761高等岩石力学岩石力学实验PPT课件
合集下载
岩石力学课程(课堂PPT)
上节回顾-Review
岩石力学研究的对象及特点 岩石力学研究的主要内容 岩石力学的研究方法
本节内容——Next
我们将进入岩石力学的重要内容 ——岩石的物理性质的学习中… …
1
岩石/岩体性质
物理性质
包括密度、容重、 含水率、抗冻等性 质
力学性质
包括弹性/变形模 量、抗拉、抗压、 抗剪强度等
2
第二章 岩石的物理性状(性质) Chapter 2 Physical Properties of Rock
14
§2.1 岩体的结构特性
岩体结构面的特征 结构面的成因类型
成因类型
地质类型
沉积结 构面
1层理层面 2软弱夹层 3不整合面、假整合面 4沉积间断面
原
生 结 构
岩浆岩 结构面
1侵入体与围岩接触面 2岩脉岩墙接触面 3原生冷凝节理
面
产状
一般与岩层产状 一致,为层间结 构面
岩脉受构造结构 面控制,而原生 节理受岩体接触 面控制
岩体结构面的特征 结构面的规模
Ⅰ级——指大断层或区域性断层。控制工程建设地区的地壳稳定性,
直接影响工程岩体稳定性;
Ⅱ级
Ⅱ、Ⅲ级结构面控制着工程岩体力学 ——作指用延的伸边长界而宽条度件不和大破的区坏域方性式地,质它界面们。的组合
Ⅲ级 ——往指往长构度成数可十米能至滑数移百岩米的体断的层边、界区面域性,节直理接、威延伸较好的层
27
§2.3 岩石的物理性质指标
在前面说到,岩石力学问题的研究首先 应从岩石的基本物理力学性质研究入手,本 节介绍岩石(块)的基本物理性质的主要指 标及测试方法。
散体状 结构
构造影响剧烈的断 层破碎带,强风化 带,全风化带
岩石力学研究的对象及特点 岩石力学研究的主要内容 岩石力学的研究方法
本节内容——Next
我们将进入岩石力学的重要内容 ——岩石的物理性质的学习中… …
1
岩石/岩体性质
物理性质
包括密度、容重、 含水率、抗冻等性 质
力学性质
包括弹性/变形模 量、抗拉、抗压、 抗剪强度等
2
第二章 岩石的物理性状(性质) Chapter 2 Physical Properties of Rock
14
§2.1 岩体的结构特性
岩体结构面的特征 结构面的成因类型
成因类型
地质类型
沉积结 构面
1层理层面 2软弱夹层 3不整合面、假整合面 4沉积间断面
原
生 结 构
岩浆岩 结构面
1侵入体与围岩接触面 2岩脉岩墙接触面 3原生冷凝节理
面
产状
一般与岩层产状 一致,为层间结 构面
岩脉受构造结构 面控制,而原生 节理受岩体接触 面控制
岩体结构面的特征 结构面的规模
Ⅰ级——指大断层或区域性断层。控制工程建设地区的地壳稳定性,
直接影响工程岩体稳定性;
Ⅱ级
Ⅱ、Ⅲ级结构面控制着工程岩体力学 ——作指用延的伸边长界而宽条度件不和大破的区坏域方性式地,质它界面们。的组合
Ⅲ级 ——往指往长构度成数可十米能至滑数移百岩米的体断的层边、界区面域性,节直理接、威延伸较好的层
27
§2.3 岩石的物理性质指标
在前面说到,岩石力学问题的研究首先 应从岩石的基本物理力学性质研究入手,本 节介绍岩石(块)的基本物理性质的主要指 标及测试方法。
散体状 结构
构造影响剧烈的断 层破碎带,强风化 带,全风化带
精品课程《岩石力学》ppt课件(全)
具体而言,研究岩石在荷载作用下的应力、变形和破坏 规律以及工程稳定性等问题。
上述定义是把“岩石”看成固体力学中的一种材料,然而
岩石材料不同于一般的人工制造的固体材料,它是
一种典型的“连续介质”,具有复杂的地质构造和赋
存条件的天然地质体。
.
11
三、岩石力学理论的发展简史
1. 初始阶段(19世纪末~20世纪初)
.
8
(2)60年代初意大利Vajont大坝水库高边坡的崩溃 意大利Vajont拱坝,坝高262m,
于1959年建成,是当时世界上 最高的拱坝。1963年10月9日 夜,由于大坝上游山体突然滑 坡,约2.5亿立方的山体瞬时涌 入水库,涌浪摧毁上游及下游 一个小镇与邻近几个村庄,造 成约2500人死亡,整个灾害的 持续时间仅仅5分钟。
.
3
一、引言
1. 人类活动与岩石工程(Rock Engineering)
岩石圈是人类赖以生存的主要载体,人类的大部分活动都 是在岩石圈上进行的:
远古
约4700年前 公元1600年
19世纪
石器,穴居 金字塔(146.5m) 火药采矿 铁路隧道技术
20世纪 大型水电工程
岩基、边坡,地下 洞室,隧道工程等
普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论.
围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于 冒落拱内岩石的重量,仅是上覆岩石重量的一部分.
太沙基(K.Terzahi)理论 围岩塌落成矩形,而不是抛物线型.
优点与缺点
上述理论在一定历史时期和一定条件下还是发挥了一定作用的, 但是围岩的塌落并不是形成围岩压力的惟一来源,也不是所有 的地下空间都存在塌落拱.围岩和支护之间并不完全是荷载和 结构的关系问题,在很多情况下围岩和支护形成一个共同承载 系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作 用.
岩石力学实验ppt课件
3/64
绪言
地层中钻取的岩心
标准的岩心试样
采集的岩样用标 准尺寸钻头取心
获得标准直 径岩心试件
切割两端面获得标 准长度的岩心试样
精磨试样两端面 使端面平滑规则
绪言
样品采集和岩石学审查
钻岩心 几何形状检验
端面切割 端面磨平
环境存放
样品包裹(围压实验)
实验
.
6/64
岩石单轴抗压实验
➢ 实验目的 ➢ 实验原理 ➢ 实验仪器 ➢ 实验步骤 ➢ 结果处理 ➢ 报告编写
①在试样整个高度上,直径误差不得超过0.3mm; ②端面的不平行度,最大不超过0.3mm; ③试样的两端面应垂直于试样轴线。
.
16
四、实验步骤
(1) 试件端面垂直度测量
检测方法如图所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边, 转动试样两者之间无明显缝隙。对于不合格试样,使用锉刀打磨,直至符合要求。
P Rc A
(1)
Rc—试样单轴抗压强度,MPa;
P—试样破坏载荷,N;
A—试样初始截面积,mm2。
.
9
二、实验原理
岩石的弹性模量是指岩石在弹性变形阶段其应力
与应变变化值之比:
E
(2)
—轴向应力-应变曲线中直线段的轴向应
力增量,MPa;
—轴向应力-应力曲线直线段的轴向应变
增量;
O
Δσ Δε
石油工程岩石力学实验课程
.
2/64
绪言
岩石力学性质主要是指岩石的变形(deformation )特征及岩石的强度(strength )。对任 何工程现象来说,只有获得岩石的力学性质,得出力学参数(如弹性模量、泊松比、内聚力、 内摩擦角等),建立岩石的本构方程(constitutive equation)和破坏准则(failure criterion ),为进一步研究分析提供一定模式与依据。
岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在
《岩石力学》课件(完整版)-第三章岩石动力学基础
能量吸收是指岩石在冲 击或振动载荷作用下吸 收能量的能力,与岩石 的破碎和变形有关。
疲劳是指岩石在循环载 荷作用下发生损伤和破 坏的现象,对地下工程 和边坡工程的稳定性有 重要影响。
03
岩石动力学的基本理论
弹性力学基础
01
弹性力学基本概念
弹性力学是研究弹性物体在外力作用下的应力、应变和位移的学科。它
理论分析方法。这些方法可用于求解各种复杂弹性力学问题。
塑性力学基础
塑性力学基本概念
塑性力学是研究塑性物体在外力作用下的应力、应变和位移的学科。塑性物体在达到屈服 点后会发生不可逆的变形,其应力-应变关系不再满足胡克定律。
塑性力学的基本方程
包括屈服准则、流动法则、增量理论和边界条件等。这些方程描述了塑性物体内部的应力 、应变和位移之间的关系,以及物体与周围介质之间的相互作用。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
离散元法
离散元法是一种将连续介质离散化为一系列刚性或弹性 单元体的方法。
数据分析
对实验获取的大量数据进行处理和分 析,提取岩石的动力学特性,如阻尼 比、质量放大系数等。
结果解释
根据实验结果,解释岩石在动态载荷 作用下的破坏机制和演化过程,为工 程设计和安全评估提供依据。
实验研究的挑战与展望
挑战
岩石动力学实验技术难度大,需要克服实验条件苛刻、测量精度要求高等问题。 同时,岩石材料的非线性、各向异性等特性也给实验结果分析带来困难。
《高等岩石力学》课件
用于模拟岩石在三轴压力下的力学行为,包括应力应变关系、破裂模式等。
岩石声波测试仪
用于测量岩石的声波速度,评估岩石的完整性、孔隙 度和弹性参数。
岩石CT扫描仪
通过X射线扫描岩石,获取岩石内部的结构和孔隙分 布信息。
岩石力学实验方法
直接拉伸试验
测量岩石在拉伸载荷下 的应力-应变关系,了解 岩石的抗拉强度和变形 特性。
《高等岩石力学》ppt课件
目 录
• 岩石力学基础 • 岩石力学性质 • 岩石力学实验 • 岩石工程稳定性分析 • 岩石工程防护与加固 • 高等岩石力学应用案例
01
岩石力学基础
岩石力学定义
总结词:基本概念
详细描述:岩石力学是一门研究岩石在各种外力作用下的变形、破裂、破坏和流 动等行为的科学。它涉及到岩石的物理性质、力学行为和地质环境等多个方面。
单轴压缩试验
测量岩石在单轴压缩下 的应力-应变关系,了解 岩石的抗压强度和变形 特性。
三轴压缩试验
模拟岩石在实际地质环 境中的受力状态,测量 岩石在三轴压力下的应 力-应变关系。
岩石力学实验结果分析
强度分析
根据实验结果,分析岩石的抗压、抗拉和抗剪 强度,评估岩石的稳定性。
变形特性分析
分析岩石的应力-应变曲线,了解岩石的弹性、 塑性 Nhomakorabea破裂特性。
地下水监测
通过监测地下水的变化情况,评估地下水对岩体的影响和破坏程 度。
06
高等岩石力学应用案 例
岩石工程设计案例
总结词 详细描述 详细描述 详细描述
通过实际案例分析,展示高等岩石力学在岩石工程设计中的应 用。
介绍某大型水电站岩石高边坡设计,如何运用高等岩石力学的 理论和方法,对边坡稳定性进行评估,并设计出合理的支护结
岩石声波测试仪
用于测量岩石的声波速度,评估岩石的完整性、孔隙 度和弹性参数。
岩石CT扫描仪
通过X射线扫描岩石,获取岩石内部的结构和孔隙分 布信息。
岩石力学实验方法
直接拉伸试验
测量岩石在拉伸载荷下 的应力-应变关系,了解 岩石的抗拉强度和变形 特性。
《高等岩石力学》ppt课件
目 录
• 岩石力学基础 • 岩石力学性质 • 岩石力学实验 • 岩石工程稳定性分析 • 岩石工程防护与加固 • 高等岩石力学应用案例
01
岩石力学基础
岩石力学定义
总结词:基本概念
详细描述:岩石力学是一门研究岩石在各种外力作用下的变形、破裂、破坏和流 动等行为的科学。它涉及到岩石的物理性质、力学行为和地质环境等多个方面。
单轴压缩试验
测量岩石在单轴压缩下 的应力-应变关系,了解 岩石的抗压强度和变形 特性。
三轴压缩试验
模拟岩石在实际地质环 境中的受力状态,测量 岩石在三轴压力下的应 力-应变关系。
岩石力学实验结果分析
强度分析
根据实验结果,分析岩石的抗压、抗拉和抗剪 强度,评估岩石的稳定性。
变形特性分析
分析岩石的应力-应变曲线,了解岩石的弹性、 塑性 Nhomakorabea破裂特性。
地下水监测
通过监测地下水的变化情况,评估地下水对岩体的影响和破坏程 度。
06
高等岩石力学应用案 例
岩石工程设计案例
总结词 详细描述 详细描述 详细描述
通过实际案例分析,展示高等岩石力学在岩石工程设计中的应 用。
介绍某大型水电站岩石高边坡设计,如何运用高等岩石力学的 理论和方法,对边坡稳定性进行评估,并设计出合理的支护结
《岩石物理力学性质》PPT课件
▪ 矿物的解理就是矿物晶体受应力作用超过 弹性限度,沿结晶学方向破裂成光滑的平面 的现象.
微裂隙
▪ 白云质灰岩晶间微裂隙
▪ 粒间空隙
粒间空隙
晶格
▪ 晶格边界、晶格缺陷
▪ 微构造面对岩石工程性质的影响 ▪ 大大降低岩石的强度 ▪ 导致岩石的各向异性 ▪ 增大岩石的变形、改变弹性波速、电阻率
和热传导率等
▪ 岩石是构成岩体的根本单元。
1.2.1 岩石的根本构成
▪ 岩石的根本构成是由组成岩石的物质成分和构造 两方面决定。
▪ 组成岩石的矿物称为造岩矿物。矿物是地壳中天 然生成的自然元素或化合物,它具有一定的物理 性质、化学成分和形态。
▪ 主要造岩矿物:最主要的造岩矿物只有30多种, 如石英、长石、辉石、角闪石、云母、方解石、 高岭石、绿泥石、石膏、赤铁矿、黄铁矿等。
基性和超基性岩石主要是由易于风化的矿物组成,非常容易风化 ;
酸性岩石主要由较难风化的矿物组成,抗风化能力比起同样构造的基性 岩要高 ;
沉积岩主要由风化产物组成,大多数为原来岩石中较难风化的碎屑物或 是在风化和沉积过程中新生成的化学沉积物,稳定性一般都较高;
1.2.1.2 常见的岩石构造类型
▪ 岩石的构造是指岩石中矿物〔及岩屑〕颗 粒相互之间的关系,包括颗粒的大小、形 状、排列、构造连结特点及岩石中的微构 造面。
1.2.1.1 岩石的主要物质成分
按照生成条件划分,矿物可分为: 原生矿物——由岩浆岩冷凝生成,如石英、长石、辉石、角闪石、 云母等; 次生矿物——由原生矿物经风化作用直接生成,如由长石风化而成 的高岭石、由辉石或角闪石风化而成的绿泥石等,或 在水溶液中析出生成,如石膏、方解石。
矿物的外表形态: 结晶体——大多呈现规那么的几何形状; 非结晶体——呈现不规那么的形状。
微裂隙
▪ 白云质灰岩晶间微裂隙
▪ 粒间空隙
粒间空隙
晶格
▪ 晶格边界、晶格缺陷
▪ 微构造面对岩石工程性质的影响 ▪ 大大降低岩石的强度 ▪ 导致岩石的各向异性 ▪ 增大岩石的变形、改变弹性波速、电阻率
和热传导率等
▪ 岩石是构成岩体的根本单元。
1.2.1 岩石的根本构成
▪ 岩石的根本构成是由组成岩石的物质成分和构造 两方面决定。
▪ 组成岩石的矿物称为造岩矿物。矿物是地壳中天 然生成的自然元素或化合物,它具有一定的物理 性质、化学成分和形态。
▪ 主要造岩矿物:最主要的造岩矿物只有30多种, 如石英、长石、辉石、角闪石、云母、方解石、 高岭石、绿泥石、石膏、赤铁矿、黄铁矿等。
基性和超基性岩石主要是由易于风化的矿物组成,非常容易风化 ;
酸性岩石主要由较难风化的矿物组成,抗风化能力比起同样构造的基性 岩要高 ;
沉积岩主要由风化产物组成,大多数为原来岩石中较难风化的碎屑物或 是在风化和沉积过程中新生成的化学沉积物,稳定性一般都较高;
1.2.1.2 常见的岩石构造类型
▪ 岩石的构造是指岩石中矿物〔及岩屑〕颗 粒相互之间的关系,包括颗粒的大小、形 状、排列、构造连结特点及岩石中的微构 造面。
1.2.1.1 岩石的主要物质成分
按照生成条件划分,矿物可分为: 原生矿物——由岩浆岩冷凝生成,如石英、长石、辉石、角闪石、 云母等; 次生矿物——由原生矿物经风化作用直接生成,如由长石风化而成 的高岭石、由辉石或角闪石风化而成的绿泥石等,或 在水溶液中析出生成,如石膏、方解石。
矿物的外表形态: 结晶体——大多呈现规那么的几何形状; 非结晶体——呈现不规那么的形状。
岩石力学性质-PPT课件
岩石具有非常缓慢的流动性。
粘度是衡量地球动力学的一个重要参数。
近代,人们把物体所有这些力学性质概括为物质的流变 性(rheological properties),并形成一门新兴学科 -流变学(rheology)
流变学是研究固体物质流动的科学。因此,从近代地球 科学观念来看,地球物质具有流变性。把研究地球物质 流动性质和规律的科学,称为“地球流变学(Rheology of Earth Materials)”。
时间对岩石蠕变和松弛的影响
蠕变是在恒定应力作用下,应变随时间持续增加的变形。 蠕变的结果在低于岩石弹性极限的情况下使岩石产生永
久变形。 松弛是在恒定变形情况下,岩石中应力随时间增长不断
减小。 松弛的结果:使部分弹性变形转化为永久变形,相当于
降低了岩石的弹性极限。 蠕变和松弛现象是岩石变形表现的两方面,都表现出时
(1)改写为
(3)
(4)
(1)、(3)式称为线性粘性定律(牛顿粘性定律),服从牛顿粘性定律的 材料称为牛顿流体(或线粘性流体)。具牛顿粘性变形称为粘性流体变形。
理想粘性材料的力学行为
弹塑性变形—指有些物体同时具有弹性和塑性的性 能。在弹塑性变形中,有一部分是弹性,其余为塑 性变形。
理想弹性体的变形是可逆过程,它的应力与应变 之间有一个确定的单值关系,符合虎克定律:
σ=Ee
其中E为杨氏弹性模量。
岩石变形的应力-应变曲线
非理想弹性体的变形:受力不立即产生全部弹性 变形,而是随着时间的延长逐渐增大弹性变形到 应有的值;当撤除外力后,也不立即恢复原状, 而是随时间延长逐渐恢复原状。这种现象称为弹 性后效(即滞弹性)。
流体沿着x方向流动的n个不同流层。它们的流速ů是y的函数,ů在y轴方向的 变化率称为速度梯度,dů/dy。同一位置上的剪应力(摩擦阻力)与速度梯度 呈正比关系
粘度是衡量地球动力学的一个重要参数。
近代,人们把物体所有这些力学性质概括为物质的流变 性(rheological properties),并形成一门新兴学科 -流变学(rheology)
流变学是研究固体物质流动的科学。因此,从近代地球 科学观念来看,地球物质具有流变性。把研究地球物质 流动性质和规律的科学,称为“地球流变学(Rheology of Earth Materials)”。
时间对岩石蠕变和松弛的影响
蠕变是在恒定应力作用下,应变随时间持续增加的变形。 蠕变的结果在低于岩石弹性极限的情况下使岩石产生永
久变形。 松弛是在恒定变形情况下,岩石中应力随时间增长不断
减小。 松弛的结果:使部分弹性变形转化为永久变形,相当于
降低了岩石的弹性极限。 蠕变和松弛现象是岩石变形表现的两方面,都表现出时
(1)改写为
(3)
(4)
(1)、(3)式称为线性粘性定律(牛顿粘性定律),服从牛顿粘性定律的 材料称为牛顿流体(或线粘性流体)。具牛顿粘性变形称为粘性流体变形。
理想粘性材料的力学行为
弹塑性变形—指有些物体同时具有弹性和塑性的性 能。在弹塑性变形中,有一部分是弹性,其余为塑 性变形。
理想弹性体的变形是可逆过程,它的应力与应变 之间有一个确定的单值关系,符合虎克定律:
σ=Ee
其中E为杨氏弹性模量。
岩石变形的应力-应变曲线
非理想弹性体的变形:受力不立即产生全部弹性 变形,而是随着时间的延长逐渐增大弹性变形到 应有的值;当撤除外力后,也不立即恢复原状, 而是随时间延长逐渐恢复原状。这种现象称为弹 性后效(即滞弹性)。
流体沿着x方向流动的n个不同流层。它们的流速ů是y的函数,ů在y轴方向的 变化率称为速度梯度,dů/dy。同一位置上的剪应力(摩擦阻力)与速度梯度 呈正比关系
《岩石力学性质》PPT课件
▪ 但由于有了侧向压力,其加载上时的端部效应比单轴加载 时要轻微得多。
▪ 应力状态: σ1>σ2=σ3
精选ppt
26
▪ 三轴压缩试验加载示意图
▪ 真三轴
▪ σ1>σ2> σ3
▪ 假三轴
▪ σ1>σ2=σ3
精选ppt
27
▪ 3)假三轴试验装置图:
▪ 由于试件侧表面已被加压油缸的橡皮套包住,液压油不会 在试件表面造成摩擦力,因而侧向压力可以均匀施加到试 件中。其试验装置示意图如下。
线与σ轴夹角为内摩擦角,外切线及其延长线与τ
轴相交之截距即为C。
▪ 实践中采用第一种方法的人数多。
精选ppt
31
精选ppt
20
▪ 5) Hoek直剪仪试验装置
精选ppt
21
▪ 6)角模压剪试验及受力分析示意图
▪ 在压力P的作用下,剪切面上可分解为沿剪切面 的剪力Psinα/A和垂直剪切面的正应力Pcosα/A, 如图所示。
精选ppt
22
▪ 7)限制性剪切强度试验结果及其分析
▪ ①试验结果:剪切面上正应力越大,试件被剪破坏前所 能承受的剪应力也越大。
▪ a.直线形:τ轴的截距称为岩石的粘结力(或称内
聚力),记为C(MPa),与σ轴的夹角称为岩
石的内摩擦角,记为φ(度)。
▪ b.曲线形:
▪ ①一种方法是将包络线和τ轴的截距定为C,将包
络线与τ轴相交点的包络线外切线与σ轴夹角定为
内摩擦角。
▪ ②另一种方法建议根据实际应力状态在莫尔包络 线上找到相应点,在该点作包络线外切线,外切
▪ 非限制性剪切试验在剪切面上只有剪应力存在, 没有正应力存在;限制性剪切试验在剪切面上除 了存在剪应力外,还存在正应力。
▪ 应力状态: σ1>σ2=σ3
精选ppt
26
▪ 三轴压缩试验加载示意图
▪ 真三轴
▪ σ1>σ2> σ3
▪ 假三轴
▪ σ1>σ2=σ3
精选ppt
27
▪ 3)假三轴试验装置图:
▪ 由于试件侧表面已被加压油缸的橡皮套包住,液压油不会 在试件表面造成摩擦力,因而侧向压力可以均匀施加到试 件中。其试验装置示意图如下。
线与σ轴夹角为内摩擦角,外切线及其延长线与τ
轴相交之截距即为C。
▪ 实践中采用第一种方法的人数多。
精选ppt
31
精选ppt
20
▪ 5) Hoek直剪仪试验装置
精选ppt
21
▪ 6)角模压剪试验及受力分析示意图
▪ 在压力P的作用下,剪切面上可分解为沿剪切面 的剪力Psinα/A和垂直剪切面的正应力Pcosα/A, 如图所示。
精选ppt
22
▪ 7)限制性剪切强度试验结果及其分析
▪ ①试验结果:剪切面上正应力越大,试件被剪破坏前所 能承受的剪应力也越大。
▪ a.直线形:τ轴的截距称为岩石的粘结力(或称内
聚力),记为C(MPa),与σ轴的夹角称为岩
石的内摩擦角,记为φ(度)。
▪ b.曲线形:
▪ ①一种方法是将包络线和τ轴的截距定为C,将包
络线与τ轴相交点的包络线外切线与σ轴夹角定为
内摩擦角。
▪ ②另一种方法建议根据实际应力状态在莫尔包络 线上找到相应点,在该点作包络线外切线,外切
▪ 非限制性剪切试验在剪切面上只有剪应力存在, 没有正应力存在;限制性剪切试验在剪切面上除 了存在剪应力外,还存在正应力。
《岩石力学》(完整版)PPT课件
1.平行层面纵波波速大于垂直层面波速
平行层面波速/垂直岩层波速=各向异性系数C C=1.08-2.28;多数:C=1.67 相当一部分:c=1.10
.
43
表3-6
.
44
•交通方面 :北京道路面积4.4m2/人;东京11.3m2/ 人;伦敦21.3m2/人。
.
4
1.3 岩体力学的研究方法
研究方法:实验、理论分析与工程应用相结合
实验 理论
室内
岩块(拉、压、剪…) 模拟 收敛(表面位移)
野外 位移 应力
应变 绝对位移、相对位移(内部)
压力 连介
非连介
有限元
数值方法 离散元
VP0.3 51.88
.
34
.
35
二、岩体波速与岩体中裂隙或夹层的关系
弹性波在岩体中传播时,遇到裂隙,则视
充填物而异。若裂隙中充填物为空气,则弹 性波不能通过,而是绕过裂隙断点传播。在 裂隙充水的情况下,声能有5%可以通过, 若充填物为其他液体或固体物质,则弹性波 可部分或完全通过。弹性波跨越裂隙宽度的 能力与弹性波的频率和振幅有关.
.
29
.
30
根据实验结果整理的岩体动弹性模量见表(3-2)
.
31
动弹性模量与静弹性模量的比值
• 一般来说,岩体越坚硬越完整,则差 值越小,否则,差值就越大。
• 根据对比资料的统计,动弹性模量比 静弹性模量高百分之几至几十倍,如 图3-4所示。
• 从动弹性模量的数字来看,多集中 在 1 51305 0130MP之a间。
.
12
(二)渗透性
在一定的水压作用下,水穿透岩石的能力。反映 了岩石中裂隙向相互连通的程度,大多渗透性可用达 西(Darcy)定律描述:
平行层面波速/垂直岩层波速=各向异性系数C C=1.08-2.28;多数:C=1.67 相当一部分:c=1.10
.
43
表3-6
.
44
•交通方面 :北京道路面积4.4m2/人;东京11.3m2/ 人;伦敦21.3m2/人。
.
4
1.3 岩体力学的研究方法
研究方法:实验、理论分析与工程应用相结合
实验 理论
室内
岩块(拉、压、剪…) 模拟 收敛(表面位移)
野外 位移 应力
应变 绝对位移、相对位移(内部)
压力 连介
非连介
有限元
数值方法 离散元
VP0.3 51.88
.
34
.
35
二、岩体波速与岩体中裂隙或夹层的关系
弹性波在岩体中传播时,遇到裂隙,则视
充填物而异。若裂隙中充填物为空气,则弹 性波不能通过,而是绕过裂隙断点传播。在 裂隙充水的情况下,声能有5%可以通过, 若充填物为其他液体或固体物质,则弹性波 可部分或完全通过。弹性波跨越裂隙宽度的 能力与弹性波的频率和振幅有关.
.
29
.
30
根据实验结果整理的岩体动弹性模量见表(3-2)
.
31
动弹性模量与静弹性模量的比值
• 一般来说,岩体越坚硬越完整,则差 值越小,否则,差值就越大。
• 根据对比资料的统计,动弹性模量比 静弹性模量高百分之几至几十倍,如 图3-4所示。
• 从动弹性模量的数字来看,多集中 在 1 51305 0130MP之a间。
.
12
(二)渗透性
在一定的水压作用下,水穿透岩石的能力。反映 了岩石中裂隙向相互连通的程度,大多渗透性可用达 西(Darcy)定律描述:
岩石力学性质试验——单轴压缩强度和变形试验课件(PPT)
提
纲
一、引言 二、单轴压缩强度和变形试验
一、引 言
岩石的力学性质—岩块在力的作用下所表现的性质。 岩石同其它固体材料一样,在不大的力的作用下,
首先发生变形;增大作用力,变形量随之增加;当力和 变形量超过一定的限度以后,即发生破坏。
承受力的作用而发 生变形的性能
(变形性)
岩石的力 学性质
抵抗力的作用而保持其 自身完整的抗破坏性能
二、单轴压缩强度和变形试验
—试验方法
b、真空抽气法饱和试件 饱和器内的水面高于试件; 真空压力——100kPa; 总抽气时间>4h; 在大气压力下静置4h,取出并沾去表
面水分称重。 称量精确至0.01g。
二、单轴压缩强度和变形试验
—试验方法
(二)试验过程 1、安装传感器 利用橡皮筋把两个
纵向引伸仪固定在沿试 件轴向的两侧;
二单轴压缩强度和变形试验仪器设备二单轴压缩强度和变形试验仪器设备当岩石因破裂扩展发生大应变时通过传感器把这一信号输入伺服控制器中伺服控制器给伺服阀信号使伺服阀打开压力降低使试件保持恒定的变形速率从而控制了岩石的破坏并得到峰值后的变形曲线
岩石力学性质试验
主讲:付 小 敏 成都理工大学
环境与土木工程学院
二、单轴压缩强度和变形试验
—试验方法
5、精度要求: a、试件两端面不平
整度误差不得大于 0.05mm;
b、沿试件高度,直 径的误差不得大于0.3mm;
c、端面应垂直于试 件轴线,最大偏差不得大 于0.250。
二、单轴压缩强度和变形试验
—试验方法
6、试件含水状态:
天然含水状态、烘干状态、饱和状态。 1) 烘干状态 将试件置于烘箱内,在105~1100C温度下烘24h,取出放 入干燥器内冷却至室温后称重。 2)饱水状态 a、自由水法饱和试件 将试件放入水槽,先注水至试件高度的1/4处,以后每隔 2h分别注水至试件高度的1/2和3/4处,6h后全部淹没试件 。 试件在水中自由吸水48h后,取出试件并沾去表面水分称重。
高等岩石力学岩石刚度理论ppt
其他岩石强度理论
格里菲斯认为脆性材料的断裂由分布 格里菲斯强度理论 在材料中的微小裂纹尖端有拉应力集 中导致
德鲁克-普拉格强度ຫໍສະໝຸດ 论 莫尔-库仑准则反映了岩土材料压剪破坏的
实质,得到了广泛的应用,但没有反映中间 主应力的影响,不能解释岩土材料在静水压 力下也能屈服破坏的现象。 德鲁克-普拉格准则是在Mises准则基础上推 广得到的
von Mises于1913年提出了一个屈服准则,这个屈服准则被称为von Mises屈服准则。它的内容是:当某 一点应力应变状态的等效应力应变达到某一与应力应变状态无关的定值时,材料就屈服;或者说材料 处于塑性状态时,等效应力始终是一不变的定值。
岩体强度理论在岩土工程中的应用
岩石强度理论在岩土工程中的应用 露天矿边坡稳定性分析方法大体上可分为岩体结构分析法 、数学模型分析法和 工程参数类比法等几个种类。结合岩石强度理论采用了露天矿边坡平面滑动的稳定 性极限平衡法来进行分析。 极限平衡法极限平衡法是一种基于平衡理论的数学模型计算分析方法 ,主要根 据边坡破坏面上抵抗破坏的阻力(即破坏面上的剪切强度与破坏面面积的乘积 )与 破坏力的比值来表示 ,这里主要是用到了库仑准则(τ =σ tanυ +c)。
[1]吕则欣。陈华兴.《岩石强度理论》
库伦强度理论
理论基础:岩石的破坏主要是剪切破坏,岩石的强度等于岩石本身抗剪切摩 擦的粘结力和法向力产生的摩擦力 按照库伦—莫尔强度理论,当代表某一应力状态的最大应力圆与强度曲 线相切时,岩石发生剪切破坏,破裂面与最大主应力作用面的夹角为 (45°+ϐ/2),该理论没有考虑中主应力σ2的影响。此强度理论广泛应 用于矿山工程稳定性分析。
[2]张鹏飞.《岩石强度理论分类及在岩土工程中的应用》
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等岩石力学
二、岩石水理性质实验
高等岩石力学
岩石含水量实验
岩石与水相互作用时所表现的性质称为岩石的 水理性。包括岩石的吸水性、透水性、软化性和 抗冻性。
1、含水量W 岩石孔隙中含水的质量与岩石总质
量之比的百分数
wm w/m %
m w :孔隙中含水的质量
高等岩石力学
岩石含水量实验
2、含水率ω 岩石孔隙中含水的质量与固相质量
1993
高等岩石力学
一、岩石物理性质实验
高等岩石力学
岩石物理性质
mms mw
mw
water
ms
VVs VwVv
Vv Vw
gas
Vs
mass
岩石含:固相、液相、气相。 三相比例不同而密度不同。
高等岩石力学
岩石比重实验
1.比重 G s
岩石的比重是岩石固体部分的质量和4℃时同 体积纯水质量的比值(颗粒密度:岩石固相的质量与
高等岩石力学
岩石渗透系数实验
5、岩石的渗透性
岩石在一定的水压力作用下,水穿透岩石的能力。
水只能沿连通孔隙渗透,岩石透水的大小可用渗透
系数衡量,它主要决定于岩石孔隙的大小、方向及
其相互连通情况。
dh
qxKdxAkiA
cm 3/s
q x :沿x方向水的流量 h :水头的高度 A :垂直x方向的截面面积 K :岩石的渗透系数(cm/s)
岩石?
高等岩石力学
岩石力学实验研究标准
试验标准 1、工程岩体试验方法标准GB/T 50266-99 2、公路工程岩石试验规程 JTG E41-2005 3、水电工程岩石试验规程 DL/T5368-2007 4、 铁路工程岩石试验规程TB10115-98 5、岩石试验规程( 冶金行业标准)YBJ 46-
石的干密度(γd)为 :
d g1
g2
gs
g1
gs
w
n
式中,γn为蜡的密度。
高等岩石力学
岩石孔隙性实验
天然岩石中包含着数量不等、成因各异的孔隙和 裂隙,是岩石的重要结构待征之一,通称为岩石的 孔隙性。
孔隙率 n:孔隙的体积与总体积的比值
nVv /V
孔隙比 e:孔隙的体积与固体的体积之比
eVv /Vs
高等岩石力学
Adwanced Rock Mechanics
辽宁科技大学
高等岩石力学
第一部分
整体概述
THE FIRST PART OF THE OVERALL OVERVIEW, PLEASE SUMMARIZE THE CONTENT
高等岩石力学
岩石力学实验
高等岩石力学
岩石力学实验研究对象
岩体?
蜡封法适于不能用量积法或水中称重法测定密度的岩石。
首先选取有代表性岩样在105—110℃温度下烘干24小时。取
出,系上细线,称岩样质量(gs),持线将岩样缓缓浸入刚过
熔点的蜡液中,浸后立即提出,检查试样周围的蜡膜,若有气
泡应用针刺破,再用蜡液补平,冷却后称蜡封岩样的质量
(g1),然后将蜡封岩样浸没于纯水中称其质量(g2),则岩
(g/cm 3)
V V :孔隙体积
高等岩石力学
岩石密度实验
(3)、干密度 d 岩石孔隙中的液体全部被蒸发,试件
中仅有固相和气相的状态下,单位体积的 质量
dm s/V (g/cm 3)
密度测定法:量积法;水中称重法;蜡封法。
高等岩石力学
岩石密度实验
岩石密度测定方法一:量积法
凡能制备成规则试样的岩石均宜采用量积法测定其密度。
固相体积之比。它不包括孔隙在内,因此其大小仅取决 于组成岩石的矿物密度及其含量)
Gs W s/Vsw
W s :岩石固相的质量
V s :固相的体积 w :4℃水的密度
高等岩石力学
岩石比重实验
试验方法:
比重瓶法
步骤: 粉碎
0.25mm 105-110 ℃过筛来自烘干50g称重
放入比重瓶
排气 读数(计算)
高等岩石力学
岩石密度实验
岩石密度测定方法二:水中称重法
首先称量不规则岩样的质量(gs),再浸入水 中称其质量(gw) ,根据阿基米德原理计算出 不规则岩样的体积(V),即可计算出岩样密 度(γ)。
遇水崩解、溶解和干缩湿胀的岩石不能用此 法测其密度。
高等岩石力学
岩石密度实验
岩石密度测定方法三:蜡封法
高等岩石力学
岩石比重实验
比重瓶
高等岩石力学
岩石比重实验
Gs
m1
ms ms
m2
0
m1—瓶和装满的试液质量 ms—岩粉质量 m2—瓶、试液、岩粉质量 γ0—试验温度下试液的密度
高等岩石力学
岩石密度实验
2.岩石的密度 岩石试件的质量与体积之比,即单位
体积的岩石质量(T/m3 、 g/cm3 )。 岩石的重度
量积法测定岩石密度时,需测定规则试样的平均断面积A,平
均高度h以及试样的质量W,可得岩石的密度。
当试样在105℃一110℃温度下烘干24小时称重,可测定岩石
的干密度(γd):
d
gs Ah
式中,γd为岩石的干密度(g/cm3);gs为被测岩样在 105℃一110℃的温度下烘干24 小时的质量(g);A为被测岩 样的平均断面积(cm2);h为被测岩样平均高度(cm)。
高等岩石力学
岩石吸水率实验
4、饱水率(饱和或强制吸水率)sa
烘干岩石经高压、煮沸或真空抽气饱和后 吸入水的质量与试件固体的质量之比的百分数 。
sa
msa mdr mdr
%
高等岩石力学
岩石吸水率实验
4、饱水系数kW
岩石饱水系数是指岩石吸水率与饱水率 的比值,以百分率表示。
kw/sa %
在高压条件下,通常认为水能进入岩石中所有 张开的孔隙和裂隙中,国外采用高压设备,测定 岩石的饱和吸水率;国内常用真空抽气法或沸煮 法测定饱和吸水率。饱水率反映岩石中总的张开 型孔隙和裂隙的发育程度,对岩石的抗冻性和抗 风化能力具有较大影响.
之比的百分数
m w/m dr %
m w :孔隙中含水的质量
含水量较为常用,有天然含水量、饱和含水量等。
高等岩石力学
岩石吸水率实验
3、吸水率(自然吸水率)a
烘干岩石自由浸水48小时后吸入水的质量 与固相质量之比的百分数
a
m0 mdr mdr
(%)
m0—烘干岩石浸水48小时后的质量
岩石吸水率的大小取决于岩石中孔隙的多少及其连 通情况,岩石的吸水率愈大,表明岩石中的孔隙大, 数量多,并且连通性好,岩石的力学性质差。
岩石试件的重力与体积之比,即单位 体积岩石产生的重力(KN/m3 )。
高等岩石力学
岩石密度实验
(1)、天然密度
岩石在天然条件下,单位体积的质量
W/V (g/cm3)
W:岩石试件总质量 V:试件总体积
高等岩石力学
岩石密度实验
(2)、饱和密度 w
岩石中的孔隙都被水填充时单位体积
的质量
wm s V V VW
二、岩石水理性质实验
高等岩石力学
岩石含水量实验
岩石与水相互作用时所表现的性质称为岩石的 水理性。包括岩石的吸水性、透水性、软化性和 抗冻性。
1、含水量W 岩石孔隙中含水的质量与岩石总质
量之比的百分数
wm w/m %
m w :孔隙中含水的质量
高等岩石力学
岩石含水量实验
2、含水率ω 岩石孔隙中含水的质量与固相质量
1993
高等岩石力学
一、岩石物理性质实验
高等岩石力学
岩石物理性质
mms mw
mw
water
ms
VVs VwVv
Vv Vw
gas
Vs
mass
岩石含:固相、液相、气相。 三相比例不同而密度不同。
高等岩石力学
岩石比重实验
1.比重 G s
岩石的比重是岩石固体部分的质量和4℃时同 体积纯水质量的比值(颗粒密度:岩石固相的质量与
高等岩石力学
岩石渗透系数实验
5、岩石的渗透性
岩石在一定的水压力作用下,水穿透岩石的能力。
水只能沿连通孔隙渗透,岩石透水的大小可用渗透
系数衡量,它主要决定于岩石孔隙的大小、方向及
其相互连通情况。
dh
qxKdxAkiA
cm 3/s
q x :沿x方向水的流量 h :水头的高度 A :垂直x方向的截面面积 K :岩石的渗透系数(cm/s)
岩石?
高等岩石力学
岩石力学实验研究标准
试验标准 1、工程岩体试验方法标准GB/T 50266-99 2、公路工程岩石试验规程 JTG E41-2005 3、水电工程岩石试验规程 DL/T5368-2007 4、 铁路工程岩石试验规程TB10115-98 5、岩石试验规程( 冶金行业标准)YBJ 46-
石的干密度(γd)为 :
d g1
g2
gs
g1
gs
w
n
式中,γn为蜡的密度。
高等岩石力学
岩石孔隙性实验
天然岩石中包含着数量不等、成因各异的孔隙和 裂隙,是岩石的重要结构待征之一,通称为岩石的 孔隙性。
孔隙率 n:孔隙的体积与总体积的比值
nVv /V
孔隙比 e:孔隙的体积与固体的体积之比
eVv /Vs
高等岩石力学
Adwanced Rock Mechanics
辽宁科技大学
高等岩石力学
第一部分
整体概述
THE FIRST PART OF THE OVERALL OVERVIEW, PLEASE SUMMARIZE THE CONTENT
高等岩石力学
岩石力学实验
高等岩石力学
岩石力学实验研究对象
岩体?
蜡封法适于不能用量积法或水中称重法测定密度的岩石。
首先选取有代表性岩样在105—110℃温度下烘干24小时。取
出,系上细线,称岩样质量(gs),持线将岩样缓缓浸入刚过
熔点的蜡液中,浸后立即提出,检查试样周围的蜡膜,若有气
泡应用针刺破,再用蜡液补平,冷却后称蜡封岩样的质量
(g1),然后将蜡封岩样浸没于纯水中称其质量(g2),则岩
(g/cm 3)
V V :孔隙体积
高等岩石力学
岩石密度实验
(3)、干密度 d 岩石孔隙中的液体全部被蒸发,试件
中仅有固相和气相的状态下,单位体积的 质量
dm s/V (g/cm 3)
密度测定法:量积法;水中称重法;蜡封法。
高等岩石力学
岩石密度实验
岩石密度测定方法一:量积法
凡能制备成规则试样的岩石均宜采用量积法测定其密度。
固相体积之比。它不包括孔隙在内,因此其大小仅取决 于组成岩石的矿物密度及其含量)
Gs W s/Vsw
W s :岩石固相的质量
V s :固相的体积 w :4℃水的密度
高等岩石力学
岩石比重实验
试验方法:
比重瓶法
步骤: 粉碎
0.25mm 105-110 ℃过筛来自烘干50g称重
放入比重瓶
排气 读数(计算)
高等岩石力学
岩石密度实验
岩石密度测定方法二:水中称重法
首先称量不规则岩样的质量(gs),再浸入水 中称其质量(gw) ,根据阿基米德原理计算出 不规则岩样的体积(V),即可计算出岩样密 度(γ)。
遇水崩解、溶解和干缩湿胀的岩石不能用此 法测其密度。
高等岩石力学
岩石密度实验
岩石密度测定方法三:蜡封法
高等岩石力学
岩石比重实验
比重瓶
高等岩石力学
岩石比重实验
Gs
m1
ms ms
m2
0
m1—瓶和装满的试液质量 ms—岩粉质量 m2—瓶、试液、岩粉质量 γ0—试验温度下试液的密度
高等岩石力学
岩石密度实验
2.岩石的密度 岩石试件的质量与体积之比,即单位
体积的岩石质量(T/m3 、 g/cm3 )。 岩石的重度
量积法测定岩石密度时,需测定规则试样的平均断面积A,平
均高度h以及试样的质量W,可得岩石的密度。
当试样在105℃一110℃温度下烘干24小时称重,可测定岩石
的干密度(γd):
d
gs Ah
式中,γd为岩石的干密度(g/cm3);gs为被测岩样在 105℃一110℃的温度下烘干24 小时的质量(g);A为被测岩 样的平均断面积(cm2);h为被测岩样平均高度(cm)。
高等岩石力学
岩石吸水率实验
4、饱水率(饱和或强制吸水率)sa
烘干岩石经高压、煮沸或真空抽气饱和后 吸入水的质量与试件固体的质量之比的百分数 。
sa
msa mdr mdr
%
高等岩石力学
岩石吸水率实验
4、饱水系数kW
岩石饱水系数是指岩石吸水率与饱水率 的比值,以百分率表示。
kw/sa %
在高压条件下,通常认为水能进入岩石中所有 张开的孔隙和裂隙中,国外采用高压设备,测定 岩石的饱和吸水率;国内常用真空抽气法或沸煮 法测定饱和吸水率。饱水率反映岩石中总的张开 型孔隙和裂隙的发育程度,对岩石的抗冻性和抗 风化能力具有较大影响.
之比的百分数
m w/m dr %
m w :孔隙中含水的质量
含水量较为常用,有天然含水量、饱和含水量等。
高等岩石力学
岩石吸水率实验
3、吸水率(自然吸水率)a
烘干岩石自由浸水48小时后吸入水的质量 与固相质量之比的百分数
a
m0 mdr mdr
(%)
m0—烘干岩石浸水48小时后的质量
岩石吸水率的大小取决于岩石中孔隙的多少及其连 通情况,岩石的吸水率愈大,表明岩石中的孔隙大, 数量多,并且连通性好,岩石的力学性质差。
岩石试件的重力与体积之比,即单位 体积岩石产生的重力(KN/m3 )。
高等岩石力学
岩石密度实验
(1)、天然密度
岩石在天然条件下,单位体积的质量
W/V (g/cm3)
W:岩石试件总质量 V:试件总体积
高等岩石力学
岩石密度实验
(2)、饱和密度 w
岩石中的孔隙都被水填充时单位体积
的质量
wm s V V VW