中考数学解答重难专题专题四 第14题几何图形综合题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题四 第14题几何图形综合题

(2016~2019.14)

1. 如图,在矩形ABCD 中,AB =5,AD =3,P 为矩形ABCD 内一动点,且满足S △P AB =13

S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为________.

第1题图

2. 如图,边长为23的菱形ABCD 中,AE ⊥BC 于点E ,且点E 是BC 的中点,连接BD ,交AE 于点F ,点M 是AD 上的一个动点,连接MF 、MC ,则MF +MC 的最小值为________.

第2题图

3. 如图,正方形ABCD 的边长是4,点M 是AB 的中点,CN =14

CD ,P 是直线AC 上的一点,则|PM -P N |的最大值为________.

第3题图

4.如图,菱形ABCD 的边长为3,∠BAD =60°,点E 、F 在对角线AC 上(点E 在点F 的左侧),且EF =1,则DE +BF 的最小值为________.

第4题图

5. (2019西工大附中模拟)如图,已知正方形ABCD 的边长为8,点E 是正方形内部一点,连接BE 、CE ,且∠ABE =∠BCE ,点P 是AB 边上一动点,连接PD 、P E ,则PD +PE 的最小值为________.

第5题图

6. 如图,已知四边形ABCD ,连接AC 、B D.若AB =AD =BD ,AC =27,∠BCD =30°,则BC 2+CD 2=________.

第6题图

7. (2018陕师大附中模拟)如图,已知正方形ABCD 的边长为4,⊙B 的半径为2,点P 是⊙B 上的一个

动点,则PD -12

PC 的最大值为________.

第7题图

8. 如图,点E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =10 cm 2,S △BQC =20 cm 2,则阴影部分的面积为________cm 2.

第8题图

8. 如图,菱形ABCD 的边长为4,∠BAD =60°,点E 是AD 上一动点(不与A 、D 重合),点F 是CD 上一动点,且AE +CF =4,则△DEF 面积的最大值为________.

第9题图

10. 如图,O 为矩形ABCD 的对称中心,M 为BC 边上任一点,ON ⊥OM 且与CD 边交于点N .若AB =6,AD =4,则四边形OMCN 面积的最大值为________.

第10题图

11.如图,在正方形ABCD中,M、N分别是边BC、CD上的点,∠MAN=45°,△MCN的周长为8,则正方形ABCD的面积为________.

第11题图

12.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是AC的中点,将CD绕点C逆时针旋转,在旋转过程中点D的对应点为点E,连接AE,BE,则△AEB面积的最小值是________.

第12题图

13.如图,点P为边长为2的正方形ABCD外一点,且P A⊥PB,连接AC、P C,则△P AC面积的最大值为________.

第13题图

14.如图,已知在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=30°,AC=42,则四边形ABCD 面积的最小值是________.

第14题图

参考答案

1.41【解析】设△ABP中AB边上的高是h.∵S△P AB=1

3S矩形ABCD,∴

1

2AB·h=

1

3AB·AD,∴h=

2

3AD=2,

∴动点P在与AB平行且与AB的距离是2的直线l上,如解图,作A关于直线l的对称点E,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=AB2+AE2=52+42=41,即P A+PB的最小值为41.

第1题解图

2.27【解析】如解图,作点F关于AD的对称点N,连接CN,交AD于点M,则CN的长度即为MF+MC的最小值.∵AE⊥BC,点E是BC的中点,四边形ABCD为菱形,∴CE=BE=3,∴cos∠ABC

=BE

AB=

1

2,∴∠ABC=60°,∴AE=3,∠EBF=30°,∴EF=1,∴AF=2=AN,∴EN=5,在Rt△CEN中,

CN=CE2+EN2=27.

第2题解图

3.13【解析】如解图,作点M关于直线AC的对称点M′,连接M′N,并延长与直线AC交于点P′,连接P′M,任意在直线AC上取一点P,连接PM,PN,PM′,有PM=PM′,则PM-PN=PM′-PN≤P′M′-P′N=M′N,故M′N为|PM-PN|的最大值.在正方形ABCD中,∴∠BAD=∠D=90°,∵AB=AD=DC=

BC=4,∴△MAM′为等腰直角三角形,又AM=BM=1

2AB=2,则有AM′=AM=2,且M′D=2,又CN=1,

则有DN=3,在Rt△M′DN中,根据勾股定理得M′N=M′D2+DN2=13,则|PM-PN|的最大值为13.

第3题解图

4. 10 【解析】如解图,作DM ∥AC ,连接MF ,且DM =EF =1,连接BM .∵DM =EF ,DM ∥EF ,∴四边形DEFM 是平行四边形,∴DE =FM ,∴DE +BF =FM +FB ≤BM ,根据两点之间线段最短可知,此时DE +FB 最短连接BD ,∵四边形ABCD 是菱形,AB =3,∠BAD =60°,∴△ABD 是等边三角形,∴BD =AB =3.∵DM ∥AC ,且AC ⊥BD ,∴∠MDB =90°.在Rt △BDM 中,BM =12+32=10,∴DE +BF 的最小值为10.

第4题解图

5. 413-4 【解析】∵四边形ABCD 是正方形,∴∠ABC =90°,∴∠ABE +∠CBE =90°,∵∠ABE =∠BCE ,∴∠BCE +∠CBE =90°,∴∠BEC =90°,∴点E 在以BC 为直径的半圆上移动.如解图,设BC 的中点为O ,作半圆O ,作正方形ABCD 关于直线AB 对称的正方形ABGF ,则点D 的对应点是点F ,连接FO 交AB 于点P ,交半圆O 于点E ,则线段EF 的长即为PD +PE 的最小值.∵∠G =90°,FG =BG =AB =8,OE =4,∴OG =12,∴OF =FG 2+OG 2=413,∴EF =413-4, ∴PD +PE 的长度最小值为413-4.

第5题解图

6. 28 【解析】∵AB =AD =BD ,∴△ABD 是等边三角形,∴∠DAB =60°.如解图,把△ACD 绕点A 顺时针旋转60°得到△AEB ,连接CE ,则△ACE 是等边三角形,∴CE =AC =27,∵∠DAB +∠BCD =60°+30°=90°,∴∠ADC +∠ABC =360°-90°=270°,∴∠ABE +∠ABC =270°,∴∠CBE =90°,在Rt △BCE 中,BC 2+BE 2=CE 2=28,∵BE =CD ,∴BC 2+CD 2=BC 2+BE 2=28.

第6题解图

7. 5 【解析】如解图,在BC 上取一点G ,使得BG =1,则CG =3,∵PB BG =21=2,BC PB =42=2,∴PB BG

=BC PB ,∵∠PBG =∠PBC ,∴△PBG ∽△CBP ,∴PG PC =BG PB =12,∴PG =12PC ,∴PD -12

PC =PD -PG =DG ,∴当点P 在DG 的延长线上时,PD -12

PC 的值最大,最大值为DG =42+32=5.

相关文档
最新文档