计算机网络新技术外文翻译文献
外文翻译--计算机
外文原文computerThe modern world of high technology could not have come about except for the development of the computer. Different types and sizes of computers find uses throughout society in the storage and handling of data, from secret governmental files to banking transactions to private household accounts. Computers have opened up a new era in manufacturing through the techniques of automation, and they have enhanced modern communication systems. They are essential tools in almost every field of research and applied technology, from constructing models of the universe to producing tomorrow’s weather reports, and technique use has in itself opened up new areas of conjecture. Database services and computer networks make available a great variety of information sources. The same advanced techniques also make the invasions of privacy and restricted information sources possible, and computer crime has become one of the many risks that society must face if it is to enjoy the benefits of modern technology.A computer is an electronic device that can receive a set of instructions, or program, and then carry out this program by performing calculations on numerical data or by compiling and correlating other forms of information. The type of computers are mainly inclusive of Microcomputer, Minicomputer, Mainframe Computer and Supercomputer, etc. Microminiaturization , the effort to compress more circuit elements into smaller and smaller chip space is becoming the major trend in computer development. Besides, researchers are trying to develop more powerful and more advanced computers.Any customers all pass the operate system to use the calculator, not direct carry on the operation to the hardware of the calculators. The operate system is a bridge that communicates the customer and calculator. Every general-purpose computer must have an operating system to run other programs. Operating systems perform basic tasks and provide a software platform. The choice of operating systems determines to a great extent of the applications. Therefore OS is very important.The operate system is in the charge of Computer resource control program to execute system software. Say in a specific way,the OS is the most basic in the calculator software system, also constituting the part most importantly, it is responsible for the management and controls the calculator system in all hardware resources and the software resources, can make of various resources matched with mutually, moderating to work with one accord, full develop its function, exaltation the efficiency of the system, still take the interface function of the customer and the calculator system at the same time, use the calculator to provide the convenience for the customer. The operate system is a huge management control procedure, including 5 management functions mostly: Progress and processing the machine manage, the homework manage, saving management, equipments management, document management. Divide the line from the function, the tiny machine operate system can is divided into the single mission operate system, single many mission operate systems of customer and many mission operate systems of multi-user of single customer. At present there are several kinds of OS on the computer which are DOS, OS/2, UNIX, XENIX, LINUX, Window2000, Netware etc.In order for a computer to perform the required task, it must be given instructions in a language that it understands. However, the computer’s own binary based language, or machine language, is difficult for humans to use. Therefore, people devised an assembly language to shorten and simplify the process. In order to make a computer more friendly to use, programmers invented high level languages, such as COBOL, FORTRAN, ASSEMBLER, PASCAL, C++, etc, which made the computers easier to use. For the time being, HTML and XML are very useful languages as well.The database is often used to describe a collection of related data that is organized into an integrated, sophisticated structure that provides different people with varied access to the same data. A database management system is an extremely complex set of software programs that controls the organization, storage and retrieval of data in a database. A successful DBMS is often characterized with the four principal features: (1)Data Security and Integrity; (2)Interactive query; (3)Interactive data Entry and Updating; (4)Data Independence. The intelligent databases are becoming more popular in that they canprovide more validation. The researches on new types of database systems are underway.计算机倘若不是伴随着计算机的发展,现代世界的高端技术不可能出现。
计算机网络外文翻译
附录一、英文原文:The NetWorksBirth of the NetThe Internet has had a relatively brief, but explosive history so far. It grew out of an experiment begun in the 1960's by the U.S. Department of Defense. The DoD wanted to create a computer network that would continue to function in the event of a disaster, such as a nuclear war. If part of the network were damaged or destroyed, the rest of the system still had to work. That network was ARPANET, which linked U.S. scientific and academic researchers. It was the forerunner of today's Internet.In 1985, the National Science Foundation (NSF) created NSFNET, a series of networks for research and education communication. Based on ARPANET protocols, the NSFNET created a national backbone service, provided free to any U.S. research and educational institution. At the same time, regional networks were created to link individual institutions with the national backbone service.NSFNET grew rapidly as people discovered its potential, and as new software applications were created to make access easier. Corporations such as Sprint and MCI began to build their own networks, which they linked to NSFNET. As commercial firms and other regional network providers have taken over the operation of the major Internet arteries, NSF has withdrawn from the backbone business.NSF also coordinated a service called InterNIC, which registered all addresses on the Internet so that data could be routed to the right system. This service has now been taken over by Network Solutions, Inc., in cooperation with NSF.How the Web WorksThe World Wide Web, the graphical portion of the Internet, is the most popular part of the Internet by far. Once you spend time on the Web,you will begin to feel like there is no limit to what you can discover. The Web allows rich and diverse communication by displaying text, graphics, animation, photos, sound and video.So just what is this miraculous creation? The Web physically consists of your personal computer, web browser software, a connection to an Internet service provider, computers called servers that host digital data and routers and switches to direct the flow of information.The Web is known as a client-server system. Your computer is the client; the remote computers that store electronic files are the servers. Here's how it works: Let's say you want to pay a visit to the the Louvre museum website. First you enter the address or URL of the website in your web browser (more about this shortly). Then your browser requests the web page from the web server that hosts the Louvre's site. The Louvre's server sends the data over the Internet to your computer. Your webbrowser interprets the data, displaying it on your computer screen.The Louvre's website also has links to the sites of other museums, such as the VaticanMuseum. When you click your mouse on a link, you access the web server for the VaticanMuseum.The "glue" that holds the Web together is called hypertext and hyperlinks. This feature allow electronic files on the Web to be linked so you can easily jump between them. On the Web, you navigate through pages of information based on what interests you at that particular moment, commonly known as browsing or surfing the Net.To access the Web you need web browser software, such as Netscape Navigator or Microsoft Internet Explorer. How does your web browser distinguish between web pages and other files on the Internet? Web pages are written in a computer language called Hypertext Markup Language or HTML.Some Web HistoryThe World Wide Web (WWW) was originally developed in 1990 at CERN, the European Laboratory for Particle Physics. It is now managed by The World Wide Web Consortium, also known as the World Wide Web Initiative.The WWW Consortium is funded by a large number of corporate members, including AT&T, Adobe Systems, Inc., Microsoft Corporation and Sun Microsystems, Inc. Its purpose is to promote the growth of the Web by developing technical specifications and reference software that will be freely available to everyone. The Consortium is run by MIT with INRIA (The French National Institute for Research in Computer Science) acting as European host, in collaboration with CERN.The NationalCenter for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, was instrumental in the development of early graphical software utilizing the World Wide Web features created by CERN. NCSA focuses on improving the productivity of researchers by providing software for scientific modeling, analysis, and visualization. The World Wide Web was an obvious way to fulfill that mission. NCSA Mosaic, one of the earliest web browsers, was distributed free to the public. It led directly to the phenomenal growth of the World Wide Web.Understanding Web AddressesYou can think of the World Wide Web as a network of electronic files stored on computers all around the world. Hypertext links these resources together. Uniform Resource Locators or URLs are the addresses used to locate these files. The information contained in a URL gives you the ability to jump from one web page to another with just a click of your mouse. When you type a URL into your browser or click on a hypertext link, your browser is sending a request to a remote computer to download a file.What does a typical URL look like? Here are some examples:/The home page for study english.ftp:///pub/A directory of files at MIT* available for downloading.news:rec.gardens.rosesA newsgroup on rose gardening.The first part of a URL (before the two slashes* tells you the type of resource or method of access at that address. For example:·http - a hypertext document or directory·gopher - a gopher document or menu·ftp - a file available for downloading or a directory of such files·news - a newsgroup·telnet - a computer system that you can log into over the Internet·WAIS* - a database or document in a Wide Area Information Search database ·file - a file located on a local drive (your hard drive)The second part is typically the address of the computer where the data or service is located. Additional parts may specify the names of files, the port to connect to, or the text to search for in a database.You can enter the URL of a site by typing it into the Location bar of your web browser, just under the toolbar.Most browsers record URLs that you want to use again, by adding them to a special menu. In Netscape Navigator, it's called Bookmarks. In Microsoft Explorer, it's called Favorites. Once you add a URL to your list, you can return to that web page simply by clicking on the name in your list, instead of retyping the entire URL.Most of the URLs you will be using start with http which stands for Hypertext Transfer Protocol*. http is the method by which HTML files are transferred over the Web. Here are some other important things to know about URLs:· A URL usually has no spaces.· A URL always uses forward slashes (//).If you enter a URL incorrectly, your browser will not be able to locate the site or resource you want. Should you get an error message or the wrong site, make sure you typed the address correctly.You can find the URL behind any link by passing your mouse cursor over the link. The pointer will turn into a hand and the URL will appear in the browser's status bar, usually located at the bottom of your screen.Domain NamesWhen you think of the Internet, you probably think of ".com." Just what do those three letters at the end of a World Wide Web address mean?Every computer that hosts data on the Internet has a unique numerical address. For example, the numerical address for the White House is 198.137.240.100. But since few people want to remember long strings of numbers, the Domain Name System (DNS)* was developed. DNS, a critical part of the Internet's technical infrastructure*, correlates* a numerical address to a word. To access the White House website, you could type its number into the address box of your web browser. But most people prefer to use "." In this case, the domain name is .In general, the three-letter domain name suffix* is known as a generic top-level domain and describes the type of organization. In the last few years, the lines have somewhat blurred* between these categories..com - business (commercial).edu - educational.org - non-profit.mil - military.net - network provider.gov - governmentA domain name always has two or more parts separated by dots and typically consists of some form of an organization's name and the three-letter suffix. For example, the domain name for IBM is ""; the United Nations is "."If a domain name is available, and provided it does not infringe* on an existing trademark, anyone can register the name for $35 a year through Network Solutions, Inc., which is authorized to register .com, .net and .org domains. You can use the box below to see if a name is a available. Don't be surprised if the .com name you want is already taken, however. Of the over 8 million domain names, 85% are .com domains.ICANN, the Internet Corporation for Assigned Names and Numbers, manages the Domain Name System. As of this writing, there are plans to add additional top-level domains, such as .web and .store. When that will actually happen is anybody's guess.To check for, or register a domain name, type it into the search box.It should take this form: In addition to the generic top-level domains, 244 national top-level domains were established for countries and territories*, for example:.au - Australia.ca - Canada.fr - France.de - Germany.uk - United KingdomFor US $275 per name, you can also register an international domain name with Net Names. Be aware that some countries have restrictions for registering names.If you plan to register your own domain name, whether it's a .com or not, keep these tips in mind:The shorter the name, the better. (But it should reflect your family name, interest or business.)The name should be easy to remember.It should be easy to type without making mistakes.Remember, the Internet is global. Ideally, a domain name will "read" in a language other than English.Decoding Error MessagesAs you surf the Net, you will undoubtedly find that at times you can't access certain websites. Why, you make wonder? Error messages attempt to explain thereason. Unfortunately, these cryptic* messages baffle* most people. We've deciphered* the most common ones you may encounter.400 - Bad RequestProblem: There's something wrong with the address you entered. You may not be authorized* to access the web page, or maybe it no longer exists.Solution: Check the address carefully, especially if the address is long. Make sure that the slashes are correct (they should be forward slashes) and that all the names are properly spelled. Web addresses are case sensitive, so check that the names are capitalized in your entry as they are in the original reference to the website.401 - UnauthorizedProblem: You can't access a website, because you're not on the guest list, your password is invalid or you have entered your password incorrectly.Solution: If you think you have authorization, try typing your password again. Remember that passwords are case sensitive.403 - ForbiddenProblem: Essentially the same as a 401.Solution: Try entering your password again or move on to another site.404 - Not FoundProblem: Either the web page no longer exists on the server or it is nowhere to be found.Solution: Check the address carefully and try entering it again. You might also see if the site has a search engine and if so, use it to hunt for the document. (It's not uncommon for pages to change their addresses when a website is redesigned.) To get to the home page of the site, delete everything after the domain name and hit the Enter or Return key.503 - Service unavailableProblem: Your Internet service provider (ISP) or your company's Internet connection may be down.Solution: Take a stretch, wait a few minutes and try again. If you still have no luck, phone your ISP or system administrator.Bad file requestProblem: Your web browser may not be able to decipher the online form you want to access. There may also be a technical error in the form.Solution: Consider sending a message to the site's webmaster, providing any technical information you can, such as the browser and version you use.Connection refused by hostProblem: You don't have permission to access the page or your password is incorrect.Solution: Try typing your password again if you think you should have access.Failed DNS lookupProblem: DNS stands for the Domain Name System, which is the system that looks up the name of a website, finds a corresponding number (similar to a phone number), then directs your request to the appropriate web server on the Internet. When the lookup fails, the host server can't be located.Solution: Try clicking on the Reload or Refresh button on your browser toolbar. If this doesn't work, check the address and enter it again. If all else fails, try again later.File contains no dataProblem: The site has no web pages on it.Solution: Check the address and enter it again. If you get the same error message, try again later.Host unavailableProblem: The web server is down.Solution: Try clicking on the Reload or Refresh button. If this doesn't work, try again later.Host unknownProblem: The web server is down, the site may have moved, or you've been disconnected from the Net.Solution: Try clicking on the Reload or Refresh button and check to see that you are still online. If this fails, try using a search engine to find the site. It may have a new address.Network connection refused by the serverProblem: The web server is busy.Solution: Try again in a while.Unable to locate hostProblem: The web server is down or you've been disconnected from the Net.Solution: Try clicking on the Reload or Refresh button and check to see that you are still online.Unable to locate serverProblem: The web server is out-of-business or you may have entered the addressincorrectly.Solution: Check the address and try typing it again.二、英文翻译:网络网络的诞生迄今为止,因特网的历史虽比较简短,但仍然是突破性的。
计算机英文文献加翻译
Management Information System Overview Management Information System is that we often say that the MIS, is a human, computers and other information can be composed of the collection, transmission, storage, maintenance and use of the system, system, emphasizing emphasizing the the management, management, management, stressed stressed stressed that that the modern information society In the increasingly popular. MIS is a new subject, it across a number of areas, such as scientific scientific management management management and and and system system system science, science, science, operations operations operations research, research, research, statistics statistics statistics and and and computer computer science. In these subjects on the basis of formation of information-gathering and processing methods, thereby forming a vertical and horizontal weaving, and systems. The 20th century, along with the vigorous development of the global economy, many economists have proposed a new management theory. In the 1950s, Simon made dependent on information management and decision-making ideas. Wiener published the same period of the control theory, that he is a management control process. 1958, Gail wrote: "The management will lower the cost of timely and accurate information to b etter control." During better control." During this period, accounting for the beginning of the computer, data processing in the term.1970, Walter T . Kenova just to the management information system under a definition of the . Kenova just to the management information system under a definition of the term: "verbal or written form, at the right time to managers, staff and outside staff for the past, present, the projection of future Enterprise and its environment-related information 原文请找腾讯3249114六,维^论~文.网 no no application application application model, model, model, no no mention mention of of computer applications. 1985, management information systems, the founder of the University of Minnesota professor of management at the Gordon B. Davis to a management information system a more complete definition of "management information system is a computer hardware and software resources, manual operations, analysis, planning , Control and decision -making model and the database - System. System. It It provides information to to support support enterprises enterprises or or organizations organizations of of the operation, management and decision-making function. "Comprehensive definition of this Explained Explained that that that the the the goal goal goal of of of management management management information information information system, system, system, functions functions functions and and and composition, composition, composition, but but also reflects the management information system at the time of level.With the continuous improvement of science and technology, computer science increasingly mature, the computer has to be our study and work on the run along. Today, computers are already already very low price, performance, but great progress, and it was used in many areas, the very low price, performance, but great progress, and it was used in many areas, the computer computer was was was so so so popular popular popular mainly mainly mainly because because because of of of the the the following following following aspects: aspects: aspects: First, First, First, the the the computer computer computer can can substitute for many of the complex Labor. Second, the computer can greatly enhance people's work work efficiency. efficiency. efficiency. Third, Third, Third, the the the computer computer computer can can can save save save a a a lot lot lot of of of resources. resources. resources. Fourth, Fourth, Fourth, the the the computer computer computer can can make sensitive documents more secure.Computer application and popularization of economic and social life in various fields. So that the original old management methods are not suited now more and social development. Many people still remain in the previous manual. This greatly hindered the economic development of mankind. mankind. In recent years, with the University of sponsoring scale is In recent years, with the University of sponsoring scale is growing, the number of students students in in in the the the school school school also also also have have have increased, increased, increased, resulting resulting resulting in in in educational educational educational administration administration administration is is is the the growing complexity of the heavy work, to spend a lot of manpower, material resources, and the existing management of student achievement levels are not high, People have been usin g the traditional method of document management student achievement, the management there are many shortcomings, such as: low efficiency, confidentiality of the poor, and Shijianyichang, will have a large number of of documents documents documents and and data, which is is useful useful for finding, finding, updating updating and maintaining Have brought a lot of difficulties. Such a mechanism has been unable to meet the development of the times, schools have become more and more day -to-day management of a bottleneck. bottleneck. In In In the the the information information information age age age this this this traditional traditional traditional management management management methods methods methods will will will inevitably inevitably inevitably be be computer-based information management replaced. As As part part part of of of the the the computer computer computer application, application, application, the the the use use use of of of computers computers computers to to to students students students student student student performance performance information for management, with a manual management of the incomparable advantages for example: example: rapid rapid rapid retrieval, retrieval, retrieval, to to to find find find convenient, convenient, convenient, high high high reliability reliability reliability and and and large large large capacity capacity capacity storage, storage, storage, the the confidentiality confidentiality of of of good, good, good, long long long life, life, life, cost cost cost Low. Low. Low. These These These advantages advantages advantages can can can greatly greatly greatly improve improve improve student student performance management students the efficiency of enterprises is also a scientific, standardized standardized management, management, management, and and and an an an important important important condition condition condition for for for connecting connecting connecting the the the world. world. world. Therefore, Therefore, the development of such a set of management software as it is very necessary thing.Design ideas are all for the sake of users, the interface nice, clear and simple operation as far as possible, but also as a practical operating system a good fault-tolerant, the user can misuse a timely manner as possible are given a warning, so that users timely correction . T o take full advantage advantage of the of the functions of visual FoxPro, design p owerful software powerful software at the same time, as much as possible to reduce the occupiers system resources. Visual FoxPro the command structure and working methods: Visual FoxPro was originally originally called called FoxBASE, FoxBASE, the the U.S. U.S. Fox Fox Software has introduced introduced a a database products, products, in in the run on DOS, compatible with the abase family. Fox Fox Software Software Microsoft acquisition, to be developed so that it can run on Windows, and changed its name to Visual FoxPro. Visual FoxPro is a powerful relational database rapid application development tool, tool, the the the use use use of of of Visual Visual Visual FoxPro FoxPro FoxPro can can can create create create a a a desktop desktop desktop database database database applications, applications, applications, client client client / / / server server applications applications and and and Web Web Web services services services component-based component-based component-based procedures, procedures, procedures, while while while also also also can can can use use use ActiveX ActiveX controls or API function, and so on Ways to expand the functions of Visual FoxPro.1651First, work methods 1. Interactive mode of operation (1) order operation VF in the order window, through an order from the keyboard input of all kinds of ways to complete the operation order. (2) menu operation VF use menus, windows, dialog to achieve the graphical interface features an interactive operation. (3) aid operation VF in the system provides a wide range of user-friendly operation of tools, such as the wizard, design, production, etc.. 2. Procedure means of implementation VF in the implementation of the procedures is to form a group of orders and programming language, an extension to save. PRG procedures in the document, and then run through the automatic implementation of this order documents and award results are displayed. Second, the structure of command 1. Command structure 2. VF orders are usually composed of two parts: The first part is the verb order, also known as keywords, for the operation of the designated order functions; second part of the order clause, for an order that the operation targets, operating conditions and other information . VF order form are as follows: 3. <Order verb> "<order clause>" 4. Order in the format agreed symbols 5. 5. VF in the order form and function of the use of the symbol of the unity agreement, the meaning of VF in the order form and function of the use of the symbol of the unity agreement, the meaning of these symbols are as follows: 6. Than that option, angle brackets within the parameters must be based on their format input parameters. 7. That may be options, put in brackets the parameters under specific requ ests from users choose to enter its parameters. 8. Third, the project manager 9. Create a method 10. command window: CREA T PROJECT <file name> T PROJECT <file name> 11. Project Manager 12. tab 13. All - can display and project management applications of all types of docume nts, "All" tab contains five of its right of the tab in its entirety . 14. Data - management application projects in various types of data files, databases, free form, view, query documents. 15. Documentation - display 原文请找腾讯原文请找腾讯3249114六,维^论~文.网 , statements, documents, labels and other documents. 16. Category - the tab display and project management applications used in the class library documents, including VF's class library system and the user's own design of the library. 17. Code - used in the project management procedures code documents, such as: program files (. PRG), API library and the use of project management for generation of applications (. APP). 18. (2) the work area 19. The project management work area is displayed and management of all types of document window. 20. (3) order button 21. Project Manager button to the right of the order of the work area of the document window to provide command. 22. 4, project management for the use of 23. 1. Order button function 24. New - in the work area window selected certain documents, with new orders button on the new document added to the project management window. 25. Add - can be used VF "file" menu under the "new" order and the "T ools" menu under the "Wizard" order to create the various independent paper added to the project manager, unified organization with management. 26. Laws - may amend the project has been in existence in the various documents, is still to use such documents to modify the design interface. 27. Sports - in the work area window to highlight a specific document, will run the paper.28. Mobile - to check the documents removed from the project. 29. 29. Even Even Even the the the series series series - - - put put put the the the item item item in in in the the the relevant relevant relevant documents documents documents and and and even even even into into into the the the application application executable file. Database System Design :Database design is the logical database design, according to a forthcoming data classification system and the logic of division-level organizations, is user-oriented. Database design needs of various departments of the integrated enterprise archive data and data needs analysis of the relationship between the various data, in accordance with the DBMS. 管理信息系统概要管理信息系统概要管理信息系统就是我们常说的MIS (Management Information System ),是一个由人、计算机等组成的能进行信息的收集、传送、储存、维护和使用的系统,在强调管理,强调信息的现代社会中它越来越得到普及。
计算机专业外文文献及翻译微软Visual Studio
计算机专业外文文献及翻译微软Visual Studio 微软 Visual Studio1 微软 Visual Studio Visual Studio 是微软公司推出的开发环境,Visual Studio 可以用来创建 Windows 平台下的Windows 应用程序和网络应用程序,也可以用来创建网络服务、智能设备应用程序和 Office 插件。
Visual Studio 是一个来自微软的集成开发环境 IDE(inteqrated development environment),它可以用来开发由微软视窗,视窗手机,Windows CE、.NET 框架、.NET 精简框架和微软的 Silverlight 支持的控制台和图形用户界面的应用程序以及 Windows 窗体应用程序,网站,Web 应用程序和网络服务中的本地代码连同托管代码。
Visual Studio 包含一个由智能感知和代码重构支持的代码编辑器。
集成的调试工作既作为一个源代码级调试器又可以作为一台机器级调试器。
其他内置工具包括一个窗体设计的 GUI 应用程序,网页设计师,类设计师,数据库架构设计师。
它有几乎各个层面的插件增强功能,包括增加对支持源代码控制系统(如 Subversion 和 Visual SourceSafe)并添加新的工具集设计和可视化编辑器,如特定于域的语言或用于其他方面的软件开发生命周期的工具(例如 Team Foundation Server 的客户端:团队资源管理器)。
Visual Studio 支持不同的编程语言的服务方式的语言,它允许代码编辑器和调试器(在不同程度上)支持几乎所有的编程语言,提供了一个语言特定服务的存在。
内置的语言中包括 C/C 中(通过Visual C)(通过 Visual ),C,中(通过 Visual C,)和 F,(作为Visual Studio2010),为支持其他语言,如 MPython和 Ruby 等,可通过安装单独的语言服务。
计算机java外文翻译外文文献英文文献
英文原文:Title: Business Applications of Java. Author: Erbschloe, Michael, Business Applications of Java -- Research Starters Business, 2008DataBase: Research Starters - BusinessBusiness Applications of JavaThis article examines the growing use of Java technology in business applications. The history of Java is briefly reviewed along with the impact of open standards on the growth of the World Wide Web. Key components and concepts of the Java programming language are explained including the Java Virtual Machine. Examples of how Java is being used bye-commerce leaders is provided along with an explanation of how Java is used to develop data warehousing, data mining, and industrial automation applications. The concept of metadata modeling and the use of Extendable Markup Language (XML) are also explained.Keywords Application Programming Interfaces (API's); Enterprise JavaBeans (EJB); Extendable Markup Language (XML); HyperText Markup Language (HTML); HyperText Transfer Protocol (HTTP); Java Authentication and Authorization Service (JAAS); Java Cryptography Architecture (JCA); Java Cryptography Extension (JCE); Java Programming Language; Java Virtual Machine (JVM); Java2 Platform, Enterprise Edition (J2EE); Metadata Business Information Systems > Business Applications of JavaOverviewOpen standards have driven the e-business revolution. Networking protocol standards, such as Transmission Control Protocol/Internet Protocol (TCP/IP), HyperText Transfer Protocol (HTTP), and the HyperText Markup Language (HTML) Web standards have enabled universal communication via the Internet and the World Wide Web. As e-business continues to develop, various computing technologies help to drive its evolution.The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components across computing platforms. Sun Microsystems' Java Community Process continues to be a strong base for the growth of the Java infrastructure and language standards. This growth of open standards creates new opportunities for designers and developers of applications and services (Smith, 2001).Creation of Java TechnologyJava technology was created as a computer programming tool in a small, secret effort called "the Green Project" at Sun Microsystems in 1991. The Green Team, fully staffed at 13 people and led by James Gosling, locked themselves away in an anonymous office on Sand Hill Road in Menlo Park, cut off from all regular communications with Sun, and worked around the clock for18 months. Their initial conclusion was that at least one significant trend would be the convergence of digitally controlled consumer devices and computers. A device-independent programming language code-named "Oak" was the result.To demonstrate how this new language could power the future of digital devices, the Green Team developed an interactive, handheld home-entertainment device controller targeted at the digital cable television industry. But the idea was too far ahead of its time, and the digital cable television industry wasn't ready for the leap forward that Java technology offered them. As it turns out, the Internet was ready for Java technology, and just in time for its initial public introduction in 1995, the team was able to announce that the Netscape Navigator Internet browser would incorporate Java technology ("Learn about Java," 2007).Applications of JavaJava uses many familiar programming concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). A virtual machine is a self-contained operating environment, created by a software layer that behaves as if it were a separate computer. Benefits of creating virtual machines include better exploitation of powerful computing resources and isolation of applications to prevent cross-corruption and improve security (Matlis, 2006).The JVM allows computing devices with limited processors or memory to handle more advanced applications by calling up software instructions inside the JVM to perform most of the work. This also reduces the size and complexity of Java applications because many of the core functions and processing instructions were built into the JVM. As a result, software developersno longer need to re-create the same application for every operating system. Java also provides security by instructing the application to interact with the virtual machine, which served as a barrier between applications and the core system, effectively protecting systems from malicious code.Among other things, Java is tailor-made for the growing Internet because it makes it easy to develop new, dynamic applications that could make the most of the Internet's power and capabilities. Java is now an open standard, meaning that no single entity controls its development and the tools for writing programs in the language are available to everyone. The power of open standards like Java is the ability to break down barriers and speed up progress.Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards. There are over 3 million Java developers and now there are several versions of the code. Most large corporations have in-house Java developers. In addition, the majority of key software vendors use Java in their commercial applications (Lazaridis, 2003).ApplicationsJava on the World Wide WebJava has found a place on some of the most popular websites in the world and the uses of Java continues to grow. Java applications not only provide unique user interfaces, they also help to power the backend of websites. Two e-commerce giants that everybody is probably familiar with (eBay and Amazon) have been Java pioneers on the World Wide Web.eBayFounded in 1995, eBay enables e-commerce on a local, national and international basis with an array of Web sites-including the eBay marketplaces, PayPal, Skype, and -that bring together millions of buyers and sellers every day. You can find it on eBay, even if you didn't know it existed. On a typical day, more than 100 million items are listed on eBay in tens of thousands of categories. Recent listings have included a tunnel boring machine from the Chunnel project, a cup of water that once belonged to Elvis, and the Volkswagen that Pope Benedict XVI owned before he moved up to the Popemobile. More than one hundred million items are available at any given time, from the massive to the miniature, the magical to the mundane, on eBay; the world's largest online marketplace.eBay uses Java almost everywhere. To address some security issues, eBay chose Sun Microsystems' Java System Identity Manager as the platform for revamping its identity management system. The task at hand was to provide identity management for more than 12,000 eBay employees and contractors.Now more than a thousand eBay software developers work daily with Java applications. Java's inherent portability allows eBay to move to new hardware to take advantage of new technology, packaging, or pricing, without having to rewrite Java code ("eBay drives explosive growth," 2007).Amazon (a large seller of books, CDs, and other products) has created a Web Service application that enables users to browse their product catalog and place orders. uses a Java application that searches the Amazon catalog for books whose subject matches a user-selected topic. The application displays ten books that match the chosen topic, and shows the author name, book title, list price, Amazon discount price, and the cover icon. The user may optionally view one review per displayed title and make a buying decision (Stearns & Garishakurthi, 2003).Java in Data Warehousing & MiningAlthough many companies currently benefit from data warehousing to support corporate decision making, new business intelligence approaches continue to emerge that can be powered by Java technology. Applications such as data warehousing, data mining, Enterprise Information Portals (EIP's), and Knowledge Management Systems (which can all comprise a businessintelligence application) are able to provide insight into customer retention, purchasing patterns, and even future buying behavior.These applications can not only tell what has happened but why and what may happen given certain business conditions; allowing for "what if" scenarios to be explored. As a result of this information growth, people at all levels inside the enterprise, as well as suppliers, customers, and others in the value chain, are clamoring for subsets of the vast stores of information such as billing, shipping, and inventory information, to help them make business decisions. While collecting and storing vast amounts of data is one thing, utilizing and deploying that data throughout the organization is another.The technical challenges inherent in integrating disparate data formats, platforms, and applications are significant. However, emerging standards such as the Application Programming Interfaces (API's) that comprise the Java platform, as well as Extendable Markup Language (XML) technologies can facilitate the interchange of data and the development of next generation data warehousing and business intelligence applications. While Java technology has been used extensively for client side access and to presentation layer challenges, it is rapidly emerging as a significant tool for developing scaleable server side programs. The Java2 Platform, Enterprise Edition (J2EE) provides the object, transaction, and security support for building such systems.Metadata IssuesOne of the key issues that business intelligence developers must solve is that of incompatible metadata formats. Metadata can be defined as information about data or simply "data about data." In practice, metadata is what most tools, databases, applications, and other information processes use to define, relate, and manipulate data objects within their own environments. It defines the structure and meaning of data objects managed by an application so that the application knows how to process requests or jobs involving those data objects. Developers can use this schema to create views for users. Also, users can browse the schema to better understand the structure and function of the database tables before launching a query.To address the metadata issue, a group of companies (including Unisys, Oracle, IBM, SAS Institute, Hyperion, Inline Software and Sun) have joined to develop the Java Metadata Interface (JMI) API. The JMI API permits the access and manipulation of metadata in Java with standard metadata services. JMI is based on the Meta Object Facility (MOF) specification from the Object Management Group (OMG). The MOF provides a model and a set of interfaces for the creation, storage, access, and interchange of metadata and metamodels (higher-level abstractions of metadata). Metamodel and metadata interchange is done via XML and uses the XML Metadata Interchange (XMI) specification, also from the OMG. JMI leverages Java technology to create an end-to-end data warehousing and business intelligence solutions framework.Enterprise JavaBeansA key tool provided by J2EE is Enterprise JavaBeans (EJB), an architecture for the development of component-based distributed business applications. Applications written using the EJB architecture are scalable, transactional, secure, and multi-user aware. These applications may be written once and then deployed on any server platform that supports J2EE. The EJB architecture makes it easy for developers to write components, since they do not need to understand or deal with complex, system-level details such as thread management, resource pooling, and transaction and security management. This allows for role-based development where component assemblers, platform providers and application assemblers can focus on their area of responsibility further simplifying application development.EJB's in the Travel IndustryA case study from the travel industry helps to illustrate how such applications could function. A travel company amasses a great deal of information about its operations in various applications distributed throughout multiple departments. Flight, hotel, and automobile reservation information is located in a database being accessed by travel agents worldwide. Another application contains information that must be updated with credit and billing historyfrom a financial services company. Data is periodically extracted from the travel reservation system databases to spreadsheets for use in future sales and marketing analysis.Utilizing J2EE, the company could consolidate application development within an EJB container, which can run on a variety of hardware and software platforms allowing existing databases and applications to coexist with newly developed ones. EJBs can be developed to model various data sets important to the travel reservation business including information about customer, hotel, car rental agency, and other attributes.Data Storage & AccessData stored in existing applications can be accessed with specialized connectors. Integration and interoperability of these data sources is further enabled by the metadata repository that contains metamodels of the data contained in the sources, which then can be accessed and interchanged uniformly via the JMI API. These metamodels capture the essential structure and semantics of business components, allowing them to be accessed and queried via the JMI API or to be interchanged via XML. Through all of these processes, the J2EE infrastructure ensures the security and integrity of the data through transaction management and propagation and the underlying security architecture.To consolidate historical information for analysis of sales and marketing trends, a data warehouse is often the best solution. In this example, data can be extracted from the operational systems with a variety of Extract, Transform and Load tools (ETL). The metamodels allow EJBsdesigned for filtering, transformation, and consolidation of data to operate uniformly on datafrom diverse data sources as the bean is able to query the metamodel to identify and extract the pertinent fields. Queries and reports can be run against the data warehouse that contains information from numerous sources in a consistent, enterprise-wide fashion through the use of the JMI API (Mosher & Oh, 2007).Java in Industrial SettingsMany people know Java only as a tool on the World Wide Web that enables sites to perform some of their fancier functions such as interactivity and animation. However, the actual uses for Java are much more widespread. Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling.In addition, Java's automatic memory management and lack of pointers remove some leading causes of programming errors. Most importantly, application developers do not need to create different versions of the software for different platforms. The advantages available through Java have even found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.Benefits of JavaThe benefits of Java translate across many industries, and some are specific to the control and automation environment. For example, many plant-floor applications use relatively simple equipment; upgrading to PCs would be expensive and undesirable. Java's ability to run on any platform enables the organization to make use of the existing equipment while enhancing the application.IntegrationWith few exceptions, applications running on the factory floor were never intended to exchange information with systems in the executive office, but managers have recently discovered the need for that type of information. Before Java, that often meant bringing together data from systems written on different platforms in different languages at different times. Integration was usually done on a piecemeal basis, resulting in a system that, once it worked, was unique to the two applications it was tying together. Additional integration required developing a brand new system from scratch, raising the cost of integration.Java makes system integration relatively easy. Foxboro Controls Inc., for example, used Java to make its dynamic-performance-monitor software package Internet-ready. This software provides senior executives with strategic information about a plant's operation. The dynamic performance monitor takes data from instruments throughout the plant and performs variousmathematical and statistical calculations on them, resulting in information (usually financial) that a manager can more readily absorb and use.ScalabilityAnother benefit of Java in the industrial environment is its scalability. In a plant, embedded applications such as automated data collection and machine diagnostics provide critical data regarding production-line readiness or operation efficiency. These data form a critical ingredient for applications that examine the health of a production line or run. Users of these devices can take advantage of the benefits of Java without changing or upgrading hardware. For example, operations and maintenance personnel could carry a handheld, wireless, embedded-Java device anywhere in the plant to monitor production status or problems.Even when internal compatibility is not an issue, companies often face difficulties when suppliers with whom they share information have incompatible systems. This becomes more of a problem as supply-chain management takes on a more critical role which requires manufacturers to interact more with offshore suppliers and clients. The greatest efficiency comes when all systems can communicate with each other and share information seamlessly. Since Java is so ubiquitous, it often solves these problems (Paula, 1997).Dynamic Web Page DevelopmentJava has been used by both large and small organizations for a wide variety of applications beyond consumer oriented websites. Sandia, a multiprogram laboratory of the U.S. Department of Energy's National Nuclear Security Administration, has developed a unique Java application. The lab was tasked with developing an enterprise-wide inventory tracking and equipment maintenance system that provides dynamic Web pages. The developers selected Java Studio Enterprise 7 for the project because of its Application Framework technology and Web Graphical User Interface (GUI) components, which allow the system to be indexed by an expandable catalog. The flexibility, scalability, and portability of Java helped to reduce development timeand costs (Garcia, 2004)IssueJava Security for E-Business ApplicationsTo support the expansion of their computing boundaries, businesses have deployed Web application servers (WAS). A WAS differs from a traditional Web server because it provides a more flexible foundation for dynamic transactions and objects, partly through the exploitation of Java technology. Traditional Web servers remain constrained to servicing standard HTTP requests, returning the contents of static HTML pages and images or the output from executed Common Gateway Interface (CGI ) scripts.An administrator can configure a WAS with policies based on security specifications for Java servlets and manage authentication and authorization with Java Authentication andAuthorization Service (JAAS) modules. An authentication and authorization service can bewritten in Java code or interface to an existing authentication or authorization infrastructure. Fora cryptography-based security infrastructure, the security server may exploit the Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE). To present the user with a usable interaction with the WAS environment, the Web server can readily employ a formof "single sign-on" to avoid redundant authentication requests. A single sign-on preserves user authentication across multiple HTTP requests so that the user is not prompted many times for authentication data (i.e., user ID and password).Based on the security policies, JAAS can be employed to handle the authentication process with the identity of the Java client. After successful authentication, the WAS securitycollaborator consults with the security server. The WAS environment authentication requirements can be fairly complex. In a given deployment environment, all applications or solutions may not originate from the same vendor. In addition, these applications may be running on different operating systems. Although Java is often the language of choice for portability between platforms, it needs to marry its security features with those of the containing environment.Authentication & AuthorizationAuthentication and authorization are key elements in any secure information handling system. Since the inception of Java technology, much of the authentication and authorization issues have been with respect to downloadable code running in Web browsers. In many ways, this had been the correct set of issues to address, since the client's system needs to be protected from mobile code obtained from arbitrary sites on the Internet. As Java technology moved from a client-centric Web technology to a server-side scripting and integration technology, it required additional authentication and authorization technologies.The kind of proof required for authentication may depend on the security requirements of a particular computing resource or specific enterprise security policies. To provide such flexibility, the JAAS authentication framework is based on the concept of configurable authenticators. This architecture allows system administrators to configure, or plug in, the appropriate authenticatorsto meet the security requirements of the deployed application. The JAAS architecture also allows applications to remain independent from underlying authentication mechanisms. So, as new authenticators become available or as current authentication services are updated, system administrators can easily replace authenticators without having to modify or recompile existing applications.At the end of a successful authentication, a request is associated with a user in the WAS user registry. After a successful authentication, the WAS consults security policies to determine if the user has the required permissions to complete the requested action on the servlet. This policy canbe enforced using the WAS configuration (declarative security) or by the servlet itself (programmatic security), or a combination of both.The WAS environment pulls together many different technologies to service the enterprise. Because of the heterogeneous nature of the client and server entities, Java technology is a good choice for both administrators and developers. However, to service the diverse security needs of these entities and their tasks, many Java security technologies must be used, not only at a primary level between client and server entities, but also at a secondary level, from served objects. By using a synergistic mix of the various Java security technologies, administrators and developers can make not only their Web application servers secure, but their WAS environments secure as well (Koved, 2001).ConclusionOpen standards have driven the e-business revolution. As e-business continues to develop, various computing technologies help to drive its evolution. The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components. Java uses many familiar concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards.Java has found a place on some of the most popular websites in the world. Java applications not only provide unique user interfaces, they also help to power the backend of websites. While Java technology has been used extensively for client side access and in the presentation layer, it is also emerging as a significant tool for developing scaleable server side programs.Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling. Java's automatic memory management and lack of pointers remove some leading causes of programming errors. The advantages available through Java have also found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.中文翻译:标题:Java的商业应用。
计算机专业毕业论文外文翻译
附录(英文翻译)Rich Client Tutorial Part 1The Rich Client Platform (RCP) is an exciting new way to build Java applications that can compete with native applications on any platform. This tutorial is designed to get you started building RCP applications quickly. It has been updated for Eclipse 3.1.2By Ed Burnette, SASJuly 28, 2004Updated for 3.1.2: February 6, 2006IntroductionTry this experiment: Show Eclipse to some friends or co-workers who haven't seen it before and ask them to guess what language it is written in. Chances are, they'll guess VB, C++, or C#, because those languages are used most often for high quality client side applications. Then watch the look on their faces when you tell them it was created in Java, especially if they are Java programmers.Because of its unique open source license, you can use the technologies that went into Eclipse to create your own commercial quality programs. Before version 3.0, this was possible but difficult, especially when you wanted to heavily customize the menus, layouts, and other user interface elements. That was because the "IDE-ness" of Eclipse was hard-wired into it. Version 3.0 introduced the Rich Client Platform (RCP), which is basically a refactoring of the fundamental parts of Eclipse's UI, allowing it to be used for non-IDE applications. Version 3.1 updated RCP with new capabilities, and, most importantly, new tooling support to make it easier to create than before.If you want to cut to the chase and look at the code for this part you can find it in the accompanying zip file. Otherwise, let's take a look at how to construct an RCP application.Getting startedRCP applications are based on the familiar Eclipse plug-in architecture, (if it's not familiar to you, see the references section). Therefore, you'll need to create a plug-in to be your main program. Eclipse's Plug-in Development Environment (PDE) provides a number of wizards and editors that take some of the drudgery out of the process. PDE is included with the Eclipse SDK download so that is the package you should be using. Here are the steps you should follow to get started.First, bring up Eclipse and select File > New > Project, then expand Plug-in Development and double-click Plug-in Project to bring up the Plug-in Project wizard. On the subsequent pages, enter a Project name such as org.eclipse.ui.tutorials.rcp.part1, indicate you want a Java project, select the version of Eclipse you're targeting (at least 3.1), and enable the option to Create an OSGi bundle manifest. Then click Next >.Beginning in Eclipse 3.1 you will get best results by using the OSGi bundle manifest. In contrast to previous versions, this is now the default.In the next page of the Wizard you can change the Plug-in ID and other parameters. Of particular importance is the question, "Would you like to create a rich client application?". Select Yes. The generated plug-in class is optional but for this example just leave all the other options at their default values. Click Next > to continue.If you get a dialog asking if Eclipse can switch to the Plug-in Development Perspective click Remember my decision and select Yes (this is optional).Starting with Eclipse 3.1, several templates have been provided to make creating an RCP application a breeze. We'll use the simplest one available and see how it works. Make sure the option to Create a plug-in using one of the templates is enabled, then select the Hello RCP template. This isRCP's equivalent of "Hello, world". Click Finish to accept all the defaults and generate the project (see Figure 1). Eclipse will open the Plug-in Manifest Editor. The Plug-in Manifest editor puts a friendly face on the various configuration files that control your RCP application.Figure 1. The Hello World RCP project was created by a PDE wizard.Taking it for a spinTrying out RCP applications used to be somewhat tedious. You had to create a custom launch configuration, enter the right application name, and tweak the plug-ins that were included. Thankfully the PDE keeps track of all this now. All you have to do is click on the Launch an Eclipse Application button in the Plug-in Manifest editor's Overview page. You should see a bare-bones Workbench start up (see Figure 2).Figure 2. By using thetemplates you can be up andrunning anRCPapplication inminutes.Making it aproductIn Eclipse terms a product is everything that goes with your application, including all the other plug-ins it depends on, a command to run the application (called the native launcher), and any branding (icons, etc.) that make your application distinctive. Although as we've just seen you can run a RCP application without defining a product, having one makes it a whole lot easier to run the application outside of Eclipse. This is one of the major innovations that Eclipse 3.1 brought to RCP development.Some of the more complicated RCP templates already come with a product defined, but the Hello RCP template does not so we'll have to make one.In order to create a product, the easiest way is to add a product configuration file to the project. Right click on the plug-in project and select New > Product Configuration. Then enter a file name for this new configuration file, such as part1.product. Leave the other options at their default values. Then click Finish. The Product Configuration editor will open. This editor lets you control exactly what makes up your product including all its plug-ins and branding elements.In the Overview page, select the New... button to create a new product extension. Type in or browse to the defining plug-in(org.eclipse.ui.tutorials.rcp.part1). Enter a Product ID such as product, and for the Product Application selectorg.eclipse.ui.tutorials.rcp.part1.application. Click Finish to define the product. Back in the Overview page, type in a new Product Name, for example RCP Tutorial 1.In Eclipse 3.1.0 if you create the product before filling inthe Product Name you may see an error appear in the Problems view. The error will go away when you Synchronize (see below). This is a known bug that is fixed in newer versions. Always use the latest available maintenance release for the version of Eclipse you're targeting!Now select the Configuration tab and click Add.... Select the plug-in you just created (org.eclipse.ui.tutorials.rcp.part1) and then click on Add Required Plug-ins. Then go back to the Overview page and press Ctrl+S or File > Save to save your work.If your application needs to reference plug-ins that cannot be determined until run time (for example the tomcat plug-in), then add them manually in the Configuration tab.At this point you should test out the product to make sure it runs correctly. In the Testing section of the Overview page, click on Synchronize then click on Launch the product. If all goes well, the application should start up just like before.Plug-ins vs. featuresOn the Overview page you may have noticed an option that says the product configuration is based on either plug-ins or features. The simplest kind of configuration is one based on plug-ins, so that's what this tutorial uses. If your product needs automatic update or Java Web Start support, then eventually you should convert it to use features. But take my advice and get it working without them first.Running it outside of EclipseThe whole point of all this is to be able to deploy and run stand-alone applications without the user having to know anything about the Java and Eclipse code being used under the covers. For a real application you may want to provide a self-contained executable generated by an install program like InstallShield or NSIS. That's really beyond the scope of this article though, so we'll do something simpler.The Eclipse plug-in loader expects things to be in a certain layout so we'll need to create a simplified version of the Eclipse install directory. This directory has to contain the native launcher program, config files,and all the plug-ins required by the product. Thankfully, we've given the PDE enough information that it can put all this together for us now.In the Exporting section of the Product Configuration editor, click the link to Use the Eclipse Product export wizard. Set the root directory to something like RcpTutorial1. Then select the option to deploy into a Directory, and enter a directory path to a temporary (scratch) area such as C:\Deploy. Check the option to Include source code if you're building an open source project. Press Finish to build and export the program.The compiler options for source and class compatibility in the Eclipse Product export wizard will override any options you have specified on your project or global preferences. As part of the Export process, the plug-in is code is recompiled by an Ant script using these options.The application is now ready to run outside Eclipse. When you're done you should have a structure that looks like this in your deployment directory:RcpTutorial1| .eclipseproduct| eclipse.exe| startup.jar+--- configuration| config.ini+--- pluginsmands_3.1.0.jarorg.eclipse.core.expressions_3.1.0.jarorg.eclipse.core.runtime_3.1.2.jarorg.eclipse.help_3.1.0.jarorg.eclipse.jface_3.1.1.jarorg.eclipse.osgi_3.1.2.jarorg.eclipse.swt.win32.win32.x86_3.1.2.jarorg.eclipse.swt_3.1.0.jarorg.eclipse.ui.tutorials.rcp.part1_1.0.0.jarorg.eclipse.ui.workbench_3.1.2.jarorg.eclipse.ui_3.1.2.jarNote that all the plug-ins are deployed as jar files. This is the recommended format starting in Eclipse 3.1. Among other things this saves disk space in the deployed application.Previous versions of this tutorial recommended using a batch file or shell script to invoke your RCP program. It turns out this is a bad idea because you will not be able to fully brand your application later on. For example, you won't be able to add a splash screen. Besides, theexport wizard does not support the batch file approach so just stick with the native launcher.Give it a try! Execute the native launcher (eclipse or eclipse.exe by default) outside Eclipse and watch the application come up. The name of the launcher is controlled by branding options in the product configuration.TroubleshootingError: Launching failed because the org.eclipse.osgi plug-in is not included...You can get this error when testing the product if you've forgotten to list the plug-ins that make up the product. In the Product Configuration editor, select the Configuration tab, and add all your plug-ins plus all the ones they require as instructed above.Compatibility and migrationIf you are migrating a plug-in from version 2.1 to version 3.1 there are number of issues covered in the on-line documentation that you need to be aware of. If you're making the smaller step from 3.0 to 3.1, the number of differences is much smaller. See the References section for more information.One word of advice: be careful not to duplicate any information in both plug-in.xml and MANIFEST.MF. Typically this would not occur unless you are converting an older plug-in that did not use MANIFEST.MF into one that does, and even then only if you are editing the files by hand instead of going through the PDE.ConclusionIn part 1 of this tutorial, we looked at what is necessary to create a bare-bones Rich Client application. The next part will delve into the classes created by the wizards such as the WorkbenchAdvisor class. All the sample code for this part may be found in the accompanying zip file.ReferencesRCP Tutorial Part 2RCP Tutorial Part 3Eclipse Rich Client PlatformRCP Browser example (project org.eclipse.ui.examples.rcp.browser)PDE Does Plug-insHow to Internationalize your Eclipse Plug-inNotes on the Eclipse Plug-in ArchitecturePlug-in Migration Guide: Migrating to 3.1 from 3.0Plug-in Migration Guide: Migrating to 3.0 from 2.1译文:Rich Client教程第一部分The Rich Client Platform (RCP)是一种创建Java应用程序的令人兴奋的新方法,可以和任何平台下的自带应用程序进行竞争。
外文文献—计算机网络
英文原文:Computer networkA computer network, often simply referred to as a network, is a collection of computers and devices interconnected by communications channels that facilitate communications among users and allows users to share resources. Networks may be classified according to a wide variety of characteristics. A computer network allows sharing of resources and information among interconnected devices.History :Early networks of communicating computers included the military radar system Semi-Automatic Ground Environment (SAGE) and its relative the commercial airline reservation system Semi-Automatic Business Research Environment (SABRE),started in the late 1950s.[1][2]When Russia launched His SPUTNIK Satellite in Space In 1957.The American Started Agency Names ADV ANCE RESEARCH PROJECT AGENCY (ARPA) & launched THis 1st Satellite Within 18 Month After Establishment.Then Sharing Of TheInformation InAnother Computer They Use ARPANET.And This All Responsibility On America's Dr.LIED LIEDER.Then in 1969,ARPANET Comes in INDIA And INDIAN Switched This Name To NETWORK. In the 1960s, the Advanced Research Projects Agency (ARPA) started funding the design of the Advanced Research Projects Agency Network (ARPANET) for the United States Department of Defense. Development of the network began in 1969, based on designs developed during the1960s.[3] The ARPANET evolved into the modern Internet.Purpose :Computer networks can be used for a variety of purposes: Facilitating communications. Using a network, people can communicate efficiently and easily via email, instant messaging, chat rooms, telephone, video telephone calls, and video conferencing.Sharing hardware.:In a networked environment, each computer on a network may access and use hardware resources on the network, such as printing a document on a shared network printer.Sharing files, data, and information. In a network environment, authorized user may access data and information stored on other computers on the network. The capability of providing access to data and information on shared storage devices is an important feature of many networks.Sharing software.:Users connected to a network may run application programs on remote computers.information preservationSecurityNetwork classification The following list presents categories used for classifying networks.Connection method :Computer networks can be classified according to thehardware and software technology that is used to interconnect the individual devices in the network, such as optical fiber, Ethernet, wireless LAN, HomePNA, power line communication or G.hn.Ethernet as it is defined by IEEE 802 utilizes various standards and mediums that enable communication between devices. Frequently deployed devices include hubs, switches, bridges, or routers. Wireless LAN technology is designed to connect devices without wiring. These devices use radio waves or infrared signals as a transmission medium. ITU-T G.hn technology uses existing home wiring (coaxial cable, phone lines and power lines) to create a high-speed (up to 1 Gigabit/s) local area network.Wired technologies :Twisted pair wire is the most widely used medium for telecommunication.Twisted-pair cabling consist of copper wires that are twisted into pairs. Ordinary telephone wires consist of two insulated copper wires twisted into pairs. Computer networking cabling consist of 4 pairs of copper cabling that can be utilized for both voice and data transmission. The use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. The transmission speed ranges from 2 million bits per second to 100 million bits per second. Twisted pair cabling comes in two forms which are Unshielded Twisted Pair (UTP) and Shielded twisted-pair (STP) which are rated in categories which are manufactured in different increments for various scenarios.Coaxial cable is widely used for cable television systems, office buildings, and other work-sites for local area networks. The cables consist of copper or aluminum wire wrapped with insulating layer typically of a flexible material with a high dielectric constant, all of which are surrounded by a conductive layer. The layers of insulation help minimize interference and distortion. Transmissionspeed range from 200 million to more than 500 million bits per second.Optical fiber cable consists of one or more filaments of glass fiber wrapped in protective layers. It transmits light which can travel over extended distances.Fiber-optic cables are not affected by electromagnetic radiation. Transmission speedmay reach trillions of bits per second. The transmission speed of fiber optics is hundreds of times faster than for coaxial cables and thousands of times faster than atwisted-pair wire.[citation needed]Wireless technologies :Terrestrial microwave – Terrestrial microwaves use Earth-based transmitter and receiver. The equipment looks similar to satellite dishes. Terrestrial microwaves use low-gigahertz range, which limits all communications to line-of-sight. Path between relay stations spaced approx, 30 miles apart. Microwave antennas are usually placed on top of buildings, towers, hills, and mountain peaks.Communications satellites –The satellites use microwave radio as their telecommunications medium which are not deflected by the Earth's atmosphere. The satellites are stationed in space, typically 22,000 miles (for geosynchronous satellites) above the equator. These Earth-orbiting systems are capable of receiving and relayingvoice, data, and TV signals.Cellular and PCS systems – Use several radio communications technologies. The systems are divided to different geographic areas. Each area has a low-power transmitter or radio relay antenna device to relay calls from one area to the next area.Wireless LANs –Wireless local area network use a high-frequency radio technology similar to digital cellular and a low-frequency radio technology. Wireless LANs use spread spectrum technology to enable communication between multiple devices in a limited area. An example of open-standards wireless radio-wave technology is IEEE.Infrared communication , which can transmit signals between devices within small distances not more than 10 meters peer to peer or ( face to face ) without any body in the line of transmitting.Scale:Networks are often classified as local area network (LAN), wide area network (WAN), metropolitan area network (MAN), personal area network (PAN), virtual private network (VPN), campus area network (CAN), storage area network (SAN), and others, depending on their scale, scope and purpose, e.g., controller area network (CAN) usage, trust level, and access right often differ between these types of networks. LANs tend to be designed for internal use by an organization's internal systems and employees in individual physical locations, such as a building, while WANs may connect physically separate parts of an organization and may include connections to third parties.Functional relationship (network architecture) :Computer networks may be classified according to the functional relationships which exist amongthe elements of the network,e.g., active networking, client–server, Wireless ad hoc network andpeer-to-peer (workgroup) architecture.Network topology :Main article: Network topology Computer networks may be classified according to the network topology upon which the network is based, such as bus network, star network, ring network, mesh network.Network topology is the coordination by which devices in the network are arranged in their logical relations to one another, independent of physical arrangement. Even if networked computers are physically placed in a linear arrangement and are connected to a hub, the network has a star topology, rather than a bus topology. In this regard the visual and operational characteristics of a network are distinct. Networks may be classified based on the method of data used to convey the data, these include digital and analog networks.Types of networks based on physical scopeCommon types of computer networks may be identified by their scale.Local area network:A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as home, school, computer laboratory, office building, or closely positioned group of buildings. Each computer or device on the network is a node. Current wired LANs are most likely to be based on Ethernettechnology, although new standards like ITU-T G.hn also provide a way to create a wired LAN using existing home wires (coaxial cables, phone lines and power lines).[4]Typical library network, in a branching tree topology and controlled access to resources All interconnected devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbit/s Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand IP. It would be more correct to call them access routers, where the router at the top is a distribution router thatconnects to the Internet and academic networks' customer access routers.The defining characteristics of LANs, in contrast to WANs (Wide Area Networks), include their higher data transfer rates, smaller geographic range, and no need for leased telecommunication lines. Current Ethernet or other IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 40 and 100 Gbit/s.[5]Personal area network :A personal area network (PAN) is a computer network used for communication among computer and different information technological devices close to one person. Some examples of devices that are used in a PAN are personal computers, printers, fax machines, telephones, PDAs, scanners, and even video game consoles. A PAN may include wired and wireless devices. The reach of a PAN typically extends to 10 meters.[6] A wired PAN is usually constructed with USB and Firewire connections while technologies such as Bluetooth and infrared communication typically form a wireless PAN.Home area network :A home area network (HAN) is a residential LAN which is used for communication between digital devices typically deployed in the home, usually a small number of personal computers and accessories, such as printers and mobile computing devices. An important function is the sharing of Internet access, often a broadband service through a CATV or Digital Subscriber Line (DSL) provider. It can also be referred to as an office area network (OAN).Wide area network :A wide area network (WAN) is a computer network that covers a large geographic area such as a city, country, or spans even intercontinental distances, using a communications channel that combines many types of media such as telephone lines, cables, and air waves. A WAN often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.Campus network :A campus network is a computer network made up of an interconnection of local area networks (LAN's) within a limited geographical area. The networkingequipments (switches, routers) and transmission media (optical fiber, copper plant, Cat5 cabling are almost entirely owned (by the campus tenant / owner: an enterprise, university, government etc.).In the case of a university campus-based campus network, the network is likely to link a variety of campus buildings including; academic departments, the university library and student residence halls.Metropolitan area network:A Metropolitan area network is a large computer network that usually spans a city or alarge campus. Sample EPN made of Frame relay WAN connections and dialup remote access.Enterprise private network :An enterprise private network is a network build by an enterprise to interconnect various company sites, e.g., production sites, head offices, remote offices, shops, in order to share computer resources.Virtual private network :A virtual private network (VPN) is a computer network in which some of the links between nodes are carried by open connections or virtual circuits in some larger network (e.g., the Internet) instead of by physical wires. The data link layer protocols of the virtual network are said to be tunneled through thelarger network when this is the case. One common application is secure communications through the public Internet, but a VPN need not have explicit security features, such as authentication or content encryption. VPNs, for example, can be used to separate the traffic of different user communities over an underlying network with strong security features.VPN may have best-effort performance, or may have a defined service level agreement (SLA) between the VPN customer and the VPN service provider. Generally, a VPN has a topology more complex than point-to-point.Internetwork :An internetwork is the connection of two or more private computer networks via a common routing technology (OSI Layer 3) using routers. The Internet is an aggregation of many internetworks, hence its name was shortened to Internet.Backbone network :A Backbone network (BBN) A backbone network or network backbone is part of a computer network infrastructure that interconnects various pieces of network, providing a path for the exchange of information between different LANs or subnetworks.[1][2] A backbone can tie together diverse networks in the same building, in different buildings in a campus environment, or over wide areas. Normally, the backbone's capacity is greater than the networks connected to it.A large corporation that has many locations may have a backbone network that ties all of the locations together, for example, if a server cluster needs to be accessed by different departments of a company that are located at different geographical locations.The pieces of the network connections (for example: ethernet, wireless) that bring these departments together is often mentioned as network backbone. Networkcongestion is often taken into consideration while designing backbones. Backbone networks should not be confused with the Internet backbone.Global area network:A global area network (GAN) is a network used for supporting mobile communications across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is handing off the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial wireless LANs.[7]Internet :The Internet is a global system of interconnected governmental, academic, corporate, public, and private computer networks. It is based on the networking technologies of the Internet Protocol Suite. It is the successor of the Advanced Research ProjectsAgency Network (ARPANET) developed by DARPA of the United States Department of Defense. The Internet is also the communications backbone underlying the World Wide Web (WWW).Intranets and extranets :Intranets and extranets are parts or extensions of a computer network, usually a local area network. An intranet is a set of networks, using the Internet Protocol and IP-based tools such as web browsers and file transfer applications, that is under the control of a single administrative entity. That administrative entity closes the intranet to all but specific, authorized users. Most commonly, an intranet is the internal network of an organization. A large intranet will typically have at least one web server to provide users with organizational information.An extranet is a network that is limited in scope to a single organization or entity and also has limited connections to the networks of one or more other usually, but not necessarily, trusted organizations or entities—a company's customers may be given access to some part of its intranet—while at the same time the customers may not be considered trusted from a security standpoint. Technically, an extranet may also be categorized as a CAN, MAN, WAN, or other type of network, although an extranet cannot consist of a single LAN; it must have at least one connection with an external network.Overlay network:An overlay network is a virtual computer network that is built on top of another network. Nodes in the overlay are connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network.中文译文:计算机网络计算机网络,通常简单的被称作是一种网络,是一家集电脑和设备为一体的沟通渠道,便于用户之间的沟通交流和资源共享。
计算机网络中英文对照外文翻译文献
中英文资料外文翻译计算机网络计算机网络,通常简单的被称作是一种网络,是一家集电脑和设备为一体的沟通渠道,便于用户之间的沟通交流和资源共享。
网络可以根据其多种特点来分类。
计算机网络允许资源和信息在互联设备中共享。
一.历史早期的计算机网络通信始于20世纪50年代末,包括军事雷达系统、半自动地面防空系统及其相关的商业航空订票系统、半自动商业研究环境。
1957年俄罗斯向太空发射人造卫星。
十八个月后,美国开始设立高级研究计划局(ARPA)并第一次发射人造卫星。
然后用阿帕网上的另外一台计算机分享了这个信息。
这一切的负责者是美国博士莱德里尔克。
阿帕网于来于自印度,1969年印度将其名字改为因特网。
上世纪60年代,高级研究计划局(ARPA)开始为美国国防部资助并设计高级研究计划局网(阿帕网)。
因特网的发展始于1969年,20世纪60年代起开始在此基础上设计开发,由此,阿帕网演变成现代互联网。
二.目的计算机网络可以被用于各种用途:为通信提供便利:使用网络,人们很容易通过电子邮件、即时信息、聊天室、电话、视频电话和视频会议来进行沟通和交流。
共享硬件:在网络环境下,每台计算机可以获取和使用网络硬件资源,例如打印一份文件可以通过网络打印机。
共享文件:数据和信息: 在网络环境中,授权用户可以访问存储在其他计算机上的网络数据和信息。
提供进入数据和信息共享存储设备的能力是许多网络的一个重要特征。
共享软件:用户可以连接到远程计算机的网络应用程序。
信息保存。
安全保证。
三.网络分类下面的列表显示用于网络分类:3.1连接方式计算机网络可以据硬件和软件技术分为用来连接个人设备的网络,如:光纤、局域网、无线局域网、家用网络设备、电缆通讯和G.hn(有线家庭网络标准)等等。
以太网的定义,它是由IEEE 802标准,并利用各种媒介,使设备之间进行通信的网络。
经常部署的设备包括网络集线器、交换机、网桥、路由器。
无线局域网技术是使用无线设备进行连接的。
计算机专业英文文献
What Is an Object?Objects are key to understanding object-oriented technology. You can look around you now and see many examples of real-world objects: your dog, your desk, your television set, your bicycle.Real-world objects share two characteristics: They all have state and behavior. For example, dogs have state (name, color, breed, hungry) and behavior (barking, fetching, wagging tail). Bicycles have state (current gear, current pedal cadence, two wheels, number of gears) and behavior (braking, accelerating, slowing down, changing gears).Software objects are modeled after real-world objects in that they too have state and behavior. A software object maintains its state in one or more variables.A variable is an item of data named by an identifier. A software object implements its behavior with methods. A method is a function (subroutine) associated with an object.Definition:An object is a software bundle of variables and related methods. You can represent real-world objects by using software objects. You might want to represent real-world dogs as software objects in an animation program or a real-world bicycle as a software object in the program that controls an electronic exercise bike. You can also use software objects to model abstract concepts. For example, an event is a common object used in window systems to represent the action of a user pressing a mouse button or a key on the keyboard. The following illustration is a common visual representation of a software object.A software object.Everything the software object knows (state) and can do (behavior) is expressed by the variables and the methods within that object. A software object that modelsyour real-world bicycle would have variables that indicate the bicycle's current state: Its speed is 18 mph, its pedal cadence is 90 rpm, and its current gear is 5th. These variables are formally known as instance variables because they contain the state for a particular bicycle object; in object-oriented terminology, a particular object is called an instance. The following figure illustrates a bicycle modeled as a software object.A bicycle modeled as a softwareobject.In addition to its variables, the software bicycle would also have methods to brake, change the pedal cadence, and change gears. (It would not have a method for changing its speed because the bike's speed is just a side effect of which gear it's in and how fast the rider is pedaling.) These methods are known formally as instance methods because they inspect or change the state of a particular bicycle instance.Object diagrams show that an object's variables make up the center, or nucleus, of the object. Methods surround and hide the object's nucleus from other objects in the program. Packaging an object's variables within the protective custody of its methods is called encapsulation. This conceptual picture of an object —a nucleus of variables packaged within a protective membrane of methods — is an ideal representation of an object and is the ideal that designers of object-oriented systems strive for. However, it's not the whole story.Often, for practical reasons, an object may expose some of its variables or hide some of its methods. In the Java programming language, an object can specify one of four access levels for each of its variables and methods. The access level determines which other objects and classes can access that variable or method. Refer to the Controlling Access to Members of a Class section for details.Encapsulating related variables and methods into a neat software bundle is a simple yet powerful idea that provides two primary benefits to software developers:Modularity:The source code for an object can be written and maintainedindependently of the source code for other objects. Also, an objectcan be easily passed around in the system. You can give your bicycleto someone else, and it will still work.Information-hiding: An object has a public interface that otherobjects can use to communicate with it. The object can maintain privateinformation and methods that can be changed at any time withoutaffecting other objects that depend on it. You don't need to understanda bike's gear mechanism to use it.What Is a Message?A single object alone generally is not very useful. Instead, an object usually appears as a component of a larger program or application that contains many other objects. Through the interaction of these objects, programmers achieve higher-order functionality and more complex behavior. Your bicycle hanging from a hook in the garage is just a bunch of metal and rubber; by itself, it is incapable of any activity; the bicycle is useful only when another object (you) interacts with it (by pedaling).Software objects interact and communicate with each other by sending messages to each other. When object A wants object B to perform one of B's methods, object A sends a message to object B (see the following figure).Objects interact by sending each other messages.Sometimes, the receiving object needs more information so that it knows exactly what to do; for example, when you want to change gears on your bicycle, you have to indicate which gear you want. This information is passed along with the message as parameters.Messages use parameters to pass alongextra information that the objectneeds —in this case, which gear thebicycle should be in.These three parts are enough information for the receiving object to perform the desired method. No other information or context is required.Messages provide two important benefits:An object's behavior is expressed through its methods, so (aside fromdirect variable access) message passing supports all possibleinteractions between objects.Objects don't need to be in the same process or even on the same machineto send messages back and forth and receive messages from each other. What Is a Class?In the real world, you often have many objects of the same kind. For example, your bicycle is just one of many bicycles in the world. Using object-orientedterminology, we say that your bicycle object is an instanceof the class of objects known as bicycles. Bicycles have some state (current gear, current cadence, two wheels) and behavior (change gears, brake) in common. However, each bicycle's state is independent of and can be different from that of other bicycles.When building them, manufacturers take advantage of the fact that bicycles share characteristics, building many bicycles from the same blueprint. It would be very inefficient to produce a new blueprint for every bicycle manufactured.In object-oriented software, it's also possible to have many objects of the same kind that share characteristics: rectangles, employee records, video clips, and so on. Like bicycle manufacturers, you can take advantage of the fact that objects of the same kind are similar and you can create a blueprint for those objects.A software blueprint for objects is called a class (see the following figure).A visual representation of a class.Definition: A class is a blueprint that defines the variables and the methods common to all objects of a certain kind.The class for our bicycle example would declare the instance variables necessary to contain the current gear, the current cadence, and so on for each bicycle object. The class would also declare and provide implementations for the instance methods that allow the rider to change gears, brake, and change the pedaling cadence, as shown in the next figure.The bicycle class.After you've created the bicycle class, you can create any number of bicycleobjects from that class. When you create an instance of a class, the system allocates enough memory for the object and all its instance variables. Each instance gets its own copy of all the instance variables defined in the class, as the next figure shows.MyBike and YourBike are two different instances of the Bike class. Each instance has its own copy of the instance variables defined in the Bike class but has different values for these variables.In addition to instance variables, classes can define class variables. A class wariable contains information that is shared by all instances of the class. For example, suppose that all bicycles had the same number of gears. In this case, defining an instance variable to hold the number of gears is inefficient; each instance would have its own copy of the variable, but the value would be the same for every instance. In such situations, you can define a class variable that contains the number of gears (see the following figure); all instances share this variable. If one object changes the variable, it changes for all other objects of that type.YourBike, an instance of Bike, has access to the numberOfGears variable in the Bike class; however, the YourBike instance does not have a copy of this class variable.A class can also declare class methods You can invoke a class method directly from the class, whereas you must invoke instance methods on a particular instance.The Understanding Instance and Class Members section discusses instance variables and methods and class variables and methods in detail.Objects provide the benefit of modularity and information-hiding. Classes provide the benefit of reusability. Bicycle manufacturers use the same blueprint over and over again to build lots of bicycles. Software programmers use the same class, and thus the same code, over and over again to create many objects.Objects versus ClassesYou've probably noticed that the illustrations of objects and classes look very similar. And indeed, the difference between classes and objects is often the source of some confusion. In the real world, it's obvious that classes are not themselves the objects they describe; that is, a blueprint of a bicycle is not a bicycle. However, it's a little more difficult to differentiate classes and objects in software. This is partially because software objects are merelyelectronic models of real-world objects or abstract concepts in the first place. But it's also because the term object is sometimes used to refer to both classes and instances.In illustrations such as the top part of the preceding figure, the class is not shaded because it represents a blueprint of an object rather than the object itself. In comparison, an object is shaded, indicating that the object exists and that you can use it.What Is Inheritance?Generally speaking, objects are defined in terms of classes. You know a lot about an object by knowing its class. Even if you don't know what a penny-farthing is, if I told you it was a bicycle, you would know that it had two wheels, handlebars, and pedals.Object-oriented systems take this a step further and allow classes to be defined in terms of other classes. For example, mountain bikes, road bikes, and tandems are all types of bicycles. In object-oriented terminology, mountain bikes, road bikes, and tandems are all subclasses of the bicycle class. Similarly, the bicycle class is the supclasses of mountain bikes, road bikes, and tandems. This relationship is shown in the following figure.The hierarchy of bicycle classes.Each subclass inherits state (in the form of variable declarations) from the superclass. Mountain bikes, road bikes, and tandems share some states: cadence, speed, and the like. Also, each subclass inherits methods from the superclass. Mountain bikes, road bikes, and tandems share some behaviors — braking and changing pedaling speed, for example.However, subclasses are not limited to the states and behaviors provided to them by their superclass. Subclasses can add variables and methods to the ones they inherit from the superclass. Tandem bicycles have two seats and two sets of handlebars; some mountain bikes have an additional chain ring, giving them a lower gear ratio.Subclasses can also override inherited methods and provide specialized implementations for those methods. For example, if you had a mountain bike with an additional chain ring, you could override the "change gears" method so that the rider could shift into those lower gears.You are not limited to just one layer of inheritance. The inheritance tree, or class hierardry, can be as deep as needed. Methods and variables are inherited down through the levels. In general, the farther down in the hierarchy a class appears, the more specialized its behavior.Note:Class hierarchies should reflect what the classes are, not how they're implemented. When implementing a tricycle class, it might be convenient to make it a subclass of the bicycle class —after all, both tricycles and bicycles have a current speed and cadence. However, because a tricycle is not a bicycle, it's unwise to publicly tie the two classes together. It could confuse users, make the tricycle class have methods (for example, to change gears) that it doesn't need, and make updating or improving the tricycle class difficult.The Object class is at the top of class hierarchy, and each class is its descendant (directly or indirectly). A variable of type Object can hold a reference to any object, such as an instance of a class or an array. Object provides behaviors that are shared by all objects running in the Java Virtual Machine. For example, all classes inherit Object's toString method, which returns a string representation of the object. The Managing Inheritance section covers the Object class in detail.Inheritance offers the following benefits:Subclasses provide specialized behaviors from the basis of commonelements provided by the superclass. Through the use of inheritance,programmers can reuse the code in the superclass many times.Programmers can implement superclasses called abstract classes thatdefine common behaviors. The abstract superclass defines and maypartially implement the behavior, but much of the class is undefinedand unimplemented. Other programmers fill in the details withspecialized subclasses.What Is an Interface?In general, an interface is a device or a system that unrelated entities use to interact. According to this definition, a remote control is an interface between you and a television set, the English language is an interface between two people, and the protocol of behavior enforced in the military is the interface between individuals of different ranks.Within the Java programming language, an interface is a type, just as a class is a type. Like a class, an interface defines methods. Unlike a class, an interface never implements methods; instead, classes that implement the interface implement the methods defined by the interface. A class can implement multiple interfaces.The bicycle class and its class hierarchy define what a bicycle can and cannot do in terms of its "bicycleness." But bicycles interact with the world on other terms. For example, a bicycle in a store could be managed by an inventory program. An inventory program doesn't care what class of items it manages as long as each item provides certain information, such as price and tracking number. Instead of forcing class relationships on otherwise unrelated items, the inventory program sets up a communication protocol. This protocol comes in the form of a set of method definitions contained within an interface. The inventory interface would define, but not implement, methods that set and get the retail price, assign a tracking number, and so on.计算机专业中英文文献翻译To work in the inventory program, the bicycle class must agree to this protocol by implementing the interface. When a class implements an interface, the class agrees to implement all the methods defined in the interface. Thus, the bicycle class would provide the implementations for the methods that set and get retail price, assign a tracking number, and so on.You use an interface to define a protocol of behavior that can be implemented by any class anywhere in the class hierarchy. Interfaces are useful for the following:Capturing similarities among unrelated classes without artificiallyforcing a class relationshipDeclaring methods that one or more classes are expected to implementRevealing an object's programming interface without revealing itsclassModeling multiple inheritance, a feature of some object-orientedlanguages that allows a class to have more than one superclass。
计算机网络类嵌入式系统的网络服务器中英文翻译、外文翻译、外文文献翻译
Web Server for Embedded SystemsAfter the “everybody-in-the-Internet-wave” now obviously follows the“everything-in-the-Internet-wave”.The most coffee, vending and washingmachines are still not available about the worldwide net. However the embeddedInternet integration for remote maintenance and diagnostic as well as the so-calledM2M communication is growing with a considerable speed rate.Just the remote maintenance and diagnostic of components and systems by Webbrowsers via the Internet, or a local Intranet has a very high weight for manydevelopment projects. In numerous development departments people work oncompletely Web based configurations and services for embedded systems. Theremaining days of the classic user interface made by a small LC-display with frontpanel and a few function keys are over. Through future evolutions in the field ofthe mobile Internet, Bluetooth-based PAN s (Personal Area Network's) andthe rapidly growing M2M communication (M2M=Machine-to-Machine)a further innovating advance is to be expected.The central function unit to get access on an embedded system via Web browser isthe Web server. Such Web servers bring the desired HTML pages (HTML=HyperText Markup Language) and pictures over the worldwide Internetor a local network to the Web browser. This happens HTTP-based (HyperText Transfer Protocol). A TCP/IP protocol stack –that means it is based onsophisticated and established standards–manages the entire communication.Web server (HTTP server) and browser (HTTP client) build TCP/IP-applications. HTTP achieved a phenomenal distribution in the last years.Meanwhile millions of user around the world surf HTTP-based in the WorldWide Web. Today almost every personal computer offers the necessaryassistance for this protocol. This status is valid more and more for embeddedsystems also. The HTTP spreads up with a fast rate too.1. TCP/IP-based HTTP as Communication PlatformHTTP is a simple protocol that is based on a TCP/IP protocol stack (picture 1.A).HTTP uses TCP (Transmission Control Protocol). TCP is a relative complex andhigh-quality protocol to transfer data by the subordinate IP protocol. TCP itselfalways guarantees a safeguarded connection between two communication partnersbased on an extensive three-way-handshake procedure. As aresult the data transfer via HTTP is always protected. Due tothe extensive TCP protocol mechanisms HTTP offers only a low-gradeperformance.Figure 1: TCP/IP stack and HTTP programming modelHTTP is based on a simple client/server-concept. HTTP server and clientcommunicate via a TCP connection. As default TCP port value the port number80 will be used. The server works completely passive. He waits for a request(order) of a client. This request normally refers to the transmition of specificHTML documents. This HTML documents possibly have to be generateddynamically by CGI. As result of the requests, the server will answer with aresponse that usually contains the desired HTML documents among others(picture 1.B).GET /test.htm HTTP/1.1Accept]: image/gif, image/jpeg, */*User selling agent: Mozilla/4.0Host: 192.168.0.1Listing 1.A: HTTP GET-requestHTTP/1.1 200 OKDate: Mon, 06 Dec 1999 20:55:12 GMTServer: Apache/1.3.6 (Linux)Content-length: 82Content-type: text/html<html><head><title>Test-Seite</title></head><body>Test-SeiteThe DIL/NetPCs DNP/1110 – Using the Embedded Linux</body></html>Listing 1.B: HTTP response as result of the GET-request from listing 1.AHTTP requests normally consist of several text lines, which are transmitted to theserver by TCP. The listing 1.A shows an example. The first line characterizes therequest type (GET), the requested object (/test1.htm) and the used HTTP version(HTTP/1.1). In the second request line the client tells the server, which kind offiles it is able to evaluate. The third line includes information about theclient- software. The fourth and last line of the request from listing 1.A is used toinform the server about the IP address of the client. In according to the type ofrequest and the used client software there could follow some further lines. Asan end of the request a blank line is expected.The HTTP responses as request answer mostly consist of two parts. At first thereis a header of individual lines of text. Then follows a content object (optional).This content object maybe consists of some text lines –in case of a HTML file– ora binary file when a GIF or JPEG image should be transferred. The first line of theheader is especially important. It works as status or error message. If anerror occurs, only the header or a part of it will be transmitted as answer.2. Functional principle of a Web ServerSimplified a Web server can be imagined like a special kind of a file server.Picture 2.A shows an overview. The Web server receives a HTTP GET-requestfrom the Web browser. By this request, a specific file is required as answer (seestep 1 into picture 2.A). After that, the Web server tries to get access on the filesystem of the requested computer. Then it attempts to find the desired file (step 2).After the successful search the Web server read the entire file(step 3) and transmit it as an answer (HTTP response comprising of headerand content object) to the Web browser (step 4). If the Web server cannot findthe appropriate file in the file system, an error message (HTTP response whichonly contains the header) is simply be send as response to the client.Figure 2: Functional principle from Web server and browserThe web content is build by individual files. The base is build by static files withHTML pages. Within such HTML files there are references to further filesembedded –these files are typically pictures in GIF or JPEG format. However,also references to other objects, for example Java-Applets, are possible. After aWeb browser has received a HTML file of a Web server, this file will beevaluated and then searched for external references. Now the steps 1 to 4 frompicture 2.A will run again for every external reference in order to request therespective file from the corresponding Web server. Please note, that such areference consists of the name or IP address of a Web server (e.g. ""),as well as the name of the desired file (e.g. "picture1.gif"). So virtually everyreference can refer to another Web server. In other words, a HTML file could belocated on the server "ssv-embedded.de" but the required picture -which isexternal referenced by this HTML file- is located on the Web server"". Finally this (worldwide) networking of separate objects is thecause for the name World Wide Web (WWW). All files, which are required by aWeb server, are requested from a browser like the procedure shown on picture2.A. Normally these files are stored in the file system of the server. TheWebmaster has to update these files from time to time.A further elementary functionality of a Web server is the CommonGateway Interface(CGI) -we have mentioned before. Originally this technologyis made only for simple forms, which are embedded into HTML pages. The data,resulting from the padding of a form, will be transmitted to a Web server viaHTTP-GET or POST-request (see step 1 into picture 2.B). In such a GET- orPOST-request the name of the CGI program, which is needed for theevaluation of a form, is fundamentally included. This program has to be on theWeb server. Normally the directory "/cgi-bin" is used as storage location.As result of the GET- or POST-request the Web server starts the CGI programlocated in the subdirectory "/cgi-bin" and delivers the received data in form ofparameters (step 2). The outputs of a CGI program are guided to the Web server(step 3). Then the Web server sends them all as responses to the Web browser(step 4).3. Dynamic generated HTML PagesIn contradiction to a company Web site server, which informs people about theproduct program and services by static pages and pictures, an embeddedWeb server has to supply dynamically generated contents. The embedded Webserver will generate the dynamic pages in the moment of the first access by abrowser. How else could we check the actual temperature of a system viaInternet? Static HTML files are not interesting for an embedded Web server.The most information about the firmware version and service instructions arestored in HTML format. All other tasks are normally made via dynamic generatedHTML.There are two different technologies to generate a specific HTML page in themoment of the request: First the so-called server-side-scripting and secondthe CGI programming. At the server-side-scripting, script code is embeddedinto a HTML page. If required, this code will be carried out on the server (server-sided).For this, there are numerous script languages available. All these languages areusable inside a HTML-page. In the Linux community PHP is used mostly. Thefavourite of Microsoft is VBScript. It is also possible to insert Java directly intoHTML pages. Sun has named this technology JSP(Java Server Pages).The HTML page with the script code is statically stored in the file system of theWeb server. Before this server file is delivered to the client, a special programreplaces the entire script code with dynamic generated standard HTML. The Webbrowser will not see anything from the script language.Figure 3: Single steps of the Server-Side-ScriptingPicture 3 shows the single steps of the server-side-scripting. In step 1 the Webbrowser requests a specific HTML file via HTTP GET-request. The Web serverrecognizes the specific extension of the desired file (for example *.ASP or *.PHPinstead of *.HTM and/or *.HTML) and starts a so-called scripting engine(see step 2). This program gets the desired HTML file including the script codefrom the file system (step 3), carry out the script code and make a newHTML file without script code (step 4). The included script code will be replacedby dynamic generated HTML. This new HTML file will be read by the Webserver (step 5) and send to the Web browser (step 6). If a server-sided scripting issupposed to be used by an embedded Web server, so you haveto consider the necessary additional resources. A simple example: In orderto carry out the embedded PHP code into a HTML page, additional programmodules are necessary for the server. A scripting engine together with theembedded Web server has to be stored in the Flash memory chip of an embeddedsystem. Through that, during run time more main memory is required.4. Web Server running under LinuxOnce spoken about Web servers in connection with Linux most peopleimmediately think of Apache. After investigations of the Netcraft Surveythis program is the mostly used Web server worldwide. Apache is anenhancement of the legendary NCSA server. The name Apache itself hasnothing to do with Red Indians. It is a construct from "A Patchy Server" becausethe first version was put together from different code and patch files.Moreover there are numerous other Web servers - even for Linux. Most of this arestanding under the GPL (like Apache) and can be used license free. Avery extensive overview you can find at "/". EveryWeb server has his advantages and disadvantages. Some are developed forspecific functions and have very special qualities. Other distinguishes at bestthrough their reaction rate at many simultaneous requests, as wellas the variety of theirconfiguration settings. Others are designed to need minimal resources and offer very small setting possibilities, as well as only one connection to a client.The most important thing by an embedded Web server is the actual resource requirements. Sometimes embedded systems offer only minimal resources, which mostly has to be shared with Linux. Meanwhile there are numerous high- performance 32-bit-386/486-microcontroller or (Strong)ARM-based embedded systems that own just 8 Mbytes RAM and 2 Mbytes Flash-ROM (picture 4). Outgoing from this ROM (Read-only-Memory, i.e. Flash memory chips) a complete Linux, based on a 2.2- or 2.4-Kernel with TCP/IP protocol stack and Web server, will be booted. HTML pages and programs are also stored in the ROM to generate the dynamic Web pages. The space requirements of an embedded system are similar to a little bigger stamp. There it is quite understandable that there is no place for a powerful Web server like Apache.Figure 4: Embedded Web Server Module with StrongARM and LinuxBut also the capability of an Apache is not needed to visualize the counter of a photocopier or the status of a percolator by Web servers and browsers. In most cases a single Web server is quite enough. Two of such representatives are boa () and thttpd (). At first, both Web servers are used in connection with embedded systems running under Linux. The configuration settings for boa and thttpd are poor, but quite enough. By the way, the source code is available to the customer. The practicable binary files for these servers are always smaller than 80 Kbytes and can be integrated in the most embedded systems without problems. For the dynamic generation of HTML pages both servers only offer CGI (Common Gateway Interface) as enlargement. Further technologies, like server-side-includes (SSI) are not available.The great difference between an embedded Web server and Apache is, next to the limited configuration settings, the maximal possible number of simultaneous requests. High performance servers like Apache immediately make an own process for every incoming call request of a client. Inside of this process allfurther steps will then be executed. This requires a very good programming and a lot of free memory resources during run time. But, on the other hand many Web browsers can access such a Web server simultaneously. Embedded Web server like boa and thttpd work only with one single process. If two users need to get access onto a embedded Web server simultaneously, one of both have to wait a few fractions of a second. But in the environment of the embedded systems that is absolutely justifiable. In this case it is first of all a question of remote maintenance, remote configuration and similar tasks. There are not many simultaneous requests expected.The DIL/NetPCs DNP/1110 – Using the Embedded LinuxList of FiguresFigure 1: TCP/IP stack and HTTP programming modelFigure 2: Functional principle from Web server and browserFigure 3: Single steps of the Server-Side-ScriptingFigure 4: Embedded Web Server Module with StrongARM and LinuxListingsListing 1.A: HTTP GET-requestListing 1.B: HTTP response as result of the GET-request from listing 1.A ContactSSV Embedded SystemsHeisterbergallee 72D-30453 HannoverTel. +49-(0)511-40000-0Fax. +49-(0)511-40000-40Email: sales@ist1.deWeb: www.ssv-embedded.deDocument History (Sadnp05.Doc)Revision Date Name1.00 24.05.2002FirstVersion KDWThis document is meant only for the internal application. The contents ofthis document can change any time without announcement. There is takenover no guarantee for the accuracy of the statements. Copyright ©SSV EMBEDDED SYSTEMS 2002. All rights reserved.INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED 'ASIS' WITHOUT WARRANTY OF ANY KIND. The user assumes the entirerisk as to the accuracy and the use of this document. Some names withinthis document can be trademarks of their respective holders.北京工业大学毕业设计(译文)译文:嵌入式系统的网络服务器在“每个人都处在互联网的浪潮中”之后,现在很明显随之而来的是“每件事都处在互联网的浪潮中”。
计算机网络技术中英文对照外文翻译文献
中英文资料外文翻译网站建设技术1.介绍网络技术的发展,为今天全球性的信息交流与资在建立源共享和交往提供了更多的途径和可能。
足不出户便可以知晓天下大事,按几下键盘或点几下鼠标可以与远在千里之外的朋友交流,网上通信、网上浏览、网上交互、网上电子商务已成为现代人们生活的一部分。
Internet 时代, 造就了人们新的工作和生活方式,其互联性、开放性和共享信息的模式,打破了传统信息传播方式的重重壁垒,为人们带来了新的机遇。
随着计算机和信息时代的到来,人类社会前进的脚步在逐渐加快。
近几年网页设计发展,快得人目不暇接。
随着网页设计技术的发展,丰富多彩的网页成为网上一道亮丽的风景线。
要想设计美观实用的网页就应该深入掌握网站建设技术。
在建立网站时,我们分析了网站建立的目的、内容、功能、结构,应用了更多的网页设计技术。
2、网站的定义2.1 如何定义网站确定网站的任务和目标,是建设网站所面临的最重要的问题。
为什么人们会来到你的网站? 你有独特的服务吗? 人们第一次到你的网站是为了什么? 他们还会再来吗? 这些问题都是定义网站时必须考虑的问题。
要定义网站,首先,必须对整个网站有一个清晰认识,弄清到底要设计什么、主要的目的与任务、如何对任务进行组织与规划。
其次,保持网站的高品质。
在众多网站的激烈竞争中,高品质的产品是长期竞争的最大优势。
一个优秀的网站应具备:(1)用户访问网站的速度要快;(2)注意反馈与更新。
及时更新网站内容、及时反馈用户的要求;(3)首页设计要合理。
首页给访问者留下的第一印象很重要,设计务必精美,以求产生良好的视觉效果。
2.2 网站的内容和功能在网站的内容方面,就是要做到新、快、全三面。
网站内容的类型包括静态的、动态的、功能的和事物处理的。
确定网站的内容是根据网站的性质决定的,在设计政府网站、商业网站、科普性网站、公司介绍网站、教学交流网站等的内容和风格时各有不同。
我们建立的网站同这些类型的网站性质均不相同。
信息技术发展趋势研究论文中英文外文翻译文献
信息技术发展趋势研究论文中英文外文翻译文献本文旨在通过翻译介绍几篇关于信息技术发展趋势的外文文献,以帮助读者更全面、深入地了解该领域的研究进展。
以下是几篇相关文献的简要介绍:1. 文献标题: "Emerging Trends in Information Technology"- 作者: John Smith- 发表年份: 2019本文调查了信息技术领域的新兴趋势,包括人工智能、大数据、云计算和物联网等。
通过对相关案例的分析,研究人员得出了一些关于这些趋势的结论,并探讨了它们对企业和社会的潜在影响。
2. 文献标题: "Cybersecurity Challenges in the Digital Age"- 作者: Anna Johnson- 发表年份: 2020这篇文献探讨了数字时代中信息技术领域所面临的网络安全挑战。
通过分析日益复杂的网络威胁和攻击方式,研究人员提出了一些应对策略,并讨论了如何提高组织和个人的网络安全防护能力。
3. 文献标题: "The Impact of Artificial Intelligence on Job Market"- 作者: Sarah Thompson- 发表年份: 2018这篇文献研究了人工智能对就业市场的影响。
作者通过分析行业数据和相关研究,讨论了自动化和智能化技术对各个行业和职位的潜在影响,并提出了一些建议以适应未来就业市场的变化。
以上是对几篇外文文献的简要介绍,它们涵盖了信息技术发展趋势的不同方面。
读者可以根据需求进一步查阅这些文献,以获得更深入的了解和研究。
外文翻译---计算机网络和数据库
毕业设计(论文)文献翻译英文资料:Computer Networks and DatabaseworksSome reasons are causing centralized computer systems to give way to networks.The first one is that many organizations already have a substantial number of computers in operation ,often located far apart .Initially ,each of these computers may have worked in isolation from the other ones ,but at a certain time ,management may have decided to connect them to be able to correlate information about the entire organization .Generally speaking ,this goal is to make all programs ,data ,and other resources available to anyone on the network without regard to the physical location of the resource and the user .The second one is to provide high reliability by having alternative sources of supply .With a network ,the temporary loss of a single computer is much less serious ,because its users can often be accommodated elsewhere until the service is restored .Yet another reason of setting up a computer network is computer network can provide a powerful communication medium among widely separated people .Application of NetworksOne of the main areas of potential network sue is access to remote database .It may someday be easy for people sitting at their terminals at home to make reservations for airplanes trains , buses , boats , restaurants ,theaters ,hotels ,and so on ,at anywhere in the world with instant confirmation .Home banking ,automated newspaper and fully automated library also fall in this category .Computer aided education is another possible field for using network ,with many different courses being offered.Teleconferencing is a whole new form communication. With it widely separated people can conduct a meeting by typing messages at their terminals .Attendees may leave at will and find out what they missed when they come back .International contacts by human begin may be greatly enhanced by network based communication facilities .Network StructureBroadly speaking,there are two general types of designs for the communication subnet:(1)Point –to –point channels(2)Broadcast channelsIn the first one ,the network contains numerous cables or lesased telephone lines ,each one connecting a pair of nodes .If two nodes that do not share a cablewish to communicate ,they must do this indirectly via other nodes .When a message is sent from node to another via one or more inter mediate modes ,each intermediate node will receive the message and store it until the required output line is free so that it can transmit the message forward .The subnet using this principle is called a point –to –piont or store –and –forward subnet .When a point –to –point subnet is used ,the important problem is how to design the connected topology between the nodes .The second kind of communication architecture uses broadcasting.In this design there is a single communication channel shared by all nodes .The inherence in broadcast systems is that messages sent by any node are received by all other nodes .The ISO Reference ModelThe Reference Model of Open System Interconnection (OSI),as OSI calls it ,has seven layers .The major ones of the principles ,from which OSI applied to get the seven layers ,are as follows:(1)A layer should be created where a different level of abstraction is needed.(2)Each layer should perform a well defined function .(3)The function of each layer should be chosen with an eye toward defininginternationally standardized protocols.(4)The layer boundaries should be chosen to minimize the information flow acrossthe interfaces .(5)The number of layers should be large enough so that distinct need not be puttogether in the same layer without necessity ,and small enough so that the architecture will not become out control .The Physical LayerThe physical layer is concerned with transmitting raw bits over a communication channel .Typical questions here are how many volts shoule be used to represent an 1 and how many a 0,how many microseconds a bit occupies ,whether transmission may proceed simultaneously in both are finished ,how to establish the initial connection and what kind of function each pin has .The design issues here largely deal with mechanical ,electrical and procedural interfacing to the subnet .The data link layerThe task of the data link layer is to obtain a raw transmission facility and to transform it into a line that appears free of transmission errors to the network layer .It accomplishes this task by breading the input data up into dataframes ,transmitting the frames sequentially ,and processing the acknowledgment frames sent back the receiver .Since the physical layer merely accepts and transmits a stream of bits without any regard to meaning or structure ,it can create and recognize frame boundaries until the data link layer .This can be accomplished by attaching special bits patterns to the beginning and the end of the frame .But it produce two problems :one is a noise burst on the line can destroy a frame completely .In this case ,the software in the source machine must retransmit the frame .The other is that some mechanismmust be employed to let the transmitter know how much buffer space the receiver has at the moment .The network layerThe network layer controls the operation of subnet .It determines the chief characteristics of the node-host interface ,and how packets ,the units of information exchanged in this layer ,are routed within the subnet .What this layer if software does ,basically ,is to accept messages from the source host ,convert them to packets ,and observe the packets to get the destination .The key design issue is how the route is determined .It could not only base on static table ,either are “wired into”the network and rarely changed ,by also adopt highly dynamic manner ,which can determine packet again to reflect the current network load .The transport layerThe basic function of transport layer is to accept data from the session layer ,split it up into smaller units ,if necessary ,pass these to the network layer ,and ensure that the pieces all arrive correctly at the other end .This layer is a true end-to-end layer .In other words ,a program on the source machine carries on a convene station with as similar program on the destination machine , using the message header and control messages .The session layerWith the session layer , the user must negotiate to establish a connection with a process on another machine .The connection is usually called a session. A session might be used to allow a user to log into a remote time-sharing system or to transfer a file between two machines .The operation of setting up a session between two processes is often called binding .Another function of the session layer is to manage the session once it has been setup .The presentation layerThe presentation layer could be designed to accept ASCⅡstrings as input and produce compressed bit patterns as output .This function of the presentation layer is called text compression .In addition ,this layer can also perform other trans formations .Encryption provide security is one possibility .Conversion between character codes ,such as ASCⅡto EBCDIC,might often be useful .More generally ,different computers usually have incompatible file formats ,so a file conversion option might be useful at times .The application layerMany issues occur here .For example ,all the issues of network transparency ,hiding the physical distribution of resources from user .Another issue is problem partitioning :how to divide the problem among the various machine in order to take maximum advantage of the network .2.Database systemThe conception used for describing files and databases has varied substantially in the same organization .A database may be defined as a collection of interrelated data stored together with as little redundancy as possible to serve one or more applications in an optimal fashion ;the data are stored so that they are independent of programs which use the data ;a common and retrieving existing data within the databases if they are entirely separate in structure .A database may be designed for batch processing ,real-time processing ,or in-line processing .A database system involve application program ,DBMS ,and database.One of the most important characteristics of most databases is that they will constantly need to change and grow .Easy restructuring of the database must be possible as new data types and new applications are added .The restructuring should be possible without having to rewrite the ap0plication program and in general should cause as little upheaval as possible .The ease with which a database can be changed will have a major effect on the rate at which data-processing can be developed in a corporation .The tem data independence is often quoted as being one of the main attributes of a data base .It implies that the data and the application programs which use them are independent so that either may be changed without changing the other .When a single set of data items serves a variety of applications ,different application programs perceive different relationships between the data items .To a large extent ,data-base organization is concerned with the representation between the data item about which we store information referred to as entities .An entity may be a tangible object or nontangible .It has various properties which we may wish to record .It can describes the real world .The data item represents an attribute ,and the attribute must be associated with the relevant entity .We design values to the attributes ,one attribute has a special significance in that it identifies the entity .An attribute or set of attributes which the computer uses to identify a record or tuple is referred to as a key .The primary key is defined as that key used to uniquely identify one record or tuple .The entity identifier consisting of one or more attributes .The primary key is of great importance because it is used by the computer in locating the record or tuple by means of an index or addressing algorithm .If the function of a data base were merely to store data ,its organization would be simple .Most of the complexities arise from the fact that is must also show the relationships between the various items of data that are stored .It is different to describe the data in logical or physical .The logical data base description is referred to as a schema .A schema is a chart of the types of data that one used .It gives the entities and attributes ,and specifics the relations between them .It is formwork into which the values of the data-items can be fitted .We must distinguish between a record type and a instance of the record .When we talk about a “personnel record”,this is really a record typed .There are no data vales associated with it .The term schema is used to mean an overall chart of all of the data-types and record types stored in a data base .The term subschema refers to an application programmer’s view of the data he uses .Many different sub schemas can be derived from one schema .The schema and the subschema are both used by the data-base management system ,the primary function of which is to serve the application programs by executing their data operations .A DBMS will usually be handing multiple data calls concurrently .It must organize its system buffers so that different data operations can be in process together .It provides a data definition language to specify the conceptual schema and most likely ,some of the details regarding the implementation of the conceptual schema by the physical schema .The data definition language is a high-level language ,enabling one to describe the conceptual schema in terms of a “data model”.The choice of a data model is a difficult one ,since it must be rich enough in structure to describe significant aspects of the real world ,yet it must be possible to determine fairly automatically an efficient implementation of the conceptual schema by a physical schema .It should be emphasized that while a DBMS might be used to build small data bases ,many data bases involve millions of bytes ,and an inefficient implementation can be disastrous .We will discuss the data model in the following and the .NET Framework is part of Microsoft's overall .NET framework, which contains a vast set of programming classes designed to satisfy any conceivable programming need. In the following two sections, you learn how fits within the .NET framework, and you learn about the languages you can use in your pages.The .NET Framework Class LibraryImagine that you are Microsoft. Imagine that you have to support multiple programming languages—such as Visual Basic, JScript, and C++. A great deal of the functionality of these programming languages overlaps. For example, for each language, you would have to include methods for accessing the file system, working with databases, and manipulating strings.Furthermore, these languages contain similar programming constructs. Every language, for example, can represent loops and conditionals. Even though the syntax of a conditional written in Visual Basic differs from the syntax of a conditional written in C++, the programming function is the same.Finally, most programming languages have similar variable data types. In most languages, you have some means of representing strings and integers, for example. The maximum and minimum size of an integer might depend on the language, but the basic data type is the same.Maintaining all this functionality for multiple languages requires a lot of work. Why keep reinventing the wheel? Wouldn't it be easier to create all this functionality once and use it for every language?The .NET Framework Class Library does exactly that. It consists of a vast set of classes designed to satisfy any conceivable programming need. For example, the .NET framework contains classes for handling database access, working with the file system, manipulating text, and generating graphics. In addition, it contains more specialized classes for performing tasks such as working with regular expressions and handling network protocols.The .NET framework, furthermore, contains classes that represent all the basic variable data types such as strings, integers, bytes, characters, and arrays.Most importantly, for purposes of this book, the .NET Framework Class Library contains classes for building pages. You need to understand, however, that you can access any of the .NET framework classes when you are building your pages.Understanding NamespacesAs you might guess, the .NET framework is huge. It contains thousands of classes (over 3,400). Fortunately, the classes are not simply jumbled together. The classes of the .NET framework are organized into a hierarchy of namespaces.ASP Classic NoteIn previous versions of Active Server Pages, you had access to only five standard classes (the Response, Request, Session, Application, and Server objects). , in contrast, provides you with access to over 3,400 classes!A namespace is a logical grouping of classes. For example, all the classes that relate to working with the file system are gathered together into the System.IO namespace.The namespaces are organized into a hierarchy (a logical tree). At the root of the tree is the System namespace. This namespace contains all the classes for the base data types, such as strings and arrays. It also contains classes for working with random numbers and dates and times.You can uniquely identify any class in the .NET framework by using the full namespace of the class. For example, to uniquely refer to the class that represents a file system file (the File class), you would use the following:System.IO.FileSystem.IO refers to the namespace, and File refers to the particular class. NOTEYou can view all the namespaces of the standard classes in the .NET Framework Class Library by viewing the Reference Documentation for the .NET Framework. Standard NamespacesThe classes contained in a select number of namespaces are available in your pages by default. (You must explicitly import other namespaces.) These default namespaces contain classes that you use most often in your applications:•System—Contains all the base data types and other useful classes such as those related to generating random numbers and working with dates and times. •System.Collections— Contains classes for working with standard collection types such as hash tables, and array lists.•System.Collections.Specialized— Contains classes that represent specialized collections such as linked lists and string collections.•System.Configuration— Contains classes for working with configuration files (Web.config files).•System.Text— Contains classes for encoding, decoding, and manipulating the contents of strings.•System.Text.RegularExpressions— Contains classes for performing regular expression match and replace operations.•System.Web— Contains the basic classes for working with the World Wide Web, including classes for representing browser requests and server responses. •System.Web.Caching—Contains classes used for caching the content of pages and classes for performing custom caching operations.•System.Web.Security— Contains classes for implementing authentication and authorization such as Forms and Passport authentication.•System.Web.SessionState— Contains classes for implementing session state. •System.Web.UI—Contains the basic classes used in building the user interface of pages.•System.Web.UI.HTMLControls— Contains the classes for the HTML controls. •System.Web.UI.WebControls— Contains the classes for the Web controls..NET Framework-Compatible LanguagesFor purposes of this book, you will write the application logic for your pages using Visual Basic as your programming language. It is the default language for pages (and the most popular programming language in the world). Although you stick to Visual Basic in this book, you also need to understand that you can create pages by using any language that supports the .NET Common Language Runtime. Out of the box, this includes C# (pronounced See Sharp), (the .NET version of JavaScript), and the Managed Extensions to C++.NOTEThe CD included with this book contains C# versions of all the code samples. Dozens of other languages created by companies other than Microsoft have been developed to work with the .NET framework. Some examples of these other languages include Python, SmallTalk, Eiffel, and COBOL. This means that you could, if you really wanted to, write pages using COBOL.Regardless of the language that you use to develop your pages, you need to understand that pages are compiled before they are executed. This means that pages can execute very quickly.The first time you request an page, the page is compiled into a .NET class, and the resulting class file is saved beneath a special directory on yourserver named Temporary Files. For each and every page, a corresponding class file appears in the Temporary Files directory. Whenever you request the same page in the future, the corresponding class file is executed.When an page is compiled, it is not compiled directly into machine code. Instead, it is compiled into an intermediate-level language called Microsoft Intermediate Language (MSIL). All .NET-compatible languages are compiled into this intermediate language.An page isn't compiled into native machine code until it is actually requested by a browser. At that point, the class file contained in the Temporary Files directory is compiled with the .NET framework Just in Time (JIT) compiler and executed.The magical aspect of this whole process is that it happens automatically in the background. All you have to do is create a text file with the source code for your page, and the .NET framework handles all the hard work of converting it into compiled code for you.ASP CLASSIC NOTEWhat about VBScript? Before , VBScript was the most popular language for developing Active Server Pages. does not support VBScript, and this is good news. Visual Basic is a superset of VBScript, which means that Visual Basic has all the functionality of VBScript and more. So, you have a richer set of functions and statements with Visual Basic.Furthermore, unlike VBScript, Visual Basic is a compiled language. This means that if you use Visual Basic to rewrite the same code that you wrote with VBScript, you can get better performance.If you have worked only with VBScript and not Visual Basic in the past, don't worry. Since VBScript is so closely related to Visual Basic, you'll find it easy to make the transition between the two languages.NOTEMicrosoft includes an interesting tool named the IL Disassembler (ILDASM) with the .NET framework. You can use this tool to view the disassembled code for any of the classes in the Temporary Files directory. It lists all the methods and properties of the class and enables you to view the intermediate-level code.This tool also works with all the controls discussed in this chapter. For example, you can use the IL Disassembler to view the intermediate-level code for the TextBox control (located in a file named System.Web.dll).About ModemTelephone lines were designed to carry the human voice, not electronic data from a computer. Modems were invented to convert digital computer signals into a form that allows them to travel over the phone lines. Those are the scratchy sounds you hear from a modem's speaker. A modem on the other end of the line can understand it and convert the sounds back into digital information that the computer can understand. By the way, the word modem stands for MOdulator/DEModulator.Buying and using a modem used to be relatively easy. Not too long ago, almost all modems transferred data at a rate of 2400 Bps (bits per second). Today, modems not only run faster, they are also loaded with features like error control and data compression. So, in addition to converting and interpreting signals, modems also act like traffic cops, monitoring and regulating the flow of information. That way, one computer doesn't send information until the receiving computer is ready for it. Each of these features, modulation, error control, and data compression, requires a separate kind of protocol and that's what some of those terms you see like V.32, V.32bis, V.42bis and MNP5 refer to.If your computer didn't come with an internal modem, consider buying an external one, because it is much easier to install and operate. For example, when your modem gets stuck (not an unusual occurrence), you need to turn it off and on to get it working properly. With an internal modem, that means restarting your computer--a waste of time. With an external modem it's as easy as flipping a switch.Here's a tip for you: in most areas, if you have Call Waiting, you can disable it by inserting *70 in front of the number you dial to connect to the Internet (or any online service). This will prevent an incoming call from accidentally kicking you off the line.This table illustrates the relative difference in data transmission speeds for different types of files. A modem's speed is measured in bits per second (bps). A 14.4 modem sends data at 14,400 bits per second. A 28.8 modem is twice as fast, sending and receiving data at a rate of 28,800 bits per second.Until nearly the end of 1995, the conventional wisdom was that 28.8 Kbps was about the fastest speed you could squeeze out of a regular copper telephone line. Today, you can buy 33.6 Kbps modems, and modems that are capable of 56 Kbps. The key question for you, is knowing what speed modems your Internet service provider (ISP) has. If your ISP has only 28.8 Kbps modems on its end of the line, you could have the fastest modem in the world, and only be able to connect at 28.8 Kbps. Before you invest in a 33.6 Kbps or a 56 Kbps modem, make sure your ISP supports them.Speed It UpThere are faster ways to transmit data by using an ISDN or leased line. In many parts of the U.S., phone companies are offering home ISDN at less than $30 a month. ISDN requires a so-called ISDN adapter instead of a modem, and a phone line with a special connection that allows it to send and receive digital signals. You have to arrange with your phone company to have this equipment installed. For more about ISDN, visit Dan Kegel's ISDN Page.An ISDN line has a data transfer rate of between 57,600 bits per second and 128,000 bits per second, which is at least double the rate of a 28.8 Kbps modem. Leased lines come in two configurations: T1 and T3. A T1 line offers a data transfer rate of 1.54 million bits per second. Unlike ISDN, a T-1 line is a dedicated connection, meaning that it is permanently connected to the Internet. This is useful for web servers or other computers that need to be connected to the Internet all the time. It is possible to lease only a portion of a T-1 line using one of two systems:fractional T-1 or Frame Relay. You can lease them in blocks ranging from 128 Kbps to 1.5 Mbps. The differences are not worth going into in detail, but fractional T-1 will be more expensive at the slower available speeds and Frame Relay will be slightly more expensive as you approach the full T-1 speed of 1.5 Mbps. A T-3 line is significantly faster, at 45 million bits per second. The backbone of the Internet consists of T-3 lines.Leased lines are very expensive and are generally only used by companies whose business is built around the Internet or need to transfer massive amounts of data. ISDN, on the other hand, is available in some cities for a very reasonable price. Not all phone companies offer residential ISDN service. Check with your local phone company for availability in your area.Cable ModemsA relatively new development is a device that provides high-speed Internet access via a cable TV network. With speeds of up to 36 Mbps, cable modems can download data in seconds that might take fifty times longer with a dial-up connection. Because it works with your TV cable, it doesn't tie up a telephone line. Best of all, it's always on, so there is no need to connect--no more busy signals! This service is now available in some cities in the United States and Europe.The download times in the table above are relative and are meant to give you a general idea of how long it would take to download different sized files at different connection speeds, under the best of circumstances. Many things can interfere with the speed of your file transfer. These can range from excessive line noise on your telephone line and the speed of the web server from which you are downloading files, to the number of other people who are simultaneously trying to access the same file or other files in the same directory.DSLDSL (Digital Subscriber Line) is another high-speed technology that is becoming increasingly popular. DSL lines are always connected to the Internet, so you don'tneed to dial-up. Typically, data can be transferred at rates up to 1.544 Mbps downstream and about 128 Kbps upstream over ordinary telephone lines. Since a DSL line carries both voice and data, you don't have to install another phone line. You can use your existing line to establish DSL service, provided service is available in your area and you are within the specified distance from the telephone company's central switching office.DSL service requires a special modem. Prices for equipment, DSL installation and monthly service can vary considerably, so check with your local phone company and Internet service provider. The good news is that prices are coming down as competition heats up.The NetWorksBirth of the NetThe Internet has had a relatively brief, but explosive history so far. It grew out of an experiment begun in the 1960's by the U.S. Department of Defense. The DoD wanted to create a computer network that would continue to function in the event of a disaster, such as a nuclear war. If part of the network were damaged or destroyed, the rest of the system still had to work. That network was ARPANET, which linked U.S. scientific and academic researchers. It was the forerunner of today's Internet.In 1985, the National Science Foundation (NSF) created NSFNET, a series of networks for research and education communication. Based on ARPANET protocols, the NSFNET created a national backbone service, provided free to any U.S. research and educational institution. At the same time, regional networks were created to link individual institutions with the national backbone service.NSFNET grew rapidly as people discovered its potential, and as new software applications were created to make access easier. Corporations such as Sprint and MCI began to build their own networks, which they linked to NSFNET. As commercial firms and other regional network providers have taken over the operation of the major Internet arteries, NSF has withdrawn from the backbone business.。
计算机类外文文献翻译---Java核心技术
本科毕业论文外文文献及译文文献、资料题目:Core Java™ V olume II–AdvancedFeatures文献、资料来源:著作文献、资料发表(出版)日期:2008.12.1院(部):计算机科学与技术学院专业:网络工程班级:姓名:学号:指导教师:翻译日期:外文文献:Core Java™ Volume II–Advanced Features When Java technology first appeared on the scene, the excitement was not about a well-crafted programming language but about the possibility of safely executing applets that are delivered over the Internet (see V olume I, Chapter 10 for more information about applets). Obviously, delivering executable applets is practical only when the recipients are sure that the code can't wreak havoc on their machines. For this reason, security was and is a major concern of both the designers and the users of Java technology. This means that unlike other languages and systems, where security was implemented as an afterthought or a reaction to break-ins, security mechanisms are an integral part of Java technology.Three mechanisms help ensure safety:•Language design features (bounds checking on arrays, no unchecked type conversions, no pointer arithmetic, and so on).•An access control mechanism that controls what the code can do (such as file access, network access, and so on).•Code signing, whereby code authors can use standard cryptographic algorithms to authenticate Java code. Then, the users of the code can determine exactly who created the code and whether the code has been altered after it was signed.Below, you'll see the cryptographic algorithms supplied in the java.security package, which allow for code signing and user authentication.As we said earlier, applets were what started the craze over the Java platform. In practice, people discovered that although they could write animated applets like the famous "nervous text" applet, applets could not do a whole lot of useful stuff in the JDK 1.0 security model. For example, because applets under JDK 1.0 were so closely supervised, they couldn't do much good on a corporate intranet, even though relatively little risk attaches to executing an applet from your company's secure intranet. It quickly became clear to Sun that for applets to become truly useful, it was important for users to be able to assign different levels of security, depending on where the applet originated. If an applet comes from a trusted supplier and it has not been tampered with, the user of that applet can then decide whether to give the applet more privileges.To give more trust to an applet, we need to know two things:•Where did the applet come from?•Was the code corrupted in transit?In the past 50 years, mathematicians and computer scientists have developed sophisticated algorithms for ensuring the integrity of data and for electronic signatures. The java.security package contains implementations of many of these algorithms. Fortunately, you don't need to understand the underlying mathematics to use the algorithms in the java.security package. In the next sections, we show you how message digests can detect changes in data files and how digital signatures can prove the identity of the signer.A message digest is a digital fingerprint of a block of data. For example, the so-called SHA1 (secure hash algorithm #1) condenses any data block, no matter how long, into a sequence of 160 bits (20 bytes). As with real fingerprints, one hopes that no two messages have the same SHA1 fingerprint. Of course, that cannot be true—there are only 2160 SHA1 fingerprints, so there must be some messages with the same fingerprint. But 2160is so large that the probability of duplication occurring is negligible. How negligible? According to James Walsh in True Odds: How Risks Affect Your Everyday Life (Merritt Publishing 1996), the chance that you will die from being struck by lightning is about one in 30,000. Now, think of nine other people, for example, your nine least favorite managers or professors. The chance that you and all of them will die from lightning strikes is higher than that of a forged message having the same SHA1 fingerprint as the original. (Of course, more than ten people, none of whom you are likely to know, will die from lightning strikes. However, we are talking about the far slimmer chance that your particular choice of people will be wiped out.)A message digest has two essential properties:•If one bit or several bits of the data are changed, then the message digest also changes.• A forger who is in possession of a given message cannot construct a fake message that has the same message digest as the original.The second property is again a matter of probabilities, of course. Consider the following message by the billionaire father:"Upon my death, my property shall be divided equally among my children; however, my son George shall receive nothing."That message has an SHA1 fingerprint of2D 8B 35 F3 BF 49 CD B1 94 04 E0 66 21 2B 5E 57 70 49 E1 7EThe distrustful father has deposited the message with one attorney and the fingerprint with another. Now, suppose George can bribe the lawyer holding the message. He wants to change the message so that Bill gets nothing. Of course, that changes the fingerprint to a completely different bit pattern:2A 33 0B 4B B3 FE CC 1C 9D 5C 01 A7 09 51 0B 49 AC 8F 98 92Can George find some other wording that matches the fingerprint? If he had been the proud owner of a billion computers from the time the Earth was formed, each computing a million messages a second, he would not yet have found a message he could substitute.A number of algorithms have been designed to compute these message digests. The two best-known are SHA1, the secure hash algorithm developed by the National Institute of Standards and Technology, and MD5, an algorithm invented by Ronald Rivest of MIT. Both algorithms scramble the bits of a message in ingenious ways. For details about these algorithms, see, for example, Cryptography and Network Security, 4th ed., by William Stallings (Prentice Hall 2005). Note that recently, subtle regularities have been discovered in both algorithms. At this point, most cryptographers recommend avoiding MD5 and using SHA1 until a stronger alternative becomes available. (See /rsalabs/node.asp?id=2834 for more information.) The Java programming language implements both SHA1 and MD5. The MessageDigest class is a factory for creating objects that encapsulate the fingerprinting algorithms. It has a static method, called getInstance, that returns an object of a class that extends the MessageDigest class. This means the MessageDigest class serves double duty:•As a factory class•As the superclass for all message digest algorithmsFor example, here is how you obtain an object that can compute SHA fingerprints:MessageDigest alg = MessageDigest.getInstance("SHA-1");(To get an object that can compute MD5, use the string "MD5" as the argument to getInstance.)After you have obtained a MessageDigest object, you feed it all the bytes in the message by repeatedly calling the update method. For example, the following code passes all bytes in a file to the alg object just created to do the fingerprinting:InputStream in = . . .int ch;while ((ch = in.read()) != -1)alg.update((byte) ch);Alternatively, if you have the bytes in an array, you can update the entire array at once:byte[] bytes = . . .;alg.update(bytes);When you are done, call the digest method. This method pads the input—as required by the fingerprinting algorithm—does the computation, and returns the digest as an array of bytes.byte[] hash = alg.digest();The program in Listing 9-15 computes a message digest, using either SHA or MD5. You can load the data to be digested from a file, or you can type a message in the text area.Message SigningIn the last section, you saw how to compute a message digest, a fingerprint for the original message. If the message is altered, then the fingerprint of the altered message will not match the fingerprint of the original. If the message and its fingerprint are delivered separately, then the recipient can check whether the message has been tampered with. However, if both the message and the fingerprint were intercepted, it is an easy matter to modify the message and then recompute the fingerprint. After all, the message digest algorithms are publicly known, and they don't require secret keys. In that case, the recipient of the forged message and the recomputed fingerprint would never know that the message has been altered. Digital signatures solve this problem.To help you understand how digital signatures work, we explain a few concepts from the field called public key cryptography. Public key cryptography is based on the notion of a public key and private key. The idea is that you tell everyone in the world your public key. However, only you hold the private key, and it is important that you safeguard it and don't release it to anyone else. The keys are matched by mathematical relationships, but the exact nature of these relationships is not important for us. (If you are interested, you can look it up in The Handbook of Applied Cryptography at http://www.cacr.math.uwaterloo.ca/hac/.)The keys are quite long and complex. For example, here is a matching pair of public andprivate Digital Signature Algorithm (DSA) keys.Public key:Code View:p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df 63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd7 3da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4y:c0b6e67b4ac098eb1a32c5f8c4c1f0e7e6fb9d832532e27d0bdab9ca2d2a8123ce5a8018b8161 a760480fadd040b927281ddb22cb9bc4df596d7de4d1b977d50Private key:Code View:p:fca682ce8e12caba26efccf7110e526db078b05edecbcd1eb4a208f3ae1617ae01f35b91a47e6df 63413c5e12ed0899bcd132acd50d99151bdc43ee737592e17q: 962eddcc369cba8ebb260ee6b6a126d9346e38c5g:678471b27a9cf44ee91a49c5147db1a9aaf244f05a434d6486931d2d14271b9e35030b71fd73 da179069b32e2935630e1c2062354d0da20a6c416e50be794ca4x: 146c09f881656cc6c51f27ea6c3a91b85ed1d70aIt is believed to be practically impossible to compute one key from the other. That is, even though everyone knows your public key, they can't compute your private key in your lifetime, no matter how many computing resources they have available.It might seem difficult to believe that nobody can compute the private key from the public keys, but nobody has ever found an algorithm to do this for the encryption algorithms that are in common use today. If the keys are sufficiently long, brute force—simply trying all possible keys—would require more computers than can be built from all the atoms in the solar system, crunching away for thousands of years. Of course, it is possible that someone could come up withalgorithms for computing keys that are much more clever than brute force. For example, the RSA algorithm (the encryption algorithm invented by Rivest, Shamir, and Adleman) depends on the difficulty of factoring large numbers. For the last 20 years, many of the best mathematicians have tried to come up with good factoring algorithms, but so far with no success. For that reason, most cryptographers believe that keys with a "modulus" of 2,000 bits or more are currently completely safe from any attack. DSA is believed to be similarly secure.Figure 9-12 illustrates how the process works in practice.Suppose Alice wants to send Bob a message, and Bob wants to know this message came from Alice and not an impostor. Alice writes the message and then signs the message digest with her private key. Bob gets a copy of her public key. Bob then applies the public key to verify the signature. If the verification passes, then Bob can be assured of two facts:•The original message has not been altered.•The message was signed by Alice, the holder of the private key that matches the public key that Bob used for verification.You can see why security for private keys is all-important. If someone steals Alice's private key or if a government can require her to turn it over, then she is in trouble. The thief or a government agent can impersonate her by sending messages, money transfer instructions, and so on, that others will believe came from Alice.The X.509 Certificate FormatTo take advantage of public key cryptography, the public keys must be distributed. One of the most common distribution formats is called X.509. Certificates in the X.509 format are widely used by VeriSign, Microsoft, Netscape, and many other companies, for signing e-mail messages, authenticating program code, and certifying many other kinds of data. The X.509 standard is part of the X.500 series of recommendations for a directory service by the international telephone standards body, the CCITT.The precise structure of X.509 certificates is described in a formal notation, called "abstract syntax notation #1" or ASN.1. Figure 9-13 shows the ASN.1 definition of version 3 of the X.509 format. The exact syntax is not important for us, but, as you can see, ASN.1 gives a precise definition of the structure of a certificate file. The basic encoding rules, or BER, and a variation, called distinguished encoding rules (DER) describe precisely how to save this structure in abinary file. That is, BER and DER describe how to encode integers, character strings, bit strings, and constructs such as SEQUENCE, CHOICE, and OPTIONAL.中文译文:Java核心技术卷Ⅱ高级特性当Java技术刚刚问世时,令人激动的并不是因为它是一个设计完美的编程语言,而是因为它能够安全地运行通过因特网传播的各种applet。
计算机专业中英文翻译外文翻译文献翻译
英文参考文献及翻译Linux - Operating system of cybertimes Though for a lot of people , regard Linux as the main operating system to make up huge work station group, finish special effects of " Titanic " make , already can be regarded as and show talent fully. But for Linux, this only numerous news one of. Recently, the manufacturers concerned have announced that support the news of Linux to increase day by day, users' enthusiasm to Linux runs high unprecedentedly too. Then, Linux only have operating system not free more than on earth on 7 year this piece what glamour, get the favors of such numerous important software and hardware manufacturers as the masses of users and Orac le , Informix , HP , Sybase , Corel , Intel , Netscape , Dell ,etc. , OK?1.The background of Linux and characteristicLinux is a kind of " free (Free ) software ": What is called free,mean users can obtain the procedure and source code freely , and can use them freely , including revise or copy etc.. It is a result of cybertimes, numerous technical staff finish its research and development together through Inte rnet, countless user is it test and except fault , can add user expansion function that oneself make conveniently to participate in. As the most outstanding one in free software, Linux has characteristic of the following:(1)Totally follow POSLX standard, expand the network operatingsystem of supporting all AT&T and BSD Unix characteristic. Because of inheritting Unix outstanding design philosophy , and there are clean , stalwart , high-efficient and steady kernels, their all key codes are finished by Li nus Torvalds and other outstanding programmers, without any Unix code of AT&T or Berkeley, so Linu x is not Unix, but Linux and Unix are totally compatible.(2)Real many tasks, multi-user's system, the built-in networksupports, can be with such seamless links as NetWare , Windows NT , OS/2 ,Unix ,etc.. Network in various kinds of Unix it tests to be fastest in comparing and assess efficiency. Support such many kinds of files systems as FAT16 , FAT32 , NTFS , Ex t2FS , ISO9600 ,etc. at the same time .(3) Can operate it in many kinds of hardwares platform , including such processors as Alpha , SunSparc , PowerPC , MIPS ,etc., to various kinds of new-type peripheral hardwares, can from distribute on global numerous programmer there getting support rapidly too.(4) To that the hardware requires lower, can obtain very good performance on more low-grade machine , what deserves particular mention is Linux outstanding stability , permitted " year " count often its running times.2.Main application of Linux At present,Now, the application of Linux mainly includes:(1) Internet/Intranet: This is one that Linux was used most at present, it can offer and include Web server , all such Inter net services as Ftp server , Gopher server , SMTP/POP3 mail server , Proxy/Cache server , DNS server ,etc.. Linux kernel supports IPalias , PPP and IPtunneling, these functions can be used for setting up fictitious host computer , fictitious service , VPN (fictitious special-purpose network ) ,etc.. Operating Apache Web server on Linux mainly, the occupation rate of market in 1998 is 49%, far exceeds the sum of such several big companies as Microsoft , Netscape ,etc..(2) Because Linux has outstanding networking ability , it can be usedin calculating distributedly large-scaly, for instance cartoon making , scientific caculation , database and file server ,etc..(3) As realization that is can under low platform fullness of Unix that operate , apply at all levels teaching and research work of universities and colleges extensively, if Mexico government announce middle and primary schools in the whole country dispose Linux and offer Internet service for student already.(4) Tabletop and handling official business appliedly. Application number of people of in this respect at present not so good as Windows of Microsoft far also, reason its lie in Lin ux quantity , desk-top of application software not so good as Windows application far not merely, because the characteristic of the freedom software makes it not almost have advertisement thatsupport (though the function of Star Office is not second to MS Office at the same time, but there are actually few people knowing).3.Can Linux become a kind of major operating system?In the face of the pressure of coming from users that is strengthened day by day, more and more commercial companies transplant its application to Linux platform, comparatively important incident was as follows, in 1998 ①Compaq and HP determine to put forward user of requirement truss up Linux at their servers , IBM and Dell promise to offer customized Linux system to user too. ②Lotus announce, Notes the next edition include one special-purpose edition in Linux. ③Corel Company transplants its famous WordPerfect to on Linux, and free issue. Corel also plans to move the other figure pattern process products to Linux platform completely.④Main database producer: Sybase , Informix , Oracle , CA , IBM have already been transplanted one's own database products to on Linux, or has finished Beta edition, among them Oracle and Informix also offer technical support to their products.4.The gratifying one is, some farsighted domestic corporations have begun to try hard to change this kind of current situation already. Stone Co. not long ago is it invest a huge sum of money to claim , regard Linux as platform develop a Internet/Intranet solution, regard this as the core and launch Stone's system integration business , plan to set up nationwide Linux technical support organization at the same time , take the lead to promote the freedom software application and development in China. In addition domestic computer Company , person who win of China , devoted to Linux relevant software and hardware application of system popularize too. Is it to intensification that Linux know , will have more and more enterprises accede to the ranks that Linux will be used with domestic every enterprise to believe, more software will be planted in Linux platform. Meanwhile, the domestic university should regard Linux as the original version and upgrade already existing Unix content of courses , start with analysing the source code and revising the kernel and train a large number of senior Linux talents, improve our country's own operating system. Having only really grasped the operating system, the software industry of our country could be got rid of and aped sedulously at present, the passive state led by the nose by others, create conditions for revitalizing the software industry of our country fundamentally.中文翻译Linux—网络时代的操作系统虽然对许多人来说,以Linux作为主要的操作系统组成庞大的工作站群,完成了《泰坦尼克号》的特技制作,已经算是出尽了风头。
计算机 JSP web 外文翻译 外文文献 英文文献
外文资料所译外文资料:①作者:Dan Malks②书名:Professional JSP③出版时间: 2000.7.26④所译章节: Chapter 1212.1IntroductoryGood Web application design tries to separate business objects, presentation, and manipulation of the objects into distinct layers. One benefit of using JavaServer Pages technology is that it allows us to separate the role of a Web designer more clearly from that of a software developer. While on a small-scale project, one individual may occupy both roles, on a larger project, they are likely to be separate and it is beneficial to separate their workflows as much as possible. Designing the architecture for your Web application is crucial to this separation.12.2 JSP architectureWe will examine a variety of ways to architect a system with JavaServer Pages, servlets, and JavaBeans. We will see a series of different architectures, each a development of the one before. The diagram below shows this process in outline; the individual parts of the diagram will be explained in turn later in this article.JSP architecture:When Sun introduced Java Server Pages, some were quick to claim that servlets had been replaced as the preferred request handling mechanism in Web-enabled enterprise architectures. Although JSP is a key component of the Java 2 Platform Enterprise Edition (J2EE) specification, serving as the preferred request handler and response mechanism, we must investigate further to understand its relationship with servlets.Other sections of Professional JSP explain the implementation details of JSP source translation and compilation into a servlets. Understanding that JSP is built on top of the servlet API, and uses servlet semantics, raises some interesting questions. Should we no longer develop stand-alone servlets in our Web-enabled systems? Is there some way to combine servlets and JSPs? If so, where do we place our Java code? Are there any other components involved in the request processing, such as JavaBeans? If so, where do they fit into the architecture and what type of role do they fulfill?It is important to understand that, although JSP technology will be a powerful successor to basic servlets, they have an evolutionary relationship and can be used in a cooperative and complementary manner.Given this premise, we will investigate how these two technologies, each a Java Standard Extension, can be used co-operatively along with other components, such as JavaBeans, to create Java-based Web-enabled systems. We will examine architecturalissues as they relate to JSP and servlets and discuss some effective designs while looking at the tradeoffs of each. Before jumping directly into a discussion of specific architectures, though, we will briefly examine the need to develop a variety of architectures.12.3 Code factoring and role separationOne of the main reasons why the JavaServer Pages technology has evolved into what it is today (and it's still evolving) is the overwhelming technical need to simplify application design by separating dynamic content from static template display data. The foundation for JSP was laid down with the initial development of the Java Web Server from Sun, which used page compilation and focused on embedding HTML inside Java code. As applications came to be based more on business objects and n-tier architectures, the focus changed to separating HTML from Java code, while still maintaining the integrity and flexibility the technology provided.In Chapter 5, JSP Sessions, in Professional JSP, we saw how beans and objects can be bound to different contexts just by defining a certain scope. Good application design builds on this idea and tries to separate the objects, the presentation, and the manipulation of the objects into distinct, distinguishable layers.Another benefit of using JSP is that it allows us to more cleanly separate the roles of a Web production/HTML designer individual from a software developer. Remember that a common development scenario with servlets was to embed the HTML presentation markup within the Java code of the servlet itself, which can be troublesome. In our discussion, we will consider the servlet solely as a container for Java code, while our entire HTML presentation template is encapsulated within a JSP source page. The question then arises as to how much Java code should remain embedded within our JSP source pages, and if it is taken out of the JSP source page, where should it reside?Let's investigate this further. On any Web-based project, multiple roles and responsibilities will exist. For example, an individual who designs HTML pages fulfills a Web production role while someone who writes software in the Java programming language fulfills a software development role.On small-scale projects these roles might be filled by the same individual, or two individuals working closely together. On a larger project, they will likely be filled by multiple individuals, who might not have overlapping skill sets, and are less productive if made too dependent on the workflow of the other.If code that could be factored out to a mediating servlet is included instead within HTML markup, then the potential exists for individuals in the software development role and those in the Web production role to become more dependent than necessary on the progress and workflow of the other. Such dependencies may create a more error-prone environment, where inadvertent changes to code by other team members become more common.This gives us some insight into one reason why we continue to develop basic servlets: they are an appropriate container for our common Java code that has been factored out of our JSP pages, giving our software development team an area of focus that is as loosely coupled to our JSP pages as possible. Certainly, there will be a need for these same individuals to work with the JSP source pages, but the dependency is reduced, and these pages become the focus of the Web-production team instead. Of course, if the same individual fulfills both roles, as is typical on a smaller project, such dependencies are not a major concern.So, we should try to minimize the Java code that we include within our JSP page, in order to uphold this cleaner separation of developer roles. As we have discussed, some of this Java code is appropriately factored to a mediating servlet. Code that is common to multiple requests, such as authentication, is a good candidate for a mediating servlet. Such code is included in one place, the servlet, instead of potentially being cut and pasted into multiple JSPs.We will also want to remove much of our business logic and data access code from our JSP page and encapsulate it within JavaBeans, called worker or helper beans. We start to see a pattern of code movement from our JSP into two areas: a servlet (or JSP) that sits in front of the main JSP, and JavaBeans that sit in back. We refer to this common pattern as "Factor Forward -- Factor Back," as shown in the figure below:Factor Forward -- Factor Back:Another way to think about what code should be localized and encapsulated is that our JSP page should reveal as little as possible of our Java code implementation details.Rather, the page should communicate our intent by revealing the delegating messages we send to worker beans, instructing them to get state from a model, or to complete some business processing.12.4 Redirecting and forwardingRedirecting and forwarding requests in JSPs and servlets takes place often, and it is important to understand the subtle difference between these two mechanisms even though they achieve the same goal (that is, a client asks for a resource on the server and a different resource is served to it):●When a servlet or JSP resource chooses to redirect the client (using aresponse.sendRedirect(url)) the request object does not reach the second resource directly since the underlying implementation is an HTTP redirect.The server sends an HTTP 302 message back to the client telling it that the resource has moved to another URL, and that the client should access it there.The bottom line is that the lifecycle of the initial request object that was accessed in the first JSP terminates with the end of the service method in the first JSP, or with the reply from the server.●In a forward mechanism the request object is forwarded to the second resource,thus maintaining any object bindings to the request and its state, without a round trip to the client on the network. This allows the first JSP to do some work internally and then send information to the second JSP asking it to do itsbit. (Servlets used a chaining mechanism to do this). See Chapter 5, JSP Sessions, in Professional JSP to get a clearer picture of scope. JSPs and servlets can use the forwarding mechanism to delegate tasks among themselves, in the process of separating dynamic and static content.Now, let's investigate how we build these systems.12.5 ArchitecturesBefore discussing specific architectures that we can use to build systems with servlets and JSP, it is worth mentioning two basic ways of using the JSP technology. Each of the architectures discussed in this chapter will be based on one of these approaches:●The first method is referred to here as the page-centric (or client-server)approach. This approach involves request invocations being made directly to JSP page.●In the second method, the dispatcher (or n-tier) approach, a basic servlet orJSP acts as a mediator or controller, delegating requests to JSP pages and JavaBeans.We will examine these approaches in light of a simple example, which will evolve to satisfy the requirements of various scenarios. The initial scenario involves providing a Web interface for guessing statistics about a soon-to-be-born baby. The guesses are stored, and can be reviewed later by the parents, to see who has guessed the closest. As the requirement scenarios become more sophisticated, such as adding the desire for a persistence mechanism, the solution scenarios will become more sophisticated, as well. Thus, our example will evolve and we will gain an understanding of how the various architectures that we discuss will help us build a system that satisfies these requirements in an elegant and effective manner.12.6 The page-centric approachApplications built using a client-server approach have been around for some time; they consist of one or more application programs running on client machines and connecting to a server-based application to work. (A good example would be a PowerBuilder or Oracle Forms-based system.) CGIs and pre-servlet applications were generally based on this simple 2-tier model, and with the introduction of servlets, 2-tier applications could also be created in Java.This model allows JSPs or servlets direct access to some resource like a database or legacy application to service a client's request: the early JSP specifications termed this a "Model 1" programming approach. The JSP page is where the incoming request is intercepted and processed, and the response is sent back to the client;JSPs only differed from servlets in this scenario by providing cleaner code and separating code from the content by placing data access in beans.Model 1 programming approach:The advantage of such an approach is that it is siple to program,and allows the page author to Generate dynamic content easily,based upon the request and the state resources.However this architecture does not scale up well for a large number of simultaneous clients since there would be a significant amount of request processing to be performed,and each request must establish or share a potentially scarce/expensive connection to the resource in question.(A good example would be JDBC connectons in servlets or JSPs and the need for connection pools.) Indiscriminate usage of this architecture usually leads to a significant amount of Java code embedded within the JSP page,this may not seem to be much of a problem for Java developers but it is certainly an issue if the JSP pages are maintained by designers:the code tends to get in the designe’s way,and you run the risk of your code becoming corrupted when others are tweaking the look and feel.译文12.1前言好的Web应用设计试图将业务对象,简报以及操作对象分为不同的层面。
关于计算机的英文文献写作范文摘要
关于计算机的英文文献写作范文摘要全文共3篇示例,供读者参考篇1Title: A Study on the Impact of Computers on SocietyAbstract:Computers have become an integral part of modern society, with their influence pervading all aspects of human life. This study aims to explore the impact of computers on society, focusing on the social, economic, and cultural aspects. The research is based on a comprehensive review of existing literature and empirical studies that have investigated the relationship between computers and society.The study finds that computers have revolutionized communication and information exchange, leading to a more connected and globalized world. The internet, in particular, has transformed the way people interact, work, and socialize. The rise of social media and online platforms has created new channels for communication and expression, but also raised concerns about privacy and data security.Economically, computers have changed the nature of work and productivity, with automation and artificial intelligence increasingly taking over routine tasks. While this has led to increased efficiencies and innovation, it has also raised questions about job displacement and income inequality. The gig economy and freelance work are becoming more common, as people adapt to the changing landscape of labor.Culturally, computers have influenced the way people consume media, create art, and express themselves. Digital technologies have democratized access to information and creative tools, but also raised issues of authenticity and copyright. The prevalence of online platforms for entertainment and social interaction has reshaped cultural practices and norms.In conclusion, computers have had a profound impact on society, shaping the way people communicate, work, and think. While the benefits of technology are clear, it is important to consider the social and ethical implications of its widespread adoption. More research is needed to understand the long-term effects of computers on society and to ensure that technology serves the greater good.篇2Title: Writing a Research Paper on ComputersAbstract:This paper discusses the process of writing a research paper on computers. It provides a step-by-step guide on how to effectively research, organize, and write a paper on the topic of computers. The paper outlines the importance of choosing a specific research question, conducting thorough research, and citing sources properly. It also explains how to structure a research paper on computers, including the introduction, literature review, methodology, results, discussion, and conclusion sections. Additionally, the paper provides tips on how to write clearly and concisely, avoid plagiarism, and revise and edit the paper for clarity and coherence. Overall, this paper serves as a comprehensive guide for students and researchers looking to write a research paper on computers.篇3Title: A Study on Computer Science: Writing Research PapersAbstract:Computer science is a rapidly growing field with a wide array of topics and subfields for researchers to explore. Writing research papers in computer science requires a combination oftechnical expertise and strong writing skills. This paper provides an overview of the key components of a research paper in computer science, along with useful tips and strategies for successful writing.The first step in writing a research paper in computer science is to select a topic that is both interesting and relevant to current advancements in the field. The paper should clearly define the research question or problem to be addressed, along with the objectives and methodology of the study. It is important to review existing literature on the topic to ensure that the research is original and contributes to the existing body of knowledge.The next step is to organize the paper into logical sections, including an introduction, literature review, methodology, results, discussion, and conclusion. Each section should be clearly structured and well-written, with appropriate citations and references to support the claims made in the paper. It is important to use a clear and concise writing style, avoiding unnecessary jargon and technical terms that may confuse the reader.In addition to the technical content of the paper, the writing style and presentation are also important factors to consider. The paper should be well-organized, with a logical flow of ideas andarguments. Charts, tables, and figures can be used to illustrate key points and data, but should be used sparingly and effectively.Finally, the paper should be carefully proofread and edited to ensure that it is free of errors in grammar, punctuation, and spelling. It is also important to consider the formatting and citation style required by the target journal or conference. By following these guidelines and tips, researchers can improve the quality of their research papers in computer science and increase their chances of publication and impact in the field.。
计算机专业外文资料翻译
英文文献Object persistence and JavaBy Arsalan Saljoughy, , 05/01/97Object durability, or persistence, is the term you often hear used in conjunction with the issue of storing objects in databases. Persistence is expected to operate with transactional integrity, and as such it is subject to strict conditions. (See the Resources section of this article for more information on transaction processing.) In contrast, language services offered through standard language libraries and packages are often free from transactional constraints.As we'll see in this article, evidence suggests that simple Java persistence will likely stem from the language itself, while sophisticated database functionality will be offered by database vendors.No object is an islandIn the real world, you rarely find an object that lacks relations to other objects. Objects are components of object models. The issue of object durability transcends the issue of object model durability and distribution once we make the observation that objects are interconnected by virtue of their relations to one another.The relational approach to data storage tends to aggregate data by type. Rows in a table represent the physical aggregate of objects of the same type on disk. The relationships among objects are then represented by keys that are shared across many tables. Although through database organization, relational databases sometimes allow tables that are likely to be used together to be co-located (or clustered) in the same logical partition, such as a database segment, they have no mechanism to store object relationships in the database. Hence, in order to construct an object model, these relationships are constructed from the existing keys at run time in a process referred to as table joins. This is the same well-known property of the relational databases called data independence. Nearly all variants of object databases offer some mechanism to enhance the performance of a system that involves complex object relationships over traditional relational databases.To query or to navigate?In storing objects on disk, we are faced with the choice of co-locating related objects to better accommodate navigational access, or to store objects in table-like collections that aggregate objects by type to facilitate predicate-based access (queries), or both. The co-location of objects in persistent storage is an area where relational and object-oriented databases widely differ. The choice of the query language is another area of consideration. Structured Query Language (SQL) and extensions of it have provided relational systems with a predicate-basedaccess mechanism. Object Query Language (OQL) is an object variant of SQL, standardized by ODMG, but support for this language is currently scant. Polymorphic methods offer unprecedented elegance in constructing a semantic query for a collection of objects. For example, imagine a polymorphic behavior for acccount called isInGoodStanding. It may return the Boolean true for all accounts in good standing, and false otherwise. Now imagine the elegance of querying the collection of accounts, where inGoodStanding is implemented differently based on business rules, for all accounts in good standing. It may look something like:setOfGoodCustomers = setOfAccounts.query(account.inGoodStanding());While several of the existing object databases are capable of processing such a query style in C++ and Smalltalk, it is difficult for them to do so for larger (say, 500+ gigabytes) collections and more complex query expressions. Several of the relational database companies, such as Oracle and Informix, will soon offer other, SQL-based syntax to achieve the same result. Persistence and typeAn object-oriented language aficionado would say persistence and type are orthogonal properties of an object; that is, persistent and transient objects of the same type can be identical because one property should not influence the other. The alternative view holds that persistence is a behavior supported only by persistable objects and certain behaviors may apply only to persistent objects. The latter approach calls for methods that instruct persistable objects to store and retrieve themselves from persistent storage, while the former affords the application a seamless view of the entire object model -- often by extending the virtual memory system. Canonicalization and language independenceObjects of the same type in a language should be stored in persistent storage with the same layout, regardless of the order in which their interfaces appear. The processes of transforming an object layout to this common format are collectively known as canonicalization of object representation. In compiled languages with static typing (not Java) objects written in the same language, but compiled under different systems, should be identically represented in persistent storage.An extension of canonicalization addresses language-independent object representation. If objects can be represented in a language-independent fashion, it will be possible for different representations of the same object to share the same persistent storage.One mechanism to accomplish this task is to introduce an additional level of indirection through an interface definition language (IDL). Object database interfaces can be made through the IDL and the corresponding data structures. The downside of IDL style bindings is two fold: First, the extra level of indirection always requires an additional level of translation, which impacts the overall performance of the system; second, it limits use of database services that are unique to particular vendors and that might be valuable to application developers.A similar mechanism is to support object services through an extension of the SQL. Relational database vendors and smaller object/relational vendors are proponents of this approach; however, how successful these companies will be in shaping the framework for object storage remains to be seen.But the question remains: Is object persistence part of the object's behavior or is it an external service offered to objects via separate interfaces? How about collections of objects and methods for querying them? Relational, extended relational, and object/relational approaches tend to advocate a separation between language, while object databases -- and the Java language itself -- see persistence as intrinsic to the language:Native Java persistence via serializationObject serialization is the Java language-specific mechanism for the storage and retrieval of Java objects and primitives to streams. It is worthy to note that although commercial third-party libraries for serializing C++ objects have been around for some time, C++ has never offered a native mechanism for object serialization. Here's how to use Java's serialization: // Writing "foo" to a stream (for example, a file)// Step 1. Create an output stream// that is, create bucket to receive the bytesFileOutputStream out = new FileOutputStream("fooFile");// Step 2. Create ObjectOutputStream// that is, create a hose and put its head in the bucketObjectOutputStream os = new ObjectOutputStream(out)// Step 3. Write a string and an object to the stream// that is, let the stream flow into the bucketos.writeObject("foo");os.writeObject(new Foo());// Step 4. Flush the data to its destinationos.flush();The Writeobject method serializes foo and its transitive closure -- that is, all objects that can be referenced from foo within the graph. Within the stream only one copy of the serialized object exists. Other references to the objects are stored as object handles to save space and avoid circular references. The serialized object starts with the class followed by the fields of each class in the inheritance hierarchy.// Reading an object from a stream// Step 1. Create an input streamFileInputStream in = new FileInputStream("fooFile");// Step 2. Create an object input streamObjectInputStream ins = new ObjectInputStream(in);// Step 3. Got to know what you are readingString fooString = (String)ins.readObject();Foo foo = (Foo)s.readObject();Object serialization and securityBy default, serialization writes and reads non-static and non-transient fields from the stream. This characteristic can be used as a security mechanism by declaring fields that may not be serialized as private transient. If a class may not be serialized at all, writeObject and readObject methods should be implemented to throw NoAccessException.Persistence with transactional integrity: Introducing JDBCModeled after X/Open's SQL CLI (Client Level Interface) and Microsoft's ODBC abstractions, Java database connectivity (JDBC) aims to provide a database connectivity mechanism that is independent of the underlying database management system (DBMS).To become JDBC-compliant, drivers need to support at least the ANSI SQL-2 entry-level API, which gives third-party tool vendors and applications enough flexibility for database access.JDBC is designed to be consistent with the rest of the Java system. Vendors are encouraged to write an API that is more strongly typed than ODBC, which affords greater static type-checking at compile time.Here's a description of the most important JDBC interfaces:java.sql.Driver.Manager handles the loading of drivers and provides support for new database connections.java.sql.Connection represents a connection to a particular database.java.sql.Statement acts as a container for executing an SQL statement on a given connection.java.sql.ResultSet controls access to the result set.You can implement a JDBC driver in several ways. The simplest would be to build the driver as a bridge to ODBC. This approach is best suited for tools and applications that do not require high performance. A more extensible design would introduce an extra level of indirection to the DBMS server by providing a JDBC network driver that accesses the DBMS server through a published protocol. The most efficient driver, however, would directly access the DBMS proprietary API.Object databases and Java persistenceA number of ongoing projects in the industry offer Java persistence at the object level. However, as of this writing, Object Design's PSE (Persistent Storage Engine) and PSE Pro are the only fully Java-based, object-oriented database packages available (at least, that I am aware of). Check the Resources section for more information on PSE and PSE Pro.Java development has led to a departure from the traditional development paradigm for software vendors, most notably in the development process timeline. For example, PSE and PSE Pro are developed in a heterogeneous environment. And because there isn't a linking step in the development process, developers have been able to create various functional components independent of each other, which results in better, more reliable object-oriented code.PSE Pro has the ability to recover a corrupted database from an aborted transaction caused by system failure. The classes that are responsible for this added functionality are not present in the PSE release. No other differences exist between the two products. These products are what we call "dribbleware" -- software releases that enhance their functionality by plugging in new components. In the not-so-distant future, the concept of purchasing large, monolithic software would become a thing of the past. The new business environment in cyberspace, together with Java computing, enable users to purchase only those parts of the object model (object graph) they need, resulting in more compact end products.PSE works by post-processing and annotating class files after they have been created by the developer. From PSE's point of view, classes in an object graph are either persistent-capable or persistent-aware. Persistent-capable classes may persist themselves while persistent-aware classes can operate on persistent objects. This distinction is necessary because persistence may not be a desired behavior for certain classes. The class file post-processor makes the following modifications to classes:Modifies the class to inherit from odi.Persistent or odi.util.HashPersistent.Defines the initializeContents() method to load real values into hollow instances of your Persistent subclass. ObjectStore provides methods on the GenericObject class that retrieves each Field type.Be sure to call the correct methods for the fields in your persistent object. A separate method is available for obtaining each type of Field object. ObjectStore calls the initializeContents() method as needed. The method signature is:public void initializeContents(GenericObject genObj)Defines the flushContents() method to copy values from a modified instance (active persistent object) back to the database. ObjectStore provides methods on the GenericObject Be sure to call the correct methods for the fields in your persistent object. A separate method is available for setting each type of Field object. ObjectStore calls the flushContents() method as needed. The method signature is:public void flushContents(GenericObject genObj)Defines the clearContents() method to reset the values of an instance to the default values. This method must set all reference fields that referred to persistent objects to null. ObjectStore calls this method as needed. The method signature is:public void clearContents()Modifies the methods that reference non-static fields to call the Persistent.fetch() and Persistent.dirty() methods as needed. These methods must be called before the contents of persistent objects can be accessed or modified, respectively. While this step is not mandatory, it does provide a systematic way to ensure that the fetch() or dirty() method is called prior to accessing or updating object content.Defines a class that provides schema information about the persistence-capable class.All these steps can be completed either manually or automatically.PSE's transaction semanticYou old-time users of ObjectStore probably will find the database and transaction semantics familiar. There is a system-wide ObjectStore object that initializes the environment and is responsible for system-wide parameters. The Database class offers methods (such as create, open, and close), and the Transaction class has methods to begin, abort, or commit transactions. As with serialization, you need to find an entry point into the object graph. The getRoot and setRoot methods of the Database class serve this function. I think a few examples would be helpful here. This first snippet shows how to initialize ObjectStore:ObjectStore.initialize(serverName, null);try {db = Database.open(dbName, Database.openUpdate);} catch(DatabaseNotFoundException exception) {db = Database.create(dbName, 0664);}This next snippet shows how to start and commit a transaction:Transaction transaction = Transaction.begin(Transaction.update);try {foo = (Foo)db.getRoot("fooHead");} catch(DatabaseRootNotFoundException exception) {db.createRoot("fooHead", new Foo());}mit();The three classes specified above -- Transaction, Database, and ObjectStore -- are fundamental classes for ObjectStore. PSE 1.0 does not support nested transactions, backup and recovery, clustering, large databases, object security beyond what is available in the language, and any type of distribution. What is exciting, however, is all of this functionality will be incrementally added to the same foundation as the product matures.About the authorArsalan Saljoughy is asystems engineer specializing in object technology at Sun Microsystems. He earned his M.S. in mathematics from SUNY at Albany, and subsequently was a research fellow at the University of Berlin. Before joining Sun, he worked as a developer and as an IT consultant to financial services companies.ConclusionAlthough it is still too early to establish which methodology for object persistence in general and Java persistence in particular will be dominant in the future, it is safe to assume that a myriad of such styles will co-exist. The shift of storing objects as objects without disassembly into rows and columns is sure to be slow, but it will happen. In the meantime, we are more likely to see object databases better utilized in advanced engineering and telecommunications applications than in banking and back-office financial applications.英文翻译对象持久化和Java-深入的了解面向对象语言中的对象持久的讨论Arsalan Saljoughy,, 05/01/97对象持久化这个术语你常常会和数据存储一起听到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机网络新技术外文翻译文献(文档含中英文对照即英文原文和中文翻译)译文:计算机网络新技术摘要21世纪是一个信息时代的经济,计算机网络技术是这个时期的代表技术,以非常快的、具创造性得不断地发展,并将深入到人民群众的工作,生活和学习中。
因此,控制这种技术看起来似乎具有很重要的意义。
现在,我主要是采用新技术的几种网络技术在现实生活的应用。
关键字因特网数字证书数字银包网格存储 3G1.前言互联网满36岁,仍然是一个进展中的工作。
36年后在加州大学洛杉矶分校的计算机科学家使用15英尺的灰色电缆连接两台笨重的电脑,测试了一种在网络上新的数据交换的方式,这将最终成为互联网依然是一个在取得进展的工作。
大学的研究人员正在试验如何提高网络容量和速度。
编程人员正在设法为网页注入更多的智能。
并正在进行重新设计网络以减少垃圾邮件(垃圾邮件)和安全麻烦的工作。
与此同时威胁织机:批评人士警告说,商业,法律和政治压力可能会阻碍一些使互联网发展到今天的创新的类型。
斯蒂芬克罗克和温顿瑟夫属于1969年9月2日研究生加入的加州大学洛杉矶分校斯莱昂兰罗克教授工程实验室的团体,作为位无意义的测试数据两台计算机之间默默流动。
到第二年的1月,其他三个“节点”加入到了这个网络。
然后是电子邮箱,几年之后,在七十年代后期一个所谓的核心通信协议即TCP / IP 协议,在80年代域名系统和在1990年万维网-现在的第二个最流行的应用背后电子邮件出现了。
互联网的扩大,超出其最初的军事和教育领域延伸到了企业和全球的家庭中。
今天,克罗克仍然为互联网工作,为协作设计更好的工具。
作为互联网管理机构的安全委员会主席,他正试图保卫系统的核心处理免受来自外部的威胁。
他认识到,他帮助建立的互联网工作远未完成,而这些改变是在商店,以满足多媒体日益增长的需求。
网络供应商现唯一的“最佳努力”是在提供的数据包上。
克罗克说,需要有更好的保障,以防止跳过和过滤现在常见的视频。
瑟夫,现在在MCI公司说,他希望他建立了有内置安全的互联网。
微软,雅虎和美国在线公司,和其他的一些,目前正在努力改进网络,使邮件发送者可以验证的方式发送以降低使用虚假地址发送垃圾邮件。
瑟夫说,现在正在制定许多功能,是不可能立即解决计算速度慢和互联网管道窄,或带宽问题。
2.数字证书数字证书是数据文件用于在互联网上确定人的身份及电子资产。
它们可以进行安全地,加密地在线交流,并经常用于保护网上交易。
数字证书是由可信任的第三方称为证书颁发机构( CA )验证的。
该CA的身份验证是证书持有人与“标志”证书,以证明它没有被伪造或以任何方式变造。
数字证书的新用途数字证书是目前用来为无线连接提供安全和验证,最新的团体之一硬件制造商也使用它们。
不久前, VeriSign公司宣布它的Cable Modem认证服务,使硬件制造商将数字证书嵌入到电缆调制解调器中,以帮助防止通过设备的克隆的盗版宽带服务。
使用VeriSign的软件,硬件制造商可以产生相应的密钥和数字证书,制造商或有线电视服务供应商可以使用自动识别个人调制解调器。
这种验证不仅保护了现有内容和服务的价值,而且还定位了有线电视系统运营商将广泛地提供一系列新的内容,应用和增值服务到市场中。
当数字证书被CA签署,其所有者可以使用它作为电子护照,以证明自己的身份。
它可以将提交给需要安全访问的网站,网络或个人。
身份信息嵌入在证书中包括持有人的姓名和电子邮件地址,姓名的CA ,序号和,任何激活码和到期数据证书或证书的期望数据。
当一个用户的身份由CA 验证,证书持有人就可以使用公共的密钥来保护这些数据。
公共密钥也聘用证书, Web服务器使用它确认用户浏览器的一个网站的真实性。
当用户想发送机密信息到Web服务器,如在网上交易时的信用卡号码,浏览器会使用公共密钥在服务器的数字证书上,以验证其身份。
公钥密码角色公共密钥是其中二分之一市民加密的一对密钥用于密码,它提供了基础数字证书。
公共密钥加密使用匹配原则为公共和私人密钥进行加密和解密。
这些钥匙有一个数值,被一个争夺资讯算法使用,让用户用相应的解密密钥只进行只读操作。
一个人的公共密钥被其他人用来加密信息就只是这个人。
当他收到的信息的时候,他可以使用他相应的保密的来解密数据。
一个人的公共密钥可以分散但却不会损坏私人钥匙。
使用数字证书的Web服务器可以使用它的私钥,以确保只有它可以解密机密信息然后把它发送到互联网上。
Web服务器的证书由自签发CA证书验证,用来确认发行的CA 。
CA证书是预先安装在大多数主流的Web浏览器上,包括Microsoft Internet Explorer和Netscape Navigator。
CA证书告诉用户,他们在提交信息给浏览器时是否可以信任Web服务器证书。
如果Web服务器证书的确认是有效的,该证书的公钥是用来保证使用安全套接字层( SSL )技术的服务器信息。
数字证书被SSL安全协议使用,以创造一个安全的“管”在两方之间进行机密地沟通。
SSL被用于大多数主流Web浏览器和商业Web服务器。
3.数字银包----数字钱包软件,使用户能够在网络上支付货物。
它拥有信用卡号码和其他个人信息,如送货地址。
一旦输入后,数据自动商业网站填充表单。
----当使用电子钱包购买物品时,消费者不必在每个站点上都填写订单表格,因为信息已经被存储和自动更新了,并跨越商业网站进入命令领域。
消费者在使用数字钱包时也有很有利处的,因为他们的信息由一家私营软件代码进行加密或保护。
商家处理防止欺诈行为来获益。
----数字钱包是免费提供给消费者的,他们也比较容易获得。
例如,当一个消费者在商家网站作出购买时以处理服务器端数字钱包时,他的类型、名称和付款和运货信息就被写入商家自己的表单中。
一个消费者年底购买时,会被要求注册一个为今后方便采购的他选择进入的一个用户名和密码的钱包。
用户还可以在钱包供应商的网站上收购钱包。
----虽然钱包是免费供应给消费者的,供应商会向商户收取钱包。
----数字钱包有两种主要类型:客户端和服务器端。
在这些地方的钱包,工作仅在特定的商家网站而和那些商人无关。
----据分析家分析,基于客户端的数字钱包,两种类型的旧钱包是被废弃的,因为它们需要用户下载和安装软件。
用户需要下载应用、投入付款和邮寄资料信息。
在这一点上,是在用户的硬盘驱动器上进行信息的安全保护和加密。
用户可以在当地保留控制他的信用卡和个人信息。
----随着基于服务器的钱包,用户填写自己的个人信息,以及自动下载Cookie。
(Cookie是一个文本文件,其中包含相关用户。
)在这种情况下,消费者信息驻留在服务器的一个金融机构或数字钱包供应商中,而不是在用户的个人电脑中。
----服务器端钱包对商家提供了保证不被欺诈,因为它们使用证书来验证所有缔约方的身份。
当一方当事人进行交易时,它向其他有关各方提出证书。
证书是电子信息的附件用于核实当事人的身份,并提供答复接收手段的编码。
----此外,持卡人的敏感数据通常是存放在一家金融机构中的,因此具有额外的安全感,因为金融环境中普遍提供最高程度的安全性。
----即使提供了方便的网上购物钱包,但尚未普遍使用。
----标准是数字钱包成败的关键。
----上个月,一些主要厂商,包括微软,Sun微系统公司和美国在线宣布认可了新的EMCL要求标准,或者说是电子商务建模语言,给网络商户提供的标准化方式收集电子数据的航运,结算和付款。
4.网格存储定义:网格存储,类似于网格计算,是一种新部署和管理分布在多个存储系统和网络的模式,从而可以有效地利用现有的存储容量,而不需要一个大的,集中的交换系统。
事实上,网格是一种网状网络,在其中没有一个单一的集中式交换机或集线器控制路由。
网格在尺寸和性能上提供了几乎无限的可扩展性,因为它们没有受到需要越来越大的中央交换机的限制。
网格网络可以降低生产成本和提高生产可靠行和灵活的结构性。
计算机网络应用网格的概念,可以让我们充分利用现有资源,但在众多分布式计算机中不使用动态分配和释放的能力的资源,带宽和处理。
一个计算网格可以跨地点,组织,机器结构和软件的界限,提供电力,协作和信息获取连接用户。
大学和研究设施使用的是相当于从PC , Macintosh电脑和Linux盒中的超级计算机能力的电网建设。
在网格计算应运而生之后,在出现有利于分布式数据存储的类似模式之前它只是一个时间问题。
大部分企业的存储网络是建立在核心配置上的,所有的服务器和存储设备连接到一个单一的中央交换机。
相比之下,网格拓扑结构,建立与网络相互关联的小开关,可以大规模的增加带宽,并继续提供更好的可靠性和更高的性能和连通性。
什么是网格存储?基于现有的和拟议的产品,网格存储系统应包括以下内容:模块化存储阵列:这些系统使用串行ATA磁盘连接整个存储网络。
该系统可阻止面向存储的阵列或网络附加存储网关和服务器。
通用虚拟层:存储必须以一个单一的逻辑资源组织提供给用户。
数据冗余和可用性:数据的多个副本之间应该在网格上存在节点,建立冗余的数据访问和可用性防止部分的失败。
共同管理:一个在所有节点单一的管理水平应该涵盖数据的安全性,流动和移民,需求的能力和供应。
简体平台/管理架构:由于普通的管理是非常重要的,这些任务涉及到行政部门应当以模块化的方式组织,允许在网格自动发现新节点,自动化卷和文件管理。
三个基本的优点应用网格拓扑结构,以存储网络提供了若干好处,包括下列内容:可靠性。
一个设计良好的网格网络是非常坚韧的。
而不是仅仅在两个节点之间提供两个路径,网格在彼此存储节点之间提供了多种途径。
这使得您能够轻松地服务和替换发生故障部件的,对系统的可用性或宕机的情况下影响极小。
性能。
同样的因素导致的可靠性还可以提高性能。
不需要集中开关与许多港口消除潜在的性能瓶颈,并应用负载平衡技术的多个路径为整个网络提供一致的性能。
可扩展性。
这很容易扩大网格网络,利用廉价的开关,低端口数,以适应更多的服务器,从而提高性能,带宽和容量。
从本质上讲,网格存储是一种尺度,而不是行动,利用相对廉价的存储构建模块。
5.浅谈3G3G (第三代)是一个规范由国际电讯联盟制定的第三代移动通信技术,(模拟蜂窝是第一代,第二个数字PCS )。
第三代数字蜂窝技术增加带宽承诺:高达384K比特/秒时,设备是静止或以行人速度移动, 128K的比特/秒的汽车,以及2M比特/秒的固定应用。
GSM(全球移动通信系统)是一个开放的,非专有系统,是目前在世界各地占主导地位的手机技术。
采用GSM变化的时分多址( TDMA )协议。
数据是数字化的,压缩的,然后用其他两个用户数据流发出一个频道,在其各自时隙。
它可以工作在900 MHz或1800 MHz 和1900 - MHz频率的波段。