操作系统实验1:进程调度

合集下载

操作系统实验报告进程调度

操作系统实验报告进程调度

操作系统实验报告进程调度操作系统实验报告:进程调度引言在计算机科学领域中,操作系统是一个重要的概念,它负责管理和协调计算机系统中的各种资源,包括处理器、内存、输入/输出设备等。

其中,进程调度是操作系统中一个非常重要的组成部分,它负责决定哪个进程在何时获得处理器的使用权,以及如何有效地利用处理器资源。

实验目的本次实验的目的是通过对进程调度算法的实验,深入理解不同的进程调度算法对系统性能的影响,并掌握进程调度算法的实现方法。

实验环境本次实验使用了一台配备了Linux操作系统的计算机作为实验平台。

在该计算机上,我们使用了C语言编写了一些简单的进程调度算法,并通过模拟不同的进程调度场景进行了实验。

实验内容1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种简单的进程调度算法,它按照进程到达的顺序进行调度。

在本次实验中,我们编写了一个简单的FCFS调度算法,并通过模拟多个进程同时到达的情况,观察其对系统性能的影响。

2. 短作业优先调度算法(SJF)短作业优先调度算法是一种根据进程执行时间长度进行调度的算法。

在本次实验中,我们编写了一个简单的SJF调度算法,并通过模拟不同长度的进程,观察其对系统性能的影响。

3. 时间片轮转调度算法(RR)时间片轮转调度算法是一种按照时间片大小进行调度的算法。

在本次实验中,我们编写了一个简单的RR调度算法,并通过模拟不同时间片大小的情况,观察其对系统性能的影响。

实验结果通过实验,我们发现不同的进程调度算法对系统性能有着不同的影响。

在FCFS 算法下,长作业会导致短作业等待时间过长;在SJF算法下,长作业会导致短作业饥饿现象;而RR算法则能够较好地平衡不同进程的执行。

因此,在实际应用中,需要根据具体情况选择合适的进程调度算法。

结论本次实验通过对进程调度算法的实验,深入理解了不同的进程调度算法对系统性能的影响,并掌握了进程调度算法的实现方法。

同时,也加深了对操作系统的理解,为今后的学习和研究打下了良好的基础。

实验一、进程调度实验报告

实验一、进程调度实验报告

实验一、进程调度实验报告一、实验目的进程调度是操作系统中的核心功能之一,其目的是合理地分配 CPU 资源给各个进程,以提高系统的整体性能和资源利用率。

通过本次实验,我们旨在深入理解进程调度的原理和算法,掌握进程状态的转换,观察不同调度策略对系统性能的影响,并通过实际编程实现来提高我们的编程能力和对操作系统概念的理解。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验原理1、进程状态进程在其生命周期中会经历不同的状态,包括就绪态、运行态和阻塞态。

就绪态表示进程已经准备好执行,只等待 CPU 分配;运行态表示进程正在 CPU 上执行;阻塞态表示进程由于等待某个事件(如 I/O操作完成)而暂时无法执行。

2、调度算法常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)等。

先来先服务算法按照进程到达的先后顺序进行调度。

短作业优先算法优先调度执行时间短的进程。

时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片执行。

四、实验内容1、设计并实现一个简单的进程调度模拟器定义进程结构体,包含进程 ID、到达时间、执行时间、剩余时间等信息。

实现进程的创建、插入、删除等操作。

实现不同的调度算法。

2、对不同调度算法进行性能测试生成一组具有不同到达时间和执行时间的进程。

分别采用先来先服务、短作业优先和时间片轮转算法进行调度。

记录每个算法下的平均周转时间、平均等待时间等性能指标。

五、实验步骤1、进程结构体的定义```c++struct Process {int pid;int arrivalTime;int executionTime;int remainingTime;int finishTime;int waitingTime;int turnaroundTime;};```2、进程创建函数```c++void createProcess(Process processes, int& numProcesses, int pid, int arrivalTime, int executionTime) {processesnumProcessespid = pid;processesnumProcessesarrivalTime = arrivalTime;processesnumProcessesexecutionTime = executionTime;processesnumProcessesremainingTime = executionTime;numProcesses++;}```3、先来先服务调度算法实现```c++void fcfsScheduling(Process processes, int numProcesses) {int currentTime = 0;for (int i = 0; i < numProcesses; i++){if (currentTime < processesiarrivalTime) {currentTime = processesiarrivalTime;}processesistartTime = currentTime;currentTime += processesiexecutionTime;processesifinishTime = currentTime;processesiwaitingTime = processesistartTime processesiarrivalTime;processesiturnaroundTime = processesifinishTime processesiarrivalTime;}}```4、短作业优先调度算法实现```c++void sjfScheduling(Process processes, int numProcesses) {int currentTime = 0;int minExecutionTime, selectedProcess;bool found;while (true) {found = false;minExecutionTime = INT_MAX;selectedProcess =-1;for (int i = 0; i < numProcesses; i++){if (processesiarrivalTime <= currentTime &&processesiremainingTime < minExecutionTime &&processesiremainingTime > 0) {found = true;minExecutionTime = processesiremainingTime;selectedProcess = i;}}if (!found) {break;}processesselectedProcessstartTime = currentTime;currentTime += processesselectedProcessremainingTime;processesselectedProcessfinishTime = currentTime;processesselectedProcesswaitingTime =processesselectedProcessstartTime processesselectedProcessarrivalTime;processesselectedProcessturnaroundTime =processesselectedProcessfinishTime processesselectedProcessarrivalTime;processesselectedProcessremainingTime = 0;}}```5、时间片轮转调度算法实现```c++void rrScheduling(Process processes, int numProcesses, int timeSlice) {int currentTime = 0;Queue<int> readyQueue;for (int i = 0; i < numProcesses; i++){readyQueueenqueue(i);}while (!readyQueueisEmpty()){int currentProcess = readyQueuedequeue();if (processescurrentProcessarrivalTime > currentTime) {currentTime = processescurrentProcessarrivalTime;}if (processescurrentProcessremainingTime <= timeSlice) {currentTime += processescurrentProcessremainingTime;processescurrentProcessfinishTime = currentTime;processescurrentProcesswaitingTime =processescurrentProcessstartTime processescurrentProcessarrivalTime;processescurrentProcessturnaroundTime =processescurrentProcessfinishTime processescurrentProcessarrivalTime;processescurrentProcessremainingTime = 0;} else {currentTime += timeSlice;processescurrentProcessremainingTime = timeSlice;readyQueueenqueue(currentProcess);}}}```6、性能指标计算函数```c++void calculatePerformanceMetrics(Process processes, int numProcesses, double& averageWaitingTime, double& averageTurnaroundTime) {double totalWaitingTime = 0, totalTurnaroundTime = 0;for (int i = 0; i < numProcesses; i++){totalWaitingTime += processesiwaitingTime;totalTurnaroundTime += processesiturnaroundTime;}averageWaitingTime = totalWaitingTime / numProcesses; averageTurnaroundTime = totalTurnaroundTime / numProcesses;}```7、主函数```c++int main(){Process processes100;int numProcesses = 0;//创建进程createProcess(processes, numProcesses, 1, 0, 5);createProcess(processes, numProcesses, 2, 1, 3);createProcess(processes, numProcesses, 3, 2, 4);createProcess(processes, numProcesses, 4, 3, 2);//先来先服务调度fcfsScheduling(processes, numProcesses);double fcfsAverageWaitingTime, fcfsAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, fcfsAverageWaitingTime, fcfsAverageTurnaroundTime);cout <<"先来先服务调度的平均等待时间:"<<fcfsAverageWaitingTime << endl;cout <<"先来先服务调度的平均周转时间:"<<fcfsAverageTurnaroundTime << endl;//短作业优先调度sjfScheduling(processes, numProcesses);double sjfAverageWaitingTime, sjfAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, sjfAverageWaitingTime, sjfAverageTurnaroundTime);cout <<"短作业优先调度的平均等待时间:"<<sjfAverageWaitingTime << endl;cout <<"短作业优先调度的平均周转时间:"<<sjfAverageTurnaroundTime << endl;//时间片轮转调度(时间片为 2)rrScheduling(processes, numProcesses, 2);double rrAverageWaitingTime, rrAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, rrAverageWaitingTime, rrAverageTurnaroundTime);cout <<"时间片轮转调度(时间片为 2)的平均等待时间:"<< rrAverageWaitingTime << endl;cout <<"时间片轮转调度(时间片为 2)的平均周转时间:"<< rrAverageTurnaroundTime << endl;return 0;}```六、实验结果与分析1、先来先服务调度平均等待时间:40平均周转时间:85分析:先来先服务调度算法简单直观,但对于短作业可能会造成较长的等待时间,导致平均等待时间和平均周转时间较长。

进程调度操作系统实验报告

进程调度操作系统实验报告

进程调度操作系统实验报告一、实验目的本次实验的主要目的是深入理解操作系统中进程调度的概念和原理,通过实际编程和模拟,观察不同调度算法对系统性能的影响,并掌握进程调度的实现方法。

二、实验环境操作系统:Windows 10编程语言:C++开发工具:Visual Studio 2019三、实验原理进程调度是操作系统的核心功能之一,它负责决定哪个进程在何时获得 CPU 资源进行执行。

常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)、优先级调度等。

先来先服务算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 执行。

这种算法简单直观,但可能导致短作业等待时间过长。

短作业优先算法优先调度执行时间短的进程,能有效减少平均等待时间,但可能导致长作业饥饿。

时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片进行执行。

如果进程在时间片内未完成,则被放回就绪队列等待下一轮调度。

优先级调度根据进程的优先级来决定调度顺序,优先级高的进程先获得 CPU 资源。

四、实验步骤1、设计进程结构体定义进程的标识号(PID)、到达时间、服务时间、剩余时间、优先级等属性。

2、实现先来先服务算法按照进程到达的先后顺序将它们放入就绪队列。

从就绪队列中取出第一个进程进行调度执行,直到其完成。

3、实现短作业优先算法计算每个进程的剩余服务时间。

将进程按照剩余服务时间从小到大排序,放入就绪队列。

从就绪队列中取出剩余服务时间最短的进程进行调度执行。

4、实现时间片轮转算法设定时间片大小。

将进程放入就绪队列,按照先来先服务的原则依次分配时间片执行。

进程在时间片内未完成的,放回就绪队列末尾。

5、实现优先级调度算法为每个进程设置优先级。

将进程按照优先级从高到低排序,放入就绪队列。

从就绪队列中取出优先级最高的进程进行调度执行。

6、计算平均周转时间和平均带权周转时间周转时间=完成时间到达时间带权周转时间=周转时间/服务时间平均周转时间=总周转时间/进程数平均带权周转时间=总带权周转时间/进程数7、输出调度结果包括每个进程的调度顺序、开始时间、结束时间、周转时间、带权周转时间等。

实验进程调度

实验进程调度

淮海工学院计算机科学系实验报告书课程名:《操作系统原理》题目:实验一进程管理班级:Z软件52学号:2017140595姓名:郭文静1、实验目的与要求进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C/C++语言编写一个进程调度模拟程序,至少使用最高优先权优先或时间片轮转法两种算法来实现进程调度。

通过本实验可加深对进程调度算法的理解。

1、设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。

2、模拟调度程序至少使用最高优先权优先或时间片轮转法两种算法来实现进程调度。

3、程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。

2、实验内容或题目2.1优先级算法说明(1)PCB的结构:优先级算法中,设PCB的结构如右图所示,其中各数据项的含义Array如下:Id:进程标识符号,取值1—5。

Prior:优先级,随机产生,范围5—10。

Used:目前已占用的CPU时间数,初值为0;当该进程被调用执行时,每执行一个时间片,Used加1。

Need:进程尚需的CPU时间数,初值表示该进程需要运行的总时间,取值范围为1—5。

并随机产生,每运行一个时间片need减1;need为0则进程结束。

Status:进程状态R(运行),J(就绪),F(完成);初始时都处于就绪状态。

Next:指向就绪队列中下一个进程的PCB的指针。

(2)初始状态及就绪队列组织:5个进程初始都处于就绪状态,进程标识1—5,used初值都为0。

各进程的优先级随机产生,范围1—5。

处于就绪状态的进程,用队列加以组织,队列按优先级由高到低依次排列,队首指针设为head。

(3)调度原则以及运行时间的处理:正在执行的进程每执行一个时间片,其优先级减1(允许优先级为负)。

进程调度将在以下情况发生:当正在运行的程序其优先级小于就绪队列队首进程的优先级时。

程序中进程的运行时间以逻辑时间片为单位。

2.2时间片轮转算法说明(1)PCB的结构(如下图所示):轮转法中,设PCB的结构如右图所示,其中各数据项的含义如下:Span:在某一轮中,分配给先运行进程的时间片数,取值1—3。

操作系统进程调度实验

操作系统进程调度实验

操作系统进程调度实验操作系统进程调度是操作系统中非常重要的一个功能,它决定了多个进程的执行顺序和调度策略。

进程调度的好坏直接影响着系统的性能和资源利用率。

本实验旨在通过实现一个简单的进程调度模拟,了解不同的调度算法,探讨其优劣和适用场景。

一、实验目的和原理本实验的目标是实现进程调度模拟,并探究不同调度算法的性能和适用场景。

通过实验,我们可以了解以下内容:1.进程调度算法的基本原理和实现方式;2.比较不同调度算法的优劣和特点;3.了解不同调度算法在不同场景下的应用。

二、实验环境和工具本实验使用C语言进行实现,可以选择任何一种编程环境和工具,例如Dev-C++、Visual Studio等。

三、实验过程及方法1.实现一个进程控制块(PCB)的数据结构,用来保存进程的相关信息,包括进程ID、进程状态、优先级等。

2.实现一个进程队列,用来保存就绪队列中的进程。

可以使用数组或链表等数据结构实现。

3. 实现不同调度算法的函数,包括先来先服务(FCFS)、最短作业优先(SJF)、优先级调度(Priority Scheduling)和时间片轮转(Round Robin)等。

4.根据实际需求生成一批进程,设置其信息,并根据不同算法进行调度。

5.对比不同算法的运行结果和性能,分析其优劣。

四、实验结果和分析通过实验,我们可以得到每个算法的平均等待时间、平均周转时间和吞吐量等性能指标。

根据这些指标,我们可以对不同算法进行评价和分析。

1.先来先服务(FCFS)算法FCFS算法是最简单的调度算法,按照进程到达的顺序进行调度。

它的主要优点是实现简单、公平性好。

然而,FCFS算法有明显的缺点,会导致长作业等待时间过长,产生"饥饿"现象。

2.最短作业优先(SJF)算法SJF算法是按照进程的执行时间长短进行调度的算法。

它能够最大限度地减少平均等待时间和周转时间,但是需要提前知道所有进程的执行时间,这在实际中是很难做到的。

操作系统进程调度实验报告

操作系统进程调度实验报告

《计算机操作系统》课程实验报告题目实验一进程调度学院: 计算机学院专业: 计算机科学与技术姓名班级学号2015年10月21日实验一进程调度1.实验目的:通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。

2.实验内容:用C语言实现对N个进程采用某种进程调度算法先来先服务调度、短作业优先调度的调度。

3.设计实现:要求给出设计源码,设计源码要有详细注释,#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/int atime; /*到达时间*/int stime; /*服务时间*/int ftime; /*完成时间*/int rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("根据到达时间重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=0;i<n-1-j;i++)if(a[i].atime>a[i+1].atime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %d %d |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void fcfs(struct program a[],int n){int i;int time=0;for(i=0;i<n;i++){time=time+a[i].stime;a[i].ftime=a[0].atime+time;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=(float)a[i].rtime/a[i].stime;}printf("\nFCFS算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %d %.2d %.2d %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******先来先服务算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);fcfs(pro,m);getchar();}#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/float atime; /*到达时间*/float stime; /*服务时间*/float ftime; /*完成时间*/float rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=1;i<n-1-j;i++)if(a[i].stime>a[i+1].stime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %f %f |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void SJF(struct program a[],int n){int i;a[0].ftime=a[0].atime+a[0].stime;a[0].rtime=a[0].ftime-a[0].atime;a[0].qrtime=a[0].rtime/a[0].stime;for(i=1;i<n;i++){a[i].ftime=a[i-1].ftime+a[i].stime;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=a[i].rtime/a[i].stime;}printf("\nSJF算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %.2f %.2f %.2f %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******短作业优先算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);SJF(pro,m); getchar(); }4.实验结果5.实验过程中出现的问题及解决办法先来先服务调度算法就是根据进程达到的时间为依据,哪一个进程先来那么该进程就会先执行;最短进程优先调度算法则是以每个进程执行所需时间长短为依据,某一个进程执行所需花的时间要短些那么该进程就先执行。

实验进程调度的实验报告

实验进程调度的实验报告

一、实验目的1. 加深对进程概念和进程调度算法的理解。

2. 掌握进程调度算法的基本原理和实现方法。

3. 培养编程能力和系统分析能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验内容1. 实现进程调度算法2. 创建进程控制块(PCB)3. 模拟进程调度过程四、实验原理进程调度是操作系统核心功能之一,负责将CPU分配给就绪队列中的进程。

常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转(RR)等。

1. 先来先服务(FCFS)算法:按照进程到达就绪队列的顺序进行调度。

2. 短作业优先(SJF)算法:优先调度运行时间最短的进程。

3. 优先级调度算法:根据进程的优先级进行调度,优先级高的进程优先执行。

4. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行,时间片结束后进行调度。

五、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、运行时间、优先级、状态等信息。

2. 创建进程队列,用于存储就绪队列、等待队列和完成队列。

3. 实现进程调度算法:a. FCFS算法:按照进程到达就绪队列的顺序进行调度。

b. SJF算法:优先调度运行时间最短的进程。

c. 优先级调度算法:根据进程的优先级进行调度。

d. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行。

4. 模拟进程调度过程:a. 初始化进程队列,将进程添加到就绪队列。

b. 循环执行调度算法,将CPU分配给就绪队列中的进程。

c. 更新进程状态,统计进程执行时间、等待时间等指标。

d. 当进程完成时,将其移至完成队列。

六、实验结果与分析1. FCFS算法:按照进程到达就绪队列的顺序进行调度,简单易实现,但可能导致短作业等待时间过长。

2. SJF算法:优先调度运行时间最短的进程,能提高系统吞吐量,但可能导致进程饥饿。

进程的调度实验报告(3篇)

进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。

二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。

2. 实现三种调度算法:FCFS、RR和DP。

3. 创建一个进程队列,用于存储所有进程。

4. 实现调度函数,根据所选算法选择下一个执行的进程。

5. 模拟进程执行过程,打印进程执行状态和就绪队列。

四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。

操作系统进程调度和进程同步实验要求

操作系统进程调度和进程同步实验要求

0711操作系统进程调度和进程同步实验要求实验内容:用线程模拟进程,实现进程调度和进程同步。

在任意操作系统中,用c、c++或者java 编写程序。

并且完成相应的实验报告。

实验要求:实验一:进程调度⑴ 主线程,创建子线程,保存子线程的虚拟PCB(参见恐龙书P74)、要求运行多少时间(可随机产生)、已经等待多少时间(初始化为0),优先级(可随机产生)等信息,并负责子线程的调度。

调度的基本时间单位为1 S。

⑵ 创建20个线程(可以只用一个线程函数,传递不同的参数即上述数据结构)分别实现FCFS调度、SJF调度、RR调度、优先级调度和多级队列调度,并且计算每个调度的平均等待时间。

其中,多级队列调度要求设计4个调度队列,每个队列5个线程,队列内部分别采用FCFS、SJF、RR和优先级调度。

时间片的长度可以随机生成为n S。

⑶ 对于每个子线程,在其运行期间,输出其占用的时间标号(例如,第3个线程占用了第10秒的CPU时间,输出为:“Thread 3: 10”,格式可自行设计)。

实验二:进程同步⑴ 模拟哲学家就餐问题:设置5个子线程模拟5个哲学家,设置5个互斥区为筷子。

⑵ 输出问题解决方法:在每个哲学家线程中输出其获得的筷子标号与时间(可以读取系统时间,或者自行设置时间标准),例如:哲学家2在第n秒获得筷子1,在第m秒获得筷子2。

实验报告要求:写明实验目的、实验设计步骤、实验结果、总结。

附录:windows线程基本操作以windows线程函数为例介绍线程基本操作,以下函数都必须包含windows.h头文。

如果想更深入地了解线程,请参见《c++编程艺术》等相关书籍。

线程创建函数:HANDLE CreateThread (LPSECURITY_ATTRIBUTES secAttr,SIZE_T stackSize,LPTHREAD_START_ROUTINE threadFunc,LPVOID param,DWORD flags,LPDWORD threadID);在此,secAttr是一个用来描述线程的安全属性的指针。

操作系统实验——动态优先级进程调度实验报告

操作系统实验——动态优先级进程调度实验报告

1.实验名称:动态优先权调度过程中就绪队列的模拟2.实验要求:采用动态优先权的进程调度算法,用C语言编程模拟调度过程中每个时间片内的就绪队列。

3.实验内容:(1)每个进程控制块PCB用结构描述,包括以下字段:*进程标识符id*进程优先数priority,并规定优先数越大的进程,其优先权越高。

*进程已占用的CPU时间cputime*进程还需占用的CPU时间alltime,当进程运行完毕时,aiitime变为0*进程的阻塞时间startblock,当进程再运行startblock个时间片后,进程将进入阻塞状态*进程被阻塞的时间blocktime,已阻塞的进程再等待blocktime个时间片后,将转换成就绪状态*进程状态state*队列指针next,将PCB排成队列。

2)调度前,系统中有五个进程,它们的初始状态如下:3)进程在就绪队列呆一个时间片,优先数增加1。

4)进程每运行一个时间片,优先数减3。

5)按下面格式显示每个时间片内就绪队列的情况:READY_QUEUE:->id1->id24.任务分析进程控制块用结构体来表示,包含它的各项属性。

建立两个队列:一个就绪队列,一个阻塞队列。

创建一个进程控制块表示当前正在运行的进程。

程序开始运行时,所有进程都在就绪队列中。

当startblock减少到0时,进程进入阻塞队列。

在阻塞队列中的进程,当blocktime减少到0时,转入就绪队列。

在就绪队列中的进程,如果优先级比当前正在执行的进程高,就可以取代当前进程获取时间片。

当前进程如果运行完毕,就绪队列中优先级最高的进程就可以成为新当前进程。

5.程序流程图#include〈iostream〉#include〈string〉usingnamespace std;#define LEN5typedefenum STATE{READYBLOCKEND}STATE;//定义进程控制块typedefstruct PCB{int id;int priority;int cputime;int alltime;int startblock;int blocktime;STATE state;}PCB;//定义队列typedefstruct queue{int si ze;PCB*data[LEN];}Queue;PCB ps[LEN];PCB*cp; //进程最大数量//进程状态//就绪//阻塞//完成//进程标识符//进程优先级//已占用的CPU时间//还需占用的CPu时间//阻塞时间//被阻塞时间//进程状态//队列中进程的数量//进程的指针//进程数组//当前正在运行的进程6.程序清单Queue rQueue,bQueue;//就绪队列和阻塞队列//就绪队列按优先级降序排序(使用了冒泡排序法)void rQueueSort(){ PCB*temp;for(int i=0;i<rQueue.size-1;i++){for(int j=0;j<rQueue.size-1-i;j++){if(rQueue.data[j]-〉priority<rQueue.data[j+1]-〉priority){temp=rQueue.data[j];rQueue.data[j]=rQueue.data[j+1];}}rQueue.dataj+1]=temp;}}//初始化void init(){//给进程赋值for(int i=0;i<LEN;i++){ps[i].id=i;ps[i].state=READY;ps[i].cputime=0;ps[i].alltime=3;ps[i].blocktime=0;ps[i].startblock=T;}ps[0].priority=9;ps[1].priority=38;ps[2].priority=30;ps[3].priority=29;ps[4].priority=0;ps[2].alltime=6;ps[4].alltime=4;ps[0].startblock=2;ps[0].blocktime=3;cp=NULL;//当前进程赋空bQueue.size=0;//阻塞队列没有进程for(int i=0;i<LEN;i++){bQueue.data[i]=NULL;rQueue.data[i]=&ps[i];}rQueue.size=5;//所有进程全部进入就绪队列rQueueSort();//对就绪队列排序}//打印void print(){cout〈〈"\nRUNNINGPROG:";if(cp!=NULL){cout〈〈cp->id;}cout<<"\nREADY_QUEUE:";for(int i=0;i<rQueue.size;i++){cout〈〈"-〉"〈〈rQueue.data[i]-〉id; }cout<<"\nBLOCK_QUEUE:";for(int i=0;i<bQueue.size;i++){cout〈〈"-〉"〈〈bQueue.data[i]-〉id; }cout〈〈"\n"<<endl;cout<<"ID\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].id<<"\t";}cout<<"\nPRI0RITY\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].priority〈〈"\t";}cout<<"\nCPUTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].cputime〈〈"\t";}cout<<"\nALLTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].alltime〈〈"\t";}cout<<"\nSTARTBLOCK\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].startblock<<"\t";}cout<<"\nBLOCKTIME\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].blocktime<<"\t";}cout<<"\nSTATE\t\t";for(int i=0;i<LEN;i++){if(ps[i].state==READY){cout<<"READY"<<"\t";}elseif(ps[i].state==BLOCK){cout<<"BLOCK"<<"\t";}elseif(ps[i].state==END){cout〈〈"END"<<"\t";}}cout〈〈endl;}//出队,返回进程指针PCB*pop(Queue*q){PCB*temp;if(q-〉size>0){temp=q-〉data[0];//取出队首进程for(int i=0;i<q-〉size-1;i++){q-〉data[i]=q-〉data[i+1];//其他进程依次向前移动}q->size__;return temp;//返回队首进程}return NULL;}//入队void push(Queue*q,PCB*p){if(q_>size<LEN){q_>data[q_〉size]=p;//将入队的进程放在队尾q_>size++;}return;}//运行进程void run(){if(rQueue.size〉0||bQueue.size〉0){if(cp==NULL){//程序一开始运行时,从就绪队列取出首进程cp=pop(&rQueue);}//当前进程没有结束,但优先级比就绪队列首进程低if(cp_〉alltime〉0&&cp_>priority<rQueue.data[0]_〉priority){}push(&r Queue,c//改变进程状态//从就绪队列取出新的当前进程//修改当前进程的状态 //将当前进程加入阻塞队列 //从就绪队列取出新的当前进程{//当前进程的startblock 为正数时//运行一次减一个时间片//减到0时,修改进程状态//每运行一个时间片//就绪队列中的进程优先级+1//每运行一个时间片//阻塞队列中的进程blocktime-1//将当前进程放入就绪队列 //就绪队列队首进程成为当前进程if (cp-〉alltime==0){cp->state =END ;cp=pop(&rQueue); }//如果当前进程运行结束//startblock 为0,标志着当前进程要进入阻塞状态if (cp —>startblock==0&&cp —>blocktime>0){cp —>state=BLOCK ; push(&bQueue,cp); cp=pop(&rQueue); }elseif (cp —>startblock>0)cp —>st artblock 一; }cp —>alltime ——;if (cp —>alltime==0){cp —>state=END ;for (int i=0;i<rQueue.size;i++){rQueue.data[i]-〉priority++; }for (int i=0;i<bQueue.size;i++){if (bQueue.data[i]-〉blocktime>0){bQueue.data[i]-〉blocktime--; }//当阻塞队列队首进程blocktime 为0时if (bQueue.size 〉0&&bQueue.data[0]-〉blocktime==0){bQueue.data[0]-〉state=READY ;//修改进程状态push(&rQueue,pop(&bQueue));//将阻塞队列首进程取出,放入就绪队列cp —〉priority-=3;//修改当前进程的优先级cp —>cputime++; //当前进程占用CPU 时间片+1 if (cp —>alltime>0){//当前进程还需运行的时间片-1}//每运行一个时间片,就绪队列排一次序rQueueSort();} }//主函数int main(){init();//初始化 print();//打印进程信息 while (1){_sleep(1000);if (rQueue.size==0&&bQueue.size==0){//当两个队列都为空时,结束程序cp-〉state=END ;break ; }run();//运行进程 print();//打印进程信息 }return 0; }7.实验过程记录m 匚:\WINDQWS\system32\cmd.exe程序开始执行,当前进程是优先级最高的1号进程,1号进程的优先级减3、cputime++、执行几次之后,1号进程执行完毕而且优先级也不是最高的了,所以优先级为33的2号进程成为当前进程,开始执行。

操作系统进程调度实验报告

操作系统进程调度实验报告

操作系统进程调度实验报告操作系统进程调度实验报告引言:操作系统是计算机系统中的核心软件之一,负责管理计算机的硬件资源并提供用户与计算机硬件之间的接口。

进程调度作为操作系统的重要功能之一,负责决定哪个进程可以获得处理器的使用权,以及进程如何在处理器上运行。

本实验旨在通过设计和实现一个简单的进程调度算法,加深对操作系统进程调度原理的理解。

一、实验目的本实验的主要目的是通过编写代码模拟操作系统的进程调度过程,掌握进程调度算法的实现方法,深入理解不同调度算法的特点和适用场景。

二、实验环境本实验使用C语言进行编程实现,可在Linux或Windows系统下进行。

三、实验内容1. 进程调度算法的选择在本实验中,我们选择了最简单的先来先服务(FCFS)调度算法作为实现对象。

FCFS算法按照进程到达的先后顺序进行调度,即先到先服务。

这种调度算法的优点是简单易实现,但缺点是无法适应不同进程的执行时间差异,可能导致长作业效应。

2. 进程调度的数据结构在实现进程调度算法时,我们需要定义进程的数据结构。

一个进程通常包含进程ID、到达时间、执行时间等信息。

我们可以使用结构体来表示一个进程,例如:```struct Process {int pid; // 进程IDint arrival_time; // 到达时间int burst_time; // 执行时间};```3. 进程调度算法的实现在FCFS调度算法中,我们需要按照进程到达的先后顺序进行调度。

具体实现时,可以使用一个队列来保存待调度的进程,并按照到达时间的先后顺序将进程入队。

然后,按照队列中的顺序依次执行进程,直到所有进程执行完毕。

4. 实验结果分析通过实现FCFS调度算法,我们可以观察到进程调度的过程和结果。

可以通过输出每个进程的执行顺序、等待时间和周转时间等指标来分析调度算法的效果。

通过比较不同调度算法的指标,可以得出不同算法的优缺点。

四、实验步骤1. 定义进程的数据结构,包括进程ID、到达时间和执行时间等信息。

操作系统原理实训课程学习总结进程调度算法的实验验证与优化

操作系统原理实训课程学习总结进程调度算法的实验验证与优化

操作系统原理实训课程学习总结进程调度算法的实验验证与优化在操作系统原理实训课程中,我深入学习了进程调度算法,并进行了实验验证与优化。

本文将对我在这门课程中的学习经历进行总结,并重点介绍我在进程调度算法实验方面的实践与优化。

一、学习经历总结在操作系统原理实训课程中,我通过理论学习和实践操作,全面了解了操作系统的基本概念和原理。

我通过学习教材、参与课堂讨论和实验操作,逐渐掌握了进程调度算法的相关知识和应用。

通过对课程的学习,我清楚地认识到进程调度在操作系统中的重要性。

合理的进程调度算法可以提高系统的运行效率和资源利用率,同时保证各个进程的公平性和优先级。

在学习的过程中,我学会了不同的进程调度算法,并了解了它们的特点和适用场景。

二、实验验证与优化为了深入理解和掌握进程调度算法,我进行了一系列的实验验证和优化。

以下是我进行的几个主要实验:1. 实验一:先来先服务(FCFS)调度算法通过模拟多个进程同时到达一个处理器,我验证了先来先服务调度算法的运行情况。

根据实验结果,我发现在进程的运行时间差异较大时,先来先服务调度算法可能会导致平均等待时间较长的问题。

为了优化这一问题,我尝试了引入响应比和时间片轮转等策略来改善进程调度效果。

2. 实验二:短作业优先(SJF)调度算法通过模拟多个进程以不同的作业时间到达处理器,我验证了短作业优先调度算法的运行情况。

实验结果表明,在作业时间相差较大时,短作业优先调度算法能够有效减少平均等待时间。

但是,当出现长作业阻塞短作业的情况时,短作业优先调度算法可能产生饥饿现象。

因此,在优化中,我考虑了引入抢占式调度策略以降低长作业优先级,解决饥饿问题。

3. 实验三:优先级调度算法通过设置不同优先级的进程,我验证了优先级调度算法的运行情况。

实验结果表明,优先级调度算法能够有效地保证高优先级进程的运行权。

但是,在进程优先级设置不当或者优先级反转等情况下,该算法可能产生不公平性问题。

为了解决这个问题,我优化了进程的优先级计算方法,采用动态调整的方式来提高调度算法的公平性。

操作系统进程调度实验

操作系统进程调度实验

操作系统实验报告实验一:进程调度实验学号 2015141443031姓名专业通信工程日期 2016.12.12 、一、实验目的用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解。

二、进程调度1、进程的状态2、进程的结构——PCB进程都是由一系列操作(动作)所组成,通过这些操作来完成其任务。

因此,不同的进程,其内部操作也不同。

在操作系统中,描述一个进程除了所需要的程序外,最主要的是需要一个与动态过程想联系的数据结构,该数据结构用来描述进程的外部特性(名字、状态等)以及与其他进程的(通信关系)等信息,该数据结构称为进程控制块(PCB、Process Control Block)。

进程控制块PCB与进程一一对应,PCB中记录了系统所需的全部信息、用于描述进程状况所需的全部信息和控制运行所需的全部信息。

因此,系统可以通过进程的PCB来对进程进行管理。

三、试验内容设计一个有N个进程共行的进程调度程序。

进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。

每个进程有一个进程控制块(PCB)表示。

进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。

进程的优先数以及需要的运行时间可以实现人为的指定(也可以由随机数产生)。

进程的到达时间为进程输入的时间。

进程的运行时间以时间片为单位进行计算。

每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。

就绪进程获得CPU后都只能运行一个时间片。

用已占用CPU时间加一来表示。

如果运行一个时间片后,进程的已占用CPU 时间已达到所需要的运行时间,则撤销该进程,如果运行一个时间片后进程的已占用CPU 时间还未达到所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减一(即降低一级),然后把它插入就绪队列等待CPU。

计算机操作系统实验---进程调度

计算机操作系统实验---进程调度

操作系统实验报告--进程调度计科02-8 王长青05年4月17日计算机操作系统实验——进程调度一.实验目的进程调度是处理机管理的核心内容。

通过本实验可以加深理解有关进程控制块、进程队列的概念,并体会和了解优先数调度算法的具体实施办法。

二.程序功能本程序使用VC++编译调试,用于实现进程优先数调度的模拟。

主要包含三个模块:1、主界面:用于显示进程调度的过程。

2、数据录入模块:用于获取进程的初始值,其中有三种获取方式,手动输入方式、随即生成方式和从文件中读去数据的方式。

当用户在主窗口中点击“开始”菜单项时即可打开数据录入对话框,用户通过这三种方式之一均可完成数据的录入。

3、进程控制模块:主要实现创建新的进程,就绪队列的管理,完成队列的管理,进程的调度。

三.实验原理(1)本程序采用优先数调度算法对进程进行调度,每个进程可有三个状态,即:就绪状态,运行状态,完成状态。

并假设初始状态为就绪状态。

这三种状态的转换情况如右图:(2)为了便于处理,程序中的某进程运行时间以时间片为单位计算。

各进程的优先数以及进程需运行的时间片数的初始值均由用户给定(通过数据录入模块完成)。

(3)程序通过设置一个定时器来实现时间片的轮转,时间片的大小是1秒,在定时器消息的响应函数中从用户录入的数据中读取一个创建进程,将其加入到就绪队列中,然后进行调度和执行。

在调度函数中,对于遇到优先数一致的情况,采用FIFO策略解决。

(4)在优先数算法中,进程每执行一次,优先数减3,进程还需要运行的时间数减1。

四.详细设计(1)设计进程控制块PCB结构:struct PCB{ int pid; //进程号int pri; //进程优先数int time; //进程所需运行时间int status; // 进程状态 0就绪,1 执行,-1完成};(2)将进程的各种操作封装在类CProMoni中,该类的定义如下:class CProMoni{public:CProMoni();virtual ~CProMoni();void InsertRQ(PCB* p); //将p所指的进程插入到就绪队列中void InsertFQ(PCB* p); //将p所指的进程插入到完成队列中void ProSchedule(); //进程调度函数void ProRun(); //运行函数void Display(CDC* pDC); //以表格形式输出运行过程bool GetFinishFlag();bool OpenLogFile(); //打开日志文件void CloseLogFile(); //关闭日志文件bool WriteLogToFile(); //向日志文件中写入数据private:PCB *m_pRunning; //指向当前运行的进程CPtrList m_readyList; //就绪队列CPtrList m_finishList; //完成队列bool m_finish; //完成标志CString m_LogFileName; //日志文件名CStdioFile m_LogFile; //日志文件public:int m_clock; //时钟序列};(3)主要成员函数的实现:void CProMoni::InsertRQ(PCB* p){ //将p插入到就绪队列中POSITION pre,pos=m_readyList.GetHeadPosition();PCB *q;while(pos!=NULL){pre=pos;q=(PCB*)m_readyList.GetNext(pos);if(q->pri < p->pri){m_readyList.InsertBefore(pre,p);return;}}if(pos==NULL){m_readyList.AddTail(p);}}void CProMoni::ProSchedule(){//进程调度PCB *p;if(m_pRunning==NULL){if(m_readyList.IsEmpty()){m_finish=true;return;}else{p=(PCB*)m_readyList.RemoveHead();m_pRunning=p;}}else{if(!m_readyList.IsEmpty()){p=(PCB*)m_readyList.GetHead();//m_readyList将头节点与当前PCB的权值比较if(p->pri > m_pRunning->pri ){PCB *q=m_pRunning;m_pRunning=(PCB*)m_readyList.RemoveHead();m_pRunning->status=1;q->status=0;InsertRQ(q);}}}}void CProMoni::ProRun(){//运行进程if(!m_finish){if(m_pRunning==NULL){ AfxMessageBox("当前运行的进程不存在!");return;}m_pRunning->pri-=3;m_pRunning->time-=1;{ m_pRunning->time=0;PCB*p=m_pRunning;p->status=-1;InsertFQ(p);m_pRunning=NULL;}}}(4)试图类的主要成员函数:PCB* CProcessView::CreatePCB(){//创建PCBPCB* p=new PCB;p->pid=n+1;p->pri=m_pris[n];p->time=m_times[n];p->status=0;n++;return p;}#include"pritimedlg.h"void CProcessView::OnStart(){ CPriTimeDlg dlg; //定义数据录入对话框dlg.DoModal();if(dlg.m_ok){ m_proTotal=dlg.m_proNum;for(int i=0;i<m_proTotal;i++){ m_pris[i]=dlg.m_pris[i];m_times[i]=dlg.m_times[i];}m_proMoni.OpenLogFile(); //打开日志文件PCB* p=CreatePCB(); //创建新进程m_proMoni.InsertRQ(p); //将新进程插入到就绪队列中m_proMoni.WriteLogToFile(); //写日志文件m_proMoni.ProSchedule(); //进程调度m_start=true; //设置开始标志Invalidate(); //刷新视图m_killTimer=false;SetTimer(1,1000,NULL);//设置定时器}}void CProcessView::OnTimer(UINT nIDEvent){ m_proMoni.m_clock++;m_proMoni.WriteLogToFile();//写日志m_proMoni.ProRun(); //运行进程if(n<m_proTotal){ PCB *p=CreatePCB();//创建新进程m_proMoni.InsertRQ(p);}m_proMoni.ProSchedule();Invalidate();if(m_proMoni.GetFinishFlag()){//若已完成则删除定时器KillTimer(1);m_killTimer=true;AfxMessageBox("演示完毕");}CScrollView::OnTimer(nIDEvent);}五.运行结果(1)数据录入界面:(2)进程调度过程的结果:六、实验总结通过本实验使我对进程的相关概念及进程的优先数调度算法有了更深的理解,使自己在程序设计及编制方面也有了一定的提高。

操作系统实验报告 实验一 进程管理

操作系统实验报告  实验一  进程管理

实验一进程管理一、目的进程调度是处理机管理的核心内容..本实验要求编写和调试一个简单的进程调度程序..通过本实验加深理解有关进程控制块、进程队列的概念;并体会和了解进程调度算法的具体实施办法..二、实验内容及要求1、设计进程控制块PCB的结构PCB结构通常包括以下信息:进程名进程ID、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等..可根据实验的不同;PCB结构的内容可以作适当的增删..为了便于处理;程序中的某进程运行时间以时间片为单位计算..各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定..2、系统资源r1…r w;共有w类;每类数目为r1…r w..随机产生n进程P i id;s j;k;t;0<=i<=n;0<=j<=m;0<=k<=dt为总运行时间;在运行过程中;会随机申请新的资源..3、每个进程可有三个状态即就绪状态W、运行状态R、等待或阻塞状态B;并假设初始状态为就绪状态..建立进程就绪队列..4、编制进程调度算法:时间片轮转调度算法本程序用该算法对n个进程进行调度;进程每执行一次;CPU时间片数加1;进程还需要的时间片数减1..在调度算法中;采用固定时间片即:每执行一次进程;该进程的执行时间片数为已执行了1个单位;这时;CPU时间片数加1;进程还需要的时间片数减1;并排列到就绪队列的尾上..三、实验环境操作系统环境:Windows系统..编程语言:C..四、实验思路和设计1、程序流程图2、主要程序代码//PCB结构体struct pcb{public int id; //进程IDpublic int ra; //所需资源A的数量public int rb; //所需资源B的数量public int rc; //所需资源C的数量public int ntime; //所需的时间片个数public int rtime; //已经运行的时间片个数public char state; //进程状态;W等待、R运行、B阻塞//public int next;}ArrayList hready = new ArrayList;ArrayList hblock = new ArrayList;Random random = new Random;//ArrayList p = new ArrayList;int m; n; r; a;a1; b;b1; c;c1; h = 0; i = 1; time1Inteval;//m为要模拟的进程个数;n为初始化进程个数//r为可随机产生的进程数r=m-n//a;b;c分别为A;B;C三类资源的总量//i为进城计数;i=1…n//h为运行的时间片次数;time1Inteval为时间片大小毫秒//对进程进行初始化;建立就绪数组、阻塞数组..public void input//对进程进行初始化;建立就绪队列、阻塞队列{m = int.ParsetextBox4.Text;n = int.ParsetextBox5.Text;a = int.ParsetextBox6.Text;b = int.ParsetextBox7.Text;c = int.ParsetextBox8.Text;a1 = a;b1 = b;c1 = c;r = m - n;time1Inteval = int.ParsetextBox9.Text;timer1.Interval = time1Inteval;for i = 1; i <= n; i++{pcb jincheng = new pcb;jincheng.id = i;jincheng.ra = random.Nexta + 1;jincheng.rb = random.Nextb + 1;jincheng.rc = random.Nextc + 1;jincheng.ntime = random.Next1; 5;listBox1.Items.Add"产生进程ID:" + jincheng.id;listBox1.Items.Add"所需A资源数目:" + jincheng.ra;listBox1.Items.Add"所需B资源数目:" + jincheng.rb;listBox1.Items.Add"所需C资源数目:" + jincheng.rc;listBox1.Items.Add"所需时间片数:" + jincheng.ntime;if a - jincheng.ra >= 0 && b - jincheng.rb >= 0 && c - jincheng.rc >= 0{a = a - jincheng.ra;b = b - jincheng.rb;c = c - jincheng.rc;jincheng.state = 'W';hready.Addjincheng;//加入就绪队列}else{jincheng.state = 'B';hblock.Addjincheng;//加入阻塞队列}listBox1.Items.Add"当前进程状态:" + jincheng.state;}}//从数组起始地址开始输出该数组的内容public void dispArrayList list{ArrayList list1 = new ArrayList;list1 = list;if list1.Count > 0{for int j = 0; j < list1.Count; j++{pcb p = pcblist1j;listBox1.Items.Add" " + p.id.ToString + " " + p.state.ToString + " " + p.ra.ToString + " " + p.rb.ToString + " " + p.rc.ToString+" " + p.ntime.ToString + " " + p.rtime.ToString + " \r\n";}}else{listBox1.Items.Add"\r\n\t 该队列中没有进程\r\n";}}//输出就绪数组和阻塞数组的信息public void outputall{listBox1.Items.Add"当前就绪队列的信息";listBox1.Items.Add"进程ID 进程状态A资源数B资源数C资源数所需时间片已运行时间片";disphready;listBox1.Items.Add"当前就阻塞列的信息";listBox1.Items.Add"进程ID 进程状态A资源数B资源数C资源所需时间片已运行时间片";disphblock;}//运行就绪数组的头进程;运行一个时间片;轮转一个时间片;时间片轮转调度算法public void running{ArrayList hready1 = new ArrayList;hready1 = hready;pcb p1 = new pcb;p1=pcbhready10;p1.state='R';p1.rtime= p1.rtime + 1;h=h+1;listBox1.Items.Add"\r\n~~~~~~~当前正在运行进程ID是:" +p1.id + "~~~~~~~~\r\n";listBox1.Items.Add"\r\n进程ID 进程状态A资源数B资源数C资源数所需时间片已运行时间片\r\n";listBox1.Items.Addp1.id + " " +p1.state+ " " + p1.ra + " " + p1.rb + " " + p1.rc + " " + p1.ntime + " " + p1.rtime;if p1.ntime==p1.rtime{listBox1.Items.Addp1.id.ToString+"的进程已经完成\r\n";a = a + p1.ra;b = b + p1.rb;c = c + p1.rc;hready.RemoveAt0;}else{p1.state='W';hready1.Addp1;hready.RemoveAt0;}}//检测当前资源数目是否满足阻塞数组里进程的需求public void testblock{ArrayList hblock1 = new ArrayList;hblock1 = hblock;for int m = 0; m < hblock1.Count; m++{p1 = pcbhblock1m;if a - p1.ra >= 0 && b - p1.rb >= 0 && c - p1.rc >= 0{p1.state='W';hready.Addp1;a = a - p1.ra;b = b - p1.rb;c = c - p1.rc;listBox1.Items.Add"ID号为:"+p1.id + "的进程由阻塞队列转入就绪队列~~\r\n";hblock.RemoveAtm;m--;}}}//检测是否有新的进程产生;随机产生新进程public void testnew{int t;if r>0//r为随机产生的进程数目{t = random.Next9 + 1;if t <= 7{listBox1.Items.Add"\r\n有新的进程申请加入:~~";pcb jincheng = new pcb;jincheng.id = i++;jincheng.ra = random.Nexta + 1;jincheng.rb = random.Nextb + 1;jincheng.rc = random.Nextc + 1;jincheng.ntime = random.Next1; 5;jincheng.rtime = 0;listBox1.Items.Add"产生进程ID:" + jincheng.id;listBox1.Items.Add"所需A资源数目:" + jincheng.ra;listBox1.Items.Add"所需B资源数目:" + jincheng.rb;listBox1.Items.Add"所需C资源数目:" + jincheng.rc;listBox1.Items.Add"所需时间片数:" + jincheng.ntime;if a - jincheng.ra >= 0 && b - jincheng.rb >= 0 && c - jincheng.rc >= 0{a = a - jincheng.ra;b = b - jincheng.rb;c = c - jincheng.rc;jincheng.state = 'W';listBox1.Items.Add"进程状态为:" + jincheng.state;hready.Addjincheng;//加入就绪队列listBox1.Items.Add"资源满足新进程请求;该进程进入就绪队列~~\r\n";else{jincheng.state = 'B';hblock.Addjincheng;//加入阻塞队列listBox1.Items.Add"进程状态为:" + jincheng.state;listBox1.Items.Add"资源不满足新进程请求;该进程进入阻塞队列~~\r\n";}}}r = r - 1;}//系统三类资源变化情况的显示public void rescore//系统三类资源变化情况的显示{if a > a1 { textBox1.Text = a1.ToString; }if a < 0 { textBox1.Text = "0"; }if a >= 0 && a < a1 { textBox1.Text = a.ToString; }if b > b1 { textBox2.Text = b1.ToString; }if b < 0 { textBox2.Text = "0"; }if b >= 0 && b <= b1 { textBox2.Text = b.ToString; }if c > c1 { textBox3.Text = c1.ToString; }if c < 0 { textBox3.Text = "0"; }if c >= 0 && c <= c1 { textBox3.Text = c.ToString; }}//时间片轮转调度算法先来先服务FCFS算法public void runFcfs{if hready.Count>0{outputall;running;testblock;testnew;rescore;}else{timer1.Enabled = false;textBox1.Text = a1.ToString;textBox2.Text = b1.ToString;textBox3.Text = c1.ToString;listBox1.Items.Add"\r\n<<<<<<<<所有进程都已经运行结束>>>>>>>~\r\n";}//计时器触发时间片轮转调度算法private void timer1_Tickobject sender; EventArgs erunFcfs;}//开始模拟按钮单击执行函数private void button1_Clickobject sender; EventArgs e {runmain;button1.Enabled = false;textBox1.Enabled = false;textBox2.Enabled = false;textBox3.Enabled = false;textBox4.Enabled = false;textBox5.Enabled = false;textBox6.Enabled = false;textBox7.Enabled = false;textBox8.Enabled = false;textBox9.Enabled = false;}//清除屏幕按钮单击执行函数private void button2_Clickobject sender; EventArgs e {textBox1.Text = "";textBox2.Text = "";textBox3.Text = "";textBox4.Text = "";textBox5.Text = "";textBox6.Text = "";textBox7.Text = "";textBox8.Text = "";textBox9.Text = "";listBox1.Items.Clear;textBox4.Enabled = true;textBox5.Enabled = true;textBox6.Enabled = true;textBox7.Enabled = true;textBox8.Enabled = true;textBox9.Enabled = true;button1.Enabled = true;}//运行的主函数public void runmain{input;imer1.Enabled = true;3、运行界面和运行结果界面中;可以任意设定需要模拟的进程总数如5;初始化进程个数如3;还有A、B、C三类资源的总数如10、10、10..为了方便显示;还可以设定时间片的长度如500毫秒..除此之外;在运行过程中;所有的资源都是随机生成的;并且其中新进程的产生也是随机的;但是产生的进程总数不会多于开始设定的模拟的进程总数;以防止不断产生新进程;程序不断运行..在显示窗口的上方;还会实时显示资源的变化情况;方便对运行的观察..当运行结束后;可以通过工具栏中的显示选项中的保存结果按钮;将结果保存成txt文件格式;方便运行后的结果分析..五、心得体会本次实验;我的任务是设计一个允许n个进程并发运行的进程管理模拟系统..该系统包括有简单的进程控制、同步与通讯机构;系统在运行过程中能显示各进程的状态及有关参数的变化情况;从而观察诸进程的运行过程及系统的管理过程;我是用C写的;在我的电脑能够运行通过;虽不能尽善尽美;但也基本能实现老师的要求..两个星期的实验;虽然时间有点短;但我也收获不少;这次实验;加深了我对进程概念及进程管理的理解;比较熟悉进程管理中主要数据结构的设计及进程调度算法、进程控制机构、同步机构及通讯机构的实施..也让我认识到自己的不足;操作系统的有些知识;我知道的还不多;没有掌握好;还需要多多学学;不断提升自己的能力..实验中;我们小组分工合作;共同学习;虽然在实验中遇到了一些问题;但在老师和同学的细心指导和热心帮助下解决了..同时;了解到团队精神的重要性;也为以后的学习和工作打下了坚实的基础;同时积累了宝贵的经验..。

实验报告操作系统实验一进程调度.doc

实验报告操作系统实验一进程调度.doc

计算机电子信息工程学院实验报告成绩________ 课程名称操作系统指导教师杨秀华实验日期 2011年9月15、22、29,10月12院(系)计算机学院专业班级09计算机应用实验地点 B-4009学生姓名学号实验项目名称实验一模拟设计进程调度一、实验目的和要求用C或C++语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解.二、实验原理进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。

每个进程有一个进程控制块( PCB)表示。

进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。

进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。

进程的到达时间为进程输入的时间。

进程的运行时间以时间片为单位进行计算。

每个进程的状态可以是就绪 W(Wait)、运行R(Run)状态之一。

就绪进程获得 CPU后都只能运行一个时间片。

用已占用CPU时间加1来表示。

如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。

每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的 PCB,以便进行检查。

重复以上过程,直到所要进程都完成为止。

三、主要仪器设备或材料PC机,C++环境四、实验方法与步骤(可加附页)1、主要数据结构:struct pcb { /* 定义进程控制块PCB */char name[10]; //进程名字char state; //进程状态int super; //进程的优先级int ntime; //进程需要运行的时间int rtime; //进程已经运行的时间struct pcb* link; }2、调度算法的流程图如上图 :五、实验数据记录、处理及结果分析六、讨论、心得计算机电子信息工程学院实验报告(附页)程序参考代码:参考代码:#include "stdio.h"#include <stdlib.h>#include <conio.h>#define getpch(type) (type*)malloc(sizeof(type))#define NULL 0struct pcb{ /* 定义进程控制块PCB */char name[10];char state;int super;int ntime;int rtime;struct pcb* link;}*ready=NULL,*p;typedef struct pcb PCB;void sort() /* 建立对进程进行优先级排列函数*/{PCB *first, *second;int insert=0;if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/{p->link=ready;ready=p;}else /* 进程比较优先级,插入适当的位置中*/{first=ready;second=first->link;while(second!=NULL){if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/{ /*插入到当前进程前面*/p->link=second;first->link=p;second=NULL;insert=1;}else /* 插入进程优先数最低,则插入到队尾*/{first=first->link;second=second->link;}}if(insert==0) first->link=p;}}void input() /* 建立进程控制块函数*/{int i,num;printf("\n 请输入进程号?");scanf("%d",&num);for(i=0;i<num;i++){printf("\n 进程号No.%d:\n",i);p=getpch(PCB);printf("\n 输入进程名:");scanf("%s",p->name);printf("\n 输入进程优先数:");scanf("%d",&p->super);printf("\n 输入进程运行时间:");scanf("%d",&p->ntime);printf("\n");p->rtime=0;p->state='w';p->link=NULL;sort(); /* 调用sort函数*/}}int space(){int l=0; PCB* pr=ready;while(pr!=NULL){l++;pr=pr->link;}return(l);}Void disp(PCB * pr) /*建立进程显示函数,用于显示当前进程*/{printf("\n qname \t state \t super \t ndtime \t runtime \n");printf("|%s\t",pr->name);printf("|%c\t",pr->state);printf("|%d\t",pr->super);printf("|%d\t",pr->ntime);printf("|%d\t",pr->rtime);printf("\n");}Void check() /* 建立进程查看函数 */{PCB* pr;printf("\n **** 当前正在运行的进程是:%s",p->name); /*显示当前运行进程*/ disp(p);pr=ready;printf("\n ****当前就绪队列状态为:\n"); /*显示就绪队列状态*/while(pr!=NULL){disp(pr);pr=pr->link;}}Void destroy() /*建立进程撤消函数(进程运行结束,撤消进程)*/{3 / 4printf("\n 进程 [%s] 已完成.\n",p->name);free(p);}Void running() /* 建立进程就绪函数(进程运行时间到,置就绪状态*/ {(p->rtime)++;if(p->rtime==p->ntime)destroy(); /* 调用destroy函数*/else{(p->super)--;p->state='w';sort(); /*调用sort函数*/}}Void main() /*主函数*/{int len,h=0;char ch;input();len=space();while((len!=0)&&(ready!=NULL)){ch=getchar();h++;printf("\n The execute number:%d \n",h);p=ready;ready=p->link;p->link=NULL;p->state='R';check();running();printf("\n 按任一键继续......");ch=getchar();}printf("\n\n 进程已经完成.\n");ch=getchar();}知识改变命运。

操作系统进程调度实验报告

操作系统进程调度实验报告

实验一进程调度实验专业:XXXXX学号:XXXXX姓名:XXX实验日期:20XX年XX月XX日一、实验目的通过对进程调度算法的模拟加深对进程概念和进程调度算法的理解。

二、实验要求编写程序实现对5个进程的调度模拟,要求至少采用两种不同的调度算法分别进行模拟调度。

三、实验方法内容1.算法设计思路将每个进程抽象成一个控制块PCB, PCB用一个结构体描述。

构建一个进程调度类。

将进程调度的各种算法分装在一个类中。

类中存在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。

还有一个PCB实例。

主要保存正在运行的进程。

类中其他方法都是围绕这三个容器可以这个运行中的PCB展开。

主要用到的技术是STL中的vector以维护和保存进程容器、就绪容器、完成容器。

当程序启动时,用户可以选择不同的调度算法。

然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。

进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。

判断进程容器中是否有新的进程可以加入就绪队列。

2.算法流程图主程序的框架:();//先来先服务();//最短进程优先调度//简单时间片轮转//最高优先数优先.m_WaitQueue .empty ()||.m_ProcessQueue .empt ()();//输入进程信息();();进程调度过程:;3.算法中用到的数据结构struct fcfs{ 等待新的进程到来void PCBDisplay();则为'w';voidProcessQueueProcess();ame,&p[i].arrivetime,&p[i].servicetime);}}void Print(fcfs *p,float arrivetime,float servicetime,floatstarttime,float finishtime,float zztime,float dqzztime,int N){int k;printf("\n\n调用先来先服务算法以后进程运行的顺序是: ");printf("%s",p[0].name);for(k=1;k<N;k++){printf("-->%s",p[k].name);}cout<<endl;printf("\n 具体进程调度信息:\n");printf("\t进程名到达时间服务时间开始时间结束时间周转时间带权周转时间\n");for(k=0;k<=N-1;k++){printf("\t%s\t%\t %\t %\t %\t %\t %\n",p[k].name,p[k].a rrivetime,p[k].servicetime,p[k].starttime,p[k].finishtime,p[k].zztime,p[k]. dqzztime);}getchar(); rrivetime<p[j].arrivetime){fcfs temp;temp=p[i];p[i]=p[j];p[j]=temp;}}void deal(fcfs *p, float arrivetime,float servicetime,float starttime,float finishtime,float &zztime,float &dqzztime,int N) tarttime=p[k].arrivetime;p[k].finishtime=p[k].arrivetime+p[k].servicetime;}else{p[k].starttime=p[k-1].finishtime;p[k].finishtime=p[k-1].finishtime+p[k].servicetime;} }for(k=0;k<=N-1;k++){p[k].zztime=p[k].finishtime-p[k].arrivetime;p[k].dqzztime=p[k].zztime/p[k].servicetime;}}void FCFS(fcfs *p,int N){floatarrivetime=0,servicetime=0,starttime=0,finishtime=0,zztime=0,dqzz time=0;sort(p,N);deal(p,arrivetime,servicetime,starttime,finishtime,zztime,dqzztim e,N);Print(p,arrivetime,servicetime,starttime,finishtime,zztime,dqzzti me,N);getchar();} ame,&p[i].arrivetime,&p[i].servicetime);}}void Print(sjf *p,float arrivetime,float servicetime,float starttime,float finishtime,int N1)ame);for(k=1;k<N1;k++){printf("-->%s",p[k].name);}cout<<endl;printf("\n给个进程具体调度信息如下:\n");printf("\n\t进程名\t到达时间\t运行时间\t开始时间\t完成时间\n");for(k=0;k<=N1-1;k++){printf("\t%s\t %\t\t %\t\t %\t\t %\t\n",p[k].name,p[k].arrivetime, p[k].servicetime,p[k].starttime,p[k].finishtime);}}void sort(sjf *p,int N1)rrivetime<p[j].arrivetime){sjf temp;temp=p[i];p[i]=p[j];p[j]=temp;}}void deal(sjf *p, float arrivetime,float servicetime,float starttime,float finishtime,int N1)tarttime=p[k].arrivetime;p[k].finishtime=p[k].arrivetime+float(p[k].servicetime)/60;} else{p[k].starttime=p[k-1].finishtime;p[k].finishtime=p[k-1].finishtime+float(p[k].servicetime)/60;} }}void sjff(sjf *p,int N1){floatarrivetime=0,servicetime=0,starttime=0,finishtime=0;for(int m=0;m<N1-1;m++){if(m==0)p[m].finishtime=p[m].arrivetime+float(p[m].servicetime)/60;elsep[m].finishtime=p[m-1].finishtime+float(p[m].servicetime)/60;int i=0;for(int n=m+1;n<=N1-1;n++){if(p[n].arrivetime<=p[m].finishtime) i++;}float min=p[m+1].servicetime;int next=m+1;for(int k=m+1;k<m+i;k++){if(p[k+1].servicetime<min){min=p[k+1].servicetime;next=k+1;}}sjf temp;temp=p[m+1];p[m+1]=p[next];p[next]=temp;}deal(p,arrivetime,servicetime,starttime,finishtime,N1);Print(p,arrivetime,servicetime,starttime,finishtime,N1);getchar();}来先服务调度算法 "<<"\t\t"<<"||"<<endl;cout<<"\t"<<"|| ||"<<endl ;cout<<"\t"<<"||"<<"\t\t 2.最短进程优先调度算法"<<"\t\t"<<"||"<<endl;cout<<"\t"<<"|| ||"<<endl ;cout<<"\t"<<"|| <<<<<<<<<<<<<<<<<<<<<<<<<您>>>>>>>>>>>>>>>>>>>>>>>>> ||"<<endl ;cout<<endl;cout<<endl;cout<<"\t\t 请输入您的选择(1/2):";cse1=getchar();if(cse1<'1'||cse1>'2')cout<<"你的输入有错!"<<endl;elsebreak;}}int main(int argc, char *argv[]){while(1){switch(menu()){case '1':int N;cout<<endl;cout<<endl;printf("\t\t<<---!!!@@@先来先服务调度算法@@@!!!--->>\n");cout<<endl;printf("输入进程数目:");scanf("%d",&N);input(a,N);FCFS(a,N);case '2':int N1;cout<<endl;cout<<endl;printf("\t\t<<---!!!@@@最短进程优先调度算法@@@!!!--->>\n");cout<<endl;printf("输入进程数目: ");scanf("%d",&N1);input(a1,N1);sjf *b=a1;sjf *c=a1;sjff(b,N1);getchar();}}system("PAUSE");return EXIT_SUCCESS;}五、实验结果1.执行结果2.结果分析先来先服务调度算法就是根据进程达到的时间为依据,哪一个进程先来那么该进程就会先执行;最短进程优先调度算法则是以每个进程执行所需时间长短为依据,某一个进程执行所需花的时间要短些那么该进程就先执行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档