复数的概念5

合集下载

复数的知识点总结与题型归纳

复数的知识点总结与题型归纳

复数的知识点总结与题型归纳一、知识要点 1.复数的有关概念我们把集合C ={}a +b i|a ,b ∈R 中的数,即形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明都有a ,b ∈R ,其中的a 与b 分别叫做复数z 的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式. 2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b ) (2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→. 5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). 说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i. 7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有11.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 12.复数代数形式的除法法则: (a +b i)÷(c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0). 说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例] 实数x 分别取什么值时,复数z =x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数.(2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0题型二、复数相等[典例] 已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根,则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.题型三:复数与点的对应关系[典例] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R)对应的点Z 满足下列条件:(1)在复平面的第二象限内. (2)在复平面内的x 轴上方.[解](1)点Z 在复平面的第二象限内,则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.题型四:复数的模[典例] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|= a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1. [答案] (1)D (2)B题型五:复数与复平面内向量的关系[典例] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C题型六:复数代数形式的加、减运算[典例] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|= 2. [答案] (1)-2-i (2)2题型七:复数加减运算的几何意义[典例] 如图所示,平行四边形OABC 的顶点O ,A ,C分别表示0,3+2i ,-2+4i.求:(1) AO ――→表示的复数; (2)对角线CA ――→表示的复数; (3)对角线OB ――→表示的复数.[解] (1)因为AO ――→=-OA ――→,所以AO ――→表示的复数为-3-2i.(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→表示的复数为(3+2i)+(-2+4i)=1+6i.题型八:复数模的最值问题[典例] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B.12 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3, 因为|z+i|+|z-i|=2,|Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1. 所以|z+i+1|min=1. [答案] A(2)解:如图所示, |OM ――→|=(-3)2+(-1)2=2.所以|z |max =2+1=3,|z |min =2-1=1.题型九:复数代数形式的乘法运算[典例](1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( )A .2 B.12 C .-12D .-2(2)(江苏高考)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. [解析] (1)(1+a i)(2+i)=2-a +(1+2a )i ,要使复数为纯虚数,所以有2-a =0,1+2a ≠0,解得a =2.(2)(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5.题型十:复数代数形式的除法运算[典例] (1)若复数z 满足z (2-i)=11+7i(i 是虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)设i 是虚数单位,复数1+a i2-i为纯虚数,则实数a 为( ) A .2 B .-2 C .-12D.12[解析] (1)∵z (2-i)=11+7i ,∴z =11+7i2-i =(11+7i)(2+i)(2-i)(2+i)=15+25i5=3+5i.(2)1+a i2-i =(1+a i)(2+i)(2-i)(2+i)=2-a 5+1+2a 5i ,由1+a i 2-i 是纯虚数,则2-a 5=0,1+2a 5≠0,所以a =2.[答案] (1)A (2)A题型十一:i 的乘方的周期性及应用[典例] (1)(湖北高考)i 为虚数单位,i 607的共轭复数为( ) A .iB .-iC.1 D.-1(2)计算i1+i2+i3+…+i2 016=________.[解析](1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.(2)法一:原式=i(1-i2 016)1-i=i[1-(i2)1 008]1-i=i(1-1)1-i=0.法二:∵i1+i2+i3+i4=0,∴i n+i n+1+i n+2+i n+3=0(n∈N),∴i1+i2+i3+…+i2 016,=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0. [答案](1)A(2)0说明:虚数单位i的周期性(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*)(2)i n+i n+1+i n+2+i n+3=0(n∈N)。

复数的基本概念与运算

复数的基本概念与运算

复数的基本概念与运算复数是数学中一个重要的概念,常用于表示具有实部和虚部的数。

本文将介绍复数的基本概念与运算,并通过几个例子来说明其使用方法和性质。

1. 复数的定义复数是由实数和虚数构成的数。

一般形式为a+bi,其中a为实部,b为虚部,i为虚数单位,满足i^2=-1。

在复平面上,可以将复数表示为复平面上的一个点,实部a对应横坐标,虚部b对应纵坐标。

2. 复数的加法复数的加法满足交换律和结合律。

对于两个复数z1=a1+b1i和z2=a2+b2i,其和z=z1+z2=(a1+a2)+(b1+b2)i。

实际上,复数的加法即是实部和虚部的分别相加。

3. 复数的减法复数的减法也满足交换律和结合律。

对于两个复数z1=a1+b1i和z2=a2+b2i,其差z=z1-z2=(a1-a2)+(b1-b2)i。

复数的减法实际上就是实部和虚部的分别相减。

4. 复数的乘法复数的乘法满足交换律和结合律。

对于两个复数z1=a1+b1i和z2=a2+b2i,其积z=z1*z2=(a1*a2-b1*b2)+(a1*b2+a2*b1)i。

复数的乘法即是实部和虚部的线性组合。

5. 复数的除法复数的除法可以通过分子分母同时乘以共轭复数的方式进行。

对于两个复数z1=a1+b1i和z2=a2+b2i,其商z=z1/z2=(a1*a2+b1*b2)/(a2^2+b2^2)+((a2*b1-a1*b2)/(a2^2+b2^2))i。

注意分母不能为0。

6. 复数的共轭复数的共轭即是保持实部不变而虚部取负数的操作。

对于一个复数z=a+bi,其共轭复数为z*=a-bi。

复数和其共轭的乘积等于复数的模的平方。

7. 复数的模复数的模表示复数到原点的距离,也可以看成是复数在复平面上的长度。

对于一个复数z=a+bi,其模|z|等于√(a^2+b^2)。

8. 复数的幂运算复数的幂运算与实数的幂运算类似,可以通过指数的乘法法则进行计算。

对于一个复数z=a+bi和正整数n,其幂运算z^n等于以z为边长的正n角形所对应的复数。

复数讲义(含知识点和例题及解析)

复数讲义(含知识点和例题及解析)

数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,其中a ,b 分别是它的实部和虚部。

若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数。

(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R )。

(3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R )。

(4)复平面:建立直角坐标系来表示复数的平面,叫做复平面。

x 轴叫做实轴,y 轴叫做虚轴。

实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。

(5)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2。

2.复数的几何意义 (1)复数z =a +b i――→一一对应复平面内的点Z (a ,b )(a ,b ∈R )。

(2)复数z =a +b i ――→一一对应平面向量OZ →(a ,b ∈R )。

3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )则: ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i 。

②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i 。

③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i 。

④除法:z 1z 2=a +b i c +d i =(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0)。

(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。

完整版)复数的定义

完整版)复数的定义

完整版)复数的定义第十四章复数一、复数的概念1.虚数单位:i规定:(1)i²= -1;(2)虚数单位i,可以与实数进行四则运算,在进行四则运算时,原有的加法,乘法运算律仍然成立。

2.复数:形如a+bi,a∈R,b∈R的数叫做复数,a叫实部,b叫虚部。

3.复数集:所有复数构成的集合,复数集C={x|x=a+bi。

a∈R。

b∈R}。

4.分类:b=0时为实数;b≠0时为虚数,a=0,b≠0时为纯虚数,且R∪C。

5.两个复数相等:a+bi=c+di ⇔ a=c且b=d(a,b,c,d∈R)。

例1:下面五个命题①3+4i比2+4i大;②复数3-2i的实部为3,虚部为-2i;③Z1,Z2为复数,Z1-Z2>0,那么Z1>Z2;④两个复数互为共轭复数,则其和为实数;⑤两个复数相等:a+bi=c+di ⇔ a=c且b=d(a,b,c,d∈R)。

例2:已知:Z=(m+1)+(m-1)i,m∈R,求Z为(1)实数;(2)虚数;(3)纯虚数时,求m的值。

例3:已知x²+y²-2i=6+(y-x)i,求实数x,y的值。

二、复数的几何意义Z=a+bi,a∈R,b∈R,与点(a,b)一一对应。

1.复平面:x轴叫实轴;y轴叫虚轴。

x轴上点为实数,y 轴上除原点外的点为纯虚数。

2.Z=a+bi;连接点(a,b)与原点,得到向量OZ,点Z(a,b),向量OZ,Z=a+bi之间一一对应。

3.模:Z=a+bi=OZ=√(a²+b²)。

注:Z的几何意义:令Z=x+yi(x,y∈R),则Z=√(x²+y²),由此可知表示复数Z的点到原点的距离就是Z的几何意义;Z1-Z2的几何意义是复平面内表示复数Z1,Z2的两点之间的距离。

三、复数的四则运算Z1=a+bi,Z2=c+di,a,b,c,d∈R。

1.加减法:Z1+Z2=(a+c)+(b+d)i;Z1-Z2=(a-c)+(b-d)i即实部与实部,虚部与虚部分别相加减。

复数的考点知识点归纳总结

复数的考点知识点归纳总结

复数的考点知识点归纳总结复数的考点知识点归纳总结复数是基础数学中的重要概念,广泛应用于数学、物理、工程等领域。

掌握复数的概念、性质和运算规则对于建立数学思维、解决实际问题具有重要意义。

本文将从复数的基本概念、运算法则和实际应用等方面进行归纳总结。

一、复数的基本概念1. 复数的定义:复数是由实部和虚部组成的数,形式为a+bi,其中a为实数部分,bi为虚数部分,i为虚数单位,满足i²=-1。

2. 复数的实部和虚部:复数a+bi中,a为实部,bi为虚部。

3. 复数的共轭复数:设复数z=a+bi,其共轭复数记为z*,则z*的实部与z相同,虚部的符号相反。

4. 复数的模:复数z=a+bi的模定义为|z|=√(a²+b²)。

5. 复数的辐角:复数z=a+bi的辐角定义为复数与正实轴正半轴的夹角,记作arg(z)。

6. 三角形式:复数z=a+bi可以写成三角形式r(cosθ+isinθ),其中r为模,θ为辐角。

二、复数的运算法则1. 复数的加法和减法:复数的加法和减法运算与实数类似,实部与实部相加减,虚部与虚部相加减。

2. 复数的乘法:复数的乘法运算使用分配律和虚数单位的性质,即(a+bi)(c+di)=(ac-bd)+(ad+bc)i。

3. 复数的除法:复数的除法运算需要将分子分母同时乘以共轭复数,即(a+bi)/(c+di)=[(a+bi)(c-di)]/[(c+di)(c-di)]。

4. 复数的乘方和开方:复数的乘方和开方运算需要使用三角函数的性质和欧拉公式,即z^n=r^n[cos(nθ)+isin(nθ)],√z=±√r[cos(θ/2)+isin(θ/2)]。

三、复数的性质和应用1. 复数的性质:复数具有加法和乘法的封闭性、交换律、结合律、分配律等性质。

2. 复数平面:复数可以用平面上的点来表示,实部为横坐标,虚部为纵坐标,构成复数平面。

3. 复数与向量:复数可以看作是向量的延伸,复数的运算有时可以用向量的加法和旋转来理解。

复数的有关概念

复数的有关概念

复数的相关概念引言复数是数学中的一种扩展形式,可以表示实数范围之外的数字。

它由实部和虚部组成,并且遵循特定的运算规则。

本文将介绍复数的定义、表示法、运算法则以及它在实际应用中的相关概念。

一、复数的定义复数是指由实部和虚部组成的数。

实部是一个实数,虚部是一个带有虚单位i的实数。

复数可以表示为a + bi,其中a是实部,b是虚部。

二、复数的表示法复数有多种表示法,常见的有直角坐标表示法和极坐标表示法。

1. 直角坐标表示法在直角坐标系中,一个复数被表示为一个有序实数对(a, b)。

其中,a是实部,b是虚部。

该表示法可以将复数视为复平面上的点,其中a沿着实轴表示,b沿着虚轴表示。

2. 极坐标表示法在极坐标系中,一个复数可以被表示为一个模和一个辐角的有序实数对(r, θ)。

其中,r是复数的模,表示复数与原点的距离;θ是辐角,表示复数与正实轴之间的夹角。

该表示法可以将复数视为复平面上的向量。

三、复数的运算法则复数的运算法则基于实数的运算法则,并额外考虑了虚部之间的运算。

1. 加法和减法复数的加法和减法遵循实部和虚部分别相加或相减的原则。

例如,对于复数z1 = a + bi和z2 = c + di,其中a、b、c、d均为实数,则有z1 + z2 = (a + c) + (b +d)i,z1 - z2 = (a - c) + (b - d)i。

复数的乘法涉及到实部和虚部之间的相乘。

例如,对于复数z1 = a + bi和z2 = c + di,则有z1 z2 = (ac - bd) + (ad + bc)i*。

3. 除法复数的除法涉及到实部和虚部的除法运算。

例如,对于复数z1 = a + bi和z2 = c + di,则有z1 / z2 = ( (ac + bd) / (c^2 + d^2) ) + ( (bc - ad) / (c^2 + d^2) )i。

四、复数的相关概念1. 共轭复数共轭复数指的是虚部符号相反的复数。

复数的概念

复数的概念

复数的概念复数是数学中的一个重要概念,它可以用来描述不仅包括实数的数系统,而且还包括了虚数,其中虚数是实数范围之外的一类数。

复数是由实部和虚部构成的,通常写成(a+bi)的形式。

在数学、物理学、电子学等领域中,复数被广泛应用。

一、复数的基本概念复数是由实数和虚数组成的数,用实部和虚部表示。

实数是人们日常生活中所接触到的数,它们可以直接用于计算。

而虚数则是不能用于直接计算的数。

虚数是指那些不满足平方根是实数的数,也就是说,虚数是不存在的,只是一种数学上的概念。

以一个复数z为例,它的实部和虚部分别是a和b。

因此可以将z表示为:z = a + bi其中i称为虚数单位,满足i²=-1。

a和b都是实数,可以是正数、负数、零或小数。

虚部b可以是负数或正数,但实部a只能为实数。

复数的实部和虚部是不同的,它们具有不同的物理意义。

通常情况下,实部表示了复数在x轴上的位置,而虚部则表示了复数在y轴上的位置。

二、复数的基本性质(1)加法性质:设z1 = a1+b1i,z2 = a2+b2i,z1+z2 =(a1+a2)+(b1+b2)i。

这说明了两个复数之和的实部是它们各自实部之和,虚部是它们各自虚部之和。

(2)减法性质:设z1 = a1+b1i,z2 = a2+b2i,z1-z2 = (a1-a2)+(b1-b2)i。

这说明了两个复数之差的实部是它们各自实部之差,虚部是它们各自虚部之差。

(3)乘法性质:设z1 = a1+b1i,z2 = a2+b2i,z1×z2 = (a1a2-b1b2)+(a1b2+a2b1)i。

这说明了两个复数的乘积的实部是它们各自实部的乘积减去各自虚部的乘积,虚部是它们各自实部的乘积加上各自虚部的乘积。

(4)除法性质:设z1 = a1+b1i,z2 = a2+b2i,z1÷z2 = [(a1a2+b1b2)÷(a2²+b2²)]+[(a2b1-a1b2)÷(a2²+b2²)]i。

复数知识点归纳

复数知识点归纳

复数知识点归纳复数是数学中的一个重要概念,它在实际问题的求解和数学理论的推导中起着重要作用。

下面是关于复数的知识点的归纳:1. 复数的定义:复数是由实数和虚数构成的数,通常表示为a+bi的形式,其中a和b都是实数,i是虚数单位。

2. 实部和虚部:在复数a+bi中,实部为a,虚部为bi。

3. 虚数单位i:虚数单位i定义为i²=-1,它是一个不存在的实数,但在复数中有很重要的作用。

4. 纯虚数:当复数的实部为0时,称其为纯虚数,例如3i、-5i等。

5. 共轭复数:对于复数a+bi,其共轭复数为a-bi。

共轭复数的实部相同,虚部的符号相反。

6. 复数的运算:- 加法:对于两个复数(a+bi)+(c+di),实部相加得到a+c,虚部相加得到b+d。

- 减法:对于两个复数(a+bi)-(c+di),实部相减得到a-c,虚部相减得到b-d。

- 乘法:对于两个复数(a+bi)·(c+di),使用分配律展开后,相乘得到ac-bd,然后根据i²=-1,得到(ad+bc)i。

- 除法:对于两个复数的除法,可以使用分数的除法规则,即将分子和分母都乘以共轭复数的分母的共轭形式,然后化简。

7. 模和幅角:- 模:对于复数a+bi,其模表示为|a+bi| = √(a²+b²),即复数到原点的距离。

- 幅角:对于复数a+bi,其幅角表示为θ = arctan(b/a),即复数与实轴正方向之间的夹角。

8. 三角形式:复数可以使用三角函数来表示,即a+bi = r(cosθ + isinθ),其中r为模,θ为幅角。

这种表示方式可以用于简化复数的乘除运算。

9. 欧拉公式:欧拉公式是数学中的一个重要公式,表达了指数和三角函数之间的关系。

它表示为e^(iθ) = cosθ + isinθ。

10. 复数的求根:复数的求根可以使用极坐标形式和欧拉公式来进行计算。

具体的步骤是,将复数表示为模和幅角的形式,然后对模取n次方根,对幅角除以n。

复数有关知识点总结

复数有关知识点总结

复数有关知识点总结一、复数的基本概念复数是指表示多个人、事物或概念的一种形式。

在英语中,名词的复数形式通常是在单数形式的基础上加上-s或-es后缀来表示的。

复数形式不仅用于表示数量上的复数,还可以用于表示概念上的复数,比如表示一类人或物体的情况。

二、复数的形成规则1. 一般情况下,名词的复数形式是在单数名词的末尾加上-s后缀。

比如:cat—cats,dog—dogs,book—books等。

2. 当单数名词以s, sh, ch, x, o结尾时,复数形式一般是在单数名词的末尾加上-es后缀。

比如:bus—buses,brush—brushes,box—boxes,tomato—tomatoes等。

3. 当单数名词以辅音字母+y结尾时,复数形式将y改为i,并加上-es后缀。

比如:city—cities,party—parties等。

4. 以f或fe结尾的单数名词变复数时,通常将f或fe改为v,再加上-es后缀。

比如:leaf—leaves,knife—knives等。

5. 以o结尾的单数名词变复数时,有些名词只需加上-s后缀,比如:photo—photos,radio—radios等;有些名词加上-es后缀,比如:potato—potatoes,tomato—tomatoes 等。

6. 有些名词的复数形式是不规则的,需要记忆。

比如:child—children,man—men,woman—women等。

以上是复数形式的一般规则,但是也有例外情况。

需要通过大量的阅读和实际练习来熟练掌握各种名词的复数形式。

三、不可数名词和复数的用法不可数名词是指不能用复数形式表示的名词,它表示不可分割的整体,或者是一种抽象的概念。

英语中有很多不可数名词,比如:water, air, milk, advice, information等。

这些名词在表示数量上并不具有复数形式,而是用单数形式来表示。

但是有些名词在特定情况下可以表示一定数量的概念,这时候可以用复数形式来表示。

(完整版)复数的基本概念和几何意义

(完整版)复数的基本概念和几何意义

复数一、考点、热点回顾1.复数的有关概念 (1)复数①定义:形如a +b i (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. ②表示方法:复数通常用字母z 表示,即z =a +b i (a ,b ∈R ),这一表示形式叫做复数的代数形式.a 叫做复数z 的实部,b 叫做复数z 的虚部.注意:复数m +n i 的实部、虚部不一定是m 、n ,只有当m ∈R ,n ∈R 时,m 、n 才是该复数的实部、虚部. (2)复数集①定义:全体复数所成的集合叫做复数集. ②表示:通常用大写字母C 表示.2.复数的分类(1)复数z =a +b i (a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0)虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数a =0非纯虚数a ≠0(2)复数集、实数集、虚数集、纯虚数集之间的关系3.复数相等的充要条件设a 、b 、c 、d 都是实数,则a +b i =c +d i ⇔a =c 且b =d ,a +b i =0⇔a =b =0. 注意:(1)应用复数相等的充要条件时注意要先将复数化为z =a +b i (a ,b ∈R )的形式,即分离实部和虚部.(2)只有当a =c 且b =d 的时候才有a +b i =c +d i ,a =c 和b =d 有一个不成立时,就有a +b i ≠c +d i. (3)由a +b i =0,a ,b ∈R ,可得a =0且b =0.4.复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.5.复数的两种几何意义 (1)复数z =a +b i (a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ).(2)复数z =a +b i (a ,b ∈R )←――→一一对应平面向量OZ →.6.复数的模复数z =a +b i (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模,记作|z |,且|z |= a 2+b 2.注意:复数a +b i (a ,b ∈R )的模|a +b i|=a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以比较大小.二、典型例题考点一、复数的概念 例1、下列命题:①若a ∈R ,则(a +1)i 是纯虚数; ②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2; ④实数集是复数集的真子集.其中正确的是( )A.①B.②C.③D.④ 【解析】 对于复数a +b i (a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,即①错误.两个虚数不能比较大小,则②错误.对于③,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0,不是纯虚数,则③错误.显然,④正确.故选D.【答案】 D变式训练1、1.对于复数a +b i (a ,b ∈R ),下列说法正确的是( )A.若a =0,则a +b i 为纯虚数B.若a +(b -1)i =3-2i ,则a =3,b =-2C.若b =0,则a +b i 为实数D.i 的平方等于1解析:选C.对于A ,当a =0时,a +b i 也可能为实数; 对于B ,若a +(b -1)i =3-2i ,则a =3,b =-1; 对于D ,i 的平方为-1.故选C.2.若4-3a -a 2i =a 2+4a i ,则实数a 的值为( ) A.1 B.1或-4 C.-4 D.0或-4解析:选C.易知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.考点二、复数的分类例2、已知m ∈R ,复数z =m (m +2)m -1+(m 2+2m -3)i ,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?【解】 (1)要使z 为实数,m 需满足m 2+2m -3=0,且m (m +2)m -1有意义,即m -1≠0,解得m =-3.(2)要使z 为虚数,m 需满足m 2+2m -3≠0,且m (m +2)m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 为纯虚数,m 需满足m (m +2)m -1=0,且m 2+2m -3≠0,解得m =0或-2.变式训练2、当实数m 为何值时,复数lg (m 2-2m -7)+(m 2+5m +6)i 是(1)纯虚数;(2)实数.解:(1)复数lg (m 2-2m -7)+(m 2+5m +6)i 是纯虚数,则⎩⎪⎨⎪⎧lg (m 2-2m -7)=0,m 2+5m +6≠0,解得m =4.(2)复数lg (m 2-2m -7)+(m 2+5m +6)i 是实数,则⎩⎪⎨⎪⎧m 2-2m -7>0,m 2+5m +6=0,解得m =-2或m =-3.考点三、复数相等 例3、(1)若(x +y )+y i =(x +1)i ,求实数x ,y 的值;(2)已知a 2+(m +2i )a +2+m i =0(m ∈R )成立,求实数a 的值;(3)若关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值.【解】 (1)由复数相等的充要条件,得⎩⎪⎨⎪⎧x +y =0,y =x +1,解得⎩⎨⎧x =-12,y =12.(2)因为a ,m ∈R ,所以由a 2+am +2+(2a +m )i =0,可得⎩⎪⎨⎪⎧a 2+am +2=0,2a +m =0,解得⎩⎨⎧a =2,m =-22或⎩⎨⎧a =-2,m =22,所以a =±2.(3)设方程的实根为x =m ,则原方程可变为3m 2-a2m -1=(10-m -2m 2)i ,所以⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或-715.变式训练3、已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解:由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),所以⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0, 即⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1, 所以a =-1.考点四、复数与复平面内的点例4、已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z 满足下列条件时,求a 的值(或取值范围).(1)在实轴上; (2)在第三象限.【解】 (1)若对应的点在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎪⎨⎪⎧a 2-1<0,2a -1<0.解得-1<a <12.故a 的取值范围是⎝⎛⎭⎫-1,12. 变式训练4、求实数a 取什么值时,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点(1)位于第二象限; (2)位于直线y =x 上.解:根据复数的几何意义可知,复平面内表示复数z =a 2+a -2+(a 2-3a +2)i 的点就是点Z (a 2+a -2,a 2-3a +2).(1)由点Z 位于第二象限,得 ⎩⎪⎨⎪⎧a 2+a -2<0,a 2-3a +2>0,解得-2<a <1. 故满足条件的实数a 的取值范围为(-2,1). (2)由点Z 位于直线y =x 上,得 a 2+a -2=a 2-3a +2,解得a =1. 故满足条件的实数a 的值为1.考点五、复数与复平面内的向量例5、(1)已知M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出OM →,ON →,OP →,OQ →所表示的复数;(2)已知复数1,-1+2i ,-3i ,6-7i ,在复平面内画出这些复数对应的向量;(3)在复平面内的长方形ABCD 的四个顶点中,点A ,B ,C 对应的复数分别是2+3i ,3+2i ,-2-3i ,求点D 对应的复数.【解】 (1)OM →表示的复数为1+3i ;ON →表示的复数为4-i ;OP →表示的复数为2i ; OQ →表示的复数为-4.(2)复数1对应的向量为OA →,其中A (1,0);复数-1+2i 对应的向量为OB →,其中B (-1,2);复数-3i 对应的向量为OC →,其中C (0,-3);复数6-7i 对应的向量为OD →,其中D (6,-7). 如图所示.(3)记O 为复平面的原点,由题意得OA →=(2,3),OB →=(3,2),OC →=(-2,-3).设OD →=(x ,y ),则AD →=(x -2,y -3),BC →=(-5,-5).由题知,AD →=BC →,所以⎩⎪⎨⎪⎧x -2=-5,y -3=-5,即⎩⎪⎨⎪⎧x =-3,y =-2,故点D 对应的复数为-3-2i.变式训练5、在复平面内,把复数3-3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是_____________.解析:3-3i 对应向量为(3,-3),与x 轴正半轴夹角为30°,顺时针旋转60°后所得向量终点在y 轴负半轴上,且模为2 3.故所得向量对应的复数是-23i.答案:-23i考点六、复数的模 例6、(1)设(1+i )x =1+y i ,其中x ,y 是实数,则|x +y i|=( )A.1B. 2C. 3D.2 (2)已知复数z 满足z +|z |=2+8i ,求复数z .【解】 (1)选B.因为x +x i =1+y i ,所以x =y =1, 所以|x +y i|=|1+i|=12+12= 2. (2)法一:设z =a +b i (a ,b ∈R ), 则|z |=a 2+b 2,代入原方程得a +b i +a 2+b 2=2+8i ,根据复数相等的充要条件,得⎩⎨⎧a +a 2+b 2=2,b =8,解得⎩⎪⎨⎪⎧a =-15,b =8.所以z =-15+8i.法二:由原方程得z =2-|z |+8i (*). 因为|z |∈R ,所以2-|z |为z 的实部, 故|z |=(2-|z |)2+82,即|z |2=4-4|z |+|z |2+64,得|z |=17. 将|z |=17代入(*)式得z =-15+8i.变式训练6、已知复数z =3+a i (a ∈R ),且|z |<4,求实数a 的取值范围.解:法一:因为z =3+a i (a ∈R ),所以|z |=32+a 2, 由已知得32+a 2<42,所以a 2<7,所以a ∈(-7,7).法二:由|z |<4知z 在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z =3+a i 知z 对应的点在直线x =3上,所以线段AB (除去端点)为动点Z (3,a )的集合, 由图可知-7<a <7.三、课后练习1.若(x+y)i=x-1(x,y∈R),则2x+y的值为()A. B.2 C.0 D.1解析:由复数相等的充要条件知,x+y=0,x-1=0故x+y=0.故2x+y=20=1.答案:D2.已知集合M={1,2,(m2-3m-1)+(m2-5m-6)i},N={-1,3},且M∩N={3},则实数m的值为()A.4B.-1C.-1或4D.-1或6解析:由于M∩N={3},故3∈M,必有m2-3m-1+(m2-5m-6)i=3,所以得m=-1.答案:B3.给出下列复数:①-2i,②3+,③8i2,④isinπ,⑤4+i;其中表示实数的有(填上序号) ____________.解析:②为实数;③8i2=-8为实数;④i·sinπ=0·i=0为实数,其余为虚数.答案:②③④4.下列复数模大于3,且对应的点位于第三象限的为()A.z=-2-iB.z=2-3iC.z=3+2iD.z=-3-2i解析:A中|z|=<3;B中对应点(2,-3)在第四象限;C中对应点(3,2)在第一象限;D中对应点(-3,-2)在第三象限,|z|=>3.答案:D5.已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹为()A.一个圆B.线段C.两点D.两个圆解析:∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0,∴|z|=3,表示一个圆,故选A.答案:A6.已知在△ABC中,对应的复数分别为-1+2i,-2-3i,则对应的复数为____________.解析:因为对应的复数分别为-1+2i,-2-3i,所以=(-1,2),=(-2,-3).又=(-2,-3)-(-1,2)=(-1,-5),所以对应的复数为-1-5i.答案:-1-5i7.在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i的对应点,(1)在虚轴上,求复数z;(2)在实轴负半轴上,求复数z.答案:(1)若复数z的对应点在虚轴上,则m2-m-2=0,所以m=-1或m=2.此时z=6i或z=0.(2)若复数z的对应点在实轴负半轴上,则m2-3m+2=0,m2-m-2<0,∴m=1能力提升8.若复数z=cosθ+(m-sinθ-cosθ)i为虚数,则实数m的取值范围是____________.解析:∵z为虚数,∴m-sinθ-cosθ≠0,即m≠sinθ+cosθ.∵sinθ+cosθ∈[],∴m∈(-∞,)∪,+∞).答案:(-∞,)∪,+∞)9.若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则a的取值范围是____________.解析:若复数为纯虚数,则有a2-a-2=0,|a-1|-1≠0即a=-1.故复数不是纯虚数时a≠-1.答案:{a|a≠-1}10.已知向量与实轴正向夹角为135°,向量对应复数z的模为1,则z=____________. 解析:依题意知Z点在第二象限且在直线y=-x上,设z=-a+ai(a>0).∵|z|=1,∴a2=12.而a>0,∴∴z=+答案:z=+11.已知复数z满足z+|z|=2+8i,则复数z=____________.解析:设z=a+bi(a,b∈R),则代入方程得,2+8i,∴解得a=-15∴z=-15+8i.答案:-15+8i12.已知M={1,(m2-2m)+(m2+m-2)i},P={-1,1,4i},若M∪P=P,求实数m的值.解析:M∪P=P,∴M⊆P,即(m2-2m)+(m2+m-2)i=-1或(m2-2m)+(m2+m-2)i=4i.由(m2-2m)+(m2+m-2)i=-1,得解得m=1;由(m2-2m)+(m2+m-2)i=4i,解得m=2.综上可知m=1或m=2.答案:m=1或m=213.已知复数z=2+cosθ+(1+sinθ)i(θ∈R),试确定复数z在复平面内对应的点的轨迹是什么曲线. 解析:设复数z=2+cosθ+(1+sinθ)i对应的点为Z(x,y),则x=2+cosθ,y=1+sinθ即cosθ=x-2,sinθ=y-1所以(x-2)2+(y-1)2=1.所以复数z 在复平面内对应点的轨迹是以(2,1)为圆心,1为半径的圆. 答案:复数z 在复平面内对应点的轨迹是以(2,1)为圆心,1为半径的圆.14. 已知复数z =m (m -1)+(m 2+2m -3)i(m ∈R ). (1)若z 是实数,求m 的值; (2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围. 答案: (1)∵z 为实数,∴m 2+2m -3=0,解得m =-3或m =1.(2)∵z 为纯虚数,∴⎩⎪⎨⎪⎧m (m -1)=0,m 2+2m -3≠0.解得m =0.(3)∵z 所对应的点在第四象限,∴⎩⎪⎨⎪⎧m (m -1)>0,m 2+2m -3<0.解得-3<m <0.。

(完整版)复数知识点归纳

(完整版)复数知识点归纳

复数【知识梳理】一、复数的根本概念1、虚数单位的性质i 叫做虚数单位,并规定:①i 可与实数进行四那么运算;②12-=i ;这样方程12-=x 就有解了,解为i x =或i x -=2、复数的概念〔1〕定义:形如bi a +(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,a 叫做,b 叫做。

全体复数所成的集合C 叫做复数集。

复数通常用字母z 表示,即bi a z +=(a ,b ∈R )对于复数的定义要注意以下几点:①bi a z +=(a ,b ∈R )被称为复数的代数形式,其中bi 表示b 与虚数单位i 相乘②复数的实部和虚部都是实数,否那么不是代数形式〔2〕分类:例题:当实数m 为何值时,复数i m m m m )3()65(-++-是实数?虚数?纯虚数?二、复数相等也就是说,两个复数相等,充要条件是他们的实部和虚局部别相等注意:只有两个复数全是实数,才可以比拟大小,否那么无法比拟大小例题:0)4()3(=-+-+i x y x 求y x ,的值三、共轭复数bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==⇔bi a z +=的共轭复数记作bi a z -=_,且22_b a z z +=⋅ 四、复数的几何意义1、复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。

显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

2、复数的几何意义复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系〔复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量〕相等的向量表示同一个复数例题:〔1〕当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点①位于第三象限;②位于直线x y =上〔2〕复平面内)6,2(=→AB ,→→AB CD //,求→CD 对应的复数3、复数的模:向量→OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z =假设bi a z +=1,di c z +=2,那么21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:i z +=2,求i z +-1的值五、复数的运算〔1〕运算法那么:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R①i d b c a di c bi a z z )()(21+++=+++=±②i ad bc bd ac di c bi a z z )()()()(21++-=+⋅+=⋅ ③2221)()()()())(()()(dc i ad bc bd ac di c di c di c bi a di c bi a z z +-++=-⋅+-+=++= 〔2〕OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-.六、常用结论〔1〕i ,12-=i ,i i -=3,14=i求n i ,只需将n 除以4看余数是几就是i 的几次例题:=675i(2)i i 2)1(2=+,i i 2)1(2-=-(3)1)2321(3=±-i ,1)2321(3-=±i 【思考辨析】判断下面结论是否正确(请在括号中打“√〞或“×〞)(1)方程x 2+x +1=0没有解.( )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(3)复数中有相等复数的概念,因此复数可以比拟大小.( )(4)原点是实轴与虚轴的交点.( )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.() 【考点自测】1.(2021·安徽)设i是虚数单位,那么复数(1-i)(1+2i)等于()A.3+3iB.-1+3iC.3+iD.-1+i2.(2021·课标全国Ⅰ)复数z满足(z-1)i=1+i,那么z等于()A.-2-iB.-2+iC.2-iD.2+i3.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.假设C为线段AB的中点,那么点C对应的复数是()A.4+8iB.8+2iC.2+4iD.4+ia,b∈R a+i=2-b i,那么(a+b i)2等于()A.3-4iB.3+4iC.4-3iD.4+3i5.(1+2i)=4+3i,那么z=________.【题型分析】题型一复数的概念例1z=a-(a∈R)是纯虚数,那么a的值为()(2)a∈R,复数z1=2+a i,z2=1-2i,假设为纯虚数,那么复数的虚部为()A.1B.iC.(3)假设z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,那么“m=1〞是“z1=z2〞的()引申探究1.对本例(1)中的复数z,假设|z|=,求a的值.2.在本例(2)中,假设为实数,那么a=________.思维升华解决复数概念问题的方法及考前须知(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+b i(a,b∈R)的形式,以确定实部和虚部.(1)假设复数z=(x2-1)+(x-1)i为纯虚数,那么实数x的值为()A.-1B.0C.1D.-1或1(2)(2021·浙江)i是虚数单位,a,b∈R,那么“a=b=1〞是“(a+b i)2=2i〞的()题型二复数的运算命题点1复数的乘法运算例2(1)(2021·湖北)i为虚数单位,i607的共轭复数为()A.iB.-iC.1D.-1(2)(2021·北京)复数i(2-i)等于()A.1+2iB.1-2iC.-1+2iD.-1-2i命题点2复数的除法运算例3(1)(2021·湖南)=1+i(i为虚数单位),那么复数z等于()A.1+iB.1-iC.-1+iD.-1-i(2)()6+=________.命题点3复数的运算与复数概念的综合问题例4(1)(2021·天津)i是虚数单位,假设复数(1-2i)(a+i)是纯虚数,那么实数a的值为________.(2)(2021·江苏)复数z=(5+2i)2(i为虚数单位),那么z的实部为________.命题点4复数的综合运算例5(1)(2021·安徽)设i是虚数单位,表示复数zz=1+i,那么+i·等于()(2)假设复数z满足(3-4i)z=|4+3i|,那么z的虚部为()A.-4B.-C.4D.思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四那么运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.(3)复数的运算与复数概念的综合题,先利用复数的运算法那么化简,一般化为a+b i(a,b∈R)的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法那么化简,一般化为a+b i(a,b∈R)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法那么进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2021·山东)假设复数z满足=i,其中i为虚数单位,那么z等于()A.1-iB.1+iC.-1-iD.-1+i(2)2021=________.(3)+2021=________.题型三复数的几何意义例6(1)(2021·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的()(2)△ABC的三个顶点对应的复数分别为z1,z2,z3,假设复数z满足|z-z1|=|z-z2|=|z-z3|,那么z 对应的点为△ABC的()思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点A表示复数z,那么图中表示z的共轭复数的点是()A.AB.BC.CD.D(2)z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a i)2在复平面内对应的点在第一象限,求实数a的取值范围.【思想与方法】解决复数问题的实数化思想典例x,y为共轭复数,且(x+y)2-3xy i=4-6i,求x,y.思维点拨(1)x,y为共轭复数,可用复数的根本形式表示出来;(2)利用复数相等,将复数问题转化为实数问题.温馨提醒(1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最根本的思想方法. (2)此题求解的关键是先把x、y用复数的根本形式表示出来,再用待定系数法求解.这是常用的数学方法.(3)此题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解.【方法与技巧】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.z=a+b i(a,b∈R z=a+b i(a,b∈R),既要从整体的角度去认识它,把复数看成一个整体,又要从实部、虚部的角度分解成两局部去认识.3.在复数的几何意义中,加法和减法对应向量的三角形法那么,其方向是应注意的问题,平移往往和加法、减法相结合.【失误与防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比拟大小.a+b i(a,b∈R)中的实数b,即虚部是一个实数.【稳固练习】1.(2021·福建)假设(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),那么a,b的值分别等于()A.3,-2B.3,2C.3,-3D.-1,4z=+i,那么|z|等于()A.B.C.3.(2021·课标全国Ⅱ)假设a为实数,且(2+a i)(a-2i)=-4i,那么a等于()4.假设i为虚数单位,图中复平面内点Z表示复数z,那么表示复数的点是()A.EB.FC.GD.H5.(2021·江西)是z的共轭复数,假设z+=2,(z-)i=2(i为虚数单位),那么z等于()A.1+iB.-1-iC.-1+iD.1-i6.(2021·江苏)设复数z满足z2=3+4i(i是虚数单位),那么z的模为________.=a+b i(a,b为实数,i为虚数单位),那么a+b=________.8.复数(3+i)m-(2+i)对应的点在第三象限内,那么实数m的取值范围是________.9.计算:(1);(2);(3)+;(4).z1=+(10-a2)i,z2=+(2a-5)i,假设1+z2是实数,求实数a的值.【能力提升】z1,z2满足z1=m+(4-m2)i,z2=2cosθ+(λ+3sinθ)i(m,λ,θ∈R),并且z1=z2,那么λ的取值范围是()A.[-1,1]B.C.D.f(n)=n+n(n∈N*),那么集合{f(n)}中元素的个数为()z=x+y i,且|z-2|=,那么的最大值为________.a∈R,假设复数z=+在复平面内对应的点在直线x+y=0上,那么a的值为____________.15.假设1+i是关于x的实系数方程x2+bx+c=0的一个复数根,那么b=________,c=________. 【稳固练习参考答案】1A.2.B.3.B..5.D.6..7.3.8.m<.9.解(1)==-1-3i.(2)====+i.(3)+=+=+=-1.(4)====--i.10.解1+z2=+(a2-10)i++(2a-5)i=+[(a2-10)+(2a-5)]i=+(a2+2a-15)i.∵1+z2是实数,∴a2+2a-15=0,解得a=-5或a=3.又(a+5)(a-1)≠0,∴a≠-5且a≠1,故a=3.11.解析由复数相等的充要条件可得化简得4-4cos2θ=λ+3sinθ,由此可得λ=-4cos2θ-3sinθ+4=-4(1-sin2θ)-3sinθ+4=4sin2θ-3sinθ=42-,因为sinθ∈[-1,1],所以4sin2θ-3sinθ∈.答案C12.解析f(n)=n+n=i n+(-i)n,f(1)=0,f(2)=-2,f(3)=0,f(4)=2,f(5)=0,…∴集合中共有3个元素.答案 C13.解析∵|z-2|==,∴(x-2)2+y2max==.14.解析∵z=+=+i,∴依题意得+=0,∴a=0.15.解析∵实系数一元二次方程x2+bx+c=0的一个虚根为1+i,∴其共轭复数1-i也是方程的根.由根与系数的关系知,∴b=-2,c=3.。

复数总结

复数总结

复 数一:基本概念 1.复数的概念: (1)虚数单位i ;(2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。

2.复数集b a+bi(a,b R)a 0)a 0)⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪∈⎨⎩⎪=⎧⎪≠⎨⎪≠⎩⎩整数有理数实数 (=0)分数复数无理数(无限不循环小数)纯虚数(虚数 (b 0)非纯虚数( 复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。

应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。

3.复数的四则运算若两个复数z1=a1+b1i ,z2=a2+b2i ,a) 复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i^2=-1结合到实际运算过程中去。

(1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ; (3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ; b)复数的除法:复数的除法是复数乘法的逆运算,由于两个共轭复数的积是实数,因此复数的除法可以通过将分母实化得到,即.2211(11)*(22)1*21*2(1*21*2)22(22)*(22)22a b i a b i a b i a a b b a b i b a i a b i a b i a b i a b ++-++-+==++-+(4)四则运算的交换率、结合率;分配率都适合于复数的情况。

(5)特殊复数的运算:① ni (n 为整数)的周期性运算; ② (1±i)^2=±2i ;③ 若ω=-21+23i ,则ω^3=1,1+ω+ω^2=0.4. 复数z=a+bi 的模,|a|=22a b +, 且2||z z z ⋅==a^2+b^2.5. 共轭复数定义:对于复数z=a+bi ,称复数z =a-bi 为z 的共轭复数。

复数的概念及四种表示方法

复数的概念及四种表示方法

复数的概念及四种表示方法1. 复数是数学中的一种数形结构,表示为a + bi的形式,其中a和b都是实数,i是虚数单位,满足i^2 = -1。

2. 复数的实部是指复数a + bi中的实数部分a,虚部是指复数a + bi中的虚数部分bi。

3. 复数的共轭是指将复数a + bi中的虚数部分b取相反数,即变为a - bi。

复数的共轭可以表示为conjugate(a + bi)或者a*。

4. 复数可以表示为直角坐标形式,即a + bi,其中a表示复数在实轴上的位置,b表示复数在虚轴上的位置。

直角坐标形式也可以用于表示复数之间的运算。

5. 复数还可以表示为极坐标形式,即r(cosθ + isinθ),其中r表示复数到原点的距离,θ表示复数与正实轴的夹角。

极坐标形式可以通过欧拉公式e^(iθ)来表示。

6. 复数的模是指复数a + bi到原点的距离,即|r| = sqrt(a^2 + b^2)。

7. 复数的幅角是指复数a + bi与正实轴的夹角,可以表示为arg(a + bi)或者θ。

8. 复数之间的加法是将实部分和虚部分分别相加,即(a + bi) + (c + di) = (a + c) + (b + d)i。

9. 复数之间的减法是将实部分和虚部分分别相减,即(a + bi) - (c + di) = (a - c) + (b - d)i。

10. 复数之间的乘法是根据公式(a + bi) × (c + di) = (ac - bd) + (ad + bc)i进行计算,实部相乘后减去虚部相乘后的结果,然后加上实部与虚部相乘的结果。

这些是关于复数的基本概念及表示方法。

复数在数学中有着广泛的应用,特别是在电学、物理学和工程学等领域中。

复数的运算规律和性质可以帮助我们解决许多实际问题。

复数知识点归纳

复数知识点归纳

复数【知识梳理】一、复数的基本概念1、虚数单位的性质 i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②12-=i ;这样方程12-=x 就有解了,解为i x =或i x -=2、复数的概念(1)定义:形如bi a +(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,a 叫做,b 叫做。

全体复数所成的集合C 叫做复数集。

复数通常用字母z 表示,即bi a z +=(a ,b ∈R )对于复数的定义要注意以下几点:#①bi a z +=(a ,b ∈R )被称为复数的代数形式,其中bi 表示b 与虚数单位i 相乘②复数的实部和虚部都是实数,否则不是代数形式(2)分类:例题:当实数m 为何值时,复数i m m m m )3()65(-++-是实数虚数纯虚数二、复数相等也就是说,两个复数相等,充要条件是他们的实部和虚部分别相等?注意:只有两个复数全是实数,才可以比较大小,否则无法比较大小例题:已知0)4()3(=-+-+i x y x 求y x ,的值三、四、共轭复数bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==⇔bi a z +=的共轭复数记作bi a z -=_,且22_b a z z +=⋅五、复数的几何意义1、复平面的概念(建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。

显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

2、复数的几何意义复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量)相等的向量表示同一个复数例题:(1)当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点①位于第三象限;②位于直线x y =上(2)复平面内)6,2(=→AB ,已知→→AB CD //,求→CD 对应的复数3、/4、复数的模:向量→OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z =若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:已知i z +=2,求i z +-1的值五、六、复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R①i d b c a di c bi a z z )()(21+++=+++=±}②i ad bc bd ac di c bi a z z )()()()(21++-=+⋅+=⋅ ③2221)()()()())(()()(d c i ad bc bd ac di c di c di c bi a di c bi a z z +-++=-⋅+-+=++= (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-.七、常用结论(1)i ,12-=i ,i i -=3,14=i求n i ,只需将n 除以4看余数是几就是i 的几次例题:=675i(2)!(3)i i 2)1(2=+,i i 2)1(2-=- (4)1)2321(3=±-i ,1)2321(3-=±i 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+x +1=0没有解.( )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(3)复数中有相等复数的概念,因此复数可以比较大小.( )%(4)原点是实轴与虚轴的交点.( )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )【考点自测】1.(2015·安徽)设i 是虚数单位,则复数(1-i)(1+2i)等于( )+3iB.-1++iD.-1+i2.(2015·课标全国Ⅰ)已知复数z 满足(z -1)i =1+i ,则z 等于( )A.-2-iB.-2+-+i]3.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )++++i4.已知a ,b ∈R ,i 是虚数单位.若a +i =2-b i ,则(a +b i)2等于( )-+-+3i5.已知(1+2i)=4+3i ,则z =________.【题型分析】题型一 复数的概念例1 (1)设i 是虚数单位.若复数z =a -(a ∈R )是纯虚数,则a 的值为( ),A.-3B.-已知a ∈R ,复数z 1=2+a i ,z 2=1-2i ,若为纯虚数,则复数的虚部为( )若z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,则“m=1”是“z1=z2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件引申探究1.对本例(1)中的复数z,若|z|=,求a的值.2.在本例(2)中,若为实数,则a=________.^思维升华解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+b i(a,b∈R)的形式,以确定实部和虚部.(1)若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为()A.-或1(2)(2014·浙江)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+b i)2=2i”的()A.充分不必要条件B.必要不充分条件(C.充分必要条件D.既不充分也不必要条件题型二复数的运算命题点1复数的乘法运算例2(1)(2015·湖北)i为虚数单位,i607的共轭复数为().-.-1(2)(2015·北京)复数i(2-i)等于()+-2iC.-1+2iD.-1-2i]命题点2复数的除法运算例3(1)(2015·湖南)已知=1+i(i为虚数单位),则复数z等于()+-iC.-1+iD.-1-i(2)()6+=________.命题点3复数的运算与复数概念的综合问题例4(1)(2015·天津)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为________.(2)(2014·江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为________.!命题点4复数的综合运算例5(1)(2014·安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i·等于()A.-2B.-若复数z满足(3-4i)z=|4+3i|,则z的虚部为()A.-4B.-思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.(3)复数的运算与复数概念的综合题,先利用复数的运算法则化简,一般化为a+b i(a,b∈R)的形式,再结合相关定义解答.、(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a+b i(a,b∈R)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2015·山东)若复数z满足=i,其中i为虚数单位,则z等于()-+iC.-1-iD.-1+i(2)2016=________.(3)+2016=________.题型三复数的几何意义^例6(1)(2014·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的()A.第一象限B.第二象限C.第三象限D.第四象限(2)△ABC的三个顶点对应的复数分别为z1,z2,z3,若复数z满足|z-z1|=|z-z2|=|z-z3|,则z 对应的点为△ABC的()A.内心B.垂心C.重心D.外心思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a i)2在复平面内对应的点在第一象限,求实数a的取值范围.。

复数知识点总结

复数知识点总结

复数知识点总结在数学的领域中,复数是一个非常重要的概念。

它不仅在理论上丰富了数学的体系,而且在实际应用中,如物理学、工程学等领域,都发挥着不可或缺的作用。

接下来,让我们一起深入了解复数的相关知识。

一、复数的定义复数是指形如\(a + bi\)的数,其中\(a\)和\(b\)均为实数,\(i\)是虚数单位,满足\(i^2 =-1\)。

\(a\)被称为实部,记作\(Re(z)\);\(b\)被称为虚部,记作\(Im(z)\)。

例如,\(3 + 2i\)就是一个复数,其中\(3\)是实部,\(2\)是虚部。

二、复数的表示形式1、代数形式就是我们刚刚提到的\(a + bi\),这是最常见也是最基本的表示形式。

2、几何形式在平面直角坐标系中,以\(x\)轴为实轴,\(y\)轴为虚轴,复数\(a + bi\)可以用坐标\((a, b)\)来表示。

这样,复数就与平面上的点建立了一一对应的关系。

3、三角形式复数\(z = a + bi\)可以表示为\(z =r(cosθ +isinθ)\),其中\(r =\sqrt{a^2 + b^2}\),\(tanθ =\frac{b}{a}\)。

4、指数形式根据欧拉公式\(e^{iθ} =cosθ +isinθ\),复数还可以表示为\(z = re^{iθ}\)。

三、复数的运算1、加法和减法两个复数\(z_1 = a_1 + b_1i\),\(z_2 = a_2 + b_2i\)的和差为:\(z_1 ± z_2 =(a_1 ± a_2) +(b_1 ± b_2)i\)2、乘法\(z_1 \times z_2 =(a_1 + b_1i) \times (a_2 + b_2i)\)\\begin{align}&=a_1a_2 + a_1b_2i + a_2b_1i + b_1b_2i^2\\&=(a_1a_2 b_1b_2) +(a_1b_2 + a_2b_1)i\end{align}\3、除法\\frac{z_1}{z_2}=\frac{a_1 + b_1i}{a_2 + b_2i}=\frac{(a_1 + b_1i)(a_2 b_2i)}{(a_2 + b_2i)(a_2 b_2i)}\\\begin{align}&=\frac{a_1a_2 + b_1b_2 +(a_2b_1 a_1b_2)i}{a_2^2 +b_2^2}\\&=\frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} +\frac{a_2b_1 a_1b_2}{a_2^2 + b_2^2}i\end{align}\四、共轭复数两个实部相等,虚部互为相反数的复数互为共轭复数。

5.1.1复数的概念(中职)

5.1.1复数的概念(中职)





解得൞
=−
=




1. 写出下列复数的实部和虚部.

() − +
;

() − ;
(); ();
()
2. 下列复数哪些是实数,哪些是虚数哪些是纯虚数?
();
() − ;
() − . ; () ;
3.求满足下列条件的实数和.
()( − ) − ( + ) = − ;
既然是一个数,那么它与实数就可以进行运算.
实数与的乘积写成,实数与的和写成 + .
形如 + (, ∈ )的数叫做复数,其中称为复数的实部,称为复数的虚部.
当 = 时,复数 + 就是实数;
当 ≠ 时,复数 + 就是虚数;
当 = 且 ≠ 时,复数 + 就是纯虚数.




虚数
例1 指出下列复数的实部和虚部,并判断这些复数是实数还是虚数.
若是虚数,其是否为纯虚数.
();
() − ;
()
解:(1)复数2的实部是2,虚部是0,它是实数
(2)复数 − 的实部是3,虚部是-1,它是虚数,不是纯虚数
(3)复数的实部是0,虚部是5,它是虚数,而且是纯虚数
练习:实数取什么值时,复数 = + + ( − ) 是
(1)实数? (2)虚数? (3)纯虚数?
解: (1)当 − = 时,即 = 时,复数 是实数.
(2)当 − ≠ 时,即 ≠ 时,复数 是虚数.
+ =
(3)当 ቊ
时,即 = −时,复数 是纯虚数.
()( + ) + ( − ) = ;

复数知识点总结

复数知识点总结

复数一、复数的概念 1. 虚数单位 i( 1) 它的平方等于1,即 i 21;( 2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律.( 3) i 的乘方:i 4n 1,i 4 n 1 i,i 4n 2 1,i 4n 3 i, n N * ,它们不超出 b i 的形式.2. 复数的定义形如 a b i(a, b R ) 的数叫做复数, a,b 分别叫做复数的实部与虚部 3. 复数相等 a b i c d i ,即 ac,bd ,那么这两个复数相等4.共轭复数zabi 时, z a b i .性质: zz ; z 1 z 2z 1 z 2 ; z 1 z 2 z 1 z 1 ; ( z 1) z 1 ( z 2 0);z 2 z 2 二、复平面及复数的坐标表示 1. 复平面在直角坐标系里,点z 的横坐标是 a ,纵坐标是 b ,复数 za bi 可用点 Z( a,b) 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴为实轴, y 轴出去原点的部分称为虚轴.2. 复数的坐标表示3. 复数的向量表示4. 复数的模点 Z (a,b)向量OZ .在复平面内, 复数 za bi 对应点 Z (a,b) ,点 Z 到原点的距离 OZ 叫做复数 z 的模, 记作 z .由定义知, za 2b 2 .三、复数的运算1. 加法( a b i )(c d i )a( c )b(.d几何意义:设 z a b i 对应向量 OZ1(a,b), z2c d i 对应向量 OZ2(c, d ) ,则1z1 z2对应的向量为 OZ OZ2(a c,b d ) .因此复数的和可以在复平面上用平行四边1形法则解释.2. 减法( a b i)( c d i)( a c)(b d )i.几何意义:设 z1a b i 对应向量 OZ1(a,b) , z2c d i 对应向量 OZ2(c, d ) ,则z1 z2对应的向量为 OZ1OZ2Z2 Z1(a c, b d ) .z1 z2(a c)(b d )i(a c)2(b d )2表示Z、Z两点之间的距离,也12等于向量 Z1Z2的模.3.乘法4.乘方5.除法a bi c di a cb d i .z m z n z m n (z m )n z mn( z1 z 2)n z n1 z n2a bi c dia bi a bi c di ac bd bc ad i.c di c di c di c2d 26.复数运算的常用结论( 1)(a b i)2a2b22abi, (a b i)( a b i) a2b2(2)(1i)22i ,(1i) 22i(3)1i i ,1i i 1i1i( 4)z1z2z1z2, z1 z2z1z2,z1z1, z z .z2z2( 5)z z z 2z z ,( 6)z1z2z1z2z1z2( 7)z1z2z1z2, z1 z2z1z2,z nn z四、复数的平方根与立方根1.平方根若(a b i) 2c d i ,则a b i 是 c d i 的一个平方根,(a b i) 也是c d i 的平方根.( 1 的平方根是i .)2.立方根如果复数 z1、 z2满足 z13z2,则称 z1是 z2的立方根.( 1) 1 的立方根:1, ,2 .13i ,213i ,31.120 .2222( 2)1的立方根:1,z13i, z13i .2222五、复数方程1.常见图形的复数方程( 1)圆:z z0r (r0 ,z0为常数),表示以 z0对应的点 Z0为圆心, r 为半径的圆(2)线段Z Z的中垂线:z z z z(其中 z , z 分别对应点 Z , Z)12121212( 3)椭圆:z z z z22a (其中a 0且 z z22a ),表示以 z1 , z2对应的点11F1、 F2 为焦点,长轴长为2a 的椭圆( 4)双曲线:z z1z z22a(其中 a0 且z1z2 2a ),表示以 z1, z2对应的点 F1、 F2 为焦点,实轴长为2a 的双曲线2.实系数方程在复数范围内求根0一对实根 x1,2b b24ac2a( 1)0一对相等的实根b求根公式:x1,22ab i b24ac 一对共轭虚根 x1,22ax1x2b a( 2)韦达定理:x1 x2ca。

复数知识点总结

复数知识点总结

复数知识点小结1、复数的概念复数 (,)z a bi a b R =+∈Re Im a z b z ⎧⎨⎩——实部————虚部——,其中21i =-,i 叫做虚数单位. 2、复数的分类 (0) (,)(0) (0b z a bi a b R b a =⎧=+∈⎨≠=⎩实数复数虚数特别地,时为纯虚数)3、两个复数相等定义:如果两个复数),(1R b a bi a z ∈+=和),(2R d c di c z ∈+=的实部与虚部分别相等,即d b c a ==且,那么这两个复数相等,记作di c bi a +=+.只有当两个复数都是实数时,才能比较大小;当两个复数不都是实数时,只有相等与不相等两种关系,不能比较大小.4、复平面——建立了直角坐标系来表示复数的平面。

复平面中,x 轴叫做实轴,y 轴叫做虚轴。

表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,原点表示实数0。

5、复数的向量表示OZ Z 向量复平面上点复数↔↔+=),(b a bi a z6、复数的模复数模(绝对值)的定义,几何意义:复数z=a+bi (a,b ∈R )所对应的点Z(a,b)到坐标原点的距离。

|z|=|a+bi|=022≥+b a .[说明] ||||z z a ==为实数时,,所以实数绝对值是复数模的特殊情形。

当且仅当a=b=0时,|z|=07、复数的四则运算性质:R d c b a ∈,,,1)、加法:i d b c a di c bi a )()()()(+++=+++2)、减法:i d b c a di c bi a )()()()(-+-=+-+3)、乘法:i bc ad bd ac di c bi a )()())((++-=++4)、除法:i d c ad bc d c bd ac di c bi a 2222+-+++=++ (目的:分母实数化) [要点说明]①计算结果一律写成),(R b a bi a ∈+的代数形式;②复数的加法满足交换律、结合律;③复数乘法满足交换律、结合律及乘法对加法的分配律;交换律:1221z z z z ⋅=⋅结合律:)()(321321z z z z z z ⋅⋅=⋅⋅分配律:3121321)(z z z z z z z ⋅+⋅=+⋅④实数范围内正整数指数幂的运算律在复数范围内仍然成立,即n n n m n n m n m n m z z z z z z z z z N n m C z z z 2121*321)(,)(,,,,,=⋅==∈∈+时:8、i 的整数指数幂的周期性特征:414243441, 1, , 1k k k k k i i i i i i ++++==-=-=若为非负实数,则();024*******=+++++++k k k k i i i i )(9、||21z z -的几何意义:设12, (,,,)z a bi z c di a b c d R =+=+∈ 则2221)()(|)()(||)()(|||d b c a i d b c a di c bi a z z -+-=-+-=+-+=-几何意义:对应复平面上点12(,), (,)Z a b Z c d 两点间距离22)()(d b c a d -+-=10、共轭复数1)定义: 当两个复数的实部相等,虚部互为相反数时,这样的两个复数叫做互为共轭复数,记为bi a z -=问题:当R z ∈时,是否有共轭复数?两者关系如何?z z R z =⇔∈2)运算性质:结论可推广到n 个2121)1(z z z z ±=± 2121)2(z z z z ⋅=⋅ )0()()()3(22121≠=z z z z z 3)模的运算性质:① 121212||||||||||z z z z z z -≤±≤+;② 1212z z z z ⋅=⋅,可推广至有限多个,特别地n n z z= ③ 2121z z z z = ④ 22z z z z ==,特别地,当1=z 时,1=z z 即 1z z =. 11、复数的平方根:在复数集C 内,如果),,,(,R d c b a di c bi a ∈++满足:di c bi a +=+2)(, 则称bi a +是di c +的一个平方根.从运算结果可以看出,一个非零复数的平方根有两个,且互为相反数.12、复数的立方根 设i 2321+-=ω,则: 322331322(1) 1; (2) 10 ; (3) ;(4) 1,{}3.n n n nT ωωωωωωωωωωω++=++======即是的等比数列 13、实系数一元二次方程根的情况1)20(0)ax bx c a ++=≠实系数一元二次方程在复数集内根的情况:① 0 ,∆>当时有两个不相等的实根;② 0 ∆=当时,有两个相等的实根; ③ 0 ∆<当时,有两个共轭虚根.2)0∆<当时,2212112122Re ,||||b c x x x x x x x a a +==-⋅=== 3)120||x x a∆≥-=当时,120|||x x ∆<-==当时,12||x x -=综上:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数的概念
1、复数1z =3+i ,2z =1-i,则21z z z ⋅=在复平面内对应的点位于 ( ) A 第一象限内 B 第二象限内 C 第三象限内 D 第四象限内
2、若复数z 满足i
z z 2110||-=-,则z = ( ) A -3+4i B -3-4i C 3-4i D 3+4i
3、设z 为复数,则“|z|=1”是“z
z 1
+∈R ”的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 不充分不必要条件
4、复数)2(sin cos 1παπαα<<⋅++=i z 的模为( ) A 2cos 2α B –2cos 2α C 2sin 2α D –2tan 2α
5、已知1z ,2z 是复数,以下四个结论正确的是 (A)
⑴若1z +2z =0,则1z =0,且2z =0 ⑵|1z |+|2z |=0,则1z =0,且2z =0 ⑶若1z +1z =0则1z =0, ⑷若|1z |=|2z |,则向量1oz 和
2
oz 重合
A 仅⑵正确
B 仅⑵⑶正确
C 仅⑵⑶⑷正确
D 仅⑵⑷正确 6、 (优质试题辽宁卷)复数.111-++-=i
i
z 在复平面内,z 所对应的点在 ( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
7、 (优质试题天津卷)2.若复数i
i a 213++(a ∈R ,i 为虚数单位位)是纯虚数,则实数a 的值为( ) A .-2
B .4
C .-6
D .6
8、 (优质试题浙江卷)在复平面内,复数
1i
i
++(1+3i )2对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限 9、(20优质试题年辽宁卷.4)设复数z 满足i z
z =+-11,则|1|z +=( ).
A. 0
B. 1
C. 2
D. 2
10、(20优质试题年浙江卷.理6)已知复数i z 431+=,i t z +=2,且21z z ∙是实数,则实数t =( ). A.
4
3 B.
3
4 C.
3
4-
D.
4
3-
11、设z=3+2i ,z 和z 在复平面内对应的点分别为A 和B ,O 为坐标原点,则AOB ∆的面积为
12、若t ∈R ,t ≠0、-1时,复数z=t t +1+t
t +1i 的模的取值范围是 .
班级 .姓名 . 座号
11、 .12、 13、已知z z z f -+=|1|)(,且)(z f -=10+3i,求复数z,
14、复数z 满足|z|=1,求证:R z z ∈+2
1
15、设复数z=x
a log 2+)1,0()1(log 2≠>-a a i x a ,
问当x 为何实数时,z 是⑴实数, ⑵ 虚数, ⑶ 纯虚数, ⑷ z 在复平面上对应的点在实轴上方,⑸|z|=1
答案
1—10、DDABA BCBCA 11、 6. 12、 |z|2

;
13、 解:由z z z f -+=|1|)(, 得i z z z f 310)(|1|)(+=---=- 设z=a+bi(a ,b ∈R) |1-(a+bi)|- (bi a --)=10+3i 得
i bi a b a 310)1(22+=-++-
⎩⎨⎧-==∴⎪⎩
⎪⎨⎧=-=++-∴35
310)1(22b a b a b a i z 35-=∴
14、 证明:因|z|=1,故z z z z z 12,1||=∴=⋅= 所以
2
2
112211)(11)
(z z z z z
z z z
++++=
==
所以R z
z ∈+2
1
15、解:⑴当01log 2=-x a ,即x=a 或a 1
时z 为实数; ⑵当01log 2≠-x a ,即a x ≠或a x 1≠时z 为虚数; ⑶当x a log 2=0且01log 2≠-x a ,即x=1时z 为纯虚数
⑷当01log 2>-x a ,即当0<a<1时,0<x<a 或
x>a 1;或a>1时,x>a 或0<x<a 1时z 在复平面上对应的点在实轴上方; ⑸当2)log 2(x a +2
2)1(log -x a =1即x=1时,|z|=1。

相关文档
最新文档