九年级上数学《弦切角定理》课件
九年级上数学《弦切角定理》课件
B
一边与圆相交,
另一边与圆相切 的角叫做弦切角
A
AmB 是弦切角∠PAB所夹的弧。
m
P
顶点在圆上,一边与圆相交,另一边 与圆相切的角叫做弦切角。 下面五个图中的∠BAC是不是弦切角?
C B A C C A
×
B
×
C
B
A
×
B
B C
×
A
A
√
从数学的角度看,弦切角能分成几大类? C C C .O .O .O P P P D A B A A B D
BAC为直角, 圆心在AC上。 BAC为锐角, 圆心在角外。
B
BAC为钝角, 圆心在角内。
上图中BAC所夹的弧分别是:半圆、劣弧、优弧。
猜想:弦切角BAC与圆周角APC的关系 现在分别作出他们所对的圆周角APC, 如上图
︵ 已知:AC是⊙O的弦,AB是⊙O的切线,AmC 是弦切角∠BAC所 ︵ 夹的弧,∠P是AmC所对的圆周角。 求证:∠BAC=∠P Q C
课堂练习:
1、已知AB是⊙O的切线A为切点,由图填空:
30º
O
70º
1 3
O
25º
O
2
80º 4 A ; B
A ∠1= 30º ∠4= 40º
B
A
B
;∠2= 70º ;∠3= 65º 。 弦切角等于它所夹的弧对的圆心角的一半.
2、选择: AB为⊙O直径,PC为⊙O的切线,C为切点, 若∠BPC=30°,则∠BCP=( A )。 A、 30°B、 60°C、 15°D、22. 5°
如图,DE切⊙O于点A,AB、AC是 ⊙O的弦,若 AB=AC,那么∠DAB 与∠EAC是否相等?为什么?
弦切角定理 证明-概念解析以及定义
弦切角定理证明-概述说明以及解释1.引言1.1 概述弦切角定理是几何学中一个重要的定理,被广泛应用于圆的相关问题中。
根据该定理,如果一个弦切割了一个圆,并且与该圆的切线相交于切点,那么与这个弦相对的角与这个切线相交的角是相等的。
这个定理基于圆的几何性质而推导得出,它不仅具有理论的重要性,还被大量应用于解决实际问题。
无论是在数理推导中,还是在物理、工程等实际应用中,弦切角定理都被广泛运用。
本文将会系统地介绍弦切角定理的定义、证明要点和应用。
在正文部分,我们将详细阐述定理的定义,解释证明该定理所需的关键要点,并通过推理和几何演绎来证明这一定理的正确性。
同时,我们也将结合实际问题,展示弦切角定理在实际中的应用。
结论部分将对弦切角定理的意义进行总结,并回顾全文的主要内容。
通过阅读本文,读者将能够深入了解弦切角定理的定义、证明过程,并能够灵活运用该定理解决与圆相关的问题。
同时,本文也为读者展示了弦切角定理在实际中的重要性和应用价值。
在接下来的章节中,我们将逐步介绍弦切角定理的定义、证明要点以及其在实际问题中的应用。
希望读者通过对本文的阅读和理解,能够对弦切角定理有一个全面而深入的认识,从而在解决相关问题时能够能够灵活运用并取得理想的结果。
1.2 文章结构文章结构部分的内容可以按照以下方式编写:在本文中,我将探讨弦切角定理的证明。
本文分为引言、正文和结论三部分。
引言部分将对弦切角定理进行概述,介绍其定义、重要性和应用领域。
然后我会详细说明本文的结构以及每个部分的内容。
正文部分将详细介绍弦切角定理的证明。
首先,我将给出弦切角定理的定义,并解释其背后的数学原理。
然后,我会重点讨论证明该定理所需的关键要点。
第一要点将涉及到几何图形的构建和性质推导,第二要点将涉及到角度关系的推理和推导。
通过详细的推导和证明过程,读者将能够全面理解弦切角定理的证明方法。
结论部分将归纳总结弦切角定理的应用和意义。
我将讨论该定理在几何学中的实际应用,以及它对其他几何定理的推导和应用的重要性。
2020届一轮复习人教A版 弦切角定理 课件(22张)
1234 5
5.如图,AB是半圆O的直径,C是圆周上一点(异于点A,B),过点C作圆 O的切线l,过点A作直线l的垂线AD,垂足为点D.AD交半圆于点E.求 证:CB=CE.
分析转化为证明∠CBE=∠CEB.
题型一 题型二 题型三
证明连接BD,如图.
∵AD是∠BAC的平分线,
∴∠BAD=∠CAD.
又∠BCD=∠BAD,∠CBD=∠CAD,
∴∠BCD=∠CBD.∴BD=CD.
又BE为☉O的切线,
∴∠EBD=∠BAD,∠EBD=∠BCD.
故在△BED和△CEB中,
∠EBD=∠ECB,∠BED=∠CEB,
∴△BED∽△CEB.
题型一 题型二 题型三
题型二 线段成比例问题
【例2】 如图,已知△ABC内接于☉O,∠BAC的平分线交☉O于点 D,CD的延长线交过点B的切线于点E.
求证:������������������������22 = ������������������������.
分析直接证明此等式有一定的难度,可以考虑把它分解成两个比 例式的形式,然后借助相似三角形的性质得出结论.
又∠ACB=80°,
∴∠D=∠ACB-∠DAC=80°-35°=45°.
答案:A
对弦切角的理解 剖析弦切角的特点:(1)顶点在圆上;(2)一边与圆相交;(3)另一边与 圆相切.
弦切角定义中的三个条件缺一不可.如图①②③④中的角都不是 弦切角.图①中,缺少“顶点在圆上”的条件;图②中,缺少“一边和圆相 交”的条件;图③中,缺少“一边和圆相切”的条件;图④中,缺少“顶点
在圆上”和“另一边和圆相切”两个条件.
题型一 题型二 题型三
题型一
【北师大版】选修4-1数学:1.2.3《弦切角定理》ppt课件
学习目标导航
基础知识梳理
重点难点突破
典型例题剖析
随堂练习巩固
1
2
【自主测试 2】 如图所示,MN 与☉O 相切于点 M,Q 和 P 是☉O 上的 两点,∠PQM=70° ,则∠NMP=( ).
A.20° C.110°
B.70° D.160°
解析:∵∠NMP 是弦切角, ∴∠NMP=∠PQM=70° . 答案:B
-12-
学习目标导航
基础知识梳理
重点难点突破
典型例题剖析
随堂练习巩固
题型一
题型二
题型三
证明:连接 DF,如图所示, ∵AD 是∠BAC 的平分线, ∴∠BAD=∠DAC. ∵∠EFD=∠BAD, ∴∠EFD=∠DAC. ∵BC 切☉O 于点 D, ∴∠FDC=∠DAC. ∴∠EFD=∠FDC. ∴EF∥BC.
-3-
学习目标导航
基础知识梳理
重点难点突破
典型例题剖析
随堂练习巩固
1
2
【自主测试 1】 如图所示,AB 是☉O 的一条弦,D 是☉O 上的任意一点 (不与 A,B 重合),则下列为弦切角的是( A.∠ADB B.∠AOB C.∠ABC D.∠BAO 解析:∠ADB 是圆周角,∠AOB 是圆心角, ∠ABC 是弦切角,∠BAO 不是弦切角. 答案:C ).
-10-
学习目标导航
基础知识梳理
重点难点突破
典型例题剖析
随堂练习巩固
2.圆心角、圆周角、弦切角的比较 剖析:如下表所示.
圆心角 定义 顶点在圆心的角 圆周角 顶点在圆上,两边和 圆相交 弦切角 顶点在圆上,一边和圆相 交,另一边和圆相切
图形
角与弧 的关系
∠AOB=AB°
【初中数学】圆中弦切角及弦切角定理
【初中数学】圆中弦切角及弦切角定理一、弦切角1、定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
如图:2、弦切角的三种情况(1)圆心在弦切角外;(2)圆心在弦切角的一条边上;(3)圆心在弦切角内;二、弦切角定理及证明定理:弦切角的度数等于它所夹的弧的圆周角;弦切角的度数等于它所夹的弧的圆心角度数的一半。
已知:如图,PQ是圆O的切线,切点为P。
求证:∠APQ=∠ABP,2∠APQ=∠AOP.(1)当圆心在弦切角外部时证明:连接OA,OP,在非弦切角所夹弧优弧PA上任取一点B,连接BP和BA。
∵ OA=OP∴ ∠OPA=∠OAP∵ ∠OPA+∠OAP+∠POA=180°∴2∠OPA+∠POA=180°∵ PO为圆的切线,OP为半径∴ ∠OPA+∠APQ=90°∴ ∠OPA=90°-∠APQ∴ 2(90°-∠APQ)+∠POA=180°∴∠POA=2∠APQ∵ ∠POA=2∠ABP(同弧所对的圆心角是圆周角的2倍)∴ ∠APQ=∠ABP(2)当圆心在弦切角的一边上时证明:在非弦切角所夹弧AP上任取一点B,连接AB、PB ∵ AP为直径∴ ∠ABP=90°∵ PQ为圆的切线,OP为半径∴ ∠APQ=90°∴∠APQ=∠ABP∴2∠APQ=∠AOP(同弧所对的圆心角是圆周角的2倍). (3)当圆心在弦切角的内部时证明:连接OA,OP,在非弦切角所夹弧劣弧PA上任取一点B,连接BP和BA。
∵ OA=OP∴ ∠OPA=∠OAP∵ ∠OPA+∠OAP+∠1=180°∴2∠OPA+∠1=180°∵ PO为圆的切线,OP为半径∴ ∠OPA=∠APQ-90°∴ 2(∠APQ-90°)+∠1=180°∴ ∠1+2∠APQ=360°∵ ∠1+∠2=360°∴∠2=2∠APQ∴ ∠POA=2∠APQ(这里的∠POA是大于180°的角,是优弧AP所对的圆心角)∵ ∠POA=2∠ABP(同弧所对的圆心角是圆周角的2倍)∴ ∠APQ=∠ABP三、例题例1、已知:如图,直线BC切⊙O于B点,AB=AC,AD=BD,求∠A.解:由弦切角定理可得,∠DBC=∠A∵ AD=BD∴ ∠A=∠ABD∵ AB=AC∴ ∠ABC=∠ACB=2∠A∵ ∠A+∠ABC+∠ACB=180°∴5∠A=180°∴ ∠A=36°例2、已知:如图,直线DC与⊙O相切于点C,AB为⊙O直径,AD⊥DC于D,∠DAC=28°,求∠CAB的值。
人教版数学九年级上册 弧、弦、圆心角经典课件
证明: ∵ AB = AC
∴ AB=AC,△ABC 等腰三角形.
又 ∠ACB=60°,
∴ △ABC 是等边三角形,
A
AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
O
B
C
人教版数学九年级上册 弧、弦、圆心角经典课件
人教版数学九年级上册 弧、弦、圆心角经典课件
6.例题
例2 如图,AB 是⊙O 的直径,BC = CD = DE , ∠COD=35°,求∠AOE 的度数.
5.巩固
如图,AB、CD 是⊙O 的两条弦: (1)如果 AB=CD,那么_A_B_=__C_D__,∠__A__O_B_=__∠__C_O_D__;
(2)如果 AB= CD,那么_A_B_=__C_D__,∠__A_O__B_=_∠__C__O_D__; (3)如果∠AOB=∠COD,那么_A_B__=_C__D_,_A_B_=__C_D_; (4)如果 AB=CD,OE⊥AB 于 E,OF⊥CD 于 F,OE 与 OF 相等吗?为什么? 相等.
解: ∵ BC = CD = DE ∴ ∠BOC=∠COD=∠DOE =35°
∴ ∠AOE=180°-3×35°=75° E
D
C
A
O·
B
人教版数学九年级上册 弧、弦、圆心角经典课件
人教版数学九年级上册 弧、弦、圆心角经典课件
6.例题
例3:如图,在⊙O 中,弦 AB 所对的劣弧为圆的 1 ,圆的半径为 4 cm,求 AB 的长. 3
24.1 弧、弦、圆心角的关系
课件说明
• 本节课是在学习了垂径定理后,进而学习圆的又一个 重要性质,主要研究弧,弦,圆心角的关系.
课件说明
• 学习目标: 1.了解圆心角的概念; 2.掌握在同圆或等圆中,两个圆心角、两条弧、两 条弦中有一组量相等,就可以推出它们所对应的 其余各组量也相等.
【人教版】九年级上册数学《弦切角》ppt教学课件
连结OC,由切线性质, 可得OC∥AD,于是 有∠2=∠3,又由于 B ∠1=∠3,可证得 ∠1=∠2
E
·O 1A 32 CD
小结:
1、概念的引入
顶点在圆上,一边与圆相交,另一边与圆相 切的角叫做弦切角。
2、定理的发现
弦切角定理:弦切角等于它所夹的弧对的圆周角。
推论:两个弦切角所夹的弧相等,
那么这两个弦切角相等。
的度数是( B )。
A、38°B、52° C、68° D、42°
O
A
B
38°
M
C
D N
弦切角定理:弦切角等于它所夹的弧对的圆周角。 推论:两个弦切角所夹的弧相等, 那么这两个弦切角相等。
如图,DE切⊙O于点A,AB、AC是 ⊙O的弦,若 AB=AC,那么∠DAB 与∠EAC是否相等?为什么?
∠ DAB= ∠EAC
C
B O
E
A
D
例题解析
例1:如图:已知AB是⊙O的直
径,AC是弦,直线CE和⊙O切于
点C,AD⊥CE于D。
B
O
求证:(1)AC平分∠BAD
(2)AC2=2AD·AO
A
你还能用其他方法解答 吗?试试看!
E
C
D
有弦切角,常连结弦切角 所夹弧所对的圆周角。
例题解析(思路2)
例1: 如图,已知AB是⊙O的直径,AC是弦,直 线CE和⊙O切于点C,AD⊥CE,垂足是D,求证: AC平分∠BAD.
4
A
B
∠1= 30º ;∠2= 70º ;∠3= 65º ; ∠4= 40º 。 弦切角等于它所夹的弧对的圆心角的一半.
2、选择: AB为⊙O直径,PC为⊙O的切线,C为切点,
弦切角定理证明方法
弦切角定理证明方法弦切角定义顶点在圆上,一边和圆相交,另图示一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90-∠OCB∵∠BOC=180-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)∴∠TCB=∠CAB (定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角B点应在A点左侧(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90∴∠CDA=∠CAB∴(弦切角定理)弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长.解:连结OA,OB.∵在Rt△ABC 中, ∠C=90∴∠BAC=30°∴BC=1/2a(RT△中30°角所对边等于斜边的一半)例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC 切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD 是∠BAC的平分线∠BAD=∠DAC∠EFD=∠BAD∠EFD=∠DAC⊙O切BC于D ∠FDC=∠DAC∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN 切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB∴∠ACD=∠B,∵MN切⊙O于C∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD.弦切角定理导学案【学习目标】:1.理解弦切角的概念,掌握弦切角定理及其推论,能运用它们解决有关问题。
弦切角的性质 课件
的 关 系
交
一边和圆相交
2.与弦切角定理有关的结论
(1)弦切角的度数等于它所夹的弧的度数的一半.
(2)弦切角的度数等于它所夹的弧所对的圆心角度数的一半.
(3)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等.
【做一做2】 如图,正三角形ABC内接于圆O,CP是圆O的切线,则
∠ACP=(
错用弦切角定理致误
【典例】 如图,以△ABD的边AB为直径,作半圆O交AD于C,过点C
的切线CE和BD互相垂直,垂足为E,延长EC到F.求证:AB=BD.
错解:如图,连接BC,OC.
∵CE是半圆O的切线,
∴∠DCE=∠CBE,OC⊥CE.
又BD⊥CE,∴OC∥BD,
∴∠CBE=∠BCO,
∴∠DCE=∠BCO.
弦切角的性质
1.弦切角的概念
定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切
角.
如图,∠ACD和∠BCD都是弦切角.
名师点拨1.弦切角的分类:
(1)圆心在角的一边上(如图a);(2)圆心在角的内部(如图b);(3)圆心
在角的外部(如图c).
2.弦切角的条件:
(1)顶点在圆上(顶点为圆切线的切点);(2)一边和圆相切(一边所
∵AB为半圆O的直径,∴AD⊥BC,
∴∠BAC=90°-∠CBA.
又BD⊥CE,∴∠D=90°-∠DCE,
∴∠D=∠BAC,∴AB=BD.
纠错心得弦切角是顶点在圆上,一边与圆相交,另一边与圆相切
的角,其中弦切角的顶点是圆的一条切线与圆的切点,一边是过切
点的圆的一条弦所在的射线,另一边是过切点的圆的一条切线.本
于弦CD可证.
证明:如图,连接BC.
人教版初中数学九年级上册 24.1.3弧、弦、圆心角 初中九年级数学教学课件PPT 人教版
这样,我们就得到下面的定理:
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
同样,还可以得到:
同圆或等圆中,
两个圆心角、两
在同圆或等圆中,如果两条弧相等,那么它们所条对弧的、两条弦中
圆心角__相__等_, 所对的弦____相__等__;
有一组量相等, 它们所对应的其
A′ B
B′
A′ B
B′
·
O
A
·
O
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.
⌒ ⌒ 因此,弧AB与弧A1B1 重合,AB与A′B′重合.
上交作业:教科书第89页第2,3题 .
课后作业:“学生用书”的“课后作业” 部分.
谢谢
21. 能识别圆心角. 2. 探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性 和旋转不变性. 3. 能用弧,弦、圆心角的关系解决圆中的计算题、证明题.
一、概念
圆心角:我们把顶点在圆心的角叫做圆心角.
A ·O
B
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现 哪些等量关系?为什么?
余各组量也相 在同圆或等圆中,如果两条弦相等,那么他们所等对.的
圆心角__相__等__,所对的弧____相__等___.
【针对训练】
C
(2)
O
A A′
B B′
A
C
D
B
O
C B
AD
2.4 弦切角的性质 课件(人教A选修4-1)
证明乘积式成立,往往与相似三角形有关,若
存在切线,常要寻找弦切角,确定三角形相似的条
件,有时需要添加辅助线创造条件.
4.如图,已知MN是⊙O的切线,A为切点,MN平行于弦 CD,弦AB交CD于E.求证:AC2=AE· AB.
证明:连接BC. MN∥CD⇒∠MAC=∠ACD MN切⊙O于A⇒∠MAC=∠B ⇒∠ACD=∠B ⇒△ACE∽△ABC ∠CAE=∠CAB AC AE ⇒AB=AC⇒AC2=AB· AE.
(1)如果AB∥CD,那么AM=MB;
(2)如果AM=BM,那么AB∥CD. 证明:(1)∵CD切⊙O于M点, ∴∠DMB=∠A,∠CMA=∠B. ∵AB∥CD,∴∠CMA=∠A.
∴∠A=∠B,故AM=MB.
(2)∵AM=BM,∴∠A=∠B. ∵CD切⊙O于M点,∠CMA=∠B, ∴∠CMA=∠A.∴AB∥CD.
(2)连接DE, ∵⊙O切BC于D, ∴∠BAD=∠BDE. 由(1)可得∠BDE=∠FAD, 又∵⊙O内接四边形AEDF, ∴∠BED=∠DFA. ∴△BED∽△DFA. DE BE ∴AF =DF. 又∵∠BAD=∠CAD, ∴DE=DF.∴DF2=AF· BE.
点击下图进入应用创新演练
BD ,过 C 点的圆的切线与 BA 的延长线交于 E 点,证明:
(1)∠ACE=∠BCD; (2)BC2=BE· CD. [思路点拨] 利用弦切角定理.
[证明]
AC (1)因为 = BD ,
所以∠BCD=∠ABC. 又因为 EC 与圆相切于点 C, 故∠ACE=∠ABC, 所以∠ACE=∠BCD. (2)因为∠ECB=∠CDB,∠EBC=∠BCD, 所以△BDC∽△ECB. BC CD 故BE= BC, 即 BC2=BE· CD.
人教版数学九年级上册 弧、弦、圆心角课件精品课件
?
二、自学圆心角定义
圆心角:顶点在圆心的角叫做圆心角. A
O· B
试一试 1、判别下列各图中的角是不是圆心
角.
√√ x
广东省怀集县凤岗镇初级中学
x
黄柳燕
试一试2:找出图中的圆心角。
圆心角有: ∠AOD,∠BOD,∠AOB
O A DB
三、 探究1
如图,在⊙O中,当圆心角∠AOB =∠A’OB’ 时,它们所对
AB=A′B′
AB A 'B '.
人 教 版 数 学 九年级 上册.. 弧 、弦 、圆心 角课件 精品课 件
圆心角 相等
知
1
得弧
弦
相等
2
相等
试一试 人教版数学九年级上册.. 弧、弦、圆心角课件精品课件
3.如图,AB、CD是⊙O的两条弦.
(1)如果AB=CD,那么__A_B___=___C_D_,_____A_O_B_____C_O_D___.
(2)如果 AB = CD ,那么___A_B__=_C_D____,__A_O__B____C__O_D_. (3)如果∠AOB=∠COD,那么___A_B___=___C_D__,___A_B__=_C_D_.
A
E
B
O·
D
F C
人 教 版 数 学 九年级 上册.. 弧 、弦 、圆心 角课件 精品课 件
E
B
人 教 版 数 学 九年级 上册.. 弧 、弦 、圆心 角课件 精品课 件
收获与体会
同圆或等圆中,两个 圆心角、两条弧、两条弦 中有一组量相等,它们所 对应的其余各组量也相 等.
人 教 版 数 学 九年级 上册.. 弧 、弦 、圆心 角课件 精品课 件
(完整版)弦切角定理+圆幂定理之割线相交弦切割线定理
弦切角定理及其应用顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义图1如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠PCA=1/2∠COA=∠CBA弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90°-∠OCB∵∠BOC=180°-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. (B点应在A点左侧)过A作直径AD交⊙O于D,E若在优弧m所对的劣弧上有一点那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90°∴∠CDA=∠CAB∴(弦切角定理)3弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙O中,⊙O的切线AC、BC交与点C,求证:∠CAB=∠CBA。
解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。
∴∠CAB=∠CBA。
(等腰三角形“等边对等角”)。
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF//BC.证明:连接DFAD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB ∴∠ACD=∠B,∵MN切⊙O于C ∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD。
人教版数学九年级上册24.弧、弦、圆心角PPT课件
在同圆或等圆中,
相等的圆心角所对的弧相等,所对的弦也相等。
【注意】:
A B
1.去掉“在同圆或等圆中”结论不一定成
立。
o
C
O
D
2 .要证弧(弦)相等,只需证它们所对的圆心角相等。
A
B
C
D
应用新知:
圆心角定理
例 已知:如图,∠1=∠2.求证:AC=BD.
证明:∵ ∠ 1= ∠ 2
∴DC=BA( 圆心角定理)
∴ DC+BC= BA+BC
即 BD=AC 【变式】 已知:如图,∠1=∠2.
求证:AC=BD.
反思:圆心角相等
所对弧相等 所对弦相等
所对弦的弦心距相等
课堂小结:
1、圆是中心对称图形,圆具有旋转不变性;
2、圆心角定理:
在同圆或等圆中, 相等的圆心角所对的弧相等, 所对的弦相等, 所对弦的弦心距相等.
1、圆是 轴对称 图形,
每一条 直径所在的直线 都是它的对称轴。
2、由圆的轴对称性得到:
垂径定理及逆定理
A
C
O
E
B
D
探究新知:
圆绕圆心旋转
A
.
B
O
探究新知:
圆绕圆心旋转
探究新知:
圆绕圆心旋转
人教版数学九年级上册24.弧、弦、圆 心角PP T课件
探究新知:
圆绕圆心旋转
人教版数学九年级上册24.弧、弦、圆 心角PP T课件
N
O
人教版数学九年级上册24.弧、弦、圆 心角PP T课件
人教版数学九年级上册24.弧、弦、圆 心角PP T课件
继续探究:
把圆O的半径ON绕圆心O旋转任意一个角度, N'
人教版初中数学九年级上册 24.1.3弧、弦、圆心角 初中九年级数学教学课件PPT 人教版
2、如图所示,CD为⊙O的弦,在CD上取
CE=DF,连结OE、OF,并延长交⊙O于 点A、
B. (1)试判断△⌒OE⌒F的形状,并说明理由;
(2)求证:AC=BD
O
EБайду номын сангаасC
A
F D
B
谢谢
(1)如果AB=CD,那么 , 。
(2)如果弧AB=弧CD,那么 , 。
(3)如果∠AOB=∠COD,那么 , 。
(4)如果AB=CD,OE⊥AB于E,
E
B
OF⊥CD于F,OE与OF相等A 吗?
为什么?
O
D
F
C
图3
2、如图,AB是⊙O的直径,BC=⌒CD⌒=DE⌒,
∠COD=35°,求∠AOE的度数。
如图,在⊙O中,当圆心角∠AOB=∠A1OB1时 ,它们所对的⌒弧A⌒B和A1B1 、弦AB和A1B1相等
吗?为什么? A1 B
B1
证 明 : 把 ∠AOB 连 同⌒AB 绕 圆 心 O
旋转,使射线OA与OA1重合.
· O
∵∠AOB=∠A1OB1,
A ∴射线OB与OB1重合.
同圆中,相等的 圆心角所对的弧 相等,所对的弦 也相等.
证明: ∵ B⌒C=C⌒D=⌒DE ∴∠COB=∠DOE=∠COD=35°A ∵AB是⊙O的直径.
ED
C
O
B
∴∠AOE=1800-∠COB-∠COD∠DOE
=750
3、如图,AD=BC,那么比较⌒AB与⌒CD的
大小.
A
C
D
O
B
课堂小结:
请你谈谈本节课的收获.
拓展延伸:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∠ DAB= ∠EAC
C O E
B
A
D
例1:如图:已知AB是⊙O的直 径,AC是弦,直线CE和⊙O切于 B 点C,AD⊥CE于D。 求证:(1)AC平分∠BAD (2)AC2=2AD· AO
顶点在圆上,
B
一边与圆相交,
另一边与圆相切 的角叫做弦切角
A
AmB 是弦切角∠PAB所夹的弧。
m
P
顶点在圆上,一边与圆相交,另一边 与圆相切的角叫做弦切角。 下面五个图中的∠BAC是不是弦切角?
C B A C C A
×
B
×
C
B
A
×
B
B C
×
A
A
√
从数学的角度看,弦切角能分成几大类? C C C .O .O .O P P P D A B A A B D
E
例题解析
O
A
C D
你还能用其他方法解答 吗?试试看!
有弦切角,常连结弦切角 所夹弧所对的圆周角。
例题解析(思路2)
例1: 如图,已知AB是⊙O的直径,AC是弦,直 线CE和⊙O切于点C,AD⊥CE,垂足是D,求证: AC平分∠BAD.
连结OC,由切线性质, 可得OC∥AD,于是 有∠2=∠3,又由于 ∠1=∠3,可证得 ∠1=∠2
E
B
·
3
O
1
A
2
C
D
小结:
1、概念的引入
顶点在圆上,一边与圆相交,另一边与圆相 切的角叫做弦切角。
2、定理的发现 弦切角定理:弦切角等于它所夹的弧对的圆周角。 推论:两个弦切角所夹的弧相等,
那么这两个弦切角相等。
小结:
3、定理的证明 4、应用与推论
你掌握了吗?
一般情况下,弦切角、圆周角、圆心角都是 通过它们夹的(或对的)同一条弧(或等弧)联 系起来,因此,当已知有切线时常添线构建弦切 角或添切点处的半径应用切线的性质。
弦切角(1)
B
A
P
我们曾经学习过的有关于圆的角PAB
A
点A运动到圆上
O(A) B P 使 PA 与 圆 相 A切 O B PA 绕 A 旋 转 O B
A与圆心O重合
PAB为圆心角
P
PAB为圆周角 此时PAB是什么角? 答:PAB是圆O的
P
弦切角
∠PAB的顶点及两边与圆的位置关系是怎样?
BAC为直角, 圆心在AC上。 BAC为锐角, 圆心在角外。
B
BAC为钝角, 圆心在角内。
上图中BAC所夹的弧分别是:半圆 、劣弧、优弧。
猜想:弦切角 BAC与圆周角 APC 的关系 现在分别作出他们所对 的圆周角 APC , 如上图
︵ 已知:AC是⊙O的弦, AB是⊙O的切线,AmC 是弦切角∠BAC所 ︵ 夹的弧,∠P是AmC所对的圆周角。 求证:∠BAC=∠P Q C
C P
B
O
A
3、如图:四边形ABCD为圆内 接四边形,AB是直径,MN切⊙O于 C点,∠BCM=38°,那么∠ABC 的度数是( B )。 A、38°B、52° C、68° D、42°
O
A
D
B
38°
M
C
N
弦切角定理:弦切角等于它所夹的弧对的圆周角。
推论:两个弦切角所夹的弧相等,
那么这两个弦切角相等。
课堂练习:
1、已知AB是⊙O的切线A为切点,由图填空:
30º
O
70º
1 3
25º
O
2
80º 4 A ; B
A ∠1= 30º ∠4= 40º
B
A
B
;∠2= 70º ;∠3= 65º 。 弦切角等于它所夹的弧对的圆心角的一半.
2、选择: AB为⊙O直径,PC为⊙O的切线,C为切点, 若∠BPC=30°,则∠BCP=( A )。 A、 30°B、 60°C、 15°D、22. 5°
作业
•1、课课练 /P.84 •2、预习“弦切角”(2)
Q
C P A O
O
C
m
m P
P
O
m B
( 1 ) 圆心O在∠BAC的外部
作⊙O的直径AQ,连结CQ ∵∠BAQ=∠ACQ=90° ∴∠BAC=90°-∠CAQ 。 ∠Q=90°-∠CAQ ∴ ∠BAC=∠Q
弦切角等于所夹 弧对的圆周角
D B A B 圆心O在∠BAC A ( 3 ) 的内部 ( 2 )圆心O在∠BAC的边AC上 作⊙O的直径AQ, ∵ AB是⊙ O的切线, 连结CQ ∴ ︵ ∠BAC=90° ∵∠BAC=180°-∠DAC 又∵ AmC 是半圆, 180°-∠Q ∴ ∠P∠P= =90° ∠DAC=∠ ∴ ∠BAC=∠ P Q ∴ ∠BAC=∠P