中职数学试卷:数列

合集下载

(完整版)中职学校数列单元测试题

(完整版)中职学校数列单元测试题

中职学校2017—2018学年度第二学期单元考试数列单元测试题班级____________ 姓名____________ 学号______________2(C) 4 (D) 28.已知等比数列{a n}的公比为正数,且a3• a9=2 a52,a2=1,则a1=( )一.选择题1 .数列丄,2 A. (1)n2n (本大题10个小题共30分,每小题只有一个正确选项) -,-,丄,的一个通项公式可能是(4 8 161 C.( 1)得D.2.已知数列{a n}的通项公式a n n2 3n 4 ( n N* ),则a4等于((B) 2(C) 3 (D) 03 .一个等差数列的第5项等于10, 前3项的和等于3, 那么()(A)它的首项是2,公差是3(B)它的首项是2,公差是(C)它的首项是3,公差是2(D)它的首项是3,公差是4 .设S n是等差数列a n的前n项和,已知a23,a611,则S7等于(D. 63A-1 C. 2 D.219.计算机的成本不断降低,若每隔3年计算机价格降低-,现在价格为8100元的计3算机,9年后的价格可降为()A . 900 元B . 300 元C . 3600 元 D. 2400 元10.若数列a n的通项公式是a n ( 1)n(3n 2),则印a2 a20 ()(A) 30(B) 29 (C) -30(D) -29题号12345678910答案A. 13 B . 35 C . 495.等差数列{a n}的前n项和为S n,且S3 =6,印=4,贝U公差d等于.填空题(本题共有5个小题,每小题4分,共20分)A. 1B. - 2C. -3D. 36.等比数列{an}的前3项的和等于首项的3倍,贝U该数列的公比为(11.已知a 1 ,则a,b的等差中项是等比中项是 _______A.—2 B . 1 C. - 2 或1 D. 2 或一17.设等比数列{a n}的公比q 2,前n项和为S n,则鱼 ()a212. ________________________________________________ 若数列{a n}满足:a1 1,a n 1 2a.(n N ),则_____________________________________ ;前8 项的和—13. 在等差数列a n 中a s an 40,则a4 a§a6 a? a$ a? ag= ___________14. 已知数列a n 满足:a a 5 , a n 1 2a n 1 (n € N*),则 & _________________15 •等比数列a n的前10项和为30,前20项和为90,则它的前30项和为17. (12分)已知{a n}是一个等差数列,且a2 1,5 .(I)求{a n}的通项a n ; (H)求{a n}的前n项和S n的最大值. 19. (15分)设等差数列{a n}的前n项的和为S n,且S 4 =—62, S 6 =—75,求:(1求数列的通项公式a n (2)求数列的前n项和S n ;(3)求|a 1 |+|a 2 |+|a 3 |+ .... +|a 14 |三、解答题:本大题共4题,共50分,应写出解题过程或演算步骤16.(10 分)一个等比数列a n 中,a i a4 28,a? a312,求这个数列的通项公式18.(13分)已知等差数列a n满足:a37,a5 a726,a n的前n项和为S n .(I)求a n 及S n; (H)令b n=1a n2 1求数列b n的前n项和T n.。

中职数学试卷 数列

中职数学试卷 数列

中职数学试卷:数列一、选择题1、下列哪个选项不是数列的特性?()A.有序性B.唯一性C.传递性D.分散性答案:D解析:数列是以有序性、唯一性和传递性为基本特性的。

选项D,分散性,并不是数列的特性。

2、下列哪个选项不是等差数列的特性?()A.公差相等B.公比相等C.项数相等D.和相等答案:C解析:等差数列是以公差相等,公比相等,项数相等为基本特性的。

选项C,项数相等,并不是等差数列的特性。

3、下列哪个选项不是等比数列的特性?()A.公比相等B.项数相等C.和相等D.积相等答案:B解析:等比数列是以公比相等,和相等,积相等为基本特性的。

选项B,项数相等,并不是等比数列的特性。

二、填空题4、已知一个等差数列的首项为2,公差为1,项数为5,则该数列的末项为_________。

答案:9解析:根据等差数列的通项公式,末项为初项加上(项数-1)的公差,所以该数列的末项为2+(5-1)*1=9。

41、已知一个等比数列的首项为2,公比为2,项数为5,则该数列的和为_________。

答案:32解析:根据等比数列的求和公式,该数列的和为首项乘以(1-公比的项数次方)除以(1-公比),所以该数列的和为2*(1-2^5)/1-2=32。

三、解答题6、已知一个等差数列的首项为1,公差为2,项数为10,求该数列的和。

解:根据等差数列的求和公式,该数列的和为n/2[2a1+(n-1)d],其中a1为首项,d为公差,n为项数。

在此题中,a1=1,d=2,n=10。

代入公式得该数列的和为10/2*(21+92)=100。

中职数学试卷数列一、试卷分析数列是中职数学的重要内容,是高中数学数列部分的进一步深化,是考查学生逻辑推理能力、运算能力、思维能力的重要载体,也是学生后续学习函数、不等式、解析几何等其他数学模块的基础。

中职数学试卷中,数列部分的试题通常会占到总分的20%左右,题型以填空题和选择题为主,主要考察学生对数列基本概念、公式、定理的理解和运用。

中职数学试卷:数列(带答案)(1)

中职数学试卷:数列(带答案)(1)

江苏省洪泽中等专业学校数学单元试卷(数列)时间:90分钟 满分:100分一、 选择题(每题3分,共30分)1。

数列—1,1,-1,1,…的一个通项公式是( ).(A )n n a )1(-= (B)1)1(+-=n n a (C )n n a )1(--= (D )2sinπn a n = 2.已知数列{}n a 的首项为1,以后各项由公式给出,则这个数列的一个通项公式是( ).(A) (B ) (C ) (D ) 3.已知等差数列1,—1,-3,—5,…,则-89是它的第( )项;(A )92 (B )47 (C )46 (D )454.数列{}n a 的通项公式52+=n a n ,则这个数列( )(A )是公差为2的等差数列 (B )是公差为5的等差数列(C)是首项为5的等差数列 (D)是首项为n 的等差数列5.在等比数列{}n a 中,1a =5,1=q ,则6S =( ).(A)5 (B )0 (C)不存在 (D ) 306.已知在等差数列{}n a 中,=3,=35,则公差d=( ).(A )0 (B ) −2 (C )2 (D ) 47.一个等比数列的第3项是45,第4项是—135,它的公比是( ).(A )3 (B )5 (C ) —3 (D)—58.已知三个数 -80,G ,—45成等比数列,则G=( )(A )60 (B )—60 (C)3600 (D) ±609。

等比数列的首项是-5,公比是-2,则它的第6项是( )(A ) -160 (B )160 (C )90 (D ) 1010.已知等比数列,85,45,25…,则其前10项的和=10S ( )(A ) )211(4510- (B ))211(511- (C))211(59- (D ))211(510- 二、填空题(每空2分,共30分)11.数列2,—4,6,-8,10,…,的通项公式=n a12。

等差数列3,8,13,…的公差d= ,通项公式=n a ___________,8a = .13。

中职数学试卷:数列(带答案)

中职数学试卷:数列(带答案)

中职数学试卷:数列(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中职数学试卷:数列(带答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中职数学试卷:数列(带答案)的全部内容。

数学单元试卷(数列)时间:90分钟 满分:100分一、 选择题(每题3分,共30分)1.数列—1,1,-1,1,…的一个通项公式是( ).(A ) (B) (C ) (D ) 2.已知数列的首项为1,以后各项由公式给出,则这个数列的一个通项公式是( ). (A ) (B ) (C ) (D)3.已知等差数列1,—1,-3,-5,…,则-89是它的第( )项; (A )92 (B)47 (C )46 (D )454.数列的通项公式,则这个数列( ) (A )是公差为2的等差数列 (B)是公差为5的等差数列(C)是首项为5的等差数列 (D )是首项为n 的等差数列5.在等比数列中, =5,,则=( ).(A )5 (B )0 (C )不存在 (D ) 306.已知在等差数列中,=3,=35,则公差d=( ).(A )0 (B ) −2 (C )2 (D ) 47.一个等比数列的第3项是45,第4项是-135,它的公比是( ).(A )3 (B )5 (C ) -3 (D)-58.已知三个数 —80,G,-45成等比数列,则G=( )(A )60 (B )-60 (C)3600 (D ) 609。

等比数列的首项是-5,公比是—2,则它的第6项是( )n n a)1(-=1)1(+-=n n a n n a )1(--=2sin πn a n ={}n a {}n a 52+=n an {}n a 1a 1=q 6S {}n a ±(A ) -160 (B )160 (C )90 (D) 1010.已知等比数列…,则其前10项的和( )(A) (B ) (C) (D ) 二、填空题(每空2分,共30分)11。

中职数学数列专项测试

中职数学数列专项测试

中职数学数列专项测试一、单项选择题1.等差数列{an}中,a5+a6+a7=8,a11+a12+a13=44,则公差d为()A.18B.2C.36D.12.在等差数列{an}中,已知a2和a4是方程x2-2x-3=0的两根,则a3等于()A.-2B.2C.-1D.13.若数列{an}的前4项分别为1,3,9,27,按此规律,第5项为()A.36B.108C.54D.814.若101是某数列中的一项,则此数列可能是()A.{n2+1}B.{n2-1}C.{n2-2n+1}D.{n2-n-1}5.在等差数列{an}中,若a3=3,a13=-2,则a21等于()A.-6B.-5C.6D.56.已知数列1,a,5是等差数列,则实数a的值是()A.2B.3C.4D. 57.在等差数列{an}中,若a2=4,a6=18,则a4等于()A.11B.12C.16D.178.在等差数列{an}中,已知a5=8,前5项和等于10,则前10项和等于()A.95B.125C.175D.709.等差数列{an}的前n项和为Sn,且S3=6,a3=4,则公差d=()A.1B.53C.2D.310.数列12,34,78,1516,…的通项公式是( ) A.an =2n +12n B.an =2n +12n C.an =2n -12n D.an =2n +12n11.600是数列1×2,2×3,3×4,4×5,…的( ) A.第20项 B.第24项 C.第25项 D.第30项12.若等差数列{an}的前n 项和Sn =n (n +1)4,则a1+a8等于( ) A.4 B.72 C.5D.9213.数列-1,2,6,11,17,24,32,…的第10项等于( ) A.50 B.51 C.62 D.7014.已知数列{an}是等差数列,a3+a11=50,且a4=13,则公差d 等于( ) A.1 B.4 C.5 D.615.已知数列{an}的前n 项和Sn =2-n2,则a5的值为( ) A.-9 B.-6 C.-3 D.016.若a =2-1,b =2+1,则a ,b 的等差中项为( ) A. 2 B.1 C.0 D.-117.数列{3n -1}为( ) A.递增数列B.递减数列C.常数列D.以上都不对18.已知数列{an}满足an-1-an=-6(n≥2 ),a4=12,则a1=()A.-6B.0C.6D.1219.数列1,1,2,3,5,8,13,x,34,55,…中x的值是()A.19B.20C.21D.2220.在等差数列{an}中,若S10=120,则a1+a10等于()A.12B.24C.36D.48二、填空题21.已知数列12,23,34,45,…,则0.95是该数列的第项.22.数列{an}中an+1=an+13,且a1=2,则a100=.23.数列{an}中an+1=an+13,且a1=2,则a100= .24.数列1,2,3,…,101中各项之和为.25.在等差数列{an}中,若a1=2,a11=32,则公差d = ,S11= .26.在等差数列{an}中,若a3=2,a7=4,则a5= . 27.已知数列的前n 项和为Sn =-2n2+3n ,则它的通项公式是 .28.已知数列{an}的通项公式an =⎩⎪⎨⎪⎧2·3n-1(n 为偶数,n ∈N*),2n -5(n 为奇数,n ∈N*),则a3·a4= .29.某剧院共有25排座位,后一排比前一排多两个座位,最后一排有70个座位,这个剧院共有 个座位.30.已知数列{an}的通项公式为an =100-3n ,则第 项开始出现负值.31.已知数列{an}的前n 项和Sn =log3(2n +1),则a14+a15+a16+…+a40= .32.在数列{an}中,若a1=1,an +1=an +2(n ∈N*),则该数列的通项公式为 .33.在等差数列{an}中,若a3=7,a4=8,则a7= . 34.已知等差数列{an}的通项公式为an =3-2n ,则公差d = .35.在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则a +b = . 三、解答题36.在等差数列{an}中,已知a2=2,a7,=22. 求:(1)a12的值;(2)a1+a3+a5+a7+a9的和.37.判断22是否为数列{n2-n-20}中的项.如果是,请指出22在数列中的项数.38.已知三个数a1,a2,a3顺次成等差数列,其和为72,且a3=2a1,求这三个数.39.已知无穷数列7,4,3,…,n+6n,…请回答以下问题:(1)求这个数列的第10项;(2)5350是这个数列的第几项?(3)这个数列有多少整数项?(4)有没有等于项数号的13倍的项?如果有,求出这些项;如果没有,试说明理由.40.已知等差数列{an}中,a2=4,a4+a7=15.(1)求数列{an}的通项公式;(2)设bn=2an-2+n,求b1+b2+…+b10的值.41.设等差数列{an}的前n项和为Sn,已知a10=30,a20=50. (1)求数列{an}的通项公式;(2)若Sn=242,求n的值.答案一、单项选择题1.B2.D3.D4.A5.A 【解析】∵在等差数列{an}中,a3=3,a13=-2,∴-2=3+10d ,解得d =-12,故a21=3+18d =-6. 6.B7.A 【提示】∵a2=4,a6=18,∴⎩⎪⎨⎪⎧a1+d =4,a1+5d =18,解得⎩⎪⎨⎪⎧a1=12,d =72.∴a4=a1+3d =12+3×72=11.(或利用等差中项的性质a4=a2+a62=11)8.A 【提示】S5=5(a1+a5)2 =5(a1+8)2 =10⇒a1=-4,a5-a1=4d ,即8-(-4)=4d ⇒d =3.S10=10a1+10×92 d =10×(-4)+45×3=95.故选A.9.C 【提示】由等差数列的前n 项和定义可得:1133624a d a d +=⎧⎨+=⎩,解得d=2. 10.C11.B 【提示】∵600=24×25,∴600是数列的第24项.12.D 【提示】等差数列前n 项和Sn =n (a1+an )2,a1+a8=2S88. 13.C 14.B【提示】根据等差数列性质求得a7=25,则d=a7-a43=4,选B.15.A16.A【提示】由等差中项定义得2x=2-1+2+1,解得x= 2.17.A18.A19.C【提示】本题中的数列是一个斐波那契数列,从第3项起每一项都等于其前两项之和,故x=8+13=21.20.B【提示】∵S10=10(a1+a10)2=120,∴a1+a10=24.二、填空题21.1922.3523.3524.5 15125.3 18726.3【提示】a5-a3=a7-a5得2a5=a3+a7.27.an=-4n+528.5429.115030.3431.1【提示】当n=1时,a1=1;当n≥2,n∈N*时,因为Sn=log3(2n+1),所以Sn-1=log3(2n-1),an=Sn-Sn-1=log32121nn+-,故a14+a15+…+a40=log32927+log33129+…+log38179=log38127=log33=1.32.an=2n-1【提示】由an+1=an+2,得an+1-an=2,∴数列{an}是等差数列,an=1+2(n-1)=2n-1.33.1134.-235.7三、解答题36.(1)42(2)7037.解:解方程n2-n-20=22,得n=7或n=-6(舍去),∴22在数列中的项数是7.38.16,24,3239.解:(1)a10=10+610=85.(2)由5350=n+6n得n=100.(3)∵当n=1,2,3,6时,an=1+6n∈Z,∴an共有4个整数项,分别是a1,a2,a3和a6(4)有这样的项an=n3=n+6n,得n2-3n-18=0,解得n=6或n=-3(舍去). ∴第6项满足条件.40.解:(1)由题意⎩⎪⎨⎪⎧a1+d =4,a1+3d +a1+6d =15,解得⎩⎪⎨⎪⎧a1=3,d =1,∴an =n +2.(2)∵bn =2an -2+n =2n +n ,∴b1+b2+...+b10=(2+22+23+...+210)+(1+2+3+ (10)=2×(1-210)1-2+10×(1+10)2 =2101.41.解:(1)由题意得⎩⎪⎨⎪⎧a1+9d =30,a1+19d =50,解得⎩⎪⎨⎪⎧a1=12,d =2,∴an =2n +10.(2)Sn =12n +n (n -1)2·2=242, 解得n =11或n =-22(舍去).。

(完整版)中职数列测试题211

(完整版)中职数列测试题211

6 •已知在等差数列a n中, =3,安居职业高级中学校2012年上期半期考试2013年昆池职业中学期末考试卷数学(升学专业)本试卷共4页,三大题21小题。

满分150分,考试时间120分钟。

★祝考试顺利★(A) 0 (B) -2 (C) 2=35,则公差d=((D) 4)•7 •一个等比数列的第(A) 3 (B) 58.已知三个数-80 ,3项是45,第4项是-135,它的公比是((C) -3 (D) -5G, -45成等比数列,则G=())•■要线I封线I 注意事项:答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.数列-1,1 ,(A) a n ((A) 60 (B) -60 (C) 3600 (D) 609.等比数列的首项是-5 ,公比是-2 , 则它的第6项是-1,1,…的一个通项公式是(1)n(B) a n ( 1)n1(C) a n2.已知数列这个数列的一个通项公式是(a n的首项为1, 以后各项由公式)•)•(D n (D)…nn给出,则(A)(C)(B)(D)3 .已知等差数列1, -1 , -3 , -5,…,贝U -89是它的第( )项;(A) 92 (B) 47 (C) 46 (D) 45(A) -160 (B) 160 (C) 90 (D) 1010.等差数列A. 17011.x, y, zA. 61, 5, 9,B.4 •数列a n的通项公式a n(A)是公差为(C)是首项为5.在等比数列(A) 52的等差数列5的等差数列2nan 中,a1 =5,5,则这个数列((B)是公差为(D)是首项为q 1,则S6 =(B) 0 ( C)不存在(D)5的等差数列n的等差数列30)•…前10项的和是(180 C. 190成等差数列且x + y + z =18, 则B. C. 9D. 200y =(D. 185 512.已知等比数列--2 455 ,…,则其前10项的和8S105(A) -(1二、填空题:13. -1,-2右)本大题共1(B)5(1歹)4小题,每小题5分,共;a n(C) 5(129)(D)15(1 歹)20分.=2,贝H q= ________ 。

职业中专数学考试试题(数列)(含答案)

职业中专数学考试试题(数列)(含答案)

×县职业中等专业学校2020-2021学年第一学期期中考试数学试卷适用班级: 命题教师:班级: 姓名: 得分:一、 单项选择题1. 集合A 中有12个元素,集合B 中有8个元素,集合A ∩B 中有5个元素,则集合A ∪B 中的元素个数是 A .10B .15C .20D .252. 下列函数中是指数函数的是A .21x y =B .y=(-3)xC.xy ⎪⎭⎫ ⎝⎛=52 D.y=3×2x 3. 下列函数中是对数函数的是A. 12y x = B. y = log x 2 C. 3y x = D. 2log y x = 4. 数列{a n }的通项公式a n =2n +7,则此数列的第10项是A .9B .27C .5 D. -245. 在等差数列{a n }中,a 2 = -5,d =3,则a 1为A. -9B.-8C.-7D.-4 6.已知一个等比数列的前4项为1,-2,4,-8则其前6项的和为 A.-5 B.21 C.−21 D. 63 7. 在等差数列{a n }中,已知a 1=50,d =-2,S n =0,则n= A.51 B.48 C.47 D. 46 8.常数列4,4,4,4,…是A.公差为0的等差数列,但不是等比数列B.公比为1的等比数列,但不是等差数列C.公差为0的等差数列,也是公比为1的等比数列D. 以上都不对9. 设数列{a n }的前n 项和S n =n ²+3n +1,则a 1,a 2的值依次为A.4,5B.5,6C.4,6D.5,710.已知数列{a n }的递推公式为 a n+1=2a n + 1,且a 1=21,则这个数列的第5项是A .43B .87C .175 D. 351 二.填空题11.观察以下数列的特点,用适当的数填空:(1)2, 5, ,17, 26,…; (2)1, √2, ,2, √5, …. 12.数列 -3,-6,-9,-12,…的一个通项公式是 .13设等差数列{a n }的公差为d ,则其通项公式为:a n = . 14.设等比数列{a n }的公比为q ,则其通项公式为:a n = . 15.在等差数列{a n }中,已知 a 1+a 2+a 3+a 4+a 5=20,则a 3 = . 三.解答题16. 在等差数列{a n }中,a 20= 18,d = -3,求a 10 .17. 已知等差数列{a n }的通项公式为 a n =6n -10,求其前n 项和公式及S 10 .18.在2和54之间插入两个数,使得这四个数成等比数列,求插入的两个数.19. 在等比数列{a n }中,已知a 1= 1,a n = 2432,S n =182,求q 和n 的值.数学参考答案一、单项选择题二.填空题11. (1)10 (2)√312. a n=-3n13.14.15. a3 = 4三.解答题16. a10= 4817. S n=3n²-7n;S10=230.18. 插入的两个数分别为6和18.19.q=3,n =6。

中职数学试卷数列(带答案)

中职数学试卷数列(带答案)

中职数学试卷数列(带答案)江苏省洪泽中等专业学校数学单元试卷(数列)时间:90分钟满分:100分一、选择题(每题3分,共30分)1.数列-1,1,-1,1,…的一个通项公式是().(A )n n a )1(-= (B )1)1(+-=n n a (C )n n a )1(--= (D )2sinπn a n = 2.已知数列{}n a 的首项为1,以后各项由公式给出,则这个数列的一个通项公式是().(A )(B )(C )(D ) 3.已知等差数列1,-1,-3,-5,…,则-89是它的第()项;(A )92 (B )47 (C )46 (D )454.数列{}n a 的通项公式52+=n a n ,则这个数列()(A )是公差为2的等差数列(B )是公差为5的等差数列(C )是首项为5的等差数列(D )是首项为n 的等差数列5.在等比数列{}n a 中,1a =5,1=q ,则6S =().(A )5 (B )0 (C )不存在(D ) 306.已知在等差数列{}n a 中,=3,=35,则公差d=().(A )0 (B ) ?2 (C )2 (D ) 47.一个等比数列的第3项是45,第4项是-135,它的公比是().(A )3 (B )5 (C ) -3 (D )-58.已知三个数 -80,G ,-45成等比数列,则G=( )(A )60 (B )-60 (C )3600 (D )±609.等比数列的首项是-5,公比是-2,则它的第6项是()(A ) -160 (B )160 (C )90 (D ) 1010.已知等比数列,85,45,25…,则其前10项的和=10S ()(A ) )211(4510- (B ))211(511- (C ))211(59- (D ))2 11(510- 二、填空题(每空2分,共30分)11.数列2,-4,6,-8,10,…,的通项公式=n a12.等差数列3,8,13,…的公差d= ,通项公式=n a ___________,8a = .13.观察下面数列的特点,填空: -1,21, ,41,51-,61, ,…,=n a _________。

中职数学期中试卷--数列与向量

中职数学期中试卷--数列与向量

职业中专《数学》试卷----数列与向量一、选择题(每小题3分,共30分):1.等比数列的第5项是( ).(A )(B )(C )(D )2.下列各对向量中,共线的是( )(A )(B )(C )(D )3.数列-1,3,-5,7,……的一个通项公式是( ). (A )(B )(C )(D )4.点 A (−3,7)、B (2,−5)两点间的距离是( ). (A )5 (B )12 (C )13 (D )175.直线过点(2,2)A -与点(3,1)B -,则直线AB 的斜率是( ).(A )53- (B )53 (C )35- (D )356. ,,是等比数列,则( ).(A ) 6 (B )(C )(D )7. 设,则=( ).(A )(B )(C )(D )8. 直线经过点1(3,2)P ,2(1,1)P --,则直线的一般式方程是( ).(A ) 4x-3y+1=0. (B )4x-3y-1=0. (C ) 3x-4y+1=0.(D )3410x y --=.9.直线1:340l x y +-=与 2:2680l x y --+=的位置关系为( ). (A )平行 (B )相交 (C )13 重合 (D )不确定10. 在等比数列中,已知=12,=18,则=( ).(A ) (B )(C ) (D )二、填空(每小题3分,共30分): 1. 差数列的通项公式为a n =4n+1,求其前20项和= 。

2. 设为坐标原点,,,则= ,= ,= .3.直线x-2y+6=0在x 轴与y 轴上的截距分别是 .4.已知,则= .5. 设直线l的倾角为60°,并且经过点P(-2,3),则直线l的方程为;6. 等比数列的首项是1,公比是-2,则= 。

7.设,则 = .8.过点(5,1)且平行与直线x=-3的直线方程为 .9.设,则= .10. 设点(,1)P a在直线350x y+-=上,则a的值为.三、解答题(1-2每小题6分,3-6每小题7分,共40分):1.写出等差数列10,8,6,…的通项公式,并求出这个数列的第20项.2. 已知直线l经过点(0,1)P-,且与直线210x y-+=平行,求直线l的方程.3. 设,,求的值.4. 已知ABC∆的三个顶点分别为(3,0)A-,(2,1)B-,(2,3)C-,求AC边上的中线所在直线的方程.5.在等比数列中,已知,求.6.已知直线l经过点(2,2)--=,求直线l方程.M-,且垂直于直线20x y。

中职复习——数列

中职复习——数列

二、填空题 10.(2013年)已知{an}为等差数列,且a1+a3=8,a2+a4=12,则an=
.
【答案】2n a2 a4 (a1 d ) (a3 d ) a1 a3 2d ,
12 8 2d,d 2. 又 a1 a3 a1 (a1 2d ) 2a1 2d 8, a1 2, an a1 (n 1)d 2 (n 1) 2 2n, 故an 2n.
11.(2015年)若等比数列{an}满足a1=4,a2=20,则{an}的前n项和 Sn= .
【答案】 5n 1
因为q a2 20 5, a1 4
所以Sn
a1(1 qn ) 1 q
4(1 5n ) 15
5n
-1,
故Sn 5n -1.
12.(2011年)已知等比数列{an}满足a1+a2+a3=1,a4+a5+a6=-2,则 {an}的公比q= .
(2) f (x) x 1, an1 3 f (an ) -1 3(an 1) -1, 即an1 1 3(an 1), 又a1 1 2,故数列{an 1}是首项为2,公比为3的等比数列. an 1 2 3n1,即an 2 3n1 1, n N*.
(3)cn
an an 1
2 3n1 1 2 3n1
1 3
,
log 3
a2
log3
a3
log3 (a2
a3 )
log3
1 3
1.
故选A.
已知数列{an}为等差数列, 且a1=2,公差d 2,若a1, a2, ak成等比数列,则k
A.4 B.6 C.8 D.10
【答案】A a1 2,公差d 2,
a2 a1 d 2 2 4, ak a1 (k 1)d 2 (k 1)2 2k. 若a1, a2 , ak成等比数列, a22 a1ak ,即42 2 2k, 解得k =4. 故选A.

高职高考数学测试(数列1)

高职高考数学测试(数列1)

职中高职高考数学测试(数列1)(网上教学评估测试)姓名_______座号_______得分____一、 选择题(每小题5分,共75分)1. 数列3,-3,3,-3,…的一个通项公式是_____A .a n =3(-1)n+1 B. a n =3(-1)n C. a n =3-(-1)n D. a n =3+(-1)n2. 等差数列{an}的首项a1=1,公差d=3,则2020是它的第_____项?A .671 B.672 C. 673 D. 6743. 在等差数列{an}中,已知a4+a8=16,则a2+a10=____A.12B. 16C. 20D. 244. 在等差数列{an}中,d=-2,S 10=S 11,则a1=_______A.18B.20C. 22D.245. 在等差数列{an}中,a10=4,a20=16,则a15=_______A. 10B. 15C. 20D. 306. 等差数列a1,a2,a3,…,a11中,设a1=1,a11=99,则a6=______。

A.48B.49C.50D. 517. 等差数列a1,a2,a3,…,a10中,设a1=1,a10=99,则a4+a6=_____A. 99B. 100C. 101D. 1028. 等差数列a1,a2,a3,…,an (n 为偶数)中,公差为d ,则S 偶-S 奇=______9. 等差数列a1,a2,a3,…,an (n 为奇数)中,公差为d ,则S 偶-S 奇=______A.-1+n aB. 1+n aC.ndD.(n-1)d10. 已知数列的前n 项和Sn=n 2,则n a =_____A.nB.n 2C.2n+1D.2n-111. 等差数列{n a }中,n a =2n-14,则______min =SA.-40B.-41C.-42D. -4312. 等差数列{n a }中,的最大值求n S S S a ,,251791===____ A.168 B. 169 C. 170 D.17113. 等差数列{n a }中,,583=+a a 则10S =______ A. 5 B.20 C.25 D. 5014. 等差数列{n a }中,,693=+a a 则11S ______ A.30 B. 33 C. 36 D.4015. 等差数列{n a }中,设942753,10a a a a a a ++=++则=_____二、填空题(每小题5分,共25分)1. 数列{n a }前n 项之和为Sn=n 3,则=n a ____________2.首项为-24的等差数列从第10项开始为正数,则公差d 的取值范围是_____3.小王每月第一天向银行存入2000元,银行年利率是2.4%,年底取出,本利和是______________(单利计算)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省洪泽中等专业学校数学单元试卷(数列)
时间:90分钟 满分:100分
一、 选择题(每题3分,共30分)
1.数列-1,1,-1,1,…的一个通项公式是( ).
(A )n n a )1(-= (B )1)1(+-=n n a (C )n n a )1(--= (D )2
sin πn a n = 2.已知数列{}n a 的首项为1,以后各项由公式给出,则这个数列的一个通项公式是( ).
(A ) (B ) (C ) (D )
3.已知等差数列1,-1,-3,-5,…,则-89是它的第( )项;
(A )92 (B )47 (C )46 (D )45
4.数列{}n a 的通项公式52+=n a n ,则这个数列( )
(A )是公差为2的等差数列 (B )是公差为5的等差数列
(C )是首项为5的等差数列 (D )是首项为n 的等差数列
5.在等比数列{}n a 中,1a =5,1=q ,则6S =( ).
(A )5 (B )0 (C )不存在 (D ) 30
6.已知在等差数列{}n a 中,=3,=35,则公差d=( ).
(A )0 (B ) −2 (C )2 (D ) 4
7.一个等比数列的第3项是45,第4项是-135,它的公比是( ).
(A )3 (B )5 (C ) -3 (D )-5
8.已知三个数 -80,G ,-45成等比数列,则G=( )
(A )60 (B )-60 (C )3600 (D ) ±60
9.等比数列的首项是-5,公比是-2,则它的第6项是( )
(A ) -160 (B )160 (C )90 (D ) 10
10.已知等比数列,85
,45,25…,则其前10项的和=10S ( )
(A ) )211(4510- (B ))211(511- (C ))211(59- (D ))21
1(510-
二、填空题(每空2分,共30分)
11.数列2,-4,6,-8,10,…,的通项公式=n a
12.等差数列3,8,13,…的公差d= ,通项公式=n a ___________,8a = .
13.观察下面数列的特点,填空: -1,21, ,41,51-,6
1, ,…,=n a _________。

14.已知等差数列=n a 5n-2,则=+85a a ,=+103a a ,=+94a a .
15.数列{}n a 是等比数列, ,3,11==q a 则=5a .
16.一个数列的通项公式是 ),1(-=n n a n 则=11a ,56是这个数列的第 项.
17. 已知三个数13,,13-+A 成等差数列,则A = 。

18.等差数列{}n a 中,,2,1001-==d a 则=50S .
三、解答题(每题10分,共40分)
19.等差数列{}n a 中,64=a ,484=S ,求1a .
20.一个等差数列的第2项是5,第6项是21,求它的第51项.
21.等比数列3,9,27,……中,求7a .
22.已知等比数列的前5项和是242,公比是3,求它的首项.
参考答案:1-10:ABCAD CCDBD 11.n
n )1(2-⨯ ,5n-2,38 13.n n
)1(,71,31--- ,61,61 ,8 17.3 21.n 3。

相关文档
最新文档