由1a -1b =12,得b -a ab =12, 所以a -b ab =-12,ab a -b=-2,所以a -b ab -ab a -b=-12+2=32.7.[解析] 由条件1x +1y =5,通分化简,得x +y =5xy ,代数式可化为2(x +y )-3xy x +2xy +y ,从而整体代入求值.解:∵1x +1y =x +yxy =5,∴x +y =5xy , ∴2x -3xy +2y x +2xy +y =2(x +y )-3xy x +2xy +y =10xy -3xy5xy +2xy=1.8.[解析] 对要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -15=0进行配方,得到a +1的值,再把它整体代入即可求出答案.解:1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1=1a +1-a +2(a +1)(a -1)·(a -1)2(a +1)(a +2) =1a +1-a -1(a +1)2=2(a +1)2. ∵a 2+2a -15=0,∴(a +1)2=16, ∴原式=216=18.9.[解析] 利用t 2+⎝⎛⎭⎫1t 2=⎝⎛⎭⎫t +1t 2-2的形式,将已知条件整体代入求解.解:因为t 2+⎝⎛⎭⎫1t 2=⎝⎛⎭⎫t +1t 2-2,又t +1t =3,将其代入上式,得原式=32-2=7.10.解:因为x +1x =4,所以⎝⎛⎭⎫x +1x 2=42,即x 2+2+1x 2=16,所以x 2+1x2=14.因为x 4+x 2+1x 2=x 2+1+1x 2=x 2+1x 2+1=14+1=15, 所以x 2x 4+x 2+1=115.11.1142 [解析] 由已知条件不能求出a ,b ,c 的具体值,但是我们可以把已知等式组成方程组,用其中一个字母(如c)来表示另两个字母,把分式转化为只含一个字母的分式,再约分.由已知,得⎩⎪⎨⎪⎧2a -3b =-c ,3a -2b =6c , 解这个方程组得⎩⎪⎨⎪⎧a =4c ,b =3c ,代入原式,得a 3-2b 3+c 3a 2b -2b 2c +3ac 2= (4c )3-2·(3c )3+c 3(4c )2·3c -2·(3c )2c +3×4c·c2=11c 342c 3=1142. 12.解:设x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,所以xy +yz +zx x 2+y 2+z 2=6k 2+12k 2+8k 24k 2+9k 2+16k 2=2629. 13.12 [解析] 代数式x 2-4x +4=(x -2)2.因为x 2-4x +4与|y -1|互为相反数,所以由非负数的性质,得x -2=0,y -1=0,解得x =2,y =1,所以⎝⎛⎭⎫x y -y x ÷(x +y)=⎝⎛⎭⎫21-12÷(2+1)=12.14.解:由⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭⎪⎫3y +1y +42=0,得x -12x -3=0,3y +1y +4=0,所以x =1,y =-13, 所以原式=32×1+1-23×⎝⎛⎭⎫-13-1=2.15.[解析] 先化简分式,再通过分析化简结果得出结论. 解:y =x 2+6x +9x 2-9÷x +3x 2-3x -x +3=(x +3)2(x +3)(x -3)·x (x -3)x +3-x +3 =x -x +3 =3.由化简结果,可知y 的值为常数3,与x 的取值无关,故不论x 为任何使原式有意义的值,y 的值均不变.。
分式的化简求值经典练习题(带答案)
精心整理分式的化简内容基本要求略高要求较高要求分式的概念了解分式的概念,能确定分式有意义的条件能确定使分式的值为零的条件分式的性质理解分式的基本性质,并能进行简单的变型能用分式的性质进行通分和约分分式的运算理解分式的加、减、乘、除运算法则会进行简单的分式加、减、乘、除运算,会运用适当的方法解决与分式有关的问题一、比例的性质:⑴比例的基本性质:a c adbc bd,比例的两外项之积等于两内项之积.⑵更比性(交换比例的内项或外项):( ) ( )( )ab c d a c d c bdb a d bc a 交换内项交换外项同时交换内外项⑶反比性(把比例的前项、后项交换):a c b d b d a c ⑷合比性:a c abcd bd b d ,推广:acakb ckd b d b d(k 为任意实数)⑸等比性:如果....a c mb d n,那么......a c m a bdnb(...0bdn)二、基本运算分式的乘法:a ca cb d b d 分式的除法:ac ad a d bd bcb c 乘方:()n n n nn a a a a a a a a bb bb b bbb个个n 个=(n 为正整数)整数指数幂运算性质:⑴m n m na a a (m 、n 为整数)⑵()m n mna a (m 、n 为整数)⑶()n n nab a b (n 为整数) ⑷m n m n a a a (0a ,m 、n 为整数)知识点睛中考要求负整指数幂:一般地,当n 是正整数时,1nnaa(0a ),即na(0a )是na的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a bccc 异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcbdbdbdbd 分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.一、分式的化简求值【例1】先化简再求值:2111x xx,其中2x 【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖南郴州【解析】原式111x x x x x 111x x x x当2x时,原式112x【答案】12【例2】已知:2221()111a aa a aa a ,其中3a 【考点】分式的化简求值【难度】2星【题型】解答【关键词】【解析】222221(1)()4111(1)a aa a a aaa a 【答案】4【例3】先化简,再求值:22144(1)1aa aaa,其中1a 例题精讲【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,安徽省中考【解析】2221144211122a a aa aa a aaa a a当1a时,原式112123a a【答案】13【例4】先化简,再求值:2291333x xxxx其中13x.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖南省长沙市中考试题【解析】原式33133xx xx x当13x时,原式3【答案】3【例5】先化简,再求值:211(1)(2)11xxx,其中6x.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式111121x xx x x 当6x时,原式2624.【答案】4【例6】先化简,后求值:22121(1)24xx xx,其中5x.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24xx x x=221(1)2(2)(2)x x xxx =21(2)(2)2(1)x x x x x =21xx 当5x时,原式21x x521512.【答案】12【例7】先化简,再求值:532224x x xx,其中23x .【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖北省武汉市中考试题【解析】原式2453(3)(3)2(2)22(2)22(3)3xx x x x xxxx x,当23x时,原式22。
分式化简求值专题训练,30道经典题型
1.(8分)化简式子a a a a a a a +-÷⎪⎪⎭⎫ ⎝⎛++--222211442,并在﹣2,﹣1,0,1,2中选取一个合适的数作为a 的值代入求值.2.(8分)先化简96132122+--÷⎪⎭⎫ ⎝⎛-+x x x x ,再从不等式组的整数解中选一个合适的x 的值代入求值.3.(8分)先化简,再求值:1211222++-÷⎪⎭⎫⎝⎛-+x x x x x x ,其中x 的值从不等式组的整数解中选取. 4.(8分)先化简4412312++-÷⎪⎭⎫ ⎝⎛+-x x x x ,再将x =﹣1代入求值. 5.(8分)先化简,再求值:421222--÷⎪⎭⎫ ⎝⎛---x x x x x x ,其中x =.6.(8分)先化简,再求值:x y xy y xy x x y --+-÷⎪⎪⎭⎫ ⎝⎛-1221122,其中x =2+,y =2.7.(8分)先化简,再求值:2242448222+---÷++a a a a a a a ,其中a =.8(8分)先化简,再求值:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中x =.9.(8分)先化简再求值:244422222--÷⎪⎪⎭⎫ ⎝⎛+----+x x x x x x x x ,其中x =4tan45°+2cos30°10.(8分)先化简,再求值:1112112+÷⎪⎪⎭⎫⎝⎛---+x x x x ,其中x =2sin30°+1. 11.(8分)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.4424442222--÷⎪⎪⎭⎫ ⎝⎛--+--x x x x x x x 12.(8分)先化简,再求值.2222221835ab b a a b b b a ba +÷⎪⎭⎫⎝⎛-+-+,其中a =,b =113.(8分)先化简,再求值:2122232++-÷⎪⎭⎫ ⎝⎛-++x x x x x ,其中|x |=2.14.(8分)先化简,再求值:b a ba ab a ba b a b a 3433222222÷--+-•⎪⎭⎫ ⎝⎛-+,其中a =,b =.15.(8分)先化简a a a a -÷⎪⎭⎫ ⎝⎛--2211,然后从﹣2≤a <2中选出一个合适的整数作为a 的值代入求值.16.(8分)先化简,再求值:⎪⎪⎭⎫⎝⎛-+÷⎪⎭⎫ ⎝⎛-21112a a a ,其中a =+1.17.(8分)先化简,再求值:a a a a a a a -++÷⎪⎭⎫ ⎝⎛---+22441113,其中a =3. 18.(8分)先化简,再选一个合适的数代入求值:⎪⎪⎭⎫⎝⎛--++÷⎪⎭⎫ ⎝⎛---+-1121312222x x x x x x x x x . 19.(8分)先化简,再求值:⎪⎭⎫⎝⎛-÷-+-a b b a b ab a 11222.其中a =﹣1,b =+1.20.(8分)先化简,再求值:22122112+++÷⎪⎭⎫ ⎝⎛+-m m m m ,其中m =﹣2.21.(8分)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下: 立方和公式:x 3+y 3=(x +y )(x 2﹣xy +y 2) 立方差公式:x 3﹣y 3=(x ﹣y )(x 2+xy +y 2)根据材料和已学知识,先化简,再求值:84223322-++--x x x x x x ,其中x =3.22.(8分)先化简,再求值:21212322-+-÷⎪⎭⎫ ⎝⎛---x x x x x ,然后从0,1,2三个数中选择一个恰当的数代入求值. 23.(8分)先化简,再求值:⎪⎭⎫ ⎝⎛+-÷++-3619632x x x x ,其中,x =﹣3.24.(10分)先化简,再求值a a a a a a 2221444222-÷⎪⎪⎭⎫ ⎝⎛--+--,其中a 满足a 2+3a ﹣2=0. 25.(10分)先化简,再求值:121212222--÷⎪⎪⎭⎫ ⎝⎛-++--x x x x x x x ,其中x =3tan30°﹣()﹣1+26.(10分)先化简,再求值:121122222+--÷⎪⎪⎭⎫ ⎝⎛---x x xx x x x x ,其中x 是不等式组的整数解.27.(8分)先化简,再求值:⎪⎭⎫⎝⎛++•⎪⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-22251222m n n m m n mn n m n m ,其中+(n﹣3)2=0.28.(8分)先化简,再求值:62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x ,其中x =+1.29.(8分)先化简,再求值:12312322+--+-x x x x x ,其中x =. 30.(8分)先化简,再求值:22m n m m n n ÷⎪⎪⎭⎫ ⎝⎛---,其中m ﹣n=.。
初中数学《分式化简求值》专项练习(含答案)
分式化简求值一 、填空题(本大题共2小题)1.已知::2:3:5a b c =,则3264a b c a b c-++-= . 2.已知,则___________. 二 、解答题(本大题共10小题)3.已知4x >-,求218416x x --与的大小关系. 4.先化简再求值:2111x x x ---,其中2x = 5.先化简,再求值:532224x x x x -⎛⎫--÷ ⎪++⎝⎭,其中3x . 6.已知:(),求的值. 7.已知0x y <<,试比较11x y y x++与的大小关系. 8.已知22690x xy y -+=,求代数式2235(2)4x y x y x y +⋅+-的值. 9.已知:220x -=,求代数式222(1)11x x x x -+-+的值. 10.先化简2223352x xy x xy y -+-,再求值. 其中31,22x y =-=. 11.先化简再求值:44()()xy xy x y x y x y x y -++--+,其中1,2x y ==12.已知,,为实数,且,,,求. 234x y z ==222x y z xy yz zx ++=++2244a b ab +=0ab ≠22225369a b a b b a b a ab b a b--÷-++++a b c 13ab a b =+14bc b c =+15ca c a =+abc ab bc ca ++分式化简求值答案解析一 、填空题1.同样使用“见比设k ”方法,已知条件可变形为:令2,3,5a k b k c k ===,则所求分式变为:66301021253k k k k k k -+=+- 2.本题采用“见比设k ”思想,将已知条件变形为:,2,3,4234x y z k x k y k z k ======则,将其代入所求分式中得:222222491629612826k k k k k k ++=++ 二 、解答题3.作差法. 221841416164x x x x x --==---+,因为4x >-,所以104x >+,所以218416x x >-- 4.先讲原式化简得:211111(1)x x x x x x x --==---,再讲2x =代入1x 得12.5.先化简得:25392(2)22(3)22423x x x x x x x x x --+⎛⎫--÷=⋅=+ ⎪+++-⎝⎭,再将3x 代入2(3)x +得6.将分式化简得:2(3)53523()()a b a b b a b b a b a b a b a b a b a b a b-++--⋅-==+-++++,由已知条件可得:2(2)0a b -=,即2a b =.将2a b =代入2a b a b -+中得:412a a a a-=-+ 7.作差法. 111111()()(1)()(1)xy xy x y x y xy xy y x y x y x xy++-+-+=-=+-=+⋅,因为0x y <<,所以10,0,0xy x y xy +>-<>,,所以11x y y x+<+ 8.将分式化简得:223535(2)42x y x y x y x y x y++⋅+=--,再将已知条件整理得:2(3)0x y -=,即3x y =,将3x y =代入352x y x y +-中得:951465y y y y +=-9.先将分式化简整理得:2222(1)1111x x x x x x x -+-+=-++,由已知条件可得22x =代入化简式中得211111x x x x x +-+==++ 10.化简得:2223(3)352(2)(3)2x xy x x y x x xy y x y x y x y --==+-+-+,再将31,22x y =-=代入2x x y +中得:323312222x x y -==+-+⨯11.化简得:22222244()4()4()()()()()()()()xy xy x y xy x y xy x y x y x y x y x y x yx y x y x y x y x y x y x y -++--++-=⋅-+-++-==+-=-+-,再将1,2x y ==22x y -中得:17244-=- 12.由已知可知 ,三式相加得,, 故. 113114115a b b cc a ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩1116a b c ++=1111116abc ab bc ca ab bc ca abc a b c===++++++。
分式化简求值练习题库经典精心
1.先化简,再求值:12,其中 x=-2.x 1x 212、先化简,再求值:,其中 a=﹣ 1.3、〔 2021?綦江县〕先化简,再求值:,其中x=.4、先化简,再求值:,其中.5 先化简,再求值,其中x 满足 x2﹣ x﹣ 1=0.6、化简:a3b a b a b a b7、〔 2021?曲靖〕先化简,再求值:,其中a=.8、〔 2021?保山〕先化简〔x1〕1,再从﹣ 1、 0、1 三个数中,选择一个你认x 1x1x21为合适的数作为x 的值代入求值.9、〔 2021?新疆〕先化简,再求值:〔+1〕÷,其中x=2.31810、先化简,再求值:x–3–x2 –9,其中x=10– 311、〔 2021?雅安〕先化简以下式子, 再从 2,﹣2,1,0,﹣ 1 中选择一个合适的数进行计算. .12、先化简,再求值:2x (x 1-2), 其中 x =2.x 1x13、〔 2021?泸州〕先化简,再求值: ,其中.14、先化简 (x x ) 2 x x 2 3 ,尔后从不等组的解集中,采用一个你认x 5 5 xx 2 25 2x 12为吻合题意的x 的值代入求值.15、先化简,再求值:2 a 2 4 a 2,其中 a 5 .a6a 9 2a616、〔2021?成都〕先化简,再求值:( 3x x ) x2,其中 x3.17 先化简。
再求x 1 x 1 x 2 12值:2a1 a2 a 2 2a 11 ,其中a1 。
a 21a a 1 21x 2- 2x + 118. 先化简,再求值:1+ x - 2 ÷ x 2- 4,其中 x =- 5.19. 先化简再计算:x 21 x2 x 1,其中 x 是一元二次方程2的正数根 .x 2xxx 2 x 2 020 化简,求值:m22m 1m1〕其中 =m2(m 1m.1m1,21、〔 1〕化简:÷.〔 2〕化简:aa b a2ab b2( a b )a22、先化简,再求值:,其中.23请你先化简分式x3x26x91, 再取恰的 x的值代入求值 .x21x22x1x124、〔本小题2a2a213 +1 8 分〕先化简再求值 a 1a 2其中 a=a12a 125、化简,其结果是.26.〔 11·辽阜新〕先化简,再求值: (x- 2) ÷x2- 16,其中 x=3-4.2x-2x- 2xx2+4x+4x+22x27、先化简,再求值:x2-16÷2x-8-x+4,其中x=2.28、先化简,再求值:3x x 2 x,其中 x3 4 .(x 2)x 2x2429. 先化简,再求值:(2aa) a ,其中 a2 1.a 1 1a30、先化简,再求值:2a 1 1( 2 1 ) a ,其中 a2a1 a31、〔 1〕化简:.〔 2〕 1x 2 11xx〔 3〕 (a 1 ) a1aa32.〔 1〕 (a bb 2 )a b。
分式化简求值复习计划练习题库经典精心整理
1.先化简,再求值:12,此中 x=-2.x 1x 212、先化简,再求值:,此中 a=﹣ 1.3、( 2011?綦江县)先化简,再求值:,此中x=.4、先化简,再求值:,此中.5 先化简,再求值,此中x 知足 x2﹣ x﹣ 1=0.6、化简:a3b a b a b a b7、( 2011?曲靖)先化简,再求值:,此中a=.8、( 2011?保山)先化简(x1)1,再从﹣ 1、 0、1 三个数中,选择一个你认x 1x1x21为适合的数作为x 的值代入求值.9、( 2011?新疆)先化简,再求值:(+1)÷,此中x=2.31810、先化简,再求值:x–3–x2 –9,此中x=10– 311、( 2011?雅安)先化简以下式子, 再从 2,﹣2,1,0,﹣ 1 中选择一个适合的数进行计算. .12、先化简,再求值:2x (x 1-2), 此中 x =2.x 1x13、( 2011?泸州)先化简,再求值: ,此中.14、先化简 (x x ) 2 x x 2 3 ,而后从不等组的解集中,选用一个你认x 5 5 xx 2 25 2x 12为切合题意的x 的值代入求值.15、先化简,再求值:2 a 2 4 a 2,此中 a 5 .a6a 9 2a616、(2011?成都)先化简,再求值:( 3x x ) x2,此中 x3.17 先化简。
再求x 1 x 1 x 2 12值:2a1 a2 a 2 2a 11 ,此中a1 。
a 21a a 1 21x 2- 2x + 118. 先化简,再求值:1+ x - 2 ÷ x 2- 4,此中 x =- 5.19. 先化简再计算:x 21 x2 x 1,此中 x 是一元二次方程2的正数根 .x 2xxx 2 x 2 020 化简,求值:m22m 1m1)此中 =m2(m 1m.1m1,21、( 1)化简:÷.( 2)化简:aa b a2ab b2( a b )a22、先化简,再求值:,此中.23请你先化简分式x3x26x91, 再取恰的 x的值代入求值 .x21x22x1x124、(本小题2a2a213 +1 8 分)先化简再求值 a 1a 2此中 a=a12a 125、化简,其结果是.26.( 11·辽阜新)先化简,再求值: (x- 2) ÷x2- 16,此中 x=3-4.2x-2x- 2xx2+4x+4x+22x27、先化简,再求值:x2-16÷2x-8-x+4,此中x=2.28、先化简,再求值:3x x 2 x,此中 x3 4 .(x 2)x 2x2429. 先化简,再求值:(2aa) a ,此中 a2 1.a 1 1a30、先化简,再求值:2a 1 1( 2 1 ) a ,此中 a2a1 a31、( 1)化简:.( 2) 1x 2 11xx( 3) (a 1 ) a1aa32.( 1) (a bb 2 )a b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练(一) 分式化简求值常见题型归纳
► 类型一 代入求值型 一、直接代入型
1.先化简,再求值:⎝ ⎛⎭⎪⎫a 2
a -1+11-a ·1a
,其中a =-12.
二、选择代入型
2.先化简:x 2
+x x 2-2x +1÷⎝ ⎛⎭
⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你喜欢的x 值代
入求值.
3.若a 满足-3≤a≤3,请你选取一个合适的数a 使得代数式a 2
-1a ÷⎝ ⎛⎭
⎪⎫
1-1a 的值是一
个奇数.
三、整体代入型
4.已知x ,y 满足x =5y ,求分式x 2
-2xy +3y
2
4x 2+5xy -6y 2的值.
5.已知a +b b =52,求a -b
b 的值.
6.若1a -1b =12,求a -b ab -ab
a -
b 的值.
7.已知1x +1y =5,求2x -3xy +2y x +2xy +y
的值.
8.已知a 满足a 2
+2a -15=0,求1a +1-a +2a 2-1÷(a +1)(a +2)a 2
-2a +1的值. 9.已知t +1t =3,求t 2
+⎝ ⎛⎭⎪⎫1t 2的值.
10.已知x +1x =4,求x
2
x 4+x 2
+1的值. ► 类型二 设比例系数或用消元法求值
11.已知2a -3b +c =0,3a -2b -6c =0,abc ≠0,则a 3
-2b 3
+c
3
a 2
b -2b 2
c +3ac 2=________.
12.已知x 2=y 3=z 4≠0,求xy +yz +zx
x 2+y 2+z 2的值.
► 类型三 利用非负数的性质挖掘条件求值
13.已知x 2
-4x +4与|y -1|互为相反数,则式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值为________.
14.已知⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭
⎪⎫3y +1y +42
=0,求32x +1-23y -1的值.
► 类型四 值恒不变形
15.已知y =x 2
+6x +9x 2-9÷x +3x 2-3x -x +3,试说明不论x 为任何使原式有意义的值,y 的
值均不变.
详解详析
1.解:原式=⎝⎛⎭⎫a 2a -1-1a -1·1a =a 2-1a -1·1a =(a +1)(a -1)a -1
·1a =a +1a .
当a =-1
2时,a +1a =-1
2+1-1
2
=-1.
2.解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2
x -1.
由题意,可取x =2代入上式,得x 2x -1=22
2-1
=4.(注意:x 不能为0和±1)
3.解:原式=a +1.由原代数式有意义,得a ≠0且a ≠1,又代数式的值是奇数,且-3≤a ≤3,所以a =±2.
4.解:由已知可得y ≠0,将分式的分子、分母同除以y 2
,得原式=⎝⎛⎭⎫x y 2
-2·x y +34·⎝⎛⎭⎫x y 2+5·x y -6.
又已知x =5y ,变形得x y =5,将其代入原式,得⎝⎛⎭⎫x y 2
-2·x y +34·⎝⎛⎭⎫x y 2
+5·x y -6=52-2×5+34×52+5×5-6=18
119. 5.[解析] 由a -b b =a +b -2b b =a +b
b
-2,再将已知条件代入该式即可求解.
解:a -b b =a +b -2b b =a +b b -2,
又知a +b b =52,将其代入上式,得
a -
b b =52-2=12. 6.解:由1a -1b =12,
得
b -a ab =1
2
, 所以a -b ab =-12,ab a -b =-2,
所以a -b ab -ab a -b
=-12+2=32.
7.[解析] 由条件1x +1
y =5,通分化简,得x +y =5xy ,代数式可化为2(x +y )-3xy x +2xy +y ,
从而整体代入求值.
解:∵1x +1y =x +y
xy =5,
∴x +y =5xy , ∴
2x -3xy +2y x +2xy +y =2(x +y )-3xy x +2xy +y =10xy -3xy
5xy +2xy
=1.
8.[解析] 对要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -15=0进行配方,得到a +1的值,再把它整体代入即可求出答案.
解:1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1
=1a +1-a +2(a +1)(a -1)·(a -1)2(a +1)(a +2) =
1a +1-a -1(a +1)2=2(a +1)2
. ∵a 2+2a -15=0,∴(a +1)2=16,
∴原式=216=1
8.
9.[解析] 利用t 2
+⎝⎛⎭⎫1t 2
=⎝⎛⎭⎫
t +1t 2
-2的形式,将已知条件整体代入求解.
解:因为t 2
+⎝⎛⎭⎫1t 2=⎝⎛⎭⎫t +1t 2
-2,
又t +1
t =3,将其代入上式,得原式=32-2=7.
10.解:因为x +1x =4,所以⎝⎛⎭⎫x +1x 2=42,
即x 2+2+1x 2=16,所以x 2+1
x 2=14.
因为x 4+x 2+1x 2
=x 2+1+1x 2=x 2+1
x 2+1=14+1=15,
所以x 2x 4+x 2+1=1
15
.
11.11
42 [解析] 由已知条件不能求出a ,b ,c 的具体值,但是我们可以把已知等式组成方程组,用其中一个字母(如c)来表示另两个字母,把分式转化为只含一个字母的分式,再约分.
由已知,得⎩
⎨⎧2a -3b =-c ,
3a -2b =6c , 解这个方程组得
⎩⎨
⎧a =4c ,b =3c ,
代入原式,得a 3-2b 3+c 3
a 2
b -2b 2
c +3ac 2=
(4c )3-2·(3c )3+c 3(4c )2·3c -2·(3c )2c +3×4c·c 2=11c 342c 3=11
42
.
12.解:设x 2=y 3=z
4=k ,则x =2k ,y =3k ,z =4k ,所以xy +yz +zx x 2+y 2+z 2=6k 2+12k 2+8k 24k 2+9k 2+16k 2
=
26
29
. 13.1
2 [解析] 代数式x 2-4x +4=(x -2)2.因为x 2-4x +4与|y -1|互为相反数,所以由非负数的性质,得x -2=0,y -1=0,解得x =2,y =1,所以⎝⎛⎭⎫x y -y x ÷(x +y)=⎝⎛⎭⎫21-1
2÷(2+1)=1
2
.
14.解:由⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭
⎪⎫3y +1y +42
=0,得x -12x -3=0,3y +1y +4=0,所以x =1,y =-13,
所以原式=32×1+1-23×⎝⎛⎭⎫-13-1
=2.
15.[解析] 先化简分式,再通过分析化简结果得出结论. 解:y =x 2+6x +9x 2-9÷x +3
x 2-3x -x +3
=(x +3)2(x +3)(x -3)·x (x -3)
x +3-x +3
=x -x +3 =3.
由化简结果,可知y 的值为常数3,与x 的取值无关,故不论x 为任何使原式有意义的值,y 的值均不变.。