(完整word版)高一数学中的恒成立问题

合集下载

恒成立能成立问题总结(详细)

恒成立能成立问题总结(详细)

恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。

这类问题在各类考试以及高考中都屡见不鲜。

感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。

在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。

一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:例1 若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范 围。

解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。

由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。

小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。

练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。

(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。

(答案:或)(二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。

对于二次函数)0(0)(2≠>++=a c bx ax x f 有:(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a(3)当0>a 时,若],[0)(βα在>x f 上恒成立⇔若],[0)(βα在<x f 上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(4)当0<a 时,若],[0)(βα在>x f 上恒成立⎩⎨⎧>>⇔0)(0)(βαf f若],[0)(βα在<x f 上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 例2若关于x 的二次不等式:01)1(2<-+-+a x a ax 的解集为R ,求a 的取值范围.解:由题意知,要使原不等式的解集为R ,即对一切实数x 原不等式都成立。

恒成立问题题型大全(详解详析)

恒成立问题题型大全(详解详析)

不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。

恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。

类型2:设)0()(2≠++=a c bx ax x f (1)当>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf aba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。

类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。

一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

(完整word版)恒成立与存在性问题的解题策略

(完整word版)恒成立与存在性问题的解题策略

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a ,b]上的值域为A ,g (x)在区间[c,d ]上的值域为B ,则A B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数R;某不等式的解为一切实数;某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

高一数学培优-恒成立问题

高一数学培优-恒成立问题

奥美高中2018级高一数学培优讲义——不等式恒成立问题一.不等式恒成立问题的处理方法1.利用根的判别式 设()()02≠++=a c bx ax x f(1)()0>x f 在R x ∈上恒成立⇔0>a 且0<∆; (2)()0<x f 在R x ∈上恒成立⇔0<a 且0<∆.例 1.对于任意实数x ,不等式()()042222<----x a x a 恒成立,则实数a 的取值范围是________.2.转换求函数的最值(1)若不等式()A x f >在区间D 上恒成立⇔在区间D 上()min f x A >(注:若()f x 的最小值不存在,则()0f x >恒成立⇔()f x 的下界大于0) (2)若不等式()B x f <在区间D 上恒成立⇔在区间D 上()max f x B <(注:若()f x 的最大值不存在,则()0f x <恒成立⇔()f x 的上界小于0)例2.设()222+-=ax x x f ,当[)+∞-∈,1x 时,都有()a x f ≥恒成立,求实数a 的取值范围.例3.R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时, 有()()022sin 2cos 2>--++a f a f θθ恒成立,求实数a 的取值范围.3.分离参数法(1)将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2)求()f x 在x D ∈上的最大(或最小)值;(3)解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围.例4.当(1,2)x ∈时,不等式042<++ax x 恒成立,求实数a 的取值范围.例5.已知(],1x ∈-∞时,不等式()21240x x a a ++-⋅>恒成立,求实数a 的取值范围.4.主参换位法在不等式的恒成立问题中,有一类题型是题中的参数如a 、m 、k 等的范围是已知的,而题要求的反而是变量x 的范围.这类题型中,由于已知范围的变量是以前我们所接触的参数,因而题中的函数结构也就发生了改变,此时函数是以参数为自变量的函数.一般来说,我们在观察这类恒成立问题时,哪个变量的范围是已知的,哪个就是该函数的自变量. 例6.若不等式0224>+⋅-xx a 对于]3,(-∞∈a 恒成立,求实数x 的取值范围.例7.对于满足2a ≤的所有实数a ,求使不等式212x ax a x ++>+恒成立的x 的取值范围.5.数形结合若所给不等式进行合理的变形化为()()x g x f ≥(或()()x g x f ≤)后,能非常容易地画出不等号两边函数的图象,则可以通过画图直接判断出结果.例8.若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________.例9.当()2,1∈x 时,不等式()x x a log 12<-恒成立,则实数a 的取值范围是________.6.消元转化法对于含有两个以上变量的不等式恒成立问题,可以根据题意依次进行消元转化,从而转化为只含有两变量的不等式问题,使问题得到解决.例10.已知()x f 是定义在[]1,1-上的奇函数,且()11=f ,若[]1,1,-∈n m ,0≠+n m 时()()0>++nm n f m f ,若()122+-≤at t x f 对于所有的[]1,1-∈x ,[]1,1-∈a 恒成立,求实数t 的取值范围.二.不等式能成立问题的处理方法若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.例11.已知不等式a a x x 3132-≤-++在实数集R 上的解集不是空集,则实数a 的取值范围是________.例12.存在实数[]2,1∈x ,使得不等式022<-+a ax 有解,求实数a 的取值范围.三.不等式恰好成立问题的处理方法若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .例13.不等式012>++bx ax 的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭则a b ⋅=___________.例14.已知(),22xax x x f ++=当[)+∞∈,1x 时,()x f 的值域是[)+∞,0,试求实数a 的值.思考题 1.已知()x f ,()x g 分别是定义在R 上的奇函数和偶函数,且()()xx g x f ⎪⎭⎫⎝⎛=+21错误!未找到引用源。

[高一数学]不等式恒成立问题的处理(最新整理)

[高一数学]不等式恒成立问题的处理(最新整理)

yo m nyo mnx⎩⎩ ⎩ ⎩ ⎩ 不等式恒成立问题的处理恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③ 其他类不等式恒成立一、一次函数型给定一次函数 y=f(x)=ax+b(a ≠0),若 y=f(x)在[m,n]内恒有 f(x)>0,则根据函数的图象⎧ f (m ) > 0 ⎧ f (m ) < 0(直线)可得上述结论等价于⎨ n ) > 0 同理,若在[m,n]内恒有 f(x)<0,则有⎨ f (n ) < 0⎩ ⎩x例 1.对任意 a ∈[-1,1] ,不等式 x 2 + (a - 4)分析:题中的不等式是关于 x 的一元二次不等式,但若把 a 看成主元,则问题可转化为 一次不等式(x - 2)a + x 2 - 4x + 4 > 0 在 a ∈[-1,1] 上恒成立的问题。

解:令 f (a ) = (x - 2)a + x 2 - 4x + 4 ,则原问题转化为 f (a ) > 0 恒成立( a ∈[-1,1] )。

当 x = 2 时,可得 f (a ) = 0 ,不合题意。

⎧ f (1) > 0当 x ≠ 2 时,应有⎨ f (-1) > 0 解之得 x < 1或x > 3。

故 x 的取值范围为(-∞,1) (3,+∞) 。

注:一般地,一次函数 f (x ) = kx + b (k ≠ 0) 在[,]上恒有 f (x ) > 0 的充要条件为⎧ f () > 0⎨ f () > 0 。

练习:对于满足|a| ≤ 2 的所有实数 a,求使不等式 x 2+ax+1>2a+x 恒成立的 x 的取值范围。

解:原不等式转化为(x-1)a+x 2-2x+1>0,设 f(a)= (x-1)a+x 2-2x+1,则 f(a)在[-2,2]上恒大于 0,故有:⎧ f (-2) > 0 ⎨ f (2) > ∴x<-1 或 x>3.⎧⎪x 2- 4x + 3 > 0即⎨⎪x 2 - 1 > 0⎧x > 3或x < 1 解得: ⎨x > 1或x < -1例 2. 已知P = (log 2 x - 1)(log a b) 2 - 6 log 2 x · log a b + log 2 x + 1(其中 a 为正常数),若当 x 在区间[1,2]内任意取值时,P 的值恒为正,求 b的取值范围。

高一数学——恒成立问题

高一数学——恒成立问题

6 a 2

4 a 4
⑶当
4 a 2
a 2 ,即 a 4 时, g (a) f (2) 7 a 0 a 7 又 a 4 7 a 4 2
总上所述, 7 a 2 。 【3】 解法一:分析:题目中要证明 f ( x) a 在 2, 2 上恒成立,若把 a 移到等号的左边,则 把原题转化成左边二次函数在区间 2, 2 时恒大于等于 0 的问题。
分析: y f x 的函数图像都在 x 轴上方,即与 x 轴没有交点。 【1】 略解: a 4 3 a a 4a 12 0 6 a 2
2 2
【2】
a a2 f ( x) x a 3 ,令 f ( x) 在 2, 2 上的最小值为 g (a) 。 2 4


D. , ∞
3 2

3 分类讨论法
【练习1】 【1】 【2】 【3】 已知函数 f ( x) x ax 3 a ,
2
在 R 上 f ( x) 0 恒成立,求 a 的取值范围。 若 x 2, 2 时, f ( x) 0 恒成立,求 a 的取值范围。 若 x 2, 2 时, f ( x) 2 恒成立,求 a 的取值范围。
—2
2
a 5 2 ,即 a 4 时, g (a) f (2) 7 3a 2 a 4, 2 3 2 a 2 2
, 即
a 不存在。


4 a 4


a a2 g (a) f ( ) a 3 2 2 4
2
a 2 4(1 a ) 0 f (2) 0 5 a 2 2 2 ⑵ f ( 2) 0 a 2或 a 2 2 2

高一数学——恒成立问题

高一数学——恒成立问题

1 函数()0f x ≥恒成立⇔ ()min 0f x ≥1.1 二次函数(定义域无限制)的恒成立问题对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a【例1】 若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

【例2】 若关于的不等式的解集为,求实数的取值范围; 【练习1】 若函数R 上恒成立,求m 的取值范围。

2 函数()f x a ≥恒成立,⇔()min f x a ≥(分离参数法)2.1 二次函数(限制定义域)的恒成立问题【练习1】 当()1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 . 【练习2】【2006江西】对于一切实数,不等式210x a x ++≥恒成立,则实数a 的取值范围是 【练习3】若不等式22210x mx m -++>对满足01x ≤≤的所有实数x 都成立,求m 的取值范围。

【练习4】 已知函数2()10f x x ax =++≥对于一切1(0,]2x ∈成立,求a 的取值范围。

【练习5】已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。

解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立。

x 02>--a ax x ),(+∞-∞a y =令x x x x g 24)(-=,则min )(x g a < 由144)(2-=-=xxx x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0<a 即a 的取值范围为)0,(-∞。

【练习6】已知函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。

高一数学不等式恒成立与能成立问题 (解析版)

高一数学不等式恒成立与能成立问题 (解析版)

不等式恒成立与能成立一、单变量不等式恒成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、∀∈x D ,()()min ≤⇔≤m f x m f x 2、∀∈x D ,()()max ≥⇔≥m f x m f x 3、∃∈x D ,()()max ≤⇔≤m f x m f x 4、∃∈x D ,()()min≥⇔≥m f x m f x 二、双变量不等式与等式一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈1、不等关系(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12f x g x <成立,故()()min min f x g x <;(4)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()min max f x g x <.2、相等关系记()[],,y f x x a b =∈的值域为A ,()[],,y g x x c d =∈的值域为B,(1)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12=f x g x 成立,则有A B ⊆;(2)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12=f x g x 成立,则有A B ⊇;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12=f x g x 成立,故A B ⋂≠∅;题型一单变量不等式恒成立问题【例1】已知函数()42+=x xbf x 为奇函数.(1)求实数b 的值;(2)若对任意的[]0,1x ∈,有()23202--+<f xkx k 恒成立,求实数k 的取值范围.【答案】(1)1=-b ;(2)3,2⎛⎫+∞ ⎪⎝⎭【解析】(1)∵函数()42+=x x bf x 的定义域为R ,且为奇函数,∴()010=+=f b ,解得1=-b ,经验证:()411222-==-x xx x f x 为奇函数,符合题意,故1=-b ;(2)∵()122=-xxf x ,∴()f x 在R 上单调递增,且()131222-=-=-f .∵()23202--+<f x kx k ,则()()23212--<-=-f x kx k f ,又函数()f x 在R上单调递增,则221x kx k --<-在[]0,1x ∈上恒成立,∴()32141k x x >++-+在[]0,1x ∈上恒成立,设()()32141g x x x =++-+,令1t x =+,则[1,2]t ∈,函数32y t t=+在上递减,在2]上递增,当1t =时,5y =,当2t =时,112y =,故()max 113422g x =-=,则32k >,∴实数k 的取值范围为3,2⎛⎫+∞ ⎪⎝⎭.【变式1-1】已知定义在R 上的函数()22x xf x k -=-⋅是奇函数.(1)求实数k 的值;(2)若对任意的R x ∈,不等式()()240f x tx f x ++->恒成立,求实数t 的取值范围.【答案】(1)1k =;(2)()3,5-【解析】(1) 函数()22x x f x k -=-⋅是定义域R 上的奇函数,∴(0)0f =,即()000220f k =-⋅=,解得1k =.此时()22x x f x -=-,则()()()2222x x x xf x f x ---=-=--=-,符合题意;(2)因为()22x xf x -=-,且2x y =在定义域R 上单调递增,2x y -=在定义域R 上单调递减,所以()22x x f x -=-在定义域R 上单调递增,则不等式()()240f x tx f x ++->恒成立,即()()24f x tx f x +>-恒成立,即24x tx x +>-恒成立,即()2140x t x +-+>恒成立,所以()21440t ∆=--⨯<,解得35t -<<,即()3,5t ∈-.【变式1-2】已知()21212xxm m ⎛⎫- ⎪⎝⎭≤-对任意(],1x ∈-∞-恒成立,则实数m 的取值范围为_________.【答案】[]2,3-【解析】依题意,()21212xxm m ⎛⎫- ⎪⎝⎭≤-对任意(],1x ∈-∞-恒成立,可等价为221122x x m m ⎛⎫- ⎪⎝+⎭≤对任意(],1x ∈-∞-恒成立,即2in2m 1122x x m m ≤+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,令[)12,2x t =∈+∞,()[)2211,2,24f t t t t t ⎛⎫∴=+=+-∈+∞ ⎪⎝⎭,()()2min 1122624f t f ⎛⎫∴==+-= ⎪⎝⎭,26m m ∴-≤,解得23m -≤≤,∴实数m 的取值范围为[]2,3-.【变式1-3】已知()()2log 124x xf x a =-⋅+,其中a 为常数(1)当()()102f f -=时,求a 的值;(2)当[1x ∈+∞,)时,关于x 的不等式()1f x x ≥-恒成立,试求a 的取值范围;【答案】(1)32a =;(2)2a ≤【解析】(1)()()102f f -=得()()222log 124log 11log 4a a -+-+=-⇒()()22log 52log 42a a -=-⇒352842a a a -=-⇒=;(2)()122log 1241log 2x x x a x --⋅+≥-=1111242222x x x x xa a -⇒-⋅+≥⇒≤+-,令2x t =,[)1[2x t ∈+∞∴∈+∞ ,,),设()112h t t t =+-,则()min a h t ≤, ()h t 在[2+∞,)上为增函数⇒2t =时,()112h t t t =+-有最小值为2,2a ∴≤.【变式1-4】已知函数()()4log 65x xf x m =+⋅.(1)当1m =-时,求()f x 的定义域;(2)若()2f x ≤对任意的[]0,1x ∈恒成立,求m 的取值范围.【答案】(1)()0,∞+;(2)(]1,2-【解析】(1)当1m =-时()()4log 65x xf x =-,令650x x ->,即65x x>,即615x⎛⎫> ⎪⎝⎭,解得0x >,所以()f x 的定义域为()0,∞+.(2)由()2f x ≤对任意的[]0,1x ∈恒成立,所以06516x x m <+⋅≤对任意的[]0,1x ∈恒成立,即6166555xxx m ⎛⎫⎛⎫-<≤- ⎪ ⎪⎝⎭⎝⎭对任意的[]0,1x ∈恒成立,因为165x y =是单调递减函数,65xy ⎛⎫=- ⎪⎝⎭是单调递减函数,所以()16655xx g x ⎛⎫=- ⎪⎝⎭在[]0,1上单调递减,所以()()min 12g x g ==,所以()65xh x ⎛⎫=- ⎪⎝⎭在[]0,1上单调递减,所以()()max 01h x h ==-,所以12m -< ,即m 的取值范围为(]1,2-.题型二单变量不等式能成立问题【例2】定义在[]3,3-上的奇函数()f x ,已知当[]3,0x ∈-时()143x xaf x =+(a R ∈).(1)求()f x 在(]0,3上的解析式;(2)若存在[]2,1x ∈--时,使不等式()1123xx m f x -≤-成立,求实数m 的取值范围.【答案】(1)()34x xf x =-;(2)5m ≥【解析】(1)根据题意,()f x 是定义在[]3,3-上的奇函数,则()010f a =+=,得1a =-.经检验满足题意:故1a =-;当[]3,0x ∈-时,()1114343x x x x a f x =+=-,当(]0,3x ∈时,[]3,0x -∈-,()114343---=-=-x x x xf x .又()f x 是奇函数,则()()34x x f x f x =--=-.综上,当(]0,3x ∈时,()34x xf x =-.(2)根据题意,若存在[]2,1x ∈--,使得()1123x x m f x -≤-成立,即11114323x x x x m --≤-在[]2,1x ∈--有解,即12243x x x m ≥+在[]2,1x ∈--有解.又由20x >,则12223xx m ⎛⎫≥+⋅ ⎪⎝⎭在[]2,1x ∈--有解.设()12223xx g x ⎛⎫=+⋅ ⎪⎝⎭,分析可得()g x 在[]2,1x ∈--上单调递减,又由[]2,1x ∈--时,()()11min 1212523g g x --⎛⎫=-=+⋅= ⎪⎝⎭,故5m ≥.即实数m 的取值范围是[)5,+∞.【变式2-1】已知函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦.(1)求()f x 的定义域B ;(2)对于(1)中的集合B ,若x B ∃∈,使得21a x x >-+成立,求实数a 的取值范围.【答案】(1)12,4B ⎡⎤=-⎢⎥⎣⎦;(2)13,16⎛⎫+∞ ⎪⎝⎭【解析】(1)∵()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,∴114x ≤≤.∴12134x -≤-≤,则12,4B ⎡⎤=-⎢⎥⎣⎦.(2)令()21g x x x =-+,x B ∃∈,使得21a x x >-+成立,即a 大于()g x 在12,4⎡⎤-⎢⎥⎣⎦上的最小值.∵()21324g x x ⎛⎫=-+ ⎪⎝⎭,∴()g x 在12,4⎡⎤-⎢⎣⎦上的最小值为113416g ⎛⎫= ⎪⎝⎭,∴实数a 的取值范围是13,16⎛⎫+∞ ⎪⎝⎭.【变式2-2】已知函数()1422x x f x a +=-⋅+,其中[]0,3.x ∈(1)若()f x 的最小值为1,求a 的值;(2)若存在[]0,3x ∈,使()33f x ≥成立,求a 的取值范围.【答案】(1)5a =;(2)1a ≥【解析】(1)因为[]0,3x ∈,()()()22242224x x x f x a a =-⋅+=-+-,当22x =时,即当1x =时,函数()f x 取得最小值,即()()min 141f x f a ==-=,解得5a =.(2)令[]21,8xt =∈,则()24f x t t a =-+,由()33f x ≥可得2433a t t ≥-++,令()2433g t t t =-++,函数()g t 在[)1,2上单调递增,在(]2,8上单调递减,因为()136g =,()81g =,所以,()()min 81g t g ==,1a ∴≥.【变式2-3】已知函数()e e x xf x -=+.(1)当[0,)x ∈+∞时,试判断并证明其单调性.(2)若存在[ln 2,ln 3]x ∈-,使得(2)()30f x mf x -+≥成立,求实数m 的取值范围.【答案】(1)单调递增,证明见解析;;(2)109,30⎛⎤-∞⎥⎝⎦.【解析】(1)()e e x xf x -=+在[0,)+∞上单调递增,证明如下:12,[0,)x x ∀∈+∞,且12x x <,则()()()()()112221212211211221e e e e ee eeee e e e 1ex x x x x x x x x x x xx x x x f x f x +--+⎛⎫--=+-+=-+=- ⎝-⎪⎭,由120x x ≤<得:21e e 0x x->,12e 1x x +>,所以()()21f x f x >,即()f x 在[0,)+∞上的单调递增(2)由题设,[ln 2,ln 3]x ∃∈-使()()()()222(2)()3e e e e 3e e e e 10x x x x x x x x f x mf x m m -----+=+-++=+-++≥,又()()e e e e ()x x x x f x f x -----=++==,即()f x 是偶函数,结合(1)知:()f x 在[ln 2,0]-单调递减,在[0,ln 3]上单调递增,又510(ln 2)(ln 3)23f f -=<=,所以(0)()(ln 3)f f x f ≤≤,即102()3f x ≤≤,令e e x x t -=+,则102,3t ⎡⎤∃∈⎢⎥⎣⎦使210t mt -+≥,可得211t m t t t+≤=+,令1()g t t t =+在102,3t ⎡⎤∈⎢⎥⎣⎦单调递增,故max 10109()330g t g ⎛⎫==⎪⎝⎭;所以max ()m g t ≤,即109,30m ⎛⎤∈-∞ ⎥⎝⎦.【变式2-4】已知1≤x ≤27,函数33()log (3)log 227=⋅++xf x a x b (a >0)的最大值为4,最小值为0.(1)求a 、b 的值;(2)若不等式()(3)0t g t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,求实数k 的取值范围.【答案】(1)1,2a b ==;(2)43⎛⎤-∞ ⎥⎝⎦,【解析】(1)()()()()3333log 3log 2log 1log 3227x f x a x b a x x b =⋅++=+-++()23log 142a x a b =+--+,由1≤x ≤27得[]3log 0,3t x =∈,()[]23log 10,4x -∈,又a >0,因此33()log (3)log 227=⋅++xf x a x b 的最大值为24+=b ,最小值为420a b -++=,解得1,2a b ==.(2)()()23log 1f x x =-,()()()2310tg t f kt t kt =-=--≥又1,32t ⎡⎤∈⎢⎥⎣⎦,()2112t k t t t-≤=+-,而1()2h t t t =+-在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上单调递增.由不等式()()30tg t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,得:max 12k t t ⎛⎫≤+- ⎪⎝⎭43=.因此,k 的取值范围是43⎛⎤∞ ⎥⎝⎦-,.题型三任意-任意型不等式成立问题【例3】已知()()()21ln 12xf x xg x m ⎛⎫=+=- ⎪⎝⎭,,若对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则实数m的取值范围是()A .14⎡⎫+∞⎪⎢⎣⎭B .14⎛⎥-∞⎤ ⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭,D .12⎛⎤-∞- ⎥⎝⎦,【答案】C【解析】易知()2(ln 1)f x x =+在[0,3]上单调递增,()()min 00f x f ==,()1()2xg x m =-在[1,2]上单调递减,()()max 112g x g m ==-,对任意[]10,3x ∈,[]21,2x ∈,使得()()12f x g x ≥,则()()min max f x g x ≥102m -≤,即12m ≥.故选:C.【变式3-1】已知定义在区间[0,2]上的两个函数()f x 和()g x ,其中2()24(1)f x x ax a =-+≥,2()1x g x x =+.(1)求函数()y f x =的最小值()m a ;(2)若对任意12,[0,2]x x ∈,21()()f x g x >恒成立,求a 的取值范围.【答案】(1)24,12()84,2a a m a a a ⎧-≤<=⎨-≥⎩;(2)13a ≤<【解析】(1)由()()222244f x x ax x a a =-+=-+-,则二次函数的对称轴为x a =,则当12a ≤<时,()f x 在[)0,a 上单调递减,在(],2a 上单调递增,所以()()()2min 4m a f x f a a ===-;当2a ≥时,()f x 在[0,2]上单调递减,()()()min 284m a f x f a ===-,所以()24,1284,2a a m a a a ⎧-≤<=⎨-≥⎩;(2)()()1121g x x x =++-+,当[0,2]x ∈时,[]11,3x +∈,又()g x 在区间[0,2]上单调递增,所以()40,3g x ⎡⎤∈⎢⎥⎣⎦.若对任意12,[0,2]x x ∈,()()21f x g x >恒成立则()()21minmax f x g x >,故212443a a ≤<⎧⎪⎨->⎪⎩或24843a a ≥⎧⎪⎨->⎪⎩解得:13a ≤<.【变式3-2】已知函数()2x f x =,31()log 1xg x x-=+.(1)求()21log 20202f g ⎛⎫+- ⎪⎝⎭的值;(2)试求出函数()g x 的定义域,并判断该函数的单调性与奇偶性;(判断函数的单调性不必给出证明.)(3)若函数()(2)3()F x f x f x =-,且对[]10,1x ∀∈,211,22x ⎡⎤∀∈-⎢⎥⎣⎦,都有()()12F x g x m >+成立,求实数m 的取值范围.【答案】(1)2021;(2)定义域为()1,1-,函数()g x 在()1,1-上为减函数;奇函数;(3)13,4⎛⎫-∞- ⎪⎝⎭.【解析】(1)()2log 2020231log 20202log 320212f g ⎛⎫+-=+= ⎪⎝⎭;(2)由101x x ->+有11x -<<,∴函数()g x 的定义域为()1,1-.∵3312()log log 111x g x x x -⎛⎫==-+ ⎪++⎝⎭,∴函数()g x 在()1,1-上为减函数;31()log ()1xg x g x x+-==--,且定义域关于原点对称,∴函数()g x 为奇函数;(3)∵对[]10,1x ∀∈,211,22x ⎡⎤∀∈-⎢⎥⎣⎦,都有()()12F x g x m >+恒成立,∴min max ()()F x g x m >+,由(2)知()g x 在11,22⎡⎤-⎢⎥⎣⎦上为减函数,∴max 1()12g x g ⎛⎫=-= ⎪⎝⎭,∵2()(2)3()232x x F x f x f x =-=-⋅,令2x t =,则23y t t =-,当[]0,1x ∈时,12t ≤≤,∴当32t =即223log log 312x ==-时,min 9()4F x =-,∴914m ->+,即134m <-,∴m 的取值范围为13,4⎛⎫-∞- ⎪⎝⎭.【变式3-3】已知函数()()2,f x x bx c b c =++∈R ,且()0f x ≤的解集为[]1,2-.(1)求函数()f x 的解析式;(2)设()()312f x xg x +-=,若对于任意的1x 、[]22,1x ∈-都有()()12g x g x M -≤,求M 的最小值.【答案】(1)()22f x x x =--;(2)M 的最小值为1516.【解析】(1)因为()0f x ≤的解集为[]1,2-,所以20x bx c ++=的根为1-、2,由韦达定理可得1212b c -+=-⎧⎨-⨯=⎩,即1b =-,2c =-,所以()22f x x x =--.(2)由(1)可得()()2312322f x x xx g x +-+-==,当[]2,1x ∈-时,()[]2223144,0x x x +-=+-∈-,故当[]2,1x ∈-时,()22112,116xx g x +-⎡⎤∈⎢⎣=⎥⎦,因为对于任意的1x 、[]22,1x ∈-都有()()12g x g x M -≤,即求()()12max g x g x M -≤,转化为()()max min g x g x M -≤,而()max 1g x =,()min 116g x =,所以,()()max min 11511616M g x g x ≥-=-=.所以M 的最小值为1516.题型四任意-存在型不等式成立问题【例4】已知函数()9f x x x=+和函数()g x x a =--,若对任意的[]124x ∈,,总存在[]201x ∈,,使得()()21g x f x <成立,则实数a 的取值范围是__________.【答案】7a >-【解析】对任意的[]124x ∈,,总存在[]201x ∈,,使得()()21g x f x <,即()()min min g x f x <,因对勾函数()9f x x x=+在[]23,上递减,在[]34,上递增,故当[]124x ∈,时,()()min 36f x f ==,函数()g x x a =--在[]01,上递减,所以()()min 11g x g a ==--,由()()min min g x f x <得16a --<,即7a >-.【变式4-1】已知()f x 是定义在[]22-,上的奇函数,当(]0,2x ∈时,()21x f x =-,函数()22.g x x x m =-+如果对于任意的[]12,2x ∈-,总存在[]22,2x ∈-,使得()()21g x f x ≥,则实数m 的取值范围是__________.【答案】[)5,-+∞【解析】若对于[]12,2x ∀∈-,[]22,2x ∃∈-,使得()()21g x f x ≥,则等价为()()max max g f x x ≥()f x 是定义在[]22-,上的奇函数,()00f ∴=,当(]0,2x ∈时,()(]210,3xf x =-∈,则当[]2,2x ∈-时,()[]3,3f x ∈-,()222(1)1g x x x m x m =-+=-+- ,[]2,2x ∈-,()max ()28g x g m ∴=-=+,则满足83m +≥,解得5m ≥-.【变式4-2】已知函数)()log 1xa f x a bx =+-(a >0且1,R ab ≠∈)是偶函数,函数()x g x a =(a >0且1a ≠).(1)求实数b 的值;(2)当a =2时,若1(1,)∀∈+x ∞,2R ∃∈x ,使得()()()112220g x mg x f x +->恒成立,求实数m 的取值范围.【答案】(1)12b =;(2)32m ≥-.【解析】(1)由题设,()()f x f x -=,即()()log 1log 1x x a a a bx a bx -++=+-,所以log (1)(1)log (1)x x a a a b x a bx ++-=+-,则1b b -=-,可得12b =.(2)由(1)及a =2知:2()log (21)2xx f x =+-,()2x g x =,所以12122log ()2144x x x x m +⋅->+在1(1,)∀∈+x ∞,2R ∃∈x 上恒成立,令42x x y m +⋅=且(1,)x ∈+∞,2log (41)x t x =+-且R x ∈,只需min y t >恒成立,而21log (2)2xxt =+,由20xm =>在R x ∈上递增,1n m m =+在(0,1)m ∈上递减,(1,)m ∈+∞上递增,2log t n =在定义域上递增,所以t 在(,0)-∞上递减,(0,)+∞上递增,故min 0|1x t t ===,综上,4210x x m +⋅->在(1,)x ∈+∞上恒成立,令2(2,)x k =∈+∞,则210k mk ->+在(2,)+∞上恒成立,而240m ∆=+>,故2{2230mm -≤+≥,可得32m ≥-.【变式4-3】已知函数2(1)()()x x a f x x ++=为偶函数.(1)求实数a 的值;(2)判断()f x 的单调性,并用定义法证明你的判断:(3)设()52g x kx k =+-,若对任意的1x ∈,总存在2[0,1]x ∈,使得()()12f x g x ≤成立,求实数k 的取值范围.【答案】(1)1-;(2)()f x 在(0,)+∞上单调递增,在(,0)-∞上单调递减,证明见解析;(3)9(,2-∞【解析】(1)()f x 为偶函数,定义域为(,0)(0,)-∞+∞ ,故()()f x f x -=对定义域内x 恒成立,22(1)()(1)()x x a x x a x x ++-+-+=,即2(1)0a x +=对定义域内x 恒成立,故1a =-;(2)22211()1x f x x x-==-,在(0,)+∞上单调递增,在(,0)-∞上单调递减,证明:设120x x <<,21212122221212()()11()()0x x x x f x f x x x x x -+-=-=>,故()f x 在(0,)+∞上单调递增,同理可证()f x 在(,0)-∞上单调递减;(3)由题意得()()12max max f x g x ≤,而()1max 12f x f ==,①0k ≥时,()2max (1)5g x g k ==-,152k -≥,解得902k ≤≤,②0k <时,()2max (0)52g x g k ==-,1522k -≥,故0k <时恒满足题意,综上,k 的取值范围是9(,]2-∞.题型五存在-存在型不等式成立问题【例5】已知函数()212=+f x x x ,()()ln 1=+-g x x a ,若存在1x ,[]20,2∈x ,使得()()12>f x g x ,则实数a 的取值范围是.【答案】a >-4【解析】问题可转化为f (x )max >g (x )min ,易得f (x )max =4,g (x )min =-a ,由f (x )ma x >g (x )min 得:4>-a ,故a >-4即为所求.【变式5-1】已知函数()11f x x =+,()1g x x =-,若1x ∃,[]2,1x a a ∈+,使得()()12f x g x >成立,求正实..数.a 的取值范围.【答案】【解析】存在1x ,2[x a ∈,1]a +,使得()()12f x g x >成立,等价为在[a ,1]a +上,()()max min f x g x >.由()1g x x =-在[a ,1]a +递增,可得()g x 的最小值为()1g a a =-,又0a >,所以()f x 在[a ,1]a +递减,可得()f x 的最大值为1()1f a a =+,由111a a >-+,解得a <<0a <;综上可得,a的范围是.【变式5-2】已知()2f x x x=+,()g x x a =-+,对于[]11,3x ∃∈,[]21,3x ∃∈,()()12f x g x ≥成立.【答案】20,3⎛⎤-∞ ⎥⎝⎦【解析】因为对于[]11,3x ∃∈,[]21,3x ∃∈,()()12f x g x ≥成立故当1x ,[]213x ∈,时,()()12max min f x g x ,因为()2f x x x=+在⎡⎣递减,⎤⎦递增,且()13f =,()2113333f =+=,故()()max 1133f x f ==,而()g x x a =-+在[]13,递减,故()()min 33g x g a ==-所以1133a - ,解得203a ,即a 的取值范围是20,3⎛⎤-∞ ⎥⎝⎦.【变式5-3】已知函数()222x x f x m m -=+⨯+是R 上的偶函数,()2g x a x m =--.(1)求m 的值;(2)若存在1x ,2[1x ∈,4],使得12()()f x g x 成立,求a 的取值范围.【答案】(1)1;(2)92a .【解析】(1)因为()222x x f x m m -=+⨯+是R 上的偶函数,所以()()f x f x -=,即222222x x x x m m m m --+⨯+=+⨯+,即(1)(22)0x x m ---=,解得1m =,故()222x xf x -=++;(2)由(1)可得2,2()2{2,2x a x g x a x x a x -++=--=+-< ,因为2,2(){2,2x a x g x x a x -++=+-< ,所以()g x 在[1,2]上是增函数,在[2,4]上是减函数,所以()max g x g =(2)a =,设2x t =,[1x ∈,4],可得[2t ∈,16],则12y t t=++在[2,16]递增,可得2t =时,f (2)取得最小值92,存在1x ,2[1x ∈,4],使得12()()f x g x 成立,可得()()min max f x g x ,即为92a .题型六任意-存在型等式成立问题【例6】已知函数1()423x x f x +=--,2()42(1)g x x mx m m =--≥,若对于任意1[0,1]x ∈,总存在2[0,1]x ∈,使得()()12f x g x =成立,则实数m 的取值范围为()A .3,22⎡⎫⎪⎢⎣⎭B .3,2⎡⎫+∞⎪⎢⎣⎭C .[1,2)D .31,2⎡⎤⎢⎥⎣⎦【答案】D【解析】定义1()423x x f x +=--,[0,1]x ∈,值域为A ;令2x t =,[1,2]t ∈,则1()423x x f x +=--可化为()222314y t t t =--=--在[1,2]t ∈上单增,所以()2max 2143y =--=-,()2min 1144y =--=-,即集合[]4,3A =--.定义2()42(1)g x x mx m m =--≥,[0,1]x ∈,值域为B ;因为对称轴22x m =≥,所以2()42g x x mx m =--在[0,1]x ∈上单调递减,所以max max ()(0)2,()(1)16g x g m g x g m ==-==-,即集合[]16,2B m m =--因为对于任意1[0,1]x ∈,总存在2[0,1]x ∈,使得()()12f x g x =成立,所以A B ⊆.只需162164231m m m m m -<-⎧⎪-≤-⎪⎨-≥-⎪⎪≥⎩解得:1456321m m m m ⎧>⎪⎪⎪≥⎪⎨⎪≤⎪⎪⎪≥⎩,即312m ≤≤。

高一数学恒成立问题方法题型

高一数学恒成立问题方法题型

高一数学恒成立问题方法题型1. 证明:对于任意实数x,恒有x^2 ≥ 0。

证明方法:- 方法一:利用二次函数的性质。

二次函数的图像是一个开口朝上的抛物线,因此对于任意实数x,x^2 的值都大于等于0。

- 方法二:利用乘法的性质。

对于任意实数x,x^2 = x * x。

根据乘法的性质,两个非负数的乘积仍然是非负数,因此x^2 ≥ 0。

2. 证明:对于任意正实数a,b,恒有(a + b)^2 ≥ 4ab。

证明方法:- 方法一:利用二次函数的性质。

展开(a + b)^2 = a^2 + 2ab + b^2,根据二次函数的性质,二次项系数2是正数,因此(a + b)^2 ≥ a^2 + 2ab + b^2 ≥ 4ab。

- 方法二:利用乘法的性质。

展开(a + b)^2 = a^2 + 2ab + b^2,根据乘法的性质,两个非负数的乘积仍然是非负数,因此2ab ≥ 0,所以(a + b)^2 ≥ a^2 + 2ab + b^2 ≥ 4ab。

3. 证明:对于任意正实数a,b,恒有(a + b)^3 ≥ 8ab(a + b)。

证明方法:- 方法一:利用立方函数的性质。

展开(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,根据立方函数的性质,三次项系数3是正数,因此(a + b)^3 ≥ a^3 + 3a^2b + 3ab^2 + b^3 ≥ 8ab(a + b)。

- 方法二:利用乘法的性质。

展开(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,根据乘法的性质,两个非负数的乘积仍然是非负数,因此3a^2b + 3ab^2 ≥ 0,所以(a + b)^3 ≥ a^3 + 3a^2b + 3ab^2 + b^3 ≥8ab(a + b)。

以上是几个常见的高一数学恒成立问题的证明方法题型,希望对你有帮助!。

高一数学复习考点知识与题型讲解14---恒成立和存在性问题

高一数学复习考点知识与题型讲解14---恒成立和存在性问题

高一数学复习考点知识与题型讲解第14讲恒成立和存在性问题1 恒成立和存在性问题单变量的恒成立问题①恒成立,则;②恒成立,则;③恒成立,则;④恒成立,则;单变量的存在性问题①,使得成立,则;②,使得成立,则;③,使得恒成立,则;④,使得恒成立,则;双变量的恒成立与存在性问题①,使得恒成立,则;②,使得恒成立,则;③恒成立,则;④,使得恒成立,则;相等问题①,使得,则两个函数的值域的交集不为空集;②,使得,则的值域的值域2 解题方法恒成立和存在性问题最终可转化为最值问题,具体的方法有◆直接最值法◆分类参数法◆变换主元法◆数形结合法【题型一】恒成立和存在性问题的解题方法1 直接构造函数最值法【典题1】设函数的最大值是,若对于任意的,恒成立,则的取值范围是.【解析】当时,;当时,,则,即.由题意知<在上恒成立,即<在上恒成立,(把不等式中移到右边,使得右边为,从而构造函数求最值)令,则问题等价于在上恒成立,在上,-,即.【点拨】①直接构造函数最值法:遇到类似不等式恒成立问题,可把不等式变形为,从而构造函数求其最值解决恒成立问题;②在求函数的最值时,一定要优先考虑函数的定义域;③题目中在上是取不到最大值,,而要使得恒成立,可等于,即,而不是.2 分离参数法【典题1】已知函数关于点对称,若对任意的,恒成立,则实数k的取值范围为.【解析】由为奇函数,可得其图象关于对称,可得的图象关于对称,函数关于点-对称,可得,对任意的恒成立,-恒成立,【思考:此时若利用最值法,求函数-的最小值,第一函数较复杂,第二函数含参要分离讨论,路漫漫其修远兮,务必另辟蹊径】即在恒成立,所以3,(使得不等式一边是参数,另一边不含关于的式子,达到分离参数的目的)令,由,可得,设,当时,取得最大值,则的取值范围是,【点拨】①分离参数法:遇到类似或等不等式恒成立问题,可把不等式化简为或的形式,达到分离参数的目的,再求解的最值处理恒成立问题;②恒成立问题最终转化为最值问题,而分离参数法,最好之处就是转化后的函数不含参,避免了麻烦的分离讨论.【典题2】已知,其中为常数(1)当时,求的值;(2)当时,关于的不等式恒成立,试求的取值范围;【解析】(1) ⇒ -⇒ - ⇒ ⇒;(2)⇒⇒,令,,设,则在上为增函数⇒ 时,有最小值为2,.【点拨】在整个解题的过程中不断的利用等价转化,把问题慢慢变得更简单些.3 变换主元法【典题1】对任意,不等式恒成立,求的取值范围.思考痕迹见到本题中“恒成立”潜意识中认为是变量,是参数,这样会构造函数,而已知条件是,觉得怪怪的做不下去;此时若把看成变量,看成参数呢?【解析】因为不等式恒成立不等式恒成立...①,令若要使得①成立,只需要解得或故的取值范围或【点拨】变换主元法,就是要分辨好谁做函数的自变量,谁做参数,方法是以已知范围的字母为自变量.4 数形结合法【典题1】已知当时,有恒成立,求的取值范围.思考痕迹本题若用直接最值法,去求函数的最大值,就算用高二学到的导数求解也是难度很大的事情;用分离参数法呢?试试也觉得一个硬骨头.看看简单些的想法吧!【解析】不等式恒成立等价于恒成立...①,令,若①成立,则当时,的图像恒在图像的下方,则需要或(不要漏了,因为,不一定是指数函数)又,解得或即实数的取值范围为【点拨】①数形结合法:恒成立⇒在上,函数的图像在函数图像的下方.② 遇到不等式恒成立,可以把不等式化为用数形结合法,而函数与最好是熟悉的函数类型,比如本题中构造出,两个常见的基本初级函数.【题型二】恒成立与存在性问题混合题型【典题1】已知函数.(1)若对任意,任意都有成立,求实数的取值范围.(2)若对任意,总存在使得成立,求实数m的取值范围.【解析】(1)由题设函数,.对任意,任意都有成立,知:,在上递增,又在上递减,有,的范围为(2)由题设函数,.对任意,总存在,使得成立,知,有,即,的范围为.【点拨】对于双变量的恒成立--存在性问题,比如第二问中怎么确定,即到底是函数最大值还是最小值呢?具体如下思考如下,先把看成定值,那,都有,当然是要;再把看成定值,那,都有,当然是;故问题转化为.其他形式的双变量成立问题同理,要理解切记不要死背..【典题2】设,,若对于任意,总存在,使得成立,则的取值范围是.【解析】,当时,,当时,,由,即,,,故,又因为,且.由递增,可得-,对于任意,总存在,使得成立,可得, 可得, . 巩固练习1(★★) 已知 对一切 上恒成立,则实数 的取值范围是. 【答案】【解析】可化为,令 = - ,由 -∞, ,得 [,+∞), 则 - - ,- - 在 , ∞ 上递减,当 时- - 取得最大值为,所以.故答案为:, ∞ .2(★★)若不等式 对满足 的所有 都成立,求 的取值范围. 【答案】【解析】令x m x m f 21)1()(2-+-=;不等式()2211x m x ->-对满足2m ≤的所有m 都成立⇔对任意22≤≤-m ,021)1(2<-+-x m x 恒成立⇔⎩⎨⎧<-->-+⇔⎩⎨⎧<<-012203220)2(0)2(22x x x x f f ,解得。

高一数学不等式恒成立、能成立、恰成立问题

高一数学不等式恒成立、能成立、恰成立问题

高一数学不等式恒成立、能成立、恰成立问题一、不等式恒成立问题的处理方法1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A(2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A例1、设22)(2+-=ax x x f ,当[]+∞-∈,1x 时,都有a x f ≥)(恒成立,求a 的取值范围。

例2、已知(),22xa x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围?2、主参换位法例3、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围?3、数形结合例4、当)2,1(∈x 时,不等式2(1)x -<log a x 恒成立,求a 的取值范围。

例5、若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数x 恒成立,求实数m 取值范围?二、不等式能成立问题的处理方法若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.例6、若关于x 的不等式32-≤--a ax x 的解集不是空集,则实数a 的取值范围是 。

三、不等式恰好成立问题的处理方法例7、不等式2ax bx 10++>的解集为1|13x x ⎧⎫-<<⎨⎬⎩⎭则a b ⋅=___________。

例8、已知(),22xa x x x f ++=当[)()x f x ,,1+∞∈的值域是[)+∞,0,试求实数a 的值。

例4、函数12)(2+-=x mx x f 有且仅有一个正实数的零点,求实数m 的取值范围。

高一数学函数和不等式中恒成立问题的教案

高一数学函数和不等式中恒成立问题的教案

函数和不等式结的恒成立问题的解法“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。

另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用恒成立问题的基本类型:一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。

一般地,对于二次函数,有),0()(2R x a c bx ax x f ∈≠++=1)对恒成立; 0)(>x f R x ∈⎩⎨⎧<∆>⇔00a 2)对恒成立 0)(<x f R x ∈.00⎩⎨⎧<∆<⇔a 例1:若不等式的解集是R ,求m 的范围。

02)1()1(2>+-+-x m x m 例2 设函数f(x)= mx 2-mx-1.(1)若对于一切实数x ,f(x)<0恒成立,求m 的取值范围;(2)对于x∈[1,3],f(x)<-m +5恒成立,求m 的取值范围二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立a x f >)(min)(x f a <⇔2)恒成立a x f <)(max)(x f a >⇔例1、若时,不等式恒成立,求的取值范围。

[]2,2x ∈-23x ax a ++≥a 例2.设,当时,恒成立,求实数的取22)(2+-=mx x x f ),1[+∞-∈x m x f ≥)(m 值范围。

巩固.已知函数,若对任意,恒),1[,2)(2+∞∈++=x xa x x x f ),1[+∞∈x 0)(>x f 成立,求实数的取值范围。

a 练习2 已知,若恒成立,求a 的取值范围.a ax x x f -++=3)(22)(],2,2[≥-∈x f x 22210[0,1]x mx m x x m -++>∈练习1:若不等式对满足的所有实数都成立,求的取值范围。

(完整word版)高一数学中的恒成立问题

(完整word版)高一数学中的恒成立问题

高一数学中的恒成立问题班级 姓名 学号1.任意x R ∈,不等式()()222240a x a x ----<恒成立,则a 的范围是____(]2,2-___.2.若不等式x +2xy ≤a (x +y )对一切正数x ,y 恒成立,则正数a 的最小值为 ( B ) A.1 B.2 C.212+D.22+1. B 由条件:2xy ≤(a -1)x +ay 恒成立,而(a -1)x +ay ≥2xy a a )1(-, 令2xy =2xy a a )1(- ,a (a -1)=2, ∴a =2.3.不等式()()2212130m x m x ---+>对一切实数x 恒成立,则实数m 的范围为______.【解】当210m -≠时不等式恒成立的充要条件是210m ->且()()22411210m m ---<,即m>1或m<-2;当m-1=0时不等式化为3>0,恒成立.综上m 范围是[)21-∞+∞(,),+. 4、已知两个正变量y x ,满足4=+y x ,则使不等式m yx ≥+41恒成立的实数m 的取值 范围是 ]49,(-∞5.已知不等式(x+y)(1x + ay)≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( )A.2B.4C.6D.86、若对于一切正实数x 不等式x x 224+>a 恒成立,则实数a 的取值范围是 a<247.若不等式.2log 0m x x -<在(0,12)的范围内恒成立,则实数m 的取值范围是____. 【解】1116m ≤< 提示:利用数形结合讨论0<m<1和m>1两种情况 8.设y=x 2+ax+b ,当x=2时y=2,且对任意实数x 都有y≥x 恒成立,实数a 、b 的值为( B ).A.a=-3 b=-4B.a=-3 b=4 C a=3 b=4 D a=3 b=-4 9、当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是( D ) A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]10.若不等式n)1(2a )1(1n n+-+<-对任意正整数n 恒成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学中的恒成立问题班级 姓名 学号1.任意x R ∈,不等式()()222240a x a x ----<恒成立,则a 的范围是____(]2,2-___.2.若不等式x +2xy ≤a (x +y )对一切正数x ,y 恒成立,则正数a 的最小值为 ( B ) A.1 B.2 C.212+D.22+1. B 由条件:2xy ≤(a -1)x +ay 恒成立,而(a -1)x +ay ≥2xy a a )1(-, 令2xy =2xy a a )1(- ,a (a -1)=2, ∴a =2.3.不等式()()2212130m x m x ---+>对一切实数x 恒成立,则实数m 的范围为______. 【解】当210m -≠时不等式恒成立的充要条件是210m ->且()()22411210m m ---<,即m>1或m<-2;当m-1=0时不等式化为3>0,恒成立.综上m 范围是[)21-∞+∞U (,),+. 4、已知两个正变量y x ,满足4=+y x ,则使不等式m yx ≥+41恒成立的实数m 的取值 范围是 ]49,(-∞5.已知不等式(x+y)(1x + ay)≥9对任意正实数x,y 恒成立,则正实数a 的最小值为( )A.2B.4C.6D.86、若对于一切正实数x 不等式xx 224+>a 恒成立,则实数a 的取值范围是 a<247.若不等式.2log 0m x x -<在(0,12)的范围内恒成立,则实数m 的取值范围是____. 【解】1116m ≤< 提示:利用数形结合讨论0<m<1和m>1两种情况 8.设y=x 2+ax+b ,当x=2时y=2,且对任意实数x 都有y≥x 恒成立,实数a 、b 的值为( B ).A.a=-3 b=-4B.a=-3 b=4 C a=3 b=4 D a=3 b=-4 9、当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是( D ) A .(-∞,2] B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式n)1(2a )1(1n n+-+<-对任意正整数n 恒成立。

则实数a 的取值范围是( A )A )23,2[-B )23,2(-C )233,(-D )23,3(-11、若关于x 的不等式m x x≥-42对任意]1,0[∈x 恒成立,则实数m 的取值范围是 (,3]-∞-.12.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 恒成立,则( C )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 13.二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是___________________. 解析:由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0. 14. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +>15. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+B .111x y+≥ C2 D .11xy ≥16. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的值恒为正,对吗?答 .17、若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.【解析】 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =xx 2+3x +1的最大值即可.因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12x ·1x+3=15,当且仅当x =1时取等号,所以a 的取值范围是[15,+∞).18、设x >0,y >0,不等式1x +1y +mx +y≥0恒成立,则实数m 的最小值是________.【解析】 原问题等价于m x +y ≥-(1x +1y )恒成立,∵x >0,y >0,∴等价于m ≥-(1x +1y)(x +y )的最大值,而-(1x +1y )(x +y )=-2-(y x +xy)≤-2-2=-4,当且仅当x =y 时取“=”,故m ≥-4.19、设函数f (x )=x -1x.对任意x ∈[1,+∞),f (mx )+mf (x )<0恒成立,则m 的范围是________.【解析】 由题知,mx -1mx +mx -m x <0在[1,+∞)上恒成立,即2mx <(1m +m )1x,显然m ≠0.当m >0时,即1m+m 2m>x 2在[1,+∞)上恒成立,由于函数g (x )=x 2无最大值,此时不存在满足题意的m ;当m <0时,即1m +m 2m <x 2在[1,+∞)上恒成立,即1m +m 2m<1,即m 2>1,解得m <-1,即m 的取值范围是(-∞,-1).20、在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是( B ) A .0 B .1 C .2 D .321、若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:12m >-)22.设函数()21f x mx mx =--,若(1)对一切实数x,()0f x <恒成立,求m 的取值范围.(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围. 解(1)要求210mx mx --<恒成立。

当m=0时显然成立;当0m ≠时,应有m<0,240m m ∆=+<,解之得-4<m<0.综上40m -<≤(2)、将()5f x m <-+变换成的m 的不等式()2160m x x -+-<则命题等价于[]2,2m ∈-时 ()()2160g m m x x =-+-<恒成立。

Q 210x x -+> ()g m 在[]2,2-上单调递增。

∴只要()()222160g x x =-+-<,即220x x --<,∴-1<x<223.若不等式22)1(122≤≤-->-m x m x 对满足的所有m 恒成立,求x 的取值范围. 【解】 设)12()1()(2---=x m x m f , …要使220)(≤≤-<m m f 在上恒成立,只需⎩⎨⎧<-<0)2(0)2(f f ,即⎪⎩⎪⎨⎧>-+<--0322012222x x x x ⎪⎪⎩⎪⎪⎨⎧+->--<+<<-⇒271.271231231x x x 或 231271+<<+-⇒x 24、若不等式04)2(2)2(2<--+-x a x a 对一切R x ∈恒成立,求a 的取值范围.当2=a 时,原不等式变形为04<-,恒成立,即2=a 满足条件;当 2≠a 时,要使不等式04)2(2)2(2<--+-x a x a 对一切R x ∈恒成立,必须02<-a 且0)2(44)2(42<-⨯+-=∆a a2<a 22<<-a ,解得,22<<-a .综上所述,a 的取值范围是22≤<-a . 25.设f(x)=ax 2+bx+c ,若f(1)=27,问是否存在a 、b 、c ∈R ,使得不等式: x 2+21≤f(x)≤2x 2+2x+23对一切实数x 恒成立, 证明你的结论. 【解】由f(1)= 27得a+b+c=27。

令x 2+21=2x 2+2x+23⇒x=-1,由f(x)≤2x 2+2x+23推得f(-1)≤23。

由f(x)≥x 2+21推得f(-1)≥23,∴f(-1)= 23∴a -b+c=23,故2(a+c)=5,a+c=25且b=1 ∴f(x)=ax 2+x+(25-a)依题意:ax 2+x+(25-a)≥x 2+21对一切x ∈R 成立,即0)2()1(2≥-++-a x x a 都成立,∴a>1,且Δ=1-4(a -1)(2-a)≤0。

推得(2a -3)2≤0 ∴23=a ,∴f(x)=23x 2+x+1易验证:23x 2+x+1≤2x 2+2x+23对x ∈R 都成立。

∴存在实数a=23,b=1,c=1使得不等式x 2+21≤f(x)≤2x 2+2x+23对一切x ∈R 都成立.26.关于x 的不等式01)3()32(22<-----x m x m m 的解集是R ,求m 的取值范围. 解:]3,51(-27.若关于x 的不等式2282002(1)94x x mx m x m -+<++++的解为x R ∈,求实数m 的取值范围 解:15-<<-m28.已知a 、b 、c 都是正实数,且满足log 9(9a +b )=log 3ab ,求使4a +b ≥c 恒成立的c的取值范围. 解析 因为a 、b 都是正实数,log 9(9a +b )=log 3ab ,所以log 3(9a +b )=log 3(ab ), 故9a +b =ab ,故9b +1a =1,所以4a +b =(4a +b )(9b +1a )=13+36a b +ba≥13+236a b ·ba=25, 即4a +b ≥25,当且仅当36a b =ba ,即b =6a 时等号成立.而c >0,所以要使4a +b ≥c 恒成立,c 的取值范围为0<c ≤25.。

相关文档
最新文档