(完整版)勾股定理拔高题

合集下载

勾股定理拔高训练

勾股定理拔高训练

1。

构造几何图形解决问题 (1)求25)8(1x 22+-++x 最小值 (2)求9)12(4x 22+-++x 的最小值2。

某人从A 点观察某高处B 点的仰角为30度, 沿水平方向走80米的C 点观察B 点的仰角为45度, 求AB 、CB 的距离是多少3、已知:2323-+=a ,2323+-=b ,求代数式223b ab a +-的值。

4。

公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学, AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉 机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度 是18千米/小时,那么学校受到影响的时间为多少5。

ΔABC 中,AB=AC=20,BC=32,∠DAC=90。

,求BD6。

长为4m 的梯子搭在墙上与地面成45°角, 作业时调整成60°角(如图所示), 则梯子的顶端沿墙面升高了 ______m7。

在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C 地南偏西30°方向,则A、C两地的距离为8。

如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为9。

如图,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东45°方向上.(1)求出A,B两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置(保留清晰的作图痕迹,并简要写明作法)10。

小明要测量河内小岛B到河边公路l的距离,在A点测得仰角30°,在C点测得仰角60°,又测得AC =米,则小岛B到公路l的距离为()米11。

八年级数学勾股定理拓展提高(勾股定理)拔高练习(含答案)

八年级数学勾股定理拓展提高(勾股定理)拔高练习(含答案)

八年级数学勾股定理拓展提高(勾股定理)拔高练习试卷简介:本测试卷共有13道题,其中5道填空题,5道解答题,3道证明题,分四个板块,板块一为回顾练习,回顾暑期学到的关于勾股定理的主要知识,相关题目为教材1、2、3题;板块二为直角三角形六大性质,勾股定理只是直角三角形六大性质之一,将直角三角形的性质一网打尽,相关题目为教材4、5、6、8题;板块三为折叠专题,此类题为中考常考题,需熟练掌握,相关题目为教材9、10、12题;板块四为勾股定理实际应用,有典型的拱桥问题,台风问题,趣味性强,相关题目为教材14、16题。

学习建议:1.题目中有关于直角三角形边的关系,就要想到用勾股定理。

2.折叠专题要注意解题套路,第一步:找准折痕;第二步:找准相等线段,相等角度;第三步:找直角三角形。

3.勾股定理实际应用要能根据题意和生活经验抽象出数学模型,然后用勾股定理相关知识解答。

一、填空题(共5道,每道4分)1.教材1题:△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是_______.答案:第一种情况:当高AD在三角形内部时,如图所示,利用勾股定理求出:BD=9,CD=5,BC=14,所以周长为13+14+15=42第二种情况:当高AD在三角形外部时,如图所示,同样由勾股定理求出周长为32所以,答案为42或32解题思路:此题没有给出图形,需要自己画图,所以要分类讨论:高在内部,高在外部。

易错点:只想到第一种情况,忽略了高在外部的情况,导致少一种情况。

试题难度:三颗星知识点:三角形2.教材3题:在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______.答案:解:由于△ABC≌△CDE,所以BC=DE∵S1是以AB为边长的正方形的面积,S2是以DE为边长的正方形的面积∴S1+S2=AB2+DE2=AB2+BC2=AC2=1,同理:S3+S4=3,故S1+S2+S3+S4=4.解题思路:要能从图形中看出那两个三角形是全等的,利用全等后对应边相等来运用勾股定理易错点:看不出哪两个三角形是全等的关系试题难度:二颗星知识点:勾股定理的应用3.教材4题:△ABC周长是24,M是AB的中点,MC=MA=5,则△ABC的面积是_____.答案:解:一边上的中线等于他的一半,则他一定是一个直角三角形。

勾股定理怎么算_勾股定理常用11个公式_勾股定理拓展提高之动态几何(勾股定理)拔高练习

勾股定理怎么算_勾股定理常用11个公式_勾股定理拓展提高之动态几何(勾股定理)拔高练习

八年级数学勾股定理拓展提高之动态几何(勾股定理)拔高练习一. 计算题(本大题共8小题,共40分)1.(本小题5分)如图,某人在B处通过平面镜看见在B正上方3米处的A物体,已知物体A到平面镜的距离为2米,问B点到物体A的像A′的距离是多少?核心考点:勾股定理则 =_____.核心考点:勾股定理3.(本小题5分)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?核心考点:勾股定理轴对称的性质的最小值是?核心考点:勾股定理轴对称的性质5.(本小题5分)如图:正方形ABCD中有一点P,且PA=1,PB=2,PC=3,求∠APB的度数.核心考点:勾股定理旋转的性质梯形ABCD的面积.核心考点:勾股定理旋转的性质7.(本小题5分)如图,P是等边三角形ABC内一点,AP=3,BP=4,CP=5,求∠APB的度数.核心考点:勾股定理旋转的性质CE=4 ,求DE 的长.(2)若P是BC边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P是BC边延长线上一点,线段AB、AP、BP、CP之间有什么样的关系?请证明你的结论.核心考点:等腰三角形的性质勾股定理线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长核心考点:三角形三边关系勾股定理11.(本小题10分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,E、F分别是BC上两点,若∠EAF=45°,试推断BE、CF、EF之间的数量关系,并说明理由.核心考点:勾股定理旋转的性质12.(本小题10分)如图,在Rt13.(本小题10分)(2008天津)已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(1)当扇形CEF绕点C在∠ACE的内部旋转时,如图①,求证:MN²=AM²+BN²(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN²=AM²+BN²是否仍然成立?若成立,请证明;若不成立,请说明理由核心考点:旋转的性质运动变化型问题2AD=BD+CD核心考点:勾股定理旋转的性质勾股定理试题一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣52.(2016•台州)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.3.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.44.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5C.3,4,6 D.3,4,75.(2016•达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.6.(2016•哈尔滨)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里7.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+18.(2015•淄博)如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条9.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.510.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4参考答案与试题解析一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣5【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长【解答】解:如图,延长BG交CH于点E在△ABG和△CDH中∴△ABG≌△CDH(SSS)AG2+BG2=AB2∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°∴∠1+∠2=90°,∠5+∠6=90°又∵∠2+∠3=90°,∠4+∠5=90°∴∠1=∠3=∠5,∠2=∠4=∠6在△ABG和△BCE中∴△ABG≌△BCE(ASA)∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°∴GE=BE﹣BG=8﹣6=2同理可得HE=2在RT△GHE中,GH===2故选:B【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键。

勾股定理拔高题

勾股定理拔高题

勾股定理培优题分类讨论思想1、已知在△ABC 中,AB=17,AC=10,BC 边上的高等于8,则△ABC 的周长为 .2、在Rt △ABC 中,已知两边长为5、12,则第三边的长为3、等腰三角形的两边长为10和12,则周长为________,底边上的高是________,面积是_________。

4.一个直角三角形,有两边长分别为6和8,下列说法正确的是( )A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为10方程思想5.如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于6.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与D重合,折痕为EF ,则△ABE 的面积为( )cm 27.已知:将正长方形纸片ABCD 折叠两次,第一次折痕为AC ,第二次折痕为AE ,且点D 落在F 处.若长方形长为4,宽为3,求DE .8.已知:如图,△ABC 中,∠C =90º,AD 是角平分线,CD =15,BD =25.求AC 的长.A C DB E 1题 A BCDE FAB E F DC 第2题9、如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆孔中心A 和B 的距离为________。

6、7、如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。

3.如图,ADC ∆和BCE ∆都是等边 30=∠ABC ,试说明:222BC AB BD +=9、如图,在△ABC 中,∠B=90°,AB=6cm ,BC=8cm ,点P 从点A 出发沿AB 边向点B 以1cm/秒的速度移动,点Q 从点B 出发沿BC 边向点C 以2cm/秒的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,经过多长时间,使△PBQ 的面积为8cm2?(2)如果P 、Q 分别从A 、B 同时出发,当P 、Q 两点运动几秒时,PQ 有最小值,并求这个最小值.C 'FE OD CB AE D C BA。

勾股定理拔高题

勾股定理拔高题

1、如图①,美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c.如图②,现将这四个全图②等的直角三角形紧密拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积()
2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=6,AB=10,则CE的长为()
3、如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()
A.B. C.D.4.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是()
5.如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上,AB边如图所示,则使△ABC 是直角三角形的点C有()
6.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=.。

八年级数学勾股定理拓展提高(勾股定理)拔高练习

八年级数学勾股定理拓展提高(勾股定理)拔高练习

八年级数学勾股定理拓展提高(勾股定理)拔高练习一、填空题(共5道,每道4分)1.教材1题:△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是_______.2.教材3题:在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______.3题图5题图3.教材4题:△ABC周长是24,M是AB的中点,MC=MA=5,则△ABC的面积是_____.4.教材5题:将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.5.教材10题:矩形ABCD中,BC=4,DC=3,将该矩形沿对角线BD折叠,使点C落在点F处,求EF的长_____.二、解答题(共5道,每道10分)1.教材9题:如图,有一个直角三角形纸片,两直角边AC=8cm,BC=6cm,现将直角边BC沿直线BD折叠,使它落在斜边AB上的点C′处,求CD的长以及折痕BD的平方1题图2题图2.教材8题:如图,已知DE=m,BC=n,∠EBC与∠DCB互余,求+的值.3.教材12题:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B´处,点A对应点为A´,且B´C=3,求CN和AM的长.3题图4题图5题图4.教材14题:如图,某隧道的截面是一个半径为米的半圆形,一辆高米,宽3米的卡车能通过该隧道吗?5.教材16题:如图,某沿海城市A接到台风警报,在该市正南方向150km的B处有一台风中心正以20km/h的速度向BC方向移动,已知城市A到BC的距离AD=90km(1)台风中心经过多长时间从B点移到D点(2)如果在距台风中心30km的圆形区域内都有受到台风破坏的危险,为让D点的游人脱离危险,游人必顺在接到台风警报后的几小时内撤离(撤离速度为6km/h)三、证明题(共3道,每道10分)1.教材2题:如图,在正方形ABCD中,E是DC的中点,F为BC上的一点且BC=4CF,试说明△AEF是直角三角形.1题图2题图3题图2.作业1题:如图,已知P是矩形ABCD内任一点,求证:PA2+PC2=PB2+PD23.教材6题:如图所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.。

勾股定理拔高题

勾股定理拔高题

勾股定理培优题(3、28)分类讨论思想1、已知在△ABC 中,AB=17,AC=10,BC 边上的高等于8,则△ABC 的周长为 .2、在Rt △ABC 中,已知两边长为5、12,则第三边的长为3、等腰三角形的两边长为10和12,则周长为________,底边上的高是________,面积是_________。

4.一个直角三角形,有两边长分别为6和8,下列说法正确的是( )A. 第三边一定为10B. 三角形的周长为25C. 三角形的面积为48D. 第三边可能为10方程思想5.如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于6.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与D重合,折痕为EF ,则△ABE 的面积为( )cm 27.已知:将正长方形纸片ABCD 折叠两次,第一次折痕为AC ,第二次折痕为AE ,且点D 落在F 处.若长方形长为4,宽为3,求DE .8.已知:如图,△ABC 中,∠C =90º,AD 是角平分线,CD =15,BD =25.求AC 的长.A C DB E 1题 A BCDE FAB E F DC 第2题9、(2007•江苏)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆孔中心A 和B 的距离为________。

6、7、如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。

3.如图,ADC ∆和BCE ∆都是等边 30=∠ABC ,试说明:222BC AB BD +=9、如图,在△ABC 中,∠B=90°,AB=6cm ,BC=8cm ,点P 从点A 出发沿AB 边向点B 以1cm/秒的速度移动,点Q 从点B 出发沿BC 边向点C 以2cm/秒的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,经过多长时间,使△PBQ 的面积为8cm2?(2)如果P 、Q 分别从A 、B 同时出发,当P 、Q 两点运动几秒时,PQ 有最小值,并求这个最小值.C 'FE OD CB AE D C BA。

第一章勾股定理拔高题

第一章勾股定理拔高题

第一章勾股定理拔高题1如图,一只蜘蛛沿长方体表面从长方体的一个端点A爬到另一个端点C1,已知长方体的长、宽、高分别是AB=4cm、BC=3cm、CC1=5cm,求蜘蛛爬行的最短距离_________________2如图,有一圆柱,其高为8cm,它的底面周长为16cm,在圆柱外侧距下底1cm的A处有一只蚂蚁,它想得到距上底1cm 的B处的食物,则蚂蚁经过的最短距离为___________________3为筹备迎春晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠上红色油纸,如图所示,已知圆筒高为108cm,其横截面周长为36cm,如果在表面缠上4圈油纸,最少应裁剪_______________长的油纸(油纸宽度忽略不计)4如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.5如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP 最短,求EP+BP的最短长度_______________________6在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺。

突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深______________7如图是一个直角三角形纸片,∠C=90°,两直角边长分别是3cm,4cm.现要给它再拼接一个完全一样直角三角形纸片,两纸片不重叠且无缝隙,使得拼成的图形形状是等腰三角形,则拼成的等腰三角形的周长为________________.8在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是.9如图,长方形纸片ABCD沿对角线AC折叠,设点D落在点D′处,BC交AD′于点E,AB=6cm,BC=8cm,则S阴影=__________________.10一辆装满货物的卡车高2.5米,宽1.6米,要开进厂门,如图所示,厂门的顶部呈半圆(AB为直径),下部呈长方形,问这辆卡车能否顺利通过厂门?为什么?11如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求EC的长.12如图所示的一块地,已知AD=4cm,CD=3cm ,AD⊥DC,AB=13cm,BC=12cm求这块地的面积?13如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.14如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC,F为CD的中点,连接AF、AE,问△AEF是什么三角形?请说明理由.15如图,A、B是一条河l同侧的两个村庄,且A、B两个村庄到河的距离分别是300m和500m,两村庄之间的距离AB为d(已知d2=400000m2),现要在河边l上建造一水厂,向A、B两村送水,铺设水管的工程费用为每米200元,修建该工程政府出资8万元,问两个村庄村民自筹资金至少多少元?16如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用_______________秒17如图,在△ABC中,∠C=90°,AC=2,BC=1,点A,C分别在x轴、y轴上,当点A在x 轴运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为___________________.18将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是_____________________19长为25m的云梯AB斜靠墙上(墙与地面垂直)。

勾股定理——数学拔高

勾股定理——数学拔高

1、直角三角形两直角边和为7,面积为6,则斜边长为()A. 5B.C. 7D.2、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米。

一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米 D.14米3、如图1,点A所表示的数是()A 、1.5B 、 C、2 D、4、图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是 ( )A、13B、26C、47D、945、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()6、如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A、B、 C、D、9、如图中的螺旋由一系列直角三角形组成,则第n个三角形的面积为( )A.nB.C.D.10、如图,将边长为的等边△ABC折叠,折痕为DE,点B与点F重合,EF和DF分别交于点M、N,DF AB,垂足为D,AD=1,则重叠部分的面积为 .11、一个直角三角形的两边长分别为,,则其周长为。

12、如图,+1个边长为2的等边三角形有一条边在同一直线上,设△的面积为,△的面积为,…,△的面积为,则= ;=____ (用含的式子表示).13、如图,在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=___ __.14、如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°且DC=2AB,分别以DA、AB、BC为边向梯形外作正方形,其面积分别为、、,则、、之间的关系是。

15、如图,圆柱形容器高,底面周长为,在杯内壁离杯底的点处有一滴蜂蜜,此时已知蚂蚁正好在杯外壁,离杯上沿与与密封相对的处,则蚂蚁从外壁处到达内壁处的最短距离为。

八年级数学上册第1章勾股定理拔高练勾股定理的应用新版北师大版

八年级数学上册第1章勾股定理拔高练勾股定理的应用新版北师大版
第一章 勾股定理 培优拔高练 勾股定理的应用
1. [2024襄阳襄州区阶段练习]我国古代数学家赵爽为了证明
勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦
图”.如图是由弦图变化得到的,它是由八个全等的直角三
角形拼接而成的,记图中正方形 ABCD ,正方形 EFGH ,
正方形 MNKT 的面积分别为 S1, S2, S3, 若EF =6,则 S1+ S2+ S3的值是( D )
123
因为在△ ABC 中,∠ BAC =90°, AB =6, BC =10, 所以 AC =8, CQ = AB = AD =6. 所以 PB = AC = AI =8. 所以 IP =8+6+8=22, DQ =6+8+6=20. 所以长方形 KLMJ 的面积=22×20=440.
123
3. 【问题探究】(1)如图①,在锐角三角形 ABC 中,分别以 AB , AC 为边向外作等腰直角三角形 ABE 和等腰直角三 角形 ACD ,使 AE = AB , AD = AC ,∠ BAE =∠ CAD =90°,连接 BD , CE ,请判断 BD 与 CE 的数量关系,并说明理由;
( B) A.拨:如图,延长 AB 交 KL 于 P ,延长 AC 交 LM 于 Q , 由题意得,∠ BAC =∠ BPF =∠ FBC =90°, BC =BF , 所以∠ ABC +∠ ACB =90°=∠ PBF +∠ ABC . 所以∠ ACB =∠ PBF . 所以△ ABC ≌△ PFB (AAS).所以 PB = AC . 同理可得△ ABC ≌△ QCG . 所以 CQ = AB .
123
解: BD = CE . 理由如下: 因为∠ CAD =∠ BAE =90°, 所以∠ BAD =∠ EAC =90°+∠ BAC . 因为 AB = AE , AD = AC , 所以△ ABD ≌△ AEC (SAS). 所以 BD = CE .

《勾股定理》拔高题

《勾股定理》拔高题

1《勾股定理》 --- ①1.满足a 2+ b 2= c 2的三个 ,称为勾股数。

注意:①勾股数必须是正整数②一组勾股数扩大相同的正整数倍后,仍是勾股数。

2.填写常见勾股数:(3,4, )(5, ,13 ) ( 6,8, ) ( 7,24, ) ( 8,15, )(9,12, )3.下列各组数据中的三个数,可构成直角三角形的是( )A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,174.若线段a ,b ,c 组成直角三角形,则它们的比可能是( )A.2∶3∶4B.3∶4∶6C.5∶12∶13D.4∶6∶7 5.下面的三角形中:①△ABC 中,∠C=∠A -∠B ;②△ABC 中,∠A :∠B :∠C=1:1:2; ③△ABC 中,三边长a :b :c=1:1:2; ④△ABC 中,三边长分别为8,15,17.⑤若三角形的一个内角等于另外两个内角之差,那么这个三角形是直角三角形。

其中是直角三角形的个数有( ).A .1个B .2个C .3个D .4个 6.在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________; ④若a ∶b=3∶4,c=10则S △ABC =________。

7.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 .8.变式:已知直角三角形的两边长为3、2,则另一条边长是9.已知直角三角形两直角边长分别为5和12, 斜边上的高是 .10. 以Rt △ABC 的三边为直径分别向外作三个半圆,三个半圆的面积分别是S1、S2中、S3之间的关系是11.四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。

《勾股定理》 --- ①1.满足a 2+ b 2= c 2的三个 ,称为勾股数。

(完整版)勾股定理拔高题

(完整版)勾股定理拔高题

勾股定理拔高题一.选择题1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定 B.C.17 D.17或2.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.183.Rt△ABC中∠A=90°,∠A,∠B,∠C的对边分别为a,b,c,则()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.无法确定4.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:35.同一平面内有A、B、C三点,A、B两点相距5cm,点C到直线AB的距离为2cm,且△ABC为直角三角形,则满足上述条件的点C有()A.2个B.4个C.6个D.8个6.在四边形ABCD中,AB=1,BC=,CD=,DA=2,S△ABD=1,S△BCD=,则∠ABC+∠CDA等于()A.150°B.180°C.200°D.210°7.已知△ABC中,∠A=60°,BC=a,AC=b,AB=c,AP是BC边上的中线,则AP的长是()A.B.C.D.8.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或849.如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=4,AD=7,则AB的长为()A.10 B.5 C.2D.210.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=,则AD边的长为()A.B.C.D.二.填空题11.如图,△ABC中,CB=CA,∠A﹣∠B=90°,则∠C=.12.如图,矩形ABCD中,AB=4,BC=7,过顶点A作∠BAD的平分线交BC于E,过E作EF⊥ED交AB于F,则EF的长等于.13.在△ABC中,a、b、c分别是∠A、∠B、∠C所对的边长.如果∠A=105°,∠B=45°,,那么c=.14.如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=.15.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.16.如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD=9,AE⊥BC于E,AE=8,则CD的长为.17.如图,已知四边形ABCD中,AC和BD相交于点O,且∠AOD=90°,若BC=2AD,AB=12,CD=9,四边形ABCD的周长是.18.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.19.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,则AC=.20.如图,在一张长方形ABCD纸张中,一边BC折叠后落在对角线BD上,点E为折痕与边CD的交点,若AB=5,BC=12,求图中阴影部分的面积.21.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3cm,AB=8cm,求图中阴影部分的面积.三.解答题22.已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.(1)求证:GE=GF;(2)若BD=1,求DF的长.23.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长.24.细心观察下图,认真分析各式,然后解答问题.()2+1=2,S1=()2+1=3,S2=()2+1=4,S 3=(1)请用含n (n 是正整数)的等式表示上述变化规律;(2)推算出OA 10的长;(3)求出S 12+S 22+S 22+…+S 102的值.25.长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.27.如图,ADC ∆和BCE ∆都是等边ο30=∠ABC ,试说明:222BC AB BD +=D C BA。

初二勾股定理拔高题(最新整理)

初二勾股定理拔高题(最新整理)

初二勾股定理拔高题1、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A2m B.3mC.6mD.9m图3'2、将一个有45度角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图(3),则三角板的最大边的长为A. 3cmB. 6cmC. 32cmD. 62cm3、如图3,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A .21 B .2 C .3 D .44、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6米. 当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.(第1题图)A5、将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积是________cm 2.6、如图,在直角△ABC 中, ∠ACB=90,CD ⊥AB,垂足为D,点E 在AC 上,BE 交CD 于点G,EF ⊥BE 交AB 于点F,若AC=mBC,CE=nEA(m,n 为实数).试探究线段EF 与EG 的数量关系.(1)如图(14.2),当m=1,n=1时,EF 与EG 的数量关系是 证明:(2)如图(14.3),当m=1,n 为任意实数时,EF 与EG 的数量关系是 证明(3)如图(14.1),当m,n 均为任意实数时,EF 与EG 的数量关系是 (写出关系式,不必证明)7、如图,四边形ABCD 中,∠ACB=90O ,CD ⊥AB 于点D ,若AD=2,BD=8, 求CD 的长度。

八年级数学勾股定理拓展提高(勾股定理) 拔高练习(含答案)

八年级数学勾股定理拓展提高(勾股定理) 拔高练习(含答案)

八年级数学勾股定理拓展提高(勾股定理)拔高练

试卷简介:本试卷为卢老师八年级线下班第一讲的测试卷,在看卢老师的课程之前,先用这套试卷来检验一下自己,共一道题,为常考题型:拱桥问题,这里的易错点有两个,一是拱桥半径找错;二是不知如何比较
学习建议:先回顾一下教材中勾股定理这一章节的知识
一、解答题(共1道,每道100分)
1.一辆卡车装满货物后,高4米,宽
2.8米,这辆卡车能通过横截面如图所示(上方是一个半圆)的隧道吗?
答案:能通过
解题思路:解:∵卡车在隧道中间位置能通过的可能性最大
∴如图,O为EF的中点,OE=1.4m,OG为圆的半径,OG=2m
在直角△OEG中
∵(4-2.6)²=1.4²=1.96,2.04>1.96
∴在相同宽度下隧道的高度高于卡车的高度,卡车能通过该隧道
易错点:一、半径找错;二、比较完,下结论的时候出错试题难度:三颗星知识点:勾股定理的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理拔高题
一.选择题
1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()
A.不能确定 B.C.17 D.17或
2.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()
A.12 B.13 C.16 D.18
3.Rt△ABC中∠A=90°,∠A,∠B,∠C的对边分别为a,b,c,则()
A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.无法确定
4.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:3
5.同一平面内有A、B、C三点,A、B两点相距5cm,点C到直线AB的距离为2cm,且△ABC为直角三角形,则满足上述条件的点C有()A.2个B.4个C.6个D.8个
6.在四边形ABCD中,AB=1,BC=,CD=,DA=2,S△ABD=1,S△BCD=,则∠ABC+∠CDA
等于()A.150°B.180°C.200°D.210°
7.已知△ABC中,∠A=60°,BC=a,AC=b,AB=c,AP是BC边上的中线,则AP的长是()A.B.C.D.
8.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()
A.84 B.24 C.24或84 D.42或84
9.如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=4,AD=7,则AB的长为()A.10 B.5 C.2D.2
10.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=,则AD边的长为()A.B.C.D.
二.填空题
11.如图,△ABC中,CB=CA,∠A﹣∠B=90°,则∠C=.
12.如图,矩形ABCD中,AB=4,BC=7,过顶点A作∠BAD的平分线交BC于E,过E作EF⊥ED交AB于F,则EF的长等于.
13.在△ABC中,a、b、c分别是∠A、∠B、∠C所对的边长.如果∠A=105°,∠B=45°,,那么c=.
14.如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=.15.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.
16.如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD=9,AE⊥BC于E,AE=8,则CD的长为.17.如图,已知四边形ABCD中,AC和BD相交于点O,且∠AOD=90°,若BC=2AD,AB=12,CD=9,四边形ABCD的周长是.
18.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.19.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,则AC=.
20.如图,在一张长方形ABCD纸张中,一边BC折叠后落在对角线BD上,点E为折痕与边CD的交点,若AB=5,BC=12,求图中阴影部分的面积.
21.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3cm,AB=8cm,
求图中阴影部分的面积.
三.解答题
22.已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.
(1)求证:GE=GF;
(2)若BD=1,求DF的长.
23.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长.
24.细心观察下图,认真分析各式,然后解答问题.
()2+1=2,S1=
()2+1=3,S2=
()2+1=4,S 3=
(1)请用含n (n 是正整数)的等式表示上述变化规律;
(2)推算出OA 10的长;
(3)求出S 12+S 22+S 22+…+S 102的值.
25.长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.
27.如图,ADC ∆和BCE ∆都是等边ο30=∠ABC ,
试说明:222BC AB BD +=
D C B
A。

相关文档
最新文档