(完整版)2017年广东省中考数学试题(word版-)
2017年广东省中考数学试卷(含答案解析版)
2017年广东省中考数学试卷及答案
2017年广东省初中毕业生学业考试数 学说明:1。
全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4。
非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.5。
考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1。
5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路"国家投资越来越活跃。
据商务部门发布的数据显示.2016年广东省对沿线国家的实际投资额超过4 000 000 000美元。
将4 000 000 000用科学记数法表示为( )A 。
0。
4×910B 。
0。
4×1010C 。
4×910 D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒ B 。
70︒ C.30︒ D 。
20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A 。
1 B.2 C 。
-1 D.—25。
在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ) A 。
95 B 。
90 C.85 D 。
80 6。
下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形 C 。
2017年广东省广州市中考数学试卷附详细答案(原版+解析版)
2017年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C.D.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,134.(3分)下列运算正确的是()A.= B.2×= C.=a D.|a|=a(a≥0)5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥46.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点D.三条高的交点7.(3分)计算(a2b)3•的结果是()A.a5b5 B.a4b5 C.ab5D.a5b68.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.249.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40° D.∠BOC=2∠BAD10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= .12.(3分)分解因式:xy2﹣9x= .13.(3分)当x= 时,二次函数y=x2﹣2x+6有最小值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= .15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= .16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题共9小题,共102分)17.(9分)解方程组.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B 类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选B【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C.D.【分析】根据旋转的性质即可得到结论.【解答】解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,故选A.【点评】本题考查了旋转的性质,正方形的性质,正确的识别图形是解题的关键.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,13【分析】观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数=14.故选C【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.4.(3分)下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.【点评】此题主要考查了分式的基本性质以及绝对值的性质、二次根式的性质,正确掌握相关性质是解题关键.5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点D.三条高的交点【分析】根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.【解答】解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点;故选:B.【点评】本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键.7.(3分)计算(a2b)3•的结果是()A.a5b5 B.a4b5 C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.8.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.24【分析】根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选C.【点评】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定,熟练掌握翻折变换的性质是解决问题的关键.9.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40° D.∠BOC=2∠BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= 70°.【分析】根据平行线的性质即可得到结论.【解答】解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,故答案为:70°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质即可得到结论.12.(3分)分解因式:xy2﹣9x= x(y+3)(y﹣3).【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【点评】本题考查对多项式的分解能力,一般先考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止.13.(3分)当x= 1 时,二次函数y=x2﹣2x+6有最小值 5 .【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少.【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【点评】此题主要考查了二次函数的最值,要熟练掌握,确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= 17 .【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= 3.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×=2πcm,则:=2π,解得l=3.故答案为:3.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是①③(填写所有正确结论的序号).【分析】①证明△CDB∽△FDO,列比例式得:,再由D、E为OB的三等分点,则=,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG 不成立;③如图3,利用面积差求得:S△CFG =S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=12,根据相似三角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴,∵D、E为OB的三等分点,∴=,∴,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,=OA•OH=AB•CQ,S▱OABC∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,∴S△CFG =S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∵DE∥FG,∴△CDE∽△CFG,∴==,∴=,∴,∴S四边形DEGF=;所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;故本题结论正确的有:①③;故答案为:①③.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共9小题,共102分)17.(9分)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②得:x=4,把x=4代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)【点评】本题考查全等三角形的判定,解题的关键是求证AF=BE,本题属于基础题型.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B 类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有 5 人,补全条形统计图;(2)D类学生人数占被调查总人数的36 %;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.【分析】(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.【点评】本题主要考查了基本作图以及含30度角的直角三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.【分析】(1)根据甲队筑路60公里以及乙队筑路总公里数是甲队筑路总公里数的倍,即可求出乙队筑路的总公里数;(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据甲队比乙队多筑路20天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:(1)60×=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据题意得:﹣=20,解得:x=0.1,经检验,x=0.1是原方程的解,∴8x=0.8.答:乙队平均每天筑路0.8公里.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系列式计算;(2)找准等量关系,列出分式方程.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.【分析】(1)根据平移的原则得出m的值,并计算点A的坐标,因为A在反比例函数的图象上,代入可以求k的值;(2)画出两函数图象,根据交点坐标写出解集.【解答】解:(1)由平移得:y=3x+1﹣1=3x,∴m=0,当y=3时,3x=3,x=1,∴A(1,3),∴k=1×3=3;(2)画出直线y=3x和反比例函数y=的图象:如图所示,由图象得:不等式3x+m>的解集为:﹣1<x<0或x>1.【点评】本题考查的是一次函数与反比例函数的交点问题和一次函数的图象的平移问题,涉及到用待定系数法求反比例函数的解析式,并熟知函数图象平移时“上加下减,左加右减”的法则.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴的交点是抛物线的顶点(﹣1,0),不合题意;当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(﹣4,0),然后根据待定系数法求得即可.【解答】解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1,=1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.【点评】本题考查了一次函数的性质,二次函数的性质,待定系数法求一次函数和二次函数的解析式,根据题意求得顶点坐标是解题的关键.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【分析】(1)只要证明四边相等即可证明;(2)①设AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,AK===3,根据sin∠DAE=计算即可解决问题;②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,因为点Q的运动时间t=+=OP+AP=OP+PF,所以当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE交CD于K.∵四边形CODE是菱形,∴DE∥AC,DE=OC=OA,∴==∵AB=CD=6,∴DK=2,CK=4,在Rt△ADK中,AK===3,∴sin∠DAE==,②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,∵点Q的运动时间t=+=OP+AP=OP+PF,∴当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==,∴当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为,点Q走完全程所需的时间为3s.【点评】本题考查四边形综合题、矩形的性质、菱形的判定和性质、锐角三角函数、平行线分线段成比例定理、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用垂线段最短解决最值问题,所以中考压轴题.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)由AB是⊙O的直径知∠ACB=90°,由=即AC=BC可得答案;(2)分∠ABD为锐角和钝角两种情况,①作BF⊥l于点F,证四边形OBFC是矩形可得AB=2OC=2BF,结合BD=AB知∠BDF=30°,再求出∠BDA和∠DEA度数可得;②同理BF=BD,即可知∠BDC=30°,分别求出∠BEC、∠ADB即可得;(3)分D在C左侧和点D在点C右侧两种情况,作EI⊥AB,证△CAD∽△BAE得==,即AE=CD,结合EI=BE、EI=AE,可得BE=2EI=2×AE=AE=×CD=2CD,从而得出结论.【解答】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA==45°;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,∵AB=DB,∴∠ADB=∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,∴△CAD∽△BAE,∴==,∴AE=CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2;②如图3,当点D在点C右侧时,过点E作EI⊥AB于I,由(2)知∠ADC=∠BEA=15°,∵AB∥CD,∴∠EAB=∠ACD,∴△ACD∽△BAE,∴==,∴CD,∵BA=BD,∠BAD=∠BDA=15°,∴∠IBE=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2.【点评】本题主要考查圆的综合问题,熟练掌握切线的性质、等腰直角三角形的判定与性质、圆心角定理及相似三角形的判定与性质是解题的关键.第31页(共31页)。
2017年广东省中考数学(word版,有解析)
2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣5【解析】根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【解析】∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【解析】∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【解析】数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【解析】等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【解析】A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【解析】∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()论:①S△ABFA.①③B.②③C.①④D.②④【解析】∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【解析】a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【解析】设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【解析】∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【解析】∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【解析】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【解析】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解】原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解】原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解】设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解】(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P 点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC 于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE ⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y 的最小值.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解】(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,中考数学试卷精选中考数学试卷精选 在Rt △AOC 中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC ﹣CD=4﹣2=2.∴当AD=2时,△DEC 是等腰三角形.②如图2中,∵△DCE 是等腰三角形,易知CD=CE ,∠DBC=∠DEC=∠CDE=15°, ∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD 的值为2或2.(3)①由(2)可知,B 、D 、E 、C 四点共圆,∴∠DBC=∠DCE=30°,∴tan ∠DBE=,∴=. ②如图2中,作DH ⊥AB 于H .在Rt △ADH 中,∵AD=x ,∠DAH=∠ACO=30°,∴DH=AD=x ,AH==x , ∴BH=2﹣x ,在Rt △BDH 中,BD==, ∴DE=BD=•,∴矩形BDEF 的面积为y=[]2=(x 2﹣6x +12), 即y=x 2﹣2x +4, ∴y=(x ﹣3)2+,∵>0, ∴x=3时,y 有最小值.。
2017年广东数学中考试题和答案
2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A. B.5 C.﹣D.﹣52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109 B.0.4×1010C.4×109 D.4×10103.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30° D.20°4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B 的坐标为( )A .(﹣1,﹣2)B .(﹣2,﹣1)C .(﹣1,﹣1)D .(﹣2,﹣2) 8.下列运算正确的是( )A .a +2a=3a 2B .a 3•a 2=a 5C .(a 4)2=a 6D .a 4+a 2=a 49.如图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°,则∠DAC 的大小为( )A .130°B .100°C .65°D .50°10.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=.12.一个n边形的内角和是720°,则n=.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b 0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E 处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A. B.5 C.﹣D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109 B.0.4×1010C.4×109 D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30° D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65° D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC 相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④【考点】LE :正方形的性质.【分析】由△AFD ≌△AFB ,即可推出S △ABF =S △ADF ,故①正确,由BE=EC=BC=AD ,AD ∥EC ,推出===,可得S △CDF =2S △CEF ,S △ADF =4S △CEF ,S △ADF =2S △CDF ,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD 是正方形,∴AD ∥CB ,AD=BC=AB ,∠FAD=∠FAB ,在△AFD 和△AFB 中,,∴△AFD ≌△AFB ,∴S △ABF =S △ADF ,故①正确,∵BE=EC=BC=AD ,AD ∥EC , ∴===,∴S △CDF =2S △CEF ,S △ADF =4S △CEF ,S △ADF =2S △CDF ,故②③错误④正确,故选C .二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b <0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E 处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH 是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A 45≤x12<50B 50≤xm<5580C 55≤x<60D 60≤x40<6516E 65≤x<70(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m 的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=C M•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.。
2017年广东省中考数学试卷及答案
6
一、选择题
2017 年广东省中考数学试卷参考答案
1
2
3
4
5
6
7
8
9
10
D
C
A
B
B
D
A
B
C
C
二、填空题 11、a(a+1) 12、6 13、>
2
14、
5
15、-1
16、 10
三、解答题(一)
17、计算: - 7 - 1- 0 1 -1
3
解:原式=7-1+3 =9
18、先化简,再求值: 1 1 x2 4 ,其中x 5 x2 x2
4 000 000 000 用科学记数法表示为( )
A.0.4× 109
B.0.4× 1010
C.4× 109
D.4× 1010
3.已知 A 70 ,则 A 的补角为(
)
A. 110
B. 70
C. 30
D. 20
4.如果 2 是方程 x2 3x k 0 的一个根,则常数 k 的值为( )
A.1
3
21.如图 21 图所示,已知四边形 ABCD、ADEF 都是菱形, BAD FAD、BAD 为锐角. (1)求证: AD BF ; (2)若 BF=BC,求 ADC 的度数。
22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学 生的体重情况绘制如下不完整的统计图表,如题 22 图表所示,请根据图表信息回答 下列问题:
四、解答题(二)(本大题共 3 题,每小题 7 分,共 21 分) 20.如是 20 图,在 ABC 中, A B .
(1)作边 AB 的垂直平分线 DE,与 AB、BC 分别相交于点 D、E(用尺规作图,保留作图痕迹, 不要求写作法):
广东省深圳市2017年中考数学试题及答案(Word版)
广东省深圳市2017年中考数学试题及答案(本试卷满分150分,考试时间120分钟)注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考点考场号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。
2.选择题的答案用2B 铅笔把答题卡上选择题答题区中对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案;答案不能写在试题上。
3.非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分 选择题(共36分)一、选择题(本小题包括12小题,每小题3分,共36分) 1.-2的绝对值是( )A .-2B .2C .12-D .122.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( ) A .58.210⨯ B .58210⨯ C .68.210⨯ D .78210⨯ 4.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .5.下列选项中,哪个不可以..得到12//l l ?( )A .12∠=∠B .23∠=∠C . 35∠=∠D .34180∠+∠=o6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%330x =B .(110%)330x -=C . 2(110%)330x -= D .(110%)330x += 8.如图,已知线段AB ,分别以A B 、为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得25CAB ∠=o ,延长AC 至M ,求BCM ∠的度数为( )A .40oB .50oC . 60oD .70o9.下列哪一个是假命题( )A .五边形外角和为360oB .切线垂直于经过切点的半径C . (3,2)-关于y 轴的对称点为(3,2)-D .抛物线242017y x x =-+对称轴为直线2x =10.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60o,然后在坡顶D 测得树顶B 的仰角为30o,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA ..30 C . .4012.如图,正方形ABCD 的边长是3,BP CQ =,连接,AQ DP 交于点O ,并分别与边,CD BC 交于点,F E ,连接AE .下列结论:①AQ DP ⊥;②2OA OE OP =g;③AOD OECF S S ∆=四边形;④当1BP =时,13tan 16OAE ∠=.其中正确结论的个数是( )A .1B .2C .3D .4第二部分 非选择题(共114分)二、填空题(本小题包括4小题,每小题3分,共12分) 13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .15.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知21i =-,那么(1)(1)i i +-=g .16.如图,在Rt ABC ∆中,90ABC ∠=o ,3AB =,4BC =,Rt MPN ∆,90MPN ∠=o,点P 在AC上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP = .三、解答题 (本大题共7小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.计算22|2cos45(1)--+-o 18.先化简,再求值:22()224x x xx x x +÷-+-,其中1x =-. 19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共__________人,x =__________,y =__________; (2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有___________人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别为多少? (2)能围成面积为200平方厘米的矩形吗?请说明理由. 21.如图一次函数y kx b =+与反比例函数(0)my x x=>交于(2,4)A 、(,1)B a ,与x 轴,y 轴分别交于点C D 、.(1)直接写出一次函数y kx b =+的表达式和反比例函数(0)my x x=>的表达式;(2)求证:AD BC =. 22.如图,线段AB 是O e 的直径,弦CD AB ⊥于点H ,点M 是弧CBD 上任意一点,2,4AH CH ==.(1)求O e 的半径r 的长度; (2)求sin CMD ∠;(3)直线BM 交直线CD 于点E ,直线MH 交O e 于点N ,连接BN 交CE 于点F ,求HE HF g 的值. 23.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C :(1)求抛物线的解析式(用一般式表示).(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使23ABC ABD S S ∆∆=,若存在请直接给出点D 坐标;若不存在请说明理由.(3)将直线BC 绕点B 顺时针旋转45o,与抛物线交于另一点E ,求BE 的长.参考答案;一.选择题 1.B 2.A 3.C 4.D 5.C 6.D 7.D 8.B 9.C 10.B 11.B 12.C二.填空题 13.a(a+2)(a-2) 14.23ABC ABD S S ∆∆= 15.2 16.3 三、解答题 17.3 18.-1 19.。
2017广东中考数学试卷及答案
2017年广东省广州市中考数学试卷学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6 B.6 C.0 D.无法确定2.如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()A.B.C.D.3.某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A.12,14 B.12,15 C.15,14 D.15,134.下列运算正确的是()A.=B.2×=C.=a D.|a|=a(a≥0)5.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥46.如图,⊙O是△ABC的内切圆,则点O是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点7.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b68.如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.6 B.12 C.18 D.249.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是()A.AD=2OB B.CE=EO C.∠OCE=40°D.∠BOC=2∠BAD10.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.二、填空题(共6小题)11.如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B=.12.分解因式:xy2﹣9x=﹣.13.当x=时,二次函数y=x2﹣2x+6有最小值.14.如图,Rt△ABC中,∠C=90°,BC=15,tan A=,则AB=.15.如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=.16.如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是(填写所有正确结论的序号).三、解答题(共9小题)17.解方程组.18.如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.19.某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有人,补全条形统计图;(2)D类学生人数占被调查总人数的%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.20.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.21.甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.23.已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.24.如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段P A匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广东省广州市中考数学试卷参考答案一、单选题(共10小题)1.【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选:B.【知识点】数轴、相反数2.【分析】根据旋转的性质即可得到结论.【解答】解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,故选:A.【知识点】正方形的性质、旋转的性质3.【分析】观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数=14.故选:C.【知识点】众数、算术平均数4.【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.【知识点】二次根式的性质与化简、等式的性质、绝对值5.【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【知识点】根的判别式6.【分析】根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.【解答】解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点;故选:B.【知识点】三角形的内切圆与内心7.【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【知识点】幂的乘方与积的乘方、分式的乘除法8.【分析】根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选:C.【知识点】翻折变换(折叠问题)、平行四边形的性质9.【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选:D.【知识点】垂径定理10.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选:D.【知识点】反比例函数的图象、二次函数的图象二、填空题(共6小题)11.【分析】根据平行线的性质即可得到结论.【解答】解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,故答案为:70°.【知识点】平行线的性质12.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【知识点】提公因式法与公式法的综合运用13.【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少.【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【知识点】二次函数的最值14.【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tan A=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【知识点】解直角三角形15.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×=2πcm,则:=2π,解得l=3.故答案为:3.【知识点】圆锥的计算16.【分析】①证明△CDB∽△FDO,列比例式得:,再由D、E为OB的三等分点,则=,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;③如图3,利用面积差求得:S△CFG=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=12,根据相似三角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴,∵D、E为OB的三等分点,∴=,∴,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,∴S△CFG=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∵DE∥FG,∴△CDE∽△CFG,∴==,∴=,∴,∴S四边形DEGF=;所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;故本题结论正确的有:①③;故答案为:①③.【知识点】四边形综合题三、解答题(共9小题)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②得:x=4,把x=4代入①得:y=1,则方程组的解为.【知识点】解二元一次方程组18.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)【知识点】全等三角形的判定19.【分析】(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.【知识点】条形统计图、列表法与树状图法20.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE;(2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.【知识点】含30度角的直角三角形、作图—基本作图21.【分析】(1)根据甲队筑路60公里以及乙队筑路总公里数是甲队筑路总公里数的倍,即可求出乙队筑路的总公里数;(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据甲队比乙队多筑路20天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:(1)60×=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据题意得:﹣=20,解得:x=0.1,经检验,x=0.1是原方程的解,∴8x=0.8.答:乙队平均每天筑路0.8公里.【知识点】分式方程的应用22.【分析】(1)根据平移的原则得出m的值,并计算点A的坐标,因为A在反比例函数的图象上,代入可以求k的值;(2)画出两函数图象,根据交点坐标写出解集.【解答】解:(1)由平移得:y=3x+1﹣1=3x,∴m=0,当y=3时,3x=3,x=1,∴A(1,3),∴k=1×3=3;(2)画出直线y=3x和反比例函数y=的图象:如图所示,由图象得:不等式3x+m>的解集为:﹣1<x<0或x>1.【知识点】反比例函数与一次函数的交点问题、一次函数图象与几何变换23.【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴的交点(0,0)或(﹣2,0),y2经过(﹣2,0)和A,符合题意;当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(﹣4,0),然后根据待定系数法求得即可.【解答】解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1,=1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.【知识点】二次函数的性质、一次函数的性质、待定系数法求二次函数解析式、待定系数法求一次函数解析式24.【分析】(1)只要证明四边相等即可证明;(2)①设AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,AK===3,根据sin∠DAE=计算即可解决问题;②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,因为点Q的运动时间t=+=OP+AP=OP+PF,所以当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE交CD于K.∵四边形CODE是菱形,∴DE∥AC,DE=OC=OA,∴==∵AB=CD=6,∴DK=2,CK=4,在Rt△ADK中,AK===3,∴sin∠DAE==,②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,∵点Q的运动时间t=+=OP+AP=OP+PF,∴当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==,∴当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为,点Q走完全程所需的时间为3s.【知识点】四边形综合题25.【分析】(1)由AB是⊙O的直径知∠ACB=90°,由=即AC=BC可得答案;(2)分∠ABD为锐角和钝角两种情况,①作BF⊥l于点F,证四边形OBFC是矩形可②同理BF=BD,即可知∠BDC=30°,分别求出∠BEC、∠ADB即可得;(3)分D在C左侧和点D在点C右侧两种情况,作EI⊥AB,证△CAD∽△BAE得==,即AE=CD,结合EI=BE、EI=AE,可得BE=2EI=2×AE=AE=×CD=2CD,从而得出结论.【解答】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA==45°;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,②当∠ABD为钝角时,如图3所示,同理可得BF=BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°,∵AB=DB,∴∠ADB=∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°,∴△CAD∽△BAE,∴==,∴AE=CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2;②如图3,当点D在点C右侧时,过点E作EI⊥AB于I,由(2)知∠ADC=∠BEA=15°,∵AB∥CD,∴∠EAB=∠ACD,∴△ACD∽△BAE,∴==,∴CD,∵BA=BD,∠BAD=∠BDA=15°,∴∠IBE=30°,∴=2.【知识点】圆的综合题。
2017年广州市中考数学试卷含答案word版
1 / 172017年广州市中考数学试卷一、选择题(共10小题;共50分)1. 如图,数轴上两点,表示的数互为相反数,则点表示的数是A. B. C. D. 无法确定2. 如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A.B.C.D.3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A. ,B. ,C. ,D. ,4. 下列运算正确的是2 / 17A. B.C.D.()5. 关于的一元二次方程有两个不相等的实数根,则的取值范围是A. B.C. D.6. 如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点7. 计算,结果是A. B.C. D.8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A. B. C. D.9. 如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是3 / 17A. B.C.D.10.,函数与在同一直角坐标系中的大致图象可能是A.B.C.D.二、填空题(共6小题;共30分)11. 如图,四边形中,,,则12. 分解因式:13. 当时,二次函数有最小值14. 如图,中,,,,则4 / 1715. 如图,圆锥的侧面展开图是一个圆心角为的扇形,若圆锥的底面圆半径是,则圆锥的母线16. 如图,平面直角坐标系中是原点,平行四边形的顶点,的坐标分别是,,点,把线段三等分,延长,分别交,于点,,连接,则下列结论:①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题;共117分)17. 解方程组:18. 如图,点,在上,,,.求证:.5 / 1719. 某班为了解学生一学期做义工的时间情况,对全班名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:A类,B类,C类,D类,E类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有人,补全条形统计图;(2)D 类学生人数占被调查总人数的;(3)从该班做义工时间在的学生中任选人,求这人做义工时间都在中的概率.20. 如图,在中,,,.(1)利用尺规作线段的垂直平分线,垂足为,交于点:(保留作图痕迹,不写作法);(2)若的周长为,先化简,再求的值.21. 甲、乙两个工程队均参与某筑路工程,先由甲队筑路公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为,求乙队平均每天筑路多少公里.22. 将直线向下平移个单位长度,得到直线,若反比例函数的图象与直线相交于点,且点的纵坐标是(1)求和的值;6 / 17(2)结合图象求不等式的解集.23. 已知抛物线,直线,的对称轴与交于点,点与的顶点的距离是(1)求的解析式;(2)若随着的增大而增大,且与都经过轴上的同一点,求的解析式.24. 如图,矩形的对角线,相交于点,关于的对称图形为(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动,当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.25. 如图,是的直径,,,连接(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使,所在的直线与所在的直线相交于点,连接①试探究与之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.7 / 17答案第一部分1. B2. A3. C4. D5. A6. B7. A8. C9. D10. D第二部分11.12.13. ;14.15.16. ①③第三部分17.得:将代入得方程组的解是18. 因为,所以,,即,在和中,8 / 17所以,.19. (1)E 类:(人),统计如图所示(2)(3)设人分别为,,,,,画树状图:所以这人做义工时间都在中的概率为20. (1)如下图所示:(2),9 / 17,,,,所以21. (1)乙队筑路的总公里数:(公里).(2)设甲队每天筑路公里,乙队每天筑路公里.根据题意得:解得:经检验是原方程的解且符合题意.乙队每天筑路:(公里),答:乙队平均每天筑路公里.22. (1)由向下平移一个单位长度而得,,点纵坐标为且在上,点坐标为,点在反比例函数上,10 / 17(2)与的图象如图所示,由图可知当时,或23. (1)的对称轴与的交点为,的对称轴为直线,,顶点坐标为,,,,,或(2)①当时,与轴交点为,,11 / 17随的增大而增大,,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得②当时,令,则,得,,与轴交于点,,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得,综上,的解析式为:或24. (1)因为四边形为矩形,12 / 17所以,因为与交于点,且与关于对称,所以,,,所以,所以四边形是菱形.(2)①连接,使直线分别交于点,交于点,因为关于的对称图形为,所以,因为,,所以,,因为四边形是菱形,所以,.又矩形中,.所以为的中位线,所以,因为,,所以,所以,又,所以,,13 / 17所以,因为,所以,所以②过点作交于点,因为由①可知:,所以点以的速度从到所需时间等同于以的速度从运动到所需时间.即:,所以由运动到所需的时间就是的值.因为如图,当运动到,即时,所用时间最短,所以,在中,设,则,,所以,解得:或(舍去),14 / 17所以,所以当点点沿题述路线运动到点所需时间最短时,的长为,点走完全程所需要的时间为25. (1)如图,连接,是的直径,,,(2)①如图所示,作于,连接,由()可知为等腰直角三角形.又是的中点,,,为等腰直角三角形,,15 / 17为的切线,,又,四边形为矩形,,.,,,,,,,当为钝角时,如图所示,同理,得,易得,.,16 / 17,,②如图,当在左侧时,过点作交于点,由()①知,,又,,,中,,,当在右侧时,如图,过作于,17 / 17由()①知,,,,,,,在中,,。
2017年广东省中考数学试卷(带完整解析)
2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=.12.一个n边形的内角和是720°,则n=.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.已知4a+3b=1,则整式8a+6b﹣3的值为.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.18.先化简,再求值:(+)•(x2﹣4),其中x=.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是()A.B.5 C.﹣ D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【考点】IL:余角和补角.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【考点】LE:正方形的性质.【分析】由△AFD≌△AFB,即可推出S△ABF =S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,=S△ADF,故①正确,∴S△ABF∵BE=EC=BC=AD,AD∥EC,∴===,=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,∴S△CDF故②③错误④正确,故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).12.一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则(n﹣2)•180°=720°,解得n=6.13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:15.已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H 两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.三、解答题(本大题共3小题,每小题6分,共18分)17.计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.18.先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表人数组边体重(千克)A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.24.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.25.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C 重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.2017年7月3日。
2017年广东省中考数学试卷
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前广东省2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.5的相反数是( )A .15B .5C .15- D .5- 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元.将4000000000用科学记数法表示为( )A .90.410⨯B .100.410⨯C .9410⨯D .10410⨯ 3.已知70A ∠=,则A ∠的补角为( )A .110 B .70 C .30D .204.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .1-D .2- 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( ) A .95B .90C .85D .806.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边行C .正五边形D .圆7.如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()210k y k x=≠相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为 ( ) A .(1,2)-- B .(2,1)-- C .(1,1)--D .(2,2)--8.下列运算正确的是( )A .223a a a +=B .325a a a =C .426()a a =D .824a a a ÷= 9.如图,四边形ABCD 内接于O ,DA DC =,50CBE ∠=,则DAC ∠的大小为( )A .130 B .100 C .65D .5010.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF .下列结论: ①ABF ADF S S =△△; ②4CDF CEF S S =△△; ③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( )A .①③B .②③C .①④D .②④第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.分解因式:2a a += .12.一个n 边形的内角和是720,那么n = . 13.已知实数,a b 在数轴上的对应点的位置如图所示,则a b + 0(填“>”“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b +=,则整式863a b +-的值为 .16.如图1,矩形纸片ABCD 中,5AB =,3BC =.先按图2操作:将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图3操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则,AH 两点间的距离为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)计算:11|7|(1π)3-⎛⎫---+ ⎪⎝⎭.18.(本小题满分6分) 先化简,再求值:211()(4)22x x x +--+,其中x =19.(本小题满分6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?20.(本小题满分7分)如图,在ABC △中,A B ∠∠>.(1)作边AB 的垂直平分线DE ,与,AB BC 分别相交于点,D E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若50B ∠=,求AEC ∠的度数.21.(本小题满分7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,BAD FAD ∠=∠,BAD ∠为锐角.(1)求证:AD BF ⊥;(2)若BF BC =,求ADC ∠的度数.22.(本小题满分7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重扇形统计图(1)填空:①m = (直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角的度数等于 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(本小题满分9分)如图,在平面直角坐标系中,抛物线2y x ax b =-++交x 轴于(1,0),(3,0)A B 两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线2y x ax b =-++的解析式; (2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin OCB ∠的值.24.(本小题满分9分) 如图,AB 是O 的直径,AB =,点E 为线段OB 上一点(不与,O B 重合),作CE OB ⊥,交O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF PC ⊥于点F ,连接CB . (1)求证:CB 是ECP ∠的平分线; (2)求证:CF CE =; (3)当34CF CP =时,求劣弧BC 的长度(结果保留π).25.(本小题满分9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点,A C 的坐标分别是(2,0)A和C ,点D 是对角线AC 上一动点(不与,A C 重合),连接BD ,作DE DB ⊥,交x 轴于点E ,以线段,DE DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得DEC △是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论), 并求出y 的最小值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2017年广东省中考数学试卷及答案
2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2。
答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4。
非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5。
考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1。
5的相反数是( )A 。
15B.5C.—15D.—52。
“一带一路”倡议提出三年以来,广东企业到“一带一路"国家投资越来越活跃。
据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元。
将4 000 000 000用科学记数法表示为( )A 。
0.4×910B 。
0.4×1010 C.4×910 D.4×1010 3。
已知70A ∠=︒,则A ∠的补角为( )A 。
110︒ B.70︒ C 。
30︒ D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2 C 。
—1 D 。
-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90 C 。
85 D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形 C 。
2017年广东省中考数学试卷及答案解析
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前广东省2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.5的相反数是( )A .15B .5C .15- D .5- 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元.将4000000000用科学记数法表示为( )A .90.410⨯B .100.410⨯C .9410⨯D .10410⨯ 3.已知70A ∠=,则A ∠的补角为( )A .110 B .70 C .30D .204.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .1-D .2- 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( ) A .95B .90C .85D .806.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边行C .正五边形D .圆7.如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()210k y k x=≠相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为 ( ) A .(1,2)-- B .(2,1)-- C .(1,1)--D .(2,2)--8.下列运算正确的是( )A .223a a a +=B .325a a a =C .426()a a =D .824a a a ÷= 9.如图,四边形ABCD 内接于O ,DA DC =,50CBE ∠=,则DAC ∠的大小为( )A .130 B .100 C .65D .5010.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF .下列结论: ①ABF ADF S S =△△; ②4CDF CEF S S =△△; ③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( )A .①③B .②③C .①④D .②④第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.分解因式:2a a += .12.一个n 边形的内角和是720,那么n = . 13.已知实数,a b 在数轴上的对应点的位置如图所示,则a b + 0(填“>”“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b +=,则整式863a b +-的值为 .16.如图1,矩形纸片ABCD 中,5AB =,3BC =.先按图2操作:将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图3操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则,AH 两点间的距离为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)计算:11|7|(1π)3-⎛⎫---+ ⎪⎝⎭.18.(本小题满分6分) 先化简,再求值:211()(4)22x x x +--+,其中x =19.(本小题满分6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?20.(本小题满分7分)如图,在ABC △中,A B ∠∠>.(1)作边AB 的垂直平分线DE ,与,AB BC 分别相交于点,D E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若50B ∠=,求AEC ∠的度数.21.(本小题满分7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,BAD FAD ∠=∠,BAD ∠为锐角.(1)求证:AD BF ⊥;(2)若BF BC =,求ADC ∠的度数.22.(本小题满分7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重扇形统计图(1)填空:①m = (直接写出结果);②在扇形统计图中,C 组所在扇形的圆心角的度数等于 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(本小题满分9分)如图,在平面直角坐标系中,抛物线2y x ax b =-++交x 轴于(1,0),(3,0)A B 两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线2y x ax b =-++的解析式; (2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin OCB ∠的值.24.(本小题满分9分) 如图,AB 是O 的直径,AB =,点E 为线段OB 上一点(不与,O B 重合),作CE OB ⊥,交O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF PC ⊥于点F ,连接CB . (1)求证:CB 是ECP ∠的平分线; (2)求证:CF CE =; (3)当34CF CP =时,求劣弧BC 的长度(结果保留π).25.(本小题满分9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点,A C 的坐标分别是(2,0)A和C ,点D 是对角线AC 上一动点(不与,A C 重合),连接BD ,作DE DB ⊥,交x 轴于点E ,以线段,DE DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得DEC △是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论), 并求出y 的最小值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________广东省2017年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】根据相反数的定义有:5的相反数是5﹣,故选:D 。
100教育:广东省2017中考试题数学卷(含解析)
一、选择题〔本大题共10 小题,每题3 分,共 30 分〕1. 5 的相反数是〔〕A .1B .5C.﹣1D.﹣555【答案】D.【解析】试题分析:根据相反数的定义有:5 的相反数是﹣ 5.应选 D.考点:相反数.2.“一带一路〞建议提出三年以来,XX企业到“一带一路〞国家投资越来越活泼,据商务部门发布的数据显示,2021年XX省对沿线国家的实际投资额超过4000000000美元,将4000000000 用科学记数法表示为〔〕A.0. 4×109B. 0. 4×1010C.4× 109 D . 4× 1010【答案】 C.【解析】试题分析: 4000000000=4× 109.应选 C.考点:科学记数法—表示较大的数.3.∠ A=70°,那么∠ A 的补角为〔〕A . 110°B .70°C. 30°D. 20°【答案】 A .考点:余角和补角.4.如果2 是方程x23xk0的一个根,那么常数k 的值为〔〕A . 1B .2C.﹣ 1D.﹣ 2【答案】B.【解析】试题分析:∵ 2 是一元二次方程x23x k 0的一个根,∴22﹣3×2+k=0,解得,k=2.故90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.90, 85, 90, 80, 95,那么这组数据的众数是〔〕A.95B.90C.85D.80【答案】 B.【解析】试题分析:数据90 出现了两次,次数最多,所以这组数据的众数是90.应选 B .考点:众数.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A .等边三角形B .平行四边形C.正五边形D.圆【答案】 D.考点:中心对称图形;轴对称图形.7.如图,在同一平面直角坐标系中,直线y k1 x 〔 k1≠0〕与双曲线yk2x〔k2≠0〕相交于A,B 两点,点 A 的坐标为〔1,2〕,那么点B 的坐标为〔〕A .〔﹣ 1,﹣ 2〕B .〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D .〔﹣2,﹣ 2〕【答案】 A .【解析】试题分析:∵点A 与 B 关于原点对称,∴ B 点的坐标为〔﹣1,﹣ 2〕.应选 A .考点:反比例函数与一次函数的交点问题.。
2017年广东省中考数学试卷
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前广东省2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.5的相反数是( )A.15B .5C .15-D .5-2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元.将4000000000用科学记数法表示为( )A .90.410⨯B .100.410⨯C .9410⨯D .10410⨯ 3.已知70A ∠=o ,则A ∠的补角为( )A .110oB .70oC .30oD .20o4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .1-D .2- 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( ) A .95B .90C .85D .806.下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边行C .正五边形D .圆7.如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()210k y k x=≠相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为 ( ) A .(1,2)-- B .(2,1)-- C .(1,1)--D .(2,2)--8.下列运算正确的是( )A .223a a a +=B .325a a a =gC .426()a a =D .824a a a ÷= 9.如图,四边形ABCD 内接于O e ,DA DC =,50CBE ∠=o ,则DAC ∠的大小为( )A .130oB .100oC .65oD .50o10.如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF .下列结论: ①ABF ADF S S =△△; ②4CDF CEF S S =△△; ③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( )A .①③B .②③C .①④D .②④第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.分解因式:2a a += .12.一个n 边形的内角和是720o ,那么n = . 13.已知实数,a b 在数轴上的对应点的位置如图所示,则a b + 0(填“>”“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b +=,则整式863a b +-的值为 .16.如图1,矩形纸片ABCD 中,5AB =,3BC =.先按图2操作:将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图3操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则,AH 两点间的距离为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)计算:11 |7|(1π)3-⎛⎫---+ ⎪⎝⎭.18.(本小题满分6分)先化简,再求值:211()(4)22xx x+--+g,其中5x=.19.(本小题满分6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?20.(本小题满分7分)如图,在ABC△中,A B∠∠>.(1)作边AB的垂直平分线DE,与,AB BC分别相交于点,D E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若50B∠=o,求AEC∠的度数.21.(本小题满分7分)如图所示,已知四边形ABCD,ADEF都是菱形,BAD FAD∠=∠,BAD∠为锐角.(1)求证:AD BF⊥;(2)若BF BC=,求ADC∠的度数.22.(本小题满分7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重扇形统计图组别体重(千克)人数A 4550x≤<12B 5055x≤<mC 5560x≤<80D 6065x≤<40E 6570x≤<16(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?数学试卷第3页(共6页)数学试卷第4页(共6页)数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(本小题满分9分)如图,在平面直角坐标系中,抛物线2y x ax b =-++交x 轴于(1,0),(3,0)A B 两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C . (1)求抛物线2y x ax b =-++的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin OCB ∠的值.24.(本小题满分9分)如图,AB 是O e 的直径,AB =,点E 为线段OB 上一点(不与,O B 重合),作CE OB ⊥,交O e 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF PC ⊥于点F ,连接CB . (1)求证:CB 是ECP ∠的平分线; (2)求证:CF CE =; (3)当34CF CP =时,求劣弧»BC 的长度(结果保留π).25.(本小题满分9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点,A C 的坐标分别是(2,0)A和C ,点D 是对角线AC 上一动点(不与,A C 重合),连接BD ,作DE DB ⊥,交x 轴于点E ,以线段,DE DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得DEC △是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省初中毕业生学业考试
数 学 试 卷
说明:1.全卷共6页,满分为100 分,考试用时为80分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案 无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( ) A.
B.5
C.-
D.-5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )
A.0.4×
B.0.4×
C.4×
D.4× 3.已知,则的补角为( )
A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( ) A.1 B.2 C.-1 D.-2
5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )
A.95
B.90
C.85
D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )
A.(-1,-2)
B.(-2,-1)
C.(-1,-1)
D.(-2,-2)
8.下列运算正确的是( )
A. B. C. D. 151
5
910101091010
1070A ∠=︒A ∠110︒70︒30︒20︒2
30x x k -+=11(0)y k x k =≠2
2(0)k y k x
=≠2
23a a a +=3
25·
a a a =426()a a =424a a a +=
9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°,则∠DAC 的大小为( ) A.130° B.100° C.65° D.50°
10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①
;②;③;④,其中正确的是( )
A.①③
B.②③
C.①④
D.②④
二、填空题
11.分解因式:
a a +2
.
12.一个n 边形的内角和是,那么n= .
13.已知实数a,b 在数轴上的对应点的位置如题13图所示,则 0(填“>”,“<”或“=”).
14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率为 . 15.已知,则整式的值为 .
16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .
ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒a b ÷431a b ÷=863a b ÷-
三、解答题
17.计算:.
18.先化简,再求值,其中x=.
19.学校团委组织志愿者到图书馆整理一批新进的图书。
若干男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本,求男生 、女生志愿者各有多少人?
四、解答题
20.如是20图,在中,.
(1)作边AB 的垂直平分线DE ,与AB 、BC 分别相交于点D 、E (用尺规作图,保留作图痕迹,不要求写作法):
(2)在(1)的条件下,连接AE ,若,求的度数。
2
1|7|(1)3π-⎛⎫
---+ ⎪⎝⎭
2
11(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭
5ABC ∆A B ∠>∠50B ∠=︒AEC ∠
21.如图21图所示,已知四边形ABCD 、ADEF 都是菱形,为锐角. (1)求证:; (2)若BF=BC,求的度数
22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如题22图表所示,请根据图表信息回答下列问题
(1) 填空:①m= (直接写出结果);
②在扇形统计图中,C 组所在扇形的圆心角的度数等于 度;
(2) 如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?
BAD FAD BAD ∠=∠∠、AD BF ⊥ADC
∠
五、解 答 题
23.如图23图,在平面直角坐标系中,抛物线交x 轴于A(1,0),B(3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C. (1)求抛物线的解析式; (2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件,求的值.
24.如题24图,AB 是⊙O 的直径,AB =4
√3,点E 为线段OB 上一点(不与O 、B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连结CB. (1)求证:CB 是∠ECP 的平分线; (2)求证:CF=CE;
(3)当CF
CP =3
4时,求劣弧 的长度(结果保留π).
2y x ax b =-++2y x ax b =-++sin OCB ∠BC
25.如题25图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A、C的坐标分别是A(0,2)和C(2√3,0),点D是对角线AC上一动点(不与A、C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.
(1)填空:点B的坐标为;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:DE
DB =√3
3
;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值。