2020年浙江省台州市中考数学试卷

合集下载

2020年浙江省台州市中考数学试卷(含答案解析)

2020年浙江省台州市中考数学试卷(含答案解析)

2020年浙江省台州市中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.计算1−3的结果是()A. 2B. −2C. −4D. 42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3.计算2a2⋅3a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.无理数√10在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A. 中位数B. 众数C. 平均数D. 方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,−1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)AB同7.如图,已知线段AB,分别以A,B为圆心,大于12样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CDA. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B.C. D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3√2B. 7+4√2C. 8+3√2D. 8+4√2二、填空题(本大题共6小题,共30.0分)11.因式分解:x2−9=______.12.计算1x −13x的结果是______.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是______.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2______S乙2.(填“>”、“=”、“<“中的一个)15. 如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE.若⊙O 与BC 相切,∠ADE =55°,则∠C 的度数为______. 16. 用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD 的面积为______.(用含a ,b 的代数式表示)三、计算题(本大题共1小题,共8.0分) 17. 解方程组:{x −y =13x +y =7.四、解答题(本大题共7小题,共72.0分) 18. 计算:|−3|+√8−√2.19. 人字折叠梯完全打开后如图1所示,B ,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的固定点.图2是它的示意图,AB =AC ,BD =140cm ,∠BAC =40°,求点D 离地面的高度DE.(结果精确到0.1cm ;参考数据sin70°≈0.94,cos70°≈20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1−y2)与(y2−y3)的大小:y1−y2______y2−y3.21.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端参与度0.2~0.40.4~0.60.6~0.80.8~1人数方式录播416128直播2101612(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为ℎ(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4ℎ(H−ℎ).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.答案和解析1.【答案】B【解析】解:1−3=1+(−3)=−2.故选:B.根据有理数的加减法法则计算即可判断.本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.2.【答案】A【解析】解:根据主视图的意义可知,选项A符合题意,故选:A.从正面看所得到的图形即为主视图,因此选项A的图形符合题意.考查简单几何体的三视图的画法,从不同方向对问题进行正投影所得到的图形分别为主视图、左视图、俯视图.3.【答案】C【解析】解:2a2⋅3a4=6a6.故选:C.直接利用单项式乘单项式运算法则计算得出答案.此题主要考查了单项式乘单项式,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:∵3<√10<4,故选:B.由√9<√10<√16可以得到答案.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.5.【答案】A【解析】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.根据中位数的意义求解可得.本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.6.【答案】D【解析】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,−1),∴C(0+3,−1+2),即C(3,1),故选:D.利用平移规律进而得出答案.此题主要考查了坐标与图形变化−平移,正确得出对应点位置是解题关键.7.【答案】D【解析】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.本题主要考查作图−基本作图,解题的关键是掌握菱形的判定与性质.8.【答案】A【解析】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.根据对角线相等的四边形推不出是正方形或矩形即可判断.本题考查正方形的判定和性质,矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【答案】C【解析】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.本题考查动点问题函数图象,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2√2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=√2,同法可证NW=√2,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4+√2+2√2+√2+4=8+4√2,故选:D.如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.11.【答案】(x+3)(x−3)【解析】【分析】本题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x−3),故答案为:(x+3)(x−3).12.【答案】23x【解析】解:1x −13x=33x−13x=23x.故答案为:23x.先通分,再相减即可求解.考查了分式加减法,把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.13.【答案】6【解析】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE//AB,DF//AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.考查了等边三角形的性质,平行线的性质,关键是证明△DEF是等边三角形.14.【答案】<【解析】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.15.【答案】55°【解析】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.由直径所对的圆周角为直角得∠AED =90°,由切线的性质可得∠ADC =90°,然后由同角的余角相等可得∠C =∠ADE =55°.本题考查了切线的性质、圆的相关概念及性质及互余关系等知识点,熟练掌握圆的相关性质是解题的关键. 16.【答案】a +b【解析】解:如图,正方形ABCD 是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD 的面积=a +b .故答案为a +b .如图,正方形ABCD 是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a ,由此即可解决问题.本题考查中心对称,全等三角形的判定和性质,图形的拼剪等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型. 17.【答案】解:{x −y =1 ①3x +y =7 ②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1,则该方程组的解为{x =2y =1.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】解:原式=3+2√2−√2 =3+√2.【解析】直接利用绝对值的性质和二次根式的性质化简得出答案. 此题主要考查了实数运算,正确化简二次根式是解题关键. 19.【答案】解:过点A 作AF ⊥BC 于点F ,则AF//DE , ∴∠BDE =∠BAF ,∵AB =AC ,∠BAC =40°, ∴∠BDE =∠BAF =20°,∴DE =BD ⋅cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.【解析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE的度数,再解直角三角形得结果.本题主要考查了解直角三角形,等腰三角形的性质,关键是构造直角三角形求得∠BDE的度数.20.【答案】>【解析】解:(1)设y与x之间的函数关系式为:y=kx,把(3,400)代入y=kx 得,400=k3,解得:k=1200,∴y与x之间的函数关系式为y=1200x;(2)把x=6,8,10分别代入y=1200x 得,y1=12006=200,y2=12008=150,y3=120010=120,∵y1−y2=200−150=50,y2−y3=150−120=30,∵50>30,∴y1−y2>y2−y3,故答案为:>.(1)设y与x之间的函数关系式为:y=kx ,把(3,400)代入y=kx即可得到结论,(2)把x=6,8,10分别代入y=1200x得到求得y1,y2,y3值,即可得到结论.本题考查了反比例函数的应用,待定系数法求函数的解析式,反比例函数的性质,正确的理解题意是解题的关键.21.【答案】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC−∠ABD=∠ACB−∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【解析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.22.【答案】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×11+3=200(人),“直播”总学生数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).【解析】(1)根据表格数据得出两种教学方式参与度在0.6以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在0.8以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“录播”和“直播”的人数之比为1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4以下人数所占比例求出对应人数,再相加即可得出答案.本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.【答案】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD =∠CAB ,∴∠BFE =∠CAB ,∵∠ACB =∠FEB =90°,∴△BEF∽△BCA .(3)解:设EF 交AB 于J.连接AE .∵EF 与AB 互相平分,∴四边形AFBE 是平行四边形,∴∠EFA =∠FEB =90°,即EF ⊥AD ,∵BD ⊥AD ,∴EF//BD ,∵AJ =JB ,∴AF =DF ,∴FJ =12BD =m 2, ∴EF =m ,∵△ABC∽△CBM ,∴BC :MB =AB :BC ,∴BM =m 26,∵△BEJ∽△BME ,∴BE :BM =BJ :BE ,∴BE =√2,∵△BEF∽△BCA ,∴AC EF =BC BE , 即√36−m 2m =m m √2,解得m =2√3(负根已经舍弃).【解析】(1)想办法证明∠BEF =90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE 是平行四边形,推出FJ =12BD =m 2,EF =m ,由△ABC∽△CBM ,可得BM =m 26,由△BEJ∽△BME ,可得BE =√2,由△BEF∽△BCA ,推出AC EF =BCBE ,由此构建方程求解即可.本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题. 24.【答案】解:(1)∵s 2=4ℎ(H −ℎ),∴当H =20时,s 2=4ℎ(20−ℎ)=−4(ℎ−10)2+400,∴当ℎ=10时,s 2有最大值400,∴当ℎ=10时,s 有最大值20cm .∴当h 为何值时,射程s 有最大值,最大射程是20cm ;(2)∵s 2=4ℎ(20−ℎ),设存在a ,b ,使两孔射出水的射程相同,则有:4a(20−a)=4b(20−b),∴20a−a2=20b−b2,∴a2−b2=20a−20b,∴(a+b)(a−b)=20(a−b),∴(a−b)(a+b−20)=0,∴a−b=0,或a+b−20=0,∴a=b或a+b=20;)2+(20+m)2,(3)设垫高的高度为m,则s2=4ℎ(20+m−ℎ)=−4(ℎ−20+m2∴当ℎ=20+m时,s max=20+m=20+16,2=18.∴m=16,此时ℎ=20+m2∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.【解析】(1)将s2=4ℎ(20−ℎ)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;(2)设存在a,b,使两孔射出水的射程相同,则4a(20−a)=4b(20−b),利用因式分解变形即可得出答案;(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.。

2020年浙江省台州市中考数学试卷(含答案)

2020年浙江省台州市中考数学试卷(含答案)

2020年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分》1. (4分)计兑1・3的结來是()A・2 B∙・2 C. 4 D・・42. (4分)用三个相同的正方体搭成如图所示的工体冈形,则该7体冈形的卞视冈是()5. (4分)在一次数学测试中P小明成绒72分,超过班级半数同学的成绩,分折得山这个结论所用的统计呈是()A.屮位数B.众数C∙平均数D∙方丼6. (4分)如图,把ZkABC先向右平移3个单仪,再向卜•平移2个单位得5∣J∆DEF,则顶点C(0, -1)7∙"分)如圏已T执分≡A, T,大于和同样劭半径吨两弧交于点C, D, 连接AG Al), BG BD, CD,则下列说法钳误的是()C. 4和5 Z间3. (4分)计算2∕∙3∕的结果是( )A∙ 5α6 B. 5/4. (4分)无理数顶在( )A. 2 fll 3 ZfUJB. 3 和4 Z仙C. 6√i对应点的坐标为()乍、A.皿平分ZCADB. CD平分ZΛC5C. AB丄CQ D・AB=CD& (4分〉下列是.关丁某个Pl边形的三个结论:①它的对幷线柑等;②它是一个正方形:③它是一个矩足.下列推理过程正确的是()A.山②推出③,山③推出①B.山①推出②,山②推出③C.山③推岀①,山①推出②D・山①推岀③,山③推出②9. (4分)如图1,小球从左侧的斜坡滚下,到达底端后又沿肴右側斜坡向上滚,在这个过程中,小球的运动速度V (单位:nM与运动时间『(单•位:$)的函数图象如图2,则该小球的运动路稈y (I r l-位:m)与运动时间/(单位:S)之间的函数冈象大致是(〉10. (4分)把•张宽为1脑的长方形纸片ABCD折育成如图所示的阴席图谿顶点A, D互相重合,中间则紙片的长AD (单位:≡)为()12. (5分)计算丄■孑的结果是________ •X 3xI3∙ (5分)如图,等边三角形纸片>WC的边长为6, E,尸是边BC上的三箒分点•分别过点E F沿若T 行于*儿CA方向各剪一刀,则剪下的ADEF的周长是__________ •D.8+4√2二填空题(本赵有6小题,每小題5分,共30分〉11・(5分)因式分解:JT-9= ______ .E14. (5分)甲.乙两位同学在10次定点投篮训练中(每次训练投8个)•各次训练成绩(投中个数〉的折 线统计图如图所示,他们成绩的方差分别为$/与S/,则$甲2 _____________ S F∙(填">”、“=”、“<” 中的一个〉O i )545676d 1•乔⅛⅛〈次〉15. (5分)如图,在2∖ABC 中,Q 是边BC 上的一点•以AD 为JX 径的OO 交/1C 于点©连接若OoIiBC 相切,ZADE=55^ ,则ZC 的度数为 ______________ ・16. (5分)用四块人止方形地砖利•块小止方形地砖拼成如图所示的实线图案,每块人止方形地砖面积为a,小止方形地砖面积为b,依次连接四块人止方形地破的屮心得到止方形ABCD.则止方形ABCD 的•面枳•为 __ ・(用含G b 的代数式衣示〉三、解答题(本题有8小题,第17〜20题每题8分,第21题10分,笫22, 23题每题12分,第24题14 分,共80分〉17. (8分)计算:∣-3∣÷√8-√2.18. (8 分)解方程组:'3∑+>r =7.——甲I--- 乙65432119・(8分)人字折卷梯完土打开厉如图1所示∙ B, C 是折栓梯的两个若地点,。

2020年浙江省台州市中考数学试卷 (Word版,含答案)

2020年浙江省台州市中考数学试卷 (Word版,含答案)

2020年台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分)1.计算1﹣3的结果是()A.2 B.﹣2 C.4 D.﹣42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.3.计算2a2•3a4的结果是()A.5a6B.5a8C.6a6D.6a84.无理数在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)7.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3B.7+4C.8+3D.8+4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x2﹣9=.12.计算的结果是.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F 沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2S乙2.(填“>”、“=”、“<“中的一个)15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:|﹣3|+﹣.18.解方程组:.19.人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.21.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.4 0.4~0.6 0.6~0.8 0.8~1参与度人数方式录播 4 16 12 8直播 2 10 16 12 (1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB 于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.参考答案一、BACBA DDACD二、11.(x+3)(x﹣3).12..13.6.14.<.15.55°.16.a+b.三、17.解:原式=3+2﹣=3+.18.解:,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为19.解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.20.解:(1)设y与x之间的函数关系式为:y=,把(3,400)代入y=得,400=,解得:k=1200,∴y与x之间的函数关系式为y=;(2)把x=6,8,10分别代入y=得,y1==200,y2==150,y3==120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,21.证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.22.解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×=200(人),“直播”总学生数为800×=600(人),所以“录播”参与度在0.4以下的学生数为200×=20(人),“直播”参与度在0.4以下的学生数为600×=30(人),所以参与度在0.4以下的学生共有20+30=50(人).23.(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EFA=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ=BD=,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=,∵△BEF∽△BCA,∴=,即=,解得m=2(负根已经舍弃).24.解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4+(20+m)2,∴当h=时,s max=20+m=20+16,∴m=16,此时h==18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.。

浙江省台州市2020年中考数学试题

浙江省台州市2020年中考数学试题

标为( )
A. (0,0)
B. (1,2)
C. (1,3)
D. (3,1)
7.如图,已知线段 AB,分别以 A,B 为圆心,大于 1 AB 同样长为半径画弧,两弧交于点 C,D,连接 AC, 2
第 1 页 共 25 页
AD,BC,BD,CD,则下列说法错误的是( )
A AB 平分∠CAD
B. CD 平分∠ACB
20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超
过 15 次时,完成一次训练所需要的时间 y(单位:秒)与训练次数 x(单位:次)之间满足如图所示的反
比例函数关系.完成第 3 次训练所需时间为 400 秒.
(1)求 y 与 x 之间的函数关系式;
(2)当 x 的值为 6,8,10 时,对应的函数值分别为 y1,y2,y3,比较(y1-y2)与(y2-y3)的大小:y1-y2
如表(数据分组包含左端值不包含右端值).
参与度 人数 方式
0 2~0.4
0.4~0.6
ቤተ መጻሕፍቲ ባይዱ
0.6~0.8
0.8~1
录播
4
16
12
8
直播
2
10
16
12
(1)你认为哪种教学方式学生的参与度更高?简要说明理由. (2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在 0.8 及以上的概率是多少? (3)该校共有 800 名学生,选择“录播”和“直播”的人数之比为 1:3,估计参与度在 0.4 以下的共有多 少人? 23.如图,在△ABC 中,∠ACB=90°,将△ABC 沿直线 AB 翻折得到△ABD,连接 CD 交 AB 于点 M.E 是线 段 CM 上的点,连接 BE.F 是△BDE 的外接圆与 AD 的另一个交点,连接 EF,BF, (1)求证:△BEF 直角三角形;

2020年浙江台州市中考数学试题(含答案)

2020年浙江台州市中考数学试题(含答案)

2020年浙江台州市中考数学试题一、选择题(本题有10小题,每小题4分,共40分. 请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 计算1-3的结果是( ▲ )A. 2B. -2C. 4D. -42. 用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是( ▲ )3. 计算2a 3·3 a 4的结果是( ▲ )A . 5a 6 B. 5a 8 C. 6a 6 D. 6a 8 4. 无理数√10在( ▲ )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间 5. 在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折 得出这个结论所用的统计量是( ▲ )A. 中位数B. 众数C. 平均数D. 方差 6. 如图,把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF , 则顶点C (0,-1)对应点的坐标为( ▲ )A. (0,0)B. (1,2)C. (1,3)D. (3,1)7. 如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( ▲ )A .AB 平分∠CAD B. CD 平分∠ACB C. AB ⊥CD D AB=CD8.下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形. 下列推理过程正确的是( ▲ )A 由②推出③,由③推出① B. 由①推出②,由②推出③ C. 由③推出①,由①推出② D. 由①推出③,由③推出②A.B.C.D.y x第6图BA F DCE DC9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m/s )与运动时间t (单位:s )的函数图象如图2,则该小球的运动路程y (单位:m )与运动时间t (单位:s )之间的函数图象大致是( ▲ )10. 把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( ▲ ) A. 7+3√2 B. 7+4√2 C. 8+3√2 D. 8+4√2 二、填空题(本题有6小题,每小题5分,共30分) 11. 因式分解:x 2-9= ▲ . 12. 计算1x −13x的结果是 ▲ .13. 如图,等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点. 分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是 ▲ .14. 甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s 甲2与S 乙2,则s 甲2 ▲S 乙2填">”、“=”、 “<"中的一个)15. 如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE . 若⊙O 与BC 相切,∠ADE=55°,则∠C 的度数为 ▲ .16. 用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为依次连接四块大正方形地砖的中心得到正方形ABCD. 则正方形ABCD 的面积为 ▲ . (用含a ,b 的代数式表示)第16题图BCDA图2O tv第10题BCD A A'(D')E第15图EOBCD(第13题)DA三、解答題(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第题14分,共80分)17. 计算:|-3|+√8—√2. 18. 解方程组:{x −y =1。

浙江省台州市2020年中考数学试卷

浙江省台州市2020年中考数学试卷

浙江省台州市2020年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)(共10题;共40分)1.计算1-3的结果是()A. 2B. -2C. 4D. -42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3.计算2a3·3 a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.无理数在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A. 中位数B. 众数C. 平均数D. 方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)7.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CD8.下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m/s)与运动时间t (单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t (单位:s)之间的函数图象大致是()A. B. C. D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3B. 7+4C. 8+3D. 8+4二、填空题(本题有6小题,每小题5分,共30分)(共6题;共30分)11.因式分解:x2-9=________.12.计算的结果是________.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点. 分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是________.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为与,则________ 填">”、“=”、“<"中的一个)15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE. 若⊙O与BC相切,∠ADE=55°,则∠C的度数为________ .16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为依次连接四块大正方形地砖的中心得到正方形ABCD. 则正方形ABCD的面积为________. (用含a,b的代数式表示)三、解答題(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第题14分,共80分)(共8题;共80分)17.计算:|-3|+ —.18.解方程组:19.人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点. 图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0. 1cm;参考数据sin70°≈0. 94,cos70°≈0. 34,sin20°≈0. 34,cos20°≈0. 94)20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当. 当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系. 完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小: y1-y2________y2-y3.21.如图,已知ABAC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种. 为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如下表(数据分组包含左端值不包含右端值)(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0. 8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0. 4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M. E是线段CM上的点,连接BE. F是△BDE的外接圆与AD的另一个交点,连接EF,BF(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM正存在点E,使得EF和AB互相平分,求m的值.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:m),如果在离水面竖直距离为h(单校:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔.(1)写出s2与h的关系式; 并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.答案解析部分一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【答案】B【解析】【解答】解:1﹣3=1+(﹣3)=﹣2.故答案为:B.【分析】根据有理数的加减法法则计算即可判断.2.【答案】A【解析】【解答】根据主视图的意义可知,选项A符合题意,故答案为:A.【分析】从正面看所得到的图形即为主视图,因此选项A的图形符合题意.3.【答案】C【解析】【解答】解:2a2•3a4=6a6.故答案为:C.【分析】直接利用单项式乘单项式运算法则计算得出答案.4.【答案】B【解析】【解答】解:∵3<<4,故答案为:B.【分析】由<<可以得到答案.5.【答案】A【解析】【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故答案为:A.【分析】根据中位数的意义求解可得.6.【答案】D【解析】【解答】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,﹣1),∴C(0+3,﹣1+2),即C(3,1),故答案为:D.【分析】利用平移规律进而得出答案.7.【答案】D【解析】【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故答案为:D.【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.8.【答案】A【解析】【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故答案为:A.【分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.9.【答案】C【解析】【解答】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故答案为:C.【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.10.【答案】D【解析】【解答】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=,同法可证NW=,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4+ + + +4=8+ ,故答案为:D.【分析】如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.想办法求出AR,RM,MN,NW,WD 即可解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.【答案】(x+3)(x-3)【解析】【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.12.【答案】【解析】【解答】解:.故答案为:.【分析】先通分,再相减即可求解.13.【答案】6【解析】【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.14.【答案】<【解析】【解答】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.【分析】利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.15.【答案】55°【解析】【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质可得∠ADC=90°,然后由同角的余角相等可得∠C=∠ADE=55°.16.【答案】a+b【解析】【解答】解:如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+b.【分析】如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a,由此即可解决问题.三、解答題(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第题14分,共80分)17.【答案】解:原式=3+ ﹣=3+ .【解析】【分析】直接利用绝对值的性质和二次根式的性质化简得出答案.18.【答案】解:,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为.【解析】【分析】方程组利用加减消元法求出解即可.19.【答案】解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.【解析】【分析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE 的度数,再解直角三角形得结果.20.【答案】(1)设y与x之间的函数关系式为:y=,把(3,400)代入y=得,400=,解得:k=1200,∴y与x之间的函数关系式为y=;(2)>【解析】【解答】(2)把x=6,8,10分别代入y=得,y1==200,y2==150,y3==120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,故答案为:>.【分析】(1)设y与x之间的函数关系式为:y=,把(3,400)代入y=即可得到结论;(2)把x=6,8,10分别代入y=得到求得y1,y2,y3值,即可得到结论.21.【答案】(1)证明:∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【解析】【分析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.22.【答案】(1)直播”教学方式学生的参与度更高;理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高。

2020年浙江省台州市中考数学试卷(含解析)

2020年浙江省台州市中考数学试卷(含解析)

2020年浙江省台州市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本题有10小题,每小题4分,共40分.)1.计算1﹣3的结果是()A.2 B.﹣2 C.4 D.﹣42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.3.计算2a2•3a4的结果是()A.5a6B.5a8C.6a6D.6a84.无理数在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)7.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3B.7+4C.8+3D.8+4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x2﹣9=.12.计算的结果是.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2S乙2.(填“>”、“=”、“<“中的一个)15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三、解答题(本题有8小题,共80分)17.(8分)计算:|﹣3|+﹣.18.(8分)解方程组:.19.(8分)人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.21.(10分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.4 0.4~0.6 0.6~0.8 0.8~1参与度人数方式录播 4 16 12 8直播 2 10 16 12(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.(12分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E 是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h (单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.参考答案与试题解析1.【解答】解:1﹣3=1+(﹣3)=﹣2.故选:B.2.【解答】解:根据主视图的意义可知,选项A符合题意,故选:A.3.【解答】解:2a2•3a4=6a6.故选:C.4.【解答】解:∵3<<4,故选:B.5.【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.6.【解答】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,﹣1),∴C(0+3,﹣1+2),即C(3,1),故选:D.7.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.8.【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.9.【解答】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.10.【解答】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=,同法可证NW=,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4++2++4=8+4,故选:D.11.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.【解答】解:=﹣=.故答案为:.13.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.【解答】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.15.【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.16.【解答】解:如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+b.故答案为a+b.17.【解答】解:原式=3+2﹣=3+.18.【解答】解:,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为19.【解答】解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.20.【解答】解:(1)设y与x之间的函数关系式为:y=,把(3,400)代入y=得,400=,解得:k=1200,∴y与x之间的函数关系式为y=;(2)把x=6,8,10分别代入y=得,y1==200,y2==150,y3==120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,故答案为:>.21.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.22.【解答】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×=200(人),“直播”总学生数为800×=600(人),所以“录播”参与度在0.4以下的学生数为200×=20(人),“直播”参与度在0.4以下的学生数为600×=30(人),所以参与度在0.4以下的学生共有20+30=50(人).23.【解答】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EFA=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ=BD=,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=,∵△BEF∽△BCA,∴=,即=,解得m=2(负根已经舍弃).24.【解答】解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4+(20+m)2,∴当h=时,s max=20+m=20+16,∴m=16,此时h==18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm。

2020年浙江省台州市中考数学试题(含答案)

2020年浙江省台州市中考数学试题(含答案)

结论所用的统计量是( )
A.中位数
B.众数
C.平均数
D.方差
6.(4 分)如图,把△ABC 先向右平移 3 个单位,再向上平移 2 个单位得到△DEF,则顶点
C(0,﹣1)对应点的坐标为( )
A.(0,0)
B.(1,2)
C.(1,3)
D.(3,1)
7.(4 分)如图,已知线段 AB,分别以 A,B 为圆心,大于 AB 同样长为半径画弧,两弧
A.
B.
C.
D.
10.(4 分)把一张宽为 1cm 的长方形纸片 ABCD 折叠成如图所示的阴影图案,顶点 A,D
互相重合,中间空白部分是以 E 为直角顶点,腰长为 2cm 的等腰直角三角形,则纸片的
长 AD(单位:cm)为( )
第 2页(共 22页)
A.7+3
B.7+4
C.8+3
二、填空题(本题有 6 小题,每小题 5 分,共 30 分)
(2)当 x 的值为 6,8,10 时,对应的函数值分别为 y1,y2,y3,比较(y1﹣y2)与(y2
﹣y3)的大小:y1﹣y2
y2﹣y3.
第 4页(共 22页)
21.(10 分)如图,已知 AB=AC,AD=AE,BD 和 CE 相交于点 O. (1)求证:△ABD≌△ACE; (2)判断△BOC 的形状,并说明理由.
交于点 C,D,连接 AC,AD,BC,BD,CD,则下列说法错误的是( )
第 1页(共 22页)
A.AB 平分∠CAD B.CD 平分∠ACB C.AB⊥CD
D.AB=CD
8.(4 分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;

2020年浙江省台州市中考数学试卷及答案解析

2020年浙江省台州市中考数学试卷及答案解析

2020年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.(4分)计算1﹣3的结果是( ) A .2B .﹣2C .4D .﹣42.(4分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是( )A .B .C .D .3.(4分)计算2a 2•3a 4的结果是( ) A .5a 6B .5a 8C .6a 6D .6a 84.(4分)无理数√10在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(4分)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是( ) A .中位数B .众数C .平均数D .方差6.(4分)如图,把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF ,则顶点C (0,﹣1)对应点的坐标为( )A .(0,0)B .(1,2)C .(1,3)D .(3,1)7.(4分)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD8.(4分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②9.(4分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.10.(4分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D 互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A .7+3√2B .7+4√2C .8+3√2D .8+4√2二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)因式分解:x 2﹣9= . 12.(5分)计算1x −13x的结果是 .13.(5分)如图,等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点.分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是 .14.(5分)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s 甲2与S 乙2,则s 甲2 S乙2.(填“>”、“=”、“<”中的一个)15.(5分)如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE .若⊙O 与BC 相切,∠ADE =55°,则∠C 的度数为 .16.(5分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD .则正方形ABCD 的面积为 .(用含a ,b 的代数式表示)三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分) 17.(8分)计算:|﹣3|+√8−√2. 18.(8分)解方程组:{x −y =1,3x +y =7.19.(8分)人字折叠梯完全打开后如图1所示,B ,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的固定点.图2是它的示意图,AB =AC ,BD =140cm ,∠BAC =40°,求点D 离地面的高度DE .(结果精确到0.1cm ;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y (单位:秒)与训练次数x (单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y 与x 之间的函数关系式;(2)当x 的值为6,8,10时,对应的函数值分别为y 1,y 2,y 3,比较(y 1﹣y 2)与(y 2﹣y 3)的大小:y 1﹣y 2 y 2﹣y 3.21.(10分)如图,已知AB =AC ,AD =AE ,BD 和CE 相交于点O . (1)求证:△ABD ≌△ACE ;(2)判断△BOC 的形状,并说明理由.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).参与度 人数 方式 0.2~0.40.4~0.60.6~0.80.8~1录播 4 16 12 8 直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.(12分)如图,在△ABC 中,∠ACB =90°,将△ABC 沿直线AB 翻折得到△ABD ,连接CD 交AB 于点M .E 是线段CM 上的点,连接BE .F 是△BDE 的外接圆与AD 的另一个交点,连接EF ,BF . (1)求证:△BEF 是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.2020年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算1﹣3的结果是()A.2B.﹣2C.4D.﹣4【解答】解:1﹣3=1+(﹣3)=﹣2.故选:B.2.(4分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.【解答】解:根据主视图的意义可知,选项A符合题意,故选:A.3.(4分)计算2a2•3a4的结果是()A.5a6B.5a8C.6a6D.6a8【解答】解:2a2•3a4=6a6.故选:C.4.(4分)无理数√10在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:∵3<√10<4,故选:B.5.(4分)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数, 故选:A .6.(4分)如图,把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF ,则顶点C (0,﹣1)对应点的坐标为( )A .(0,0)B .(1,2)C .(1,3)D .(3,1)【解答】解:∵把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF ,顶点C (0,﹣1), ∴C (0+3,﹣1+2), 即C (3,1), 故选:D .7.(4分)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A .AB 平分∠CADB .CD 平分∠ACBC .AB ⊥CDD .AB =CD【解答】解:由作图知AC =AD =BC =BD , ∴四边形ACBD 是菱形,∴AB 平分∠CAD 、CD 平分∠ACB 、AB ⊥CD , 不能判断AB =CD ,故选:D.8.(4分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.9.(4分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.【解答】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.10.(4分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D 互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A .7+3√2B .7+4√2C .8+3√2D .8+4√2【解答】解:如图,过点M 作MH ⊥A ′R 于H ,过点N 作NJ ⊥A ′W 于J .由题意△EMN 是等腰直角三角形,EM =EN =2,MN =2√2, ∵四边形EMHK 是矩形,∴EK =A ′K =MH =1,KH =EM =2, ∵△RMH 是等腰直角三角形,∴RH =MH =1,RM =√2,同法可证NW =√2, 由题意AR =RA ′=A ′W =WD =4,∴AD =AR +RM +MN +NW +DW =4+√2+2√2+√2+4=8+4√2, 故选:D .二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)因式分解:x 2﹣9= (x +3)(x ﹣3) . 【解答】解:原式=(x +3)(x ﹣3), 故答案为:(x +3)(x ﹣3). 12.(5分)计算1x −13x 的结果是 23x.【解答】解:1x−13x=33x−13x=23x.故答案为:23x.13.(5分)如图,等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点.分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是 6 .【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(5分)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2<S乙2.(填“>”、“=”、“<”中的一个)【解答】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.15.(5分)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为55°.【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.16.(5分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为a+b.(用含a,b的代数式表示)【解答】解:如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+b.故答案为a+b.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:|﹣3|+√8−√2.【解答】解:原式=3+2√2−√2=3+√2.18.(8分)解方程组:{x −y =1,3x +y =7. 【解答】解:{x −y =1①3x +y =7②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1, 则该方程组的解为{x =2y =1.19.(8分)人字折叠梯完全打开后如图1所示,B ,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的固定点.图2是它的示意图,AB =AC ,BD =140cm ,∠BAC =40°,求点D 离地面的高度DE .(结果精确到0.1cm ;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)【解答】解:过点A 作AF ⊥BC 于点F ,则AF ∥DE , ∴∠BDE =∠BAF , ∵AB =AC ,∠BAC =40°, ∴∠BDE =∠BAF =20°,∴DE =BD •cos20°≈140×0.94=131.6(cm ).答:点D 离地面的高度DE 约为131.6cm .20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2>y2﹣y3.【解答】解:(1)设y与x之间的函数关系式为:y=k x,把(3,400)代入y=kx得,400=k3,解得:k=1200,∴y与x之间的函数关系式为y=1200 x;(2)把x=6,8,10分别代入y=1200x得,y1=12006=200,y2=12008=150,y3=120010=120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,故答案为:>.21.(10分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).参与度0.2~0.40.4~0.60.6~0.80.8~1人数方式录播416128直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?【解答】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×11+3=200(人),“直播”总学生数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).23.(12分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.【解答】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EF A=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ=12BD=m2,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=m2 6,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=2,∵△BEF∽△BCA,∴AC EF=BC BE, 即√36−m 2m=mm √2, 解得m =2√3(负根已经舍弃).24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H (单位:cm ),如果在离水面竖直距离为h (单位:cm )的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s (单位:cm )与h 的关系为s 2=4h (H ﹣h ).应用思考:现用高度为20cm 的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm 处开一个小孔.(1)写出s 2与h 的关系式;并求出当h 为何值时,射程s 有最大值,最大射程是多少? (2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a ,b ,要使两孔射出水的射程相同,求a ,b 之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm ,求整高的高度及小孔离水面的竖直距离.【解答】解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4(ℎ−20+m2)2+(20+m)2,∴当h=20+m2时,s max=20+m=20+16,∴m=16,此时h=20+m2=18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.。

2020年浙江省台州市中考数学试卷(解析版)

2020年浙江省台州市中考数学试卷(解析版)

2020年浙江省台州市中考数学试卷参考答案一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算1﹣3的结果是( )A.2B.﹣2C.4D.﹣4【分析】根据有理数的加减法法则计算即可判断.【解答】解:1﹣3=1+(﹣3)=﹣2.故选:B.2.(4分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是( )A.B .C .D.【分析】从正面看所得到的图形即为主视图,因此选项A的图形符合题意.【解答】解:根据主视图的意义可知,选项A符合题意,故选:A.3.(4分)计算2a2•3a4的结果是( )A.5a6B.5a8C.6a6D.6a8【分析】直接利用单项式乘单项式运算法则计算得出答案.第1页(共18页)【解答】解:2a2•3a4=6a6.故选:C.4.(4分)无理数在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】由<<可以得到答案.【解答】解:∵3<<4,故选:B.5.(4分)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是( )A.中位数B.众数C.平均数D.方差【分析】根据中位数的意义求解可得.【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.6.(4分)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为( )A.(0,0)B.(1,2)C.(1,3)D.(3,1)【分析】利用平移规律进而得出答案.第2页(共18页)【解答】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,﹣1),∴C(0+3,﹣1+2),即C(3,1),故选:D.7.(4分)如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.8.(4分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②【分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.第3页(共18页)【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.9.(4分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是( )A.B .C .D.【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.【解答】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.10.(4分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为( )第4页(共18页)第5页(共18页)A .7+3B .7+4C .8+3D .8+4【分析】如图,过点M 作MH ⊥A ′R 于H ,过点N 作NJ ⊥A ′W 于J .想办法求出AR ,RM ,MN ,NW ,WD 即可解决问题.【解答】解:如图,过点M 作MH ⊥A ′R 于H ,过点N 作NJ ⊥A ′W 于J.由题意△EMN 是等腰直角三角形,EM =EN =2,MN =2,∵四边形EMHK 是矩形,∴EK =A ′K =MH =1,KH =EM =2,∵△RMH 是等腰直角三角形,∴RH =MH =1,RM=,同法可证NW=,由题意AR =RA ′=A ′W =WD =4,∴AD =AR +RM +MN +NW +DW =4++2++4=8+4,故选:D .二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:x 2﹣9= (x +3)(x ﹣3) .【分析】原式利用平方差公式分解即可.【解答】解:原式=(x +3)(x ﹣3),故答案为:(x +3)(x ﹣3).12.(5分)计算﹣的结果是 .【分析】先通分,再相减即可求解.【解答】解:=﹣=.故答案为:.13.(5分)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是 6 .【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(5分)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2 < S乙2.(填“>”、“=”、“<”中的一个)第6页(共18页)第7页(共18页)【分析】利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.【解答】解:由折线统计图得乙同学的成绩波动较大,所以s 甲2<S 乙2.故答案为:<.15.(5分)如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE .若⊙O 与BC 相切,∠ADE =55°,则∠C 的度数为 55° .【分析】由直径所对的圆周角为直角得∠AED =90°,由切线的性质可得∠ADC =90°,然后由同角的余角相等可得∠C =∠ADE =55°.【解答】解:∵AD 为⊙O 的直径,∴∠AED =90°,∴∠ADE +∠DAE =90°;∵⊙O 与BC 相切,∴∠ADC =90°,∴∠C +∠DAE =90°,∴∠C =∠ADE ,∵∠ADE=55°,∴∠C=55°.故答案为:55°.16.(5分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为 a+b .(用含a,b的代数式表示)【分析】如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a,由此即可解决问题.【解答】解:如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+b.故答案为a+b.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:|﹣3|+﹣.【分析】直接利用绝对值的性质和二次根式的性质化简得出答案.第8页(共18页)【解答】解:原式=3+2﹣=3+.18.(8分)解方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为19.(8分)人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)【分析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE的度数,再解直角三角形得结果.【解答】解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,第9页(共18页)∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2 > y2﹣y3.【分析】(1)设y与x之间的函数关系式为:y=,把(3,400)代入y =即可得到结论,(2)把x=6,8,10分别代入y =得到求得y1,y2,y3值,即可得到结论.【解答】解:(1)设y与x之间的函数关系式为:y=,把(3,400)代入y =得,400=,第10页(共18页)解得:k=1200,∴y与x之间的函数关系式为y =;(2)把x=6,8,10分别代入y =得,y1==200,y2==150,y3==120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,故答案为:>.21.(10分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;的形状,并说明理由.(2)判断△BOC【分析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,第11页(共18页)∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.40.4~0.60.6~0.80.8~1参与度人数方式录播416128直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?【分析】(1)根据表格数据得出两种教学方式参与度在0.6以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在0.8以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“录播”和“直播”的人数之比为1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4以下人数所占比例求出对应人数,再相加即可得出答案.【解答】解:(1)“直播”教学方式学生的参与度更高:第12页(共18页)理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×=200(人),“直播”总学生数为800×=600(人),所以“录播”参与度在0.4以下的学生数为200×=20(人),“直播”参与度在0.4以下的学生数为600×=30(人),所以参与度在0.4以下的学生共有20+30=50(人).23.(12分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E 是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.第13页(共18页)【分析】(1)想办法证明∠BEF=90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE是平行四边形,推出FJ =BD=,EF=m,由△ABC∽△CBM,可得BM =,由△BEJ∽△BME,可得BE =,由△BEF∽△BCA ,推出=,由此构建方程求解即可.【解答】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.第14页(共18页)(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EFA=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ =BD=,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE =,∵△BEF∽△BCA,∴=,即=,第15页(共18页)解得m=2(负根已经舍弃).24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h (单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b 之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.第16页(共18页)【分析】(1)将s2=4h(20﹣h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;(2)设存在a,b,使两孔射出水的射程相同,则4a(20﹣a)=4b(20﹣b),利用因式分解变形即可得出答案;(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.【解答】解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4+(20+m)2,∴当h=时,s max=20+m=20+16,第17页(共18页)∴m=16,此时h==18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.第18页(共18页)。

2020年浙江省台州市中考数学试题(含答案)

2020年浙江省台州市中考数学试题(含答案)
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)
17.(8分)计算:|﹣3|+ ﹣ .
18.(8分)解方程组:
19.(8分)人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)
3.(4分)计算2a2•3a4的结果是( )
A.5a6B.5a8C.6a6D.6a8
4.(4分)无理数 在( )
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
5.(4分)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是( )
A.中位数B.众数C.平均数D.方差
A.AB平分∠CADB.CD平分∠ACBC.AB⊥CDD.AB=CD
8.(4分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )
A.由②推出③,由③推出①B.由①推出②,由②推出③
C.由③推出①,由①推出②D.由①推出③,由③推出②
9.(4分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是( )
应用思考:现用高度为20cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔.

2020年浙江省台州市中考数学试卷(有答案)

2020年浙江省台州市中考数学试卷(有答案)

2020年浙江省台州市中考数学试卷班级:___________姓名:___________ 得分:___________一、选择题(本大题共10小题,共40.0分)1.计算1−3的结果是()A. 2B. −2C. −4D. 42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3.计算2a2⋅3a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.无理数√10在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A. 中位数B. 众数C. 平均数D. 方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,−1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)AB同7.如图,已知线段AB,分别以A,B为圆心,大于12样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CD8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B.C. D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3√2B. 7+4√2C. 8+3√2D. 8+4√2二、填空题(本大题共6小题,共30.0分)11.因式分解:x2−9=______.12.计算1x −13x的结果是______.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是______.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2______S乙2.(填“>”、“=”、“<“中的一个)15. 如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE.若⊙O 与BC 相切,∠ADE =55°,则∠C 的度数为______.16. 用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD 的面积为______.(用含a ,b 的代数式表示)三、计算题(本大题共1小题,共8.0分) 17. 解方程组:{x −y =13x +y =7.四、解答题(本大题共7小题,共72.0分) 18. 计算:|−3|+√8−√2.19. 人字折叠梯完全打开后如图1所示,B ,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的固定点.图2是它的示意图,AB =AC ,BD =140cm ,∠BAC =40°,求点D 离地面的高度DE.(结果精确到0.1cm ;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1−y2)与(y2−y3)的大小:y1−y2______y2−y3.21.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).参与度0.2~0.40.4~0.60.6~0.80.8~1人数方式录播416128直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为ℎ(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4ℎ(H−ℎ).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;孔离水面的竖直距离.答案和解析1.【答案】B【解析】解:1−3=1+(−3)=−2.故选:B.根据有理数的加减法法则计算即可判断.本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.2.【答案】A【解析】解:根据主视图的意义可知,选项A符合题意,故选:A.从正面看所得到的图形即为主视图,因此选项A的图形符合题意.考查简单几何体的三视图的画法,从不同方向对问题进行正投影所得到的图形分别为主视图、左视图、俯视图.3.【答案】C【解析】解:2a2⋅3a4=6a6.故选:C.直接利用单项式乘单项式运算法则计算得出答案.此题主要考查了单项式乘单项式,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:∵3<√10<4,故选:B.由√9<√10<√16可以得到答案.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.5.【答案】A【解析】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.根据中位数的意义求解可得.本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.6.【答案】D【解析】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,−1),∴C(0+3,−1+2),即C(3,1),故选:D.利用平移规律进而得出答案.此题主要考查了坐标与图形变化−平移,正确得出对应点位置是解题关键.7.【答案】D【解析】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.本题主要考查作图−基本作图,解题的关键是掌握菱形的判定与性质.8.【答案】A【解析】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.根据对角线相等的四边形推不出是正方形或矩形即可判断.本题考查正方形的判定和性质,矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【答案】C【解析】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.本题考查动点问题函数图象,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2√2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=√2,同法可证NW=√2,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4+√2+2√2+√2+4=8+4√2,故选:D.如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.11.【答案】(x+3)(x−3)【解析】【分析】本题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x−3),故答案为:(x+3)(x−3).12.【答案】23x【解析】解:1x −13x=33x−13x=23x.故答案为:23x.先通分,再相减即可求解.考查了分式加减法,把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.13.【答案】6【解析】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE//AB,DF//AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.考查了等边三角形的性质,平行线的性质,关键是证明△DEF是等边三角形.14.【答案】<【解析】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.15.【答案】55°【解析】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,由直径所对的圆周角为直角得∠AED =90°,由切线的性质可得∠ADC =90°,然后由同角的余角相等可得∠C =∠ADE =55°.本题考查了切线的性质、圆的相关概念及性质及互余关系等知识点,熟练掌握圆的相关性质是解题的关键. 16.【答案】a +b【解析】解:如图,正方形ABCD 是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD 的面积=a +b .故答案为a +b .如图,正方形ABCD 是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a ,由此即可解决问题.本题考查中心对称,全等三角形的判定和性质,图形的拼剪等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型. 17.【答案】解:{x −y =1 ①3x +y =7 ②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1,则该方程组的解为{x =2y =1.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】解:原式=3+2√2−√2 =3+√2.【解析】直接利用绝对值的性质和二次根式的性质化简得出答案. 此题主要考查了实数运算,正确化简二次根式是解题关键. 19.【答案】解:过点A 作AF ⊥BC 于点F ,则AF//DE , ∴∠BDE =∠BAF ,∵AB =AC ,∠BAC =40°, ∴∠BDE =∠BAF =20°,∴DE =BD ⋅cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.【解析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE的度数,再解直角三角形得结果.本题主要考查了解直角三角形,等腰三角形的性质,关键是构造直角三角形求得∠BDE的度数.20.【答案】>【解析】解:(1)设y与x之间的函数关系式为:y=kx,把(3,400)代入y=kx 得,400=k3,解得:k=1200,∴y与x之间的函数关系式为y=1200x;(2)把x=6,8,10分别代入y=1200x 得,y1=12006=200,y2=12008=150,y3=120010=120,∵y1−y2=200−150=50,y2−y3=150−120=30,∵50>30,∴y1−y2>y2−y3,故答案为:>.(1)设y与x之间的函数关系式为:y=kx ,把(3,400)代入y=kx即可得到结论,(2)把x=6,8,10分别代入y=1200x得到求得y1,y2,y3值,即可得到结论.本题考查了反比例函数的应用,待定系数法求函数的解析式,反比例函数的性质,正确的理解题意是解题的关键.21.【答案】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC−∠ABD=∠ACB−∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【解析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.22.【答案】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×11+3=200(人),“直播”总学生数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).【解析】(1)根据表格数据得出两种教学方式参与度在0.6以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在0.8以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“录播”和“直播”的人数之比为1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4以下人数所占比例求出对应人数,再相加即可得出答案.本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.【答案】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD =∠CAB ,∴∠BFE =∠CAB ,∵∠ACB =∠FEB =90°,∴△BEF∽△BCA .(3)解:设EF 交AB 于J.连接AE .∵EF 与AB 互相平分,∴四边形AFBE 是平行四边形,∴∠EFA =∠FEB =90°,即EF ⊥AD ,∵BD ⊥AD ,∴EF//BD ,∵AJ =JB ,∴AF =DF ,∴FJ =12BD =m 2, ∴EF =m ,∵△ABC∽△CBM ,∴BC :MB =AB :BC ,∴BM =m 26,∵△BEJ∽△BME ,∴BE :BM =BJ :BE ,∴BE =√2,∵△BEF∽△BCA ,∴AC EF =BC BE , 即√36−m 2m =m m √2,解得m =2√3(负根已经舍弃).【解析】(1)想办法证明∠BEF =90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE 是平行四边形,推出FJ =12BD =m 2,EF =m ,由△ABC∽△CBM ,可得BM =m 26,由△BEJ∽△BME ,可得BE =√2,由△BEF∽△BCA ,推出AC EF =BCBE ,由此构建方程求解即可.本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题. 24.【答案】解:(1)∵s 2=4ℎ(H −ℎ),∴当H =20时,s 2=4ℎ(20−ℎ)=−4(ℎ−10)2+400,∴当ℎ=10时,s 2有最大值400,∴当ℎ=10时,s 有最大值20cm .∴当h 为何值时,射程s 有最大值,最大射程是20cm ;(2)∵s 2=4ℎ(20−ℎ),设存在a ,b ,使两孔射出水的射程相同,则有:4a(20−a)=4b(20−b),∴20a−a2=20b−b2,∴a2−b2=20a−20b,∴(a+b)(a−b)=20(a−b),∴(a−b)(a+b−20)=0,∴a−b=0,或a+b−20=0,∴a=b或a+b=20;)2+(20+m)2,(3)设垫高的高度为m,则s2=4ℎ(20+m−ℎ)=−4(ℎ−20+m2∴当ℎ=20+m时,s max=20+m=20+16,2=18.∴m=16,此时ℎ=20+m2∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.【解析】(1)将s2=4ℎ(20−ℎ)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;(2)设存在a,b,使两孔射出水的射程相同,则4a(20−a)=4b(20−b),利用因式分解变形即可得出答案;(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.。

2020年浙江省台州市中考数学测试试题附解析

2020年浙江省台州市中考数学测试试题附解析

2020年浙江省台州市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列命题中,假命题的是( )A .圆的切线垂直于过切点的半径B .垂直于切线的直线必经过圆心C .若圆的两条切线平行,那么经过两切点的直线必经过圆心D .经过半径的外揣并且垂直于这条半径的直线是圆的切线2.对角线互相垂直平分的四边形是( )A .矩形B .菱形C .平行四边形D .梯形 3.平行四边形的一边为32,则它的两条对角线长不可能是( ) A .20和40B .30和50C .40和50D .20和60 4.化简)22(28+-得( ) A .-2 B .22- C .2 D .224-5. 已知下列条件,不能作出三角形的是( )A .两边及其夹角B 两角及其夹边C .三边D .两边及除夹角外的另一个角6.下列各式由左边到右边的变形中,是分解因式的为( )A .ay ax y x a +=+)(B .4)4(442+-=+-x x x xC .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162+-+=+-7.桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜.哪方赢的机会大?( )A .红方B .蓝方C .一样D .不知道8.一艘轮船从点A 出发,沿南偏西60°方向航行到B 点,再从8点出发沿北偏东15°方向航行到C 点,则∠ABC= ( )A .45°B .75°C .105°D .135°9.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈同坐在跷跷板的一端,这是爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.小宝体重可能是( ) A .23.3千克 B .23千克 C .21.1千克 D .19.9千克二、填空题10.如图,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示) 11.如图,将边长为2 cm 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△C B A '''ˊ,若两个三角形重叠部分的面积是1cm 2,则它移动的距离A A '等于 cm.12.将50个数据分成三组,其中第一组与第三组的频率之和是0.7,则第二组的频率是 ,第二组的频数是 .13.一元二次方程2980y -=的根是 .14.某市居民用水的价格是2.2元/m 3,设小煜家用水量为卫(m 3),所付的水费为y 元,则y 关于x 的函数解析式为 ;当x=15时,函数值y 是 ,它的实际意义是 .15.从某鱼塘里捕上l50条鱼做上标记,然后放回鱼塘里去,经过一段时间,待带标记的鱼完全混合于鱼群中后,再捕第二次样品鱼200条,若其中带标记的鱼有10条,可估计鱼塘里有 条鱼.16.化简:293x x -=- .17.如图所示是一个可以自由转动的转盘,转盘停下来时,当指针指向几,就按顺时针方向跳几步. 例如,当指针指向“2”时,使它顺时针跳 2 步,最终停在“4”上. 按照以上规则,试说明下列各个事件分别属于哪种事件:(1)指针最终停在数字“5”上是 事件;(2)指针最终停在数字“6”上是 事件;(3)指针最终停在的数字为偶数是 事件.18.将一付常规三角板拼成如图所示的图形,则∠ABC =_______度.19.给出下列等式:2231881-==⨯,22531682-==⨯,22752483-==⨯,…. 观察后可得出规律: 22(21)(21)n n +--= .20.在括号内填上适当的项:(1)a-( )=a-b-c, x+y-1=-( ) ,3[( )+x]=-6y+3x.(2) 2282x xy y -+= 2x +( )= 2x -( ).(3)22)12m mn n -+-=1-( )(4) (-a+b+c)(a+b-c)=[b+( )][b-( )].三、解答题21.添线补全下列物体的三视图:22.画出函数y=x 2-2x-3图像,并利用图像回答:x 取何值时,y 随x 的增大而减小?23.在同一坐标系内画出13y x=和221y x =-的图象,并借助图象回答下列问题: 主视图左视图俯视图A BCD H EF G (1)x 为何值时12y y =?(2)x 为何值时,13y >-且23y <-?(3)x 为何值时,12y y <?24.已知:如图,在四边形ABCD 中,AB=DC ,AD=BC ,点E 在BC 上,点F 在AD 上,AF=CE ,EF 与对角线BD 相交于点O ,求证:O 是BD 的中点.25.已知:如图,E ,F 分别是△ABC 的边AB ,BC 的中点.G ,H 是AC 上的三等分点,EG ,FH 的延长线相交于D.求证:(1)BG =DH ;(2)四边形ABCD 是平行四边形.26.说出下列命题的题设和结论,并指出它是真命题还是假命题:(1)系数相同的单项式是同类项;(2)有两个角和一条边对应相等的两个三角形全等;(3)同旁内角相等.27.要做一个高是8cm ,底面的长比宽多5cm ,体积是528cm 3 的长方体木箱,问底面的长和宽各是多少?28.下面让我们来探究生活中有关粉刷墙壁时,刷具扫过面积的问题:(π≈3.14)(1)甲工人用的刷具形状是一根细长的棍子(如图(1),长度AB为20cm(宽度忽略不计),他把刷具绕A点旋转90度,则刷具扫过的面积是多少?(2)乙工人用的刷具形状是圆形(如图(2)),直径CD为20cm,点O、C、D在同一直线上,OC=30cm,他把刷具绕O点旋转90度,则刷具扫过的面积是多少?29.如图①表示某地区2003年12个月中每月的平均气温,图②表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):30.解下列方程(1)1.510.530.6x x--=(2)0.180.21 0.20.03x x--=【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.A5.D6.C7.B8.A9.C二、填空题10.11.(300m112.0.3,1513. 223y =±14. y=2.2x ,33,用水量为15吨时所付水费为33元15.300016.x +317.(1)不可能;(2)随机;(3)必然18.135º19.8n 20.(4)c a -, c a -(1) b c +,1x y --+,2y - (2)282xy y -+, 282xy y - (3) 222m mn n -+三、解答题21.案:如图:22.图略,当x ≤1时,y 随x 的增大而减小.23.图象见解图,(1)当32x =或x=一1 时,12y y = (2)当x <— 1 时,y l >—3且 y 2<一3;(3)当 一1<x<0 或32x >时,12y y < 24.提示:△DOF ≌△BOE .25.提示:(1)连结BH ,则BH ∥DG ,BG ∥DH ;(2)连结BD 交AC 于点O ,由(1)得OG =OH ,OB =OD .26.(1)题设:单项式的系数相同;结论:它们是同类项,是假命题;(2)题设:两个三角形的两个角和一条边对应相等;结论:这两个三角形全等,是假命题;(3)题设:两个角是同旁内角;结论:这两个角相等,是假命题27.11 cm ,6cm28.(1)314cm 2;(2)1570cm 2.29.不唯一,如:气温高或低的月份用电量最大30.(1)57x =- (2)35x =。

2020年浙江省台州市中考数学试卷附答案

2020年浙江省台州市中考数学试卷附答案

A. 5a6
B. 5a8
C. 6a6
D. 6a8
4. 无理数 在( )
A. 2 和 3 之间
B. 3 和 4 之间
C. 4 和 5 之间
D. 5 和 6 之间
5. 在一次数学测试中,小明成绩 72 分,超过班级半数同学的成绩,分折得出这个结
论所用的统计量是( )
A. 中位数
B. 众数
C. 平均数
2020 年浙江省台州市中考数学试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 40.0 分)
1. 计算 1-3 的结果是( )
A. 2
B. -2
C. -4
D. 4
2. 用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主
视图是( )
A.
B.
C.
D.
3. 计算 2a2•3a4 的结果是( )
D. 方差
6. 如图,把△ABC 先向右平移 3 个单位,再向上平移 2 个单
位得到△DEF,则顶点 C(0,-1)对应点的坐标为(

A. (0,0)
B. (1,2)
C. (1,3)
D. (3,1)
7. 如图,已知线段 AB,分别以 A,B 为圆心,大于 AB 同
样长为半径画弧,两弧交于点 C,D,连接 AC,AD,BC ,BD,CD,则下列说法错误的是( )
D. 8+4
第 2 页,共 15 页
14. 甲、乙两位同学在 10 次定点投篮训练中(每次训练投 8 个),各次训练成绩(投 中个数)的折线统计图如图所示,他们成绩的方差分别为 s 甲 2 与 S 乙 2,则 s 甲 2______S 乙 2.(填“>”、“=”、“<“中的一个)

2020届浙江省台州市中考数学试卷含答案

2020届浙江省台州市中考数学试卷含答案

2020年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算1﹣3的结果是()A.2B.﹣2C.4D.﹣42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.3.计算2a2•3a4的结果是()A.5a6B.5a8C.6a6D.6a84.无理数在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)7.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3B.7+4C.8+3D.8+4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x2﹣9=.12.计算﹣的结果是.。

2020年浙江省台州市中考数学试题及参考答案(word解析版)

2020年浙江省台州市中考数学试题及参考答案(word解析版)

2020年浙江省初中毕业生学业考试(台州卷)数学试题卷(满分150分,考试时间120分钟)一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算1﹣3的结果是()A.2 B.﹣2 C.4 D.﹣42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.3.计算2a2•3a4的结果是()A.5a6B.5a8C.6a6D.6a84.无理数在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)7.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACBC.AB⊥CD D.AB=CD8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3B.7+4C.8+3D.8+4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x2﹣9=.12.计算﹣的结果是.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2S乙2.(填“>”、“=”、“<”中的一个)15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:|﹣3|+﹣.18.(8分)解方程组:19.(8分)人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y 2y2﹣y3.21.(10分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.4 0.4~0.6 0.6~0.8 0.8~1参与度人数方式录播 4 16 12 8直播 2 10 16 12 (1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.(12分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD 交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.答案与解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算1﹣3的结果是()A.2 B.﹣2 C.4 D.﹣4【知识考点】有理数的减法.【思路分析】根据有理数的加减法法则计算即可判断.【解答过程】解:1﹣3=1+(﹣3)=﹣2.故选:B.【总结归纳】本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.2.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】从正面看所得到的图形即为主视图,因此选项A的图形符合题意.【解答过程】解:根据主视图的意义可知,选项A符合题意,故选:A.【总结归纳】考查简单几何体的三视图的画法,从不同方向对问题进行正投影所得到的图形分别为主视图、左视图、俯视图.3.计算2a2•3a4的结果是()A.5a6B.5a8C.6a6D.6a8【知识考点】单项式乘单项式.【思路分析】直接利用单项式乘单项式运算法则计算得出答案.【解答过程】解:2a2•3a4=6a6.故选:C.【总结归纳】此题主要考查了单项式乘单项式,正确掌握相关运算法则是解题关键.4.无理数在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【知识考点】估算无理数的大小.【思路分析】由<<可以得到答案.【解答过程】解:∵3<<4,故选:B.【总结归纳】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差【知识考点】算术平均数;中位数;众数;方差;统计量的选择.【思路分析】根据中位数的意义求解可得.【解答过程】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.【总结归纳】本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)【知识考点】坐标与图形变化﹣平移.【思路分析】利用平移规律进而得出答案.【解答过程】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,﹣1),∴C(0+3,﹣1+2),即C(3,1),故选:D.【总结归纳】此题主要考查了坐标与图形变化﹣平移,正确得出对应点位置是解题关键.7.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【知识考点】菱形的判定与性质;作图—基本作图.【思路分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答过程】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.【总结归纳】本题主要考查作图﹣基本作图,解题的关键是掌握菱形的判定与性质.8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②【知识考点】矩形的判定;正方形的判定与性质.【思路分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.【解答过程】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.【总结归纳】本题考查正方形的判定和性质,矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.【解答过程】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.【总结归纳】本题考查动点问题函数图象,解题的关键是理解题意,灵活运用所学知识解决问题.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3B.7+4C.8+3D.8+4【知识考点】等腰直角三角形;矩形的性质;翻折变换(折叠问题).【思路分析】如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.【解答过程】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=,同法可证NW=,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4++2++4=8+4,故选:D.【总结归纳】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x2﹣9=.【知识考点】因式分解﹣运用公式法.【思路分析】原式利用平方差公式分解即可.【解答过程】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【总结归纳】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.计算﹣的结果是.【知识考点】分式的加减法.【思路分析】先通分,再相减即可求解.【解答过程】解:=﹣=.故答案为:.【总结归纳】考查了分式加减法,把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【知识考点】平行线的性质;等边三角形的性质.【思路分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.【解答过程】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.【总结归纳】考查了等边三角形的性质,平行线的性质,关键是证明△DEF是等边三角形.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2S乙2.(填“>”、“=”、“<”中的一个)【知识考点】折线统计图;方差.【思路分析】利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.【解答过程】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.【总结归纳】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O 与BC相切,∠ADE=55°,则∠C的度数为.【知识考点】圆周角定理;切线的性质.【思路分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质可得∠ADC=90°,然后由同角的余角相等可得∠C=∠ADE=55°.【解答过程】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.【总结归纳】本题考查了切线的性质、圆的相关概念及性质及互余关系等知识点,熟练掌握圆的相关性质是解题的关键.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD 的面积为.(用含a,b的代数式表示)【知识考点】全等三角形的判定与性质;正方形的性质;中心对称.【思路分析】如图,连接DK,DN,证明S四边形DMNT=S△DKN=a即可解决问题.【解答过程】解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为a+b.【总结归纳】本题考查中心对称,全等三角形的判定和性质,图形的拼剪等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:|﹣3|+﹣.【知识考点】实数的运算.【思路分析】直接利用绝对值的性质和二次根式的性质化简得出答案.【解答过程】解:原式=3+2﹣=3+.【总结归纳】此题主要考查了实数运算,正确化简二次根式是解题关键.18.(8分)解方程组:【知识考点】解二元一次方程组.【思路分析】方程组利用加减消元法求出解即可.【解答过程】解:,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(8分)人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)【知识考点】翻折变换(折叠问题);解直角三角形的应用.【思路分析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE的度数,再解直角三角形得结果.【解答过程】解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.【总结归纳】本题主要考查了解直角三角形,等腰三角形的性质,关键是构造直角三角形求得∠BDE的度数.20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.【知识考点】反比例函数的应用.【思路分析】(1)设y与x之间的函数关系式为:y=,把(3,400)代入y=即可得到结论,(2)把x=6,8,10分别代入y=得到求得y1,y2,y3值,即可得到结论.【解答过程】解:(1)设y与x之间的函数关系式为:y=,把(3,400)代入y=得,400=,解得:k=1200,∴y与x之间的函数关系式为y=;(2)把x=6,8,10分别代入y=得,y1==200,y2==150,y3==120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,故答案为:>.【总结归纳】本题考查了反比例函数的应用,待定系数法求函数的解析式,反比例函数的性质,正确的理解题意是解题的关键.21.(10分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.【知识考点】全等三角形的判定与性质;等腰三角形的判定.【思路分析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.【解答过程】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【总结归纳】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.4 0.4~0.6 0.6~0.8 0.8~1参与度人数方式录播 4 16 12 8直播 2 10 16 12 (1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?【知识考点】用样本估计总体;利用频率估计概率.【思路分析】(1)根据表格数据得出两种教学方式参与度在0.6以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在0.8以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“录播”和“直播”的人数之比为1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4以下人数所占比例求出对应人数,再相加即可得出答案.【解答过程】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×=200(人),“直播”总学生数为800×=600(人),所以“录播”参与度在0.4以下的学生数为200×=20(人),“直播”参与度在0.4以下的学生数为600×=30(人),所以参与度在0.4以下的学生共有20+30=50(人).【总结归纳】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.(12分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD 交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.【知识考点】圆的综合题.【思路分析】(1)想办法证明∠BEF=90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE是平行四边形,推出FJ=BD=,EF=m,由△ABC∽△CBM,可得BM=,由△BEJ∽△BME,可得BE=,由△BEF∽△BCA,推出=,由此构建方程求解即可.【解答过程】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EFA=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ=BD=,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=,∵△BEF∽△BCA,∴=,即=,解得m=2(负根已经舍弃).【总结归纳】本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.【知识考点】二次函数的应用.【思路分析】(1)将s2=4h(20﹣h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;(2)设存在a,b,使两孔射出水的射程相同,则4a(20﹣a)=4b(20﹣b),利用因式分解变形即可得出答案;(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.【解答过程】解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4+(20+m)2,∴当h=时,s max=20+m=20+16,∴m=16,此时h==18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.【总结归纳】本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.。

2020年浙江省台州市中考数学试卷--解析版

2020年浙江省台州市中考数学试卷--解析版

2020年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4 分)计算1﹣3 的结果是(A.2 B.﹣22.(4 分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()C.4 D.﹣4)A.3.(4 分)计算2a•3a的结果是(A.5a6 B.5a8B.C.D.2 4 )C.6a6D.6a84.(4 分)无理数10在()√A.2 和3 之间B.3 和4 之间C.4 和5 之间D.5 和6 之间5.(4 分)在一次数学测试中,小明成绩72 分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是(A.中位数B.众数6.(4 分)如图,把△ABC先向右平移3 个单位,再向上平移2 个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()C.平均数D.方差)A.(0,0)B.(1,2)C.(1,3)D.(3,1)17.(4 分)如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交2于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD8.(4 分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是(A.由②推出③,由③推出①)B.由①推出②,由②推出③D.由①推出③,由③推出②C.由③推出①,由①推出②9.(4 分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.C.B.D.10.(4 分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D 互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3 2B.7+4 2C.8+3 2D.8+4 2√√√√二、填空题(本题有6小题,每小题5分,共30分)211.(5 分)因式分解:x﹣9=.11 12.(5 分)计算−的结果是3푥.푥13.(5 分)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.(5 分)甲、乙两位同学在10 次定点投篮训练中(每次训练投8 个),各次训练成绩(投2 与S2,则s乙甲2中个数)的折线统计图如图所示,他们成绩的方差分别为s S甲2.(填“>”、“=”、“<“中的一个)乙15.(5 分)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.16.(5 分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8 分)计算:|﹣3|+8−2.√√18.(8 分)解方程组:{푥−푦=1.3푥+푦=719.(8 分)人字折叠梯完全打开后如图1 所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2 是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.(8 分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15 次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3 次训练所需时间为400 秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10 时,对应的函数值分别为y,y,y,比较(y﹣y)与(y1 2 3 1 22 ﹣y)的大小:y﹣y y﹣y.3 1 22 321.(10 分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.(12 分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40 人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).参与度人数0.2~0.4 0.4~0.6 0.6~0.8 0.8~1方式录播直播4216101216812(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8 及以上的概率是多少?(3)该校共有800 名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4 以下的共有多少人?23.(12 分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.(14 分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程2(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.2(1)写出s与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.2020年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4 分)计算1﹣3 的结果是(A.2 B.﹣2)C.4 D.﹣4 【分析】根据有理数的加减法法则计算即可判断.【解答】解:1﹣3=1+(﹣3)=﹣2.故选:B.【点评】本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.2.(4 分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.【分析】从正面看所得到的图形即为主视图,因此选项A的图形符合题意.【解答】解:根据主视图的意义可知,选项A符合题意,故选:A.【点评】考查简单几何体的三视图的画法,从不同方向对问题进行正投影所得到的图形分别为主视图、左视图、俯视图.2 43.(4 分)计算2a•3a的结果是()A.5a6 B.5a8C.6a6D.6a8【分析】直接利用单项式乘单项式运算法则计算得出答案.2 4 6【解答】解:2a•3a=6a.故选:C.【点评】此题主要考查了单项式乘单项式,正确掌握相关运算法则是解题关键.4.(4 分)无理数10在(√)A.2 和3 之间B.3 和4 之间C.4 和5 之间D.5 和6 之间【分析】由√9<√10<√16可以得到答案.【解答】解:∵3<√10<4,故选:B.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.5.(4 分)在一次数学测试中,小明成绩72 分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是(A.中位数B.众数【分析】根据中位数的意义求解可得.)C.平均数D.方差【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.【点评】本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.6.(4 分)如图,把△ABC先向右平移3 个单位,再向上平移2 个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)【分析】利用平移规律进而得出答案.【解答】解:∵把△ABC先向右平移3 个单位,再向上平移2 个单位得到△DEF,顶点C(0,﹣1),∴C(0+3,﹣1+2),即C(3,1),故选:D.【点评】此题主要考查了坐标与图形变化﹣平移,正确得出对应点位置是解题关键.17.(4 分)如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交2于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.【点评】本题主要考查作图﹣基本作图,解题的关键是掌握菱形的判定与性质.8.(4 分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是(A.由②推出③,由③推出①)B.由①推出②,由②推出③D.由①推出③,由③推出②C.由③推出①,由①推出②【分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.【点评】本题考查正方形的判定和性质,矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.(4 分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.C.B.D.【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.【解答】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.【点评】本题考查动点问题函数图象,解题的关键是理解题意,灵活运用所学知识解决问题.10.(4 分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D 互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3 2B.7+4 2C.8+3 2D.8+4 2√√√√【分析】如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.【解答】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2√2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=√2,同法可证NW=√2,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4+√2+2√2+√2+4=8+4√2,故选:D.【点评】本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.二、填空题(本题有6小题,每小题5分,共30分)211.(5 分)因式分解:x﹣9=(x+3)(x﹣3)【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3)..【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.11212.(5 分)计算−的结果是3푥.푥3푥【分析】先通分,再相减即可求解.1【解答】解:−푥1312=−3푥3푥=.3푥3푥2故答案为:.3푥【点评】考查了分式加减法,把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.13.(5 分)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是 6 .【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.【点评】考查了等边三角形的性质,平行线的性质,关键是证明△DEF是等边三角形.14.(5 分)甲、乙两位同学在10 次定点投篮训练中(每次训练投8 个),各次训练成绩(投2 与S2,则s乙2中个数)的折线统计图如图所示,他们成绩的方差分别为s<S乙甲甲2.(填“>”、“=”、“<“中的一个)【分析】利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.【解答】解:由折线统计图得乙同学的成绩波动较大,所以s2<S2.甲乙故答案为:<.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.15.(5 分)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为55°.【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质可得∠ADC=90°,然后由同角的余角相等可得∠C=∠ADE=55°.【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.【点评】本题考查了切线的性质、圆的相关概念及性质及互余关系等知识点,熟练掌握圆的相关性质是解题的关键.16.(5 分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为a+b.(用含a,b的代数式表示)【分析】如图,正方形ABCD是由4 个直角三角形和一个小正方形组成,4 个直角三角形的面积和等于大正方形的面积a,由此即可解决问题.【解答】解:如图,正方形ABCD是由4 个直角三角形和一个小正方形组成,4 个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+b.故答案为a+b.【点评】本题考查中心对称,全等三角形的判定和性质,图形的拼剪等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8 分)计算:|﹣3|+8−2.√√【分析】直接利用绝对值的性质和二次根式的性质化简得出答案.【解答】解:原式=3+2√2−√2=3+√2.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.18.(8 分)解方程组:{푥−푦=1.3푥+푦=7【分析】方程组利用加减消元法求出解即可.【解答】解:{푥−푦=1①,3푥+푦=7②①+②得:4x=8,解得:x=2,把x=2 代入①得:y=1,则该方程组的解为{푥=2푦=1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(8 分)人字折叠梯完全打开后如图1 所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2 是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)【分析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE的度数,再解直角三角形得结果.【解答】解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.【点评】本题主要考查了解直角三角形,等腰三角形的性质,关键是构造直角三角形求得∠BDE的度数.20.(8 分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15 次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3 次训练所需时间为400 秒.(1)求y与x之间的函数关系式;(2)当 x 的值为 6,8,10 时,对应的函数值分别为 y ,y ,y ,比较(y ﹣y )与(y 21 2 3 1 2 ﹣y )的大小:y ﹣y > y ﹣y .233 1 2 푘 푥 푘 푥【分析】(1)设 y 与 x 之间的函数关系式为:y = ,把(3,400)代入 y = 即可得到结 论,1200푥 (2)把 x =6,8,10 分别代入 y =得到求得 y ,y ,y 值,即可得到结论. 1 2 3푘푥【解答】解:(1)设 y 与 x 之间的函数关系式为:y = , 푘 푥푘 3把(3,400)代入 y = 得,400= , 解得:k =1200,∴y 与 x 之间的函数关系式为 y = 1200푥; 1200 푥 1200 6 1200 8 120010(2)把 x =6,8,10 分别代入 y =得,y = =200,y = =150,y = =120, 1 2 3 ∵y ﹣y =200﹣150=50,y ﹣y =150﹣120=30, 1 2 2 3 ∵50>30, ∴y ﹣y >y ﹣y , 1 2 2 3 故答案为:>.【点评】本题考查了反比例函数的应用,待定系数法求函数的解析式,反比例函数的性 质,正确的理解题意是解题的关键.21.(10 分)如图,已知 AB =AC ,AD =AE ,BD 和 CE 相交于点 O . (1)求证:△ABD ≌△ACE ;(2)判断△BOC 的形状,并说明理由.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.22.(12 分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40 人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.4 0.4~0.6 0.6~0.8 0.8~1参与度人数方式录播 4 16 12 8直播 2 10 16 12(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8 及以上的概率是多少?(3)该校共有800 名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4 以下的共有多少人?【分析】(1)根据表格数据得出两种教学方式参与度在0.6 以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在0.8 以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“录播”和“直播”的人数之比为1:3 及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4 以下人数所占比例求出对应人数,再相加即可得出答案.【解答】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6 以上的人数为28 人,“录播”参与度在0.6 以上的人数为20 人,参与度在0.6 以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8 及以上的概率是30%;1 1+33 1+3(3)“录播”总学生数为800×=200(人),“直播”总学生数为800×=600(人),440所以“录播”参与度在0.4 以下的学生数为200×=20(人),240“直播”参与度在0.4 以下的学生数为600×=30(人),所以参与度在0.4 以下的学生共有20+30=50(人).【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.(12 分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.【分析】(1)想办法证明∠BEF=90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.1푚(3)证明四边形AFBE是平行四边形,推出FJ=BD=2,EF=m,由△ABC∽△CBM,2푚2 6,由△BEJ∽△BME,可得BE=푚,由△BEF∽△BCA,推出퐴퐶퐸퐹퐵퐶퐵퐸可得BM==,√2由此构建方程求解即可.【解答】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EFA=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,1∴FJ=BD=2푚2,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,푚2∴BM=,6∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=푚,√2∵△BEF∽△BCA,퐴퐶퐸퐹퐵퐶퐵퐸∴=,√36−푚2푚푚푚即=,√2解得m=2√3(负根已经舍弃).【点评】本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.24.(14 分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程2(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.2(1)写出s与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.2 2 【分析】(1)将 s =4h (20﹣h )写成顶点式,按照二次函数的性质得出 s 的最大值,再 2 求 s 的算术平方根即可;(2)设存在 a ,b ,使两孔射出水的射程相同,则 4a (20﹣a )=4b (20﹣b ),利用因式 分解变形即可得出答案;2 (3)设垫高的高度为 m ,写出此时 s 关于 h 的函数关系式,根据二次函数的性质可得答 案.2 【解答】解:(1)∵s =4h (H ﹣h ),2 2 ∴当 H =20 时,s =4h (20﹣h )=﹣4(h ﹣10) +400,2 ∴当 h =10 时,s 有最大值 400,∴当 h =10 时,s 有最大值 20cm .∴当 h 为何值时,射程 s 有最大值,最大射程是 20cm ;2 (2)∵s =4h (20﹣h ),设存在 a ,b ,使两孔射出水的射程相同,则有:4a (20﹣a )=4b (20﹣b ),2 2 ∴20a ﹣a =20b ﹣b ,2 2 ∴a ﹣b =20a ﹣20b ,∴(a +b )(a ﹣b )=20(a ﹣b ),∴(a ﹣b )(a +b ﹣20)=0,∴a ﹣b =0,或 a +b ﹣20=0,∴a =b 或 a +b =20;20+푚 22 2 (3)设垫高的高度为 m ,则 s =4h (20+m ﹣h )=﹣4(ℎ −)2 +(20+m ) , 20+푚 2 ∴当 h = 时,s max =20+m =20+16,20+푚∴m=16,此时h==18.2∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.【点评】本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.。

浙江省台州市2020年中考数学试卷

浙江省台州市2020年中考数学试卷

浙江省台州市2020年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)(共10题;共40分)1.计算1-3的结果是()A. 2B. -2C. 4D. -42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3.计算2a3·3 a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.无理数√10在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A. 中位数B. 众数C. 平均数D. 方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)7.如图,已知线段AB,分别以A,B为圆心,大于1AB同样长为半径画弧,两弧交于点C,D,连接AC,2AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CD8.下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t (单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t (单位:s)之间的函数图象大致是()A. B. C. D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3 √2B. 7+4 √2C. 8+3 √2D. 8+4 √2二、填空题(本题有6小题,每小题5分,共30分)(共6题;共30分)11.因式分解:x2-9=________.12.计算1x −13x的结果是________.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点. 分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是________.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2________ S乙2填">”、“=”、“<"中的一个)15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE. 若⊙O与BC相切,∠ADE=55°,则∠C的度数为________ .16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为依次连接四块大正方形地砖的中心得到正方形ABCD. 则正方形ABCD的面积为________. (用含a,b的代数式表示)三、解答題(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第题14分,共80分)(共8题;共80分)17.计算:|-3|+ √8—√2.18.解方程组:{x−y=13x+y=719.人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点. 图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0. 1cm;参考数据sin70°≈0. 94,cos70°≈0. 34,sin20°≈0. 34,cos20°≈0. 94)20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当. 当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系. 完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小: y1-y2________y2-y3.21.如图,已知ABAC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种. 为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如下表(数据分组包含左端值不包含右端值)(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0. 8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0. 4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M. E是线段CM上的点,连接BE. F是△BDE的外接圆与AD的另一个交点,连接EF,BF(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM正存在点E,使得EF和AB互相平分,求m的值.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:m),如果在离水面竖直距离为h(单校:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔.(1)写出s2与h的关系式; 并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.答案解析部分一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【答案】B【解析】【解答】解:1﹣3=1+(﹣3)=﹣2.故答案为:B.【分析】根据有理数的加减法法则计算即可判断.2.【答案】A【解析】【解答】根据主视图的意义可知,选项A符合题意,故答案为:A.【分析】从正面看所得到的图形即为主视图,因此选项A的图形符合题意.3.【答案】C【解析】【解答】解:2a2•3a4=6a6.故答案为:C.【分析】直接利用单项式乘单项式运算法则计算得出答案.4.【答案】B【解析】【解答】解:∵3<√10<4,故答案为:B.【分析】由√9<√10<√16可以得到答案.5.【答案】A【解析】【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故答案为:A.【分析】根据中位数的意义求解可得.6.【答案】D【解析】【解答】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,﹣1),∴C(0+3,﹣1+2),即C(3,1),故答案为:D.【分析】利用平移规律进而得出答案.7.【答案】D【解析】【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故答案为:D.【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.8.【答案】A【解析】【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故答案为:A.【分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.9.【答案】C【解析】【解答】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故答案为:C.【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.10.【答案】D【解析】【解答】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2√2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=√2,同法可证NW=√2,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4+ √2+ 2√2+ √2+4=8+ 4√2,故答案为:D.【分析】如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.想办法求出AR,RM,MN,NW,WD 即可解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.【答案】(x+3)(x-3)【解析】【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.12.【答案】23x【解析】【解答】解:1x −13x=33x-13x=23x.故答案为:23x.【分析】先通分,再相减即可求解.13.【答案】6【解析】【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.14.【答案】<【解析】【解答】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.【分析】利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.15.【答案】55°【解析】【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.【分析】由直径所对的圆周角为直角得∠AED=90°,由切线的性质可得∠ADC=90°,然后由同角的余角相等可得∠C=∠ADE=55°.16.【答案】a+b【解析】【解答】解:如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+b.【分析】如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a,由此即可解决问题.三、解答題(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第题14分,共80分)17.【答案】解:原式=3+ 2√2﹣√2=3+ √2.【解析】【分析】直接利用绝对值的性质和二次根式的性质化简得出答案.18.【答案】解:{x−y=1①3x+y=7②,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为{x=2y=1.【解析】【分析】方程组利用加减消元法求出解即可.19.【答案】解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.【解析】【分析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE 的度数,再解直角三角形得结果.20.【答案】(1)设y与x之间的函数关系式为:y=kx,把(3,400)代入y=kx 得,400=k3,解得:k=1200,∴y与x之间的函数关系式为y=1200x;(2)>【解析】【解答】(2)把x=6,8,10分别代入y=1200x 得,y1=12006=200,y2=12008=150,y3=120010=120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,故答案为:>.【分析】(1)设y与x之间的函数关系式为:y=kx ,把(3,400)代入y=kx即可得到结论;(2)把x=6,8,10分别代入y=1200x得到求得y1,y2,y3值,即可得到结论.21.【答案】(1)证明:∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【解析】【分析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.22.【答案】(1)直播”教学方式学生的参与度更高;理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年浙江省台州市中考数学试卷
一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)
1.(4分)计算1﹣3的结果是()
A.2B.﹣2C.4D.﹣4
2.(4分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()
A.B.C.D.
3.(4分)计算2a2•3a4的结果是()
A.5a6B.5a8C.6a6D.6a8
4.(4分)无理数在()
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
5.(4分)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差
6.(4分)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()
A.(0,0)B.(1,2)C.(1,3)D.(3,1)
7.(4分)如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()。

相关文档
最新文档