统计学课件第六章_时间序列分析
合集下载
时间序列分析课件讲义
7
3.5E+09 3.0E+09 2.5E+09 2.0E+09 1.5E+09 1.0E+09
5.0E+08 99:01 99:07 00:01 00:07 01:01 01:07 02:01 02:07
Y
8
单变量时间序列分析
趋势模型
确定型趋势模型
平滑模型 季节模型
水平模型
加法模型
9
乘法模型
ARMA模型 ARIMA模型 (G)ARCH类模型
42
(2)ADF检验 DF检验只对存在一阶自相关的序列适用。 ADF检验 适用于存在高阶滞后相关的序列。 y = y t 1 + t
表述为
y t = y t 1 + t
t
存在高阶滞后相关的序列,经过处理可以表述为 y t = y t 1 + 1yt 1+ 2yt 2 + ....... + p1yt p1 + t 上式中,检验假设为
34
特别地,若 其中,{ t }为独立同分布,且E( t ) = 0,
D( t )
2 = <
yt= y t 1+ t
t = 1,2,......
,则{
(random waik process) 。可以看出,随机游动过程是 单位根过程的一个特例。
yt }为一随机游动过程
(2) 季节差分
3. 随机性
23
(四)ARMA模型及其改进 1. 自回归模型 AR(p) 模型的一般形式
( B) yt
=
et
AR (p) 序列的自相关和偏自相关 rk :拖尾性 k :截尾性
3.5E+09 3.0E+09 2.5E+09 2.0E+09 1.5E+09 1.0E+09
5.0E+08 99:01 99:07 00:01 00:07 01:01 01:07 02:01 02:07
Y
8
单变量时间序列分析
趋势模型
确定型趋势模型
平滑模型 季节模型
水平模型
加法模型
9
乘法模型
ARMA模型 ARIMA模型 (G)ARCH类模型
42
(2)ADF检验 DF检验只对存在一阶自相关的序列适用。 ADF检验 适用于存在高阶滞后相关的序列。 y = y t 1 + t
表述为
y t = y t 1 + t
t
存在高阶滞后相关的序列,经过处理可以表述为 y t = y t 1 + 1yt 1+ 2yt 2 + ....... + p1yt p1 + t 上式中,检验假设为
34
特别地,若 其中,{ t }为独立同分布,且E( t ) = 0,
D( t )
2 = <
yt= y t 1+ t
t = 1,2,......
,则{
(random waik process) 。可以看出,随机游动过程是 单位根过程的一个特例。
yt }为一随机游动过程
(2) 季节差分
3. 随机性
23
(四)ARMA模型及其改进 1. 自回归模型 AR(p) 模型的一般形式
( B) yt
=
et
AR (p) 序列的自相关和偏自相关 rk :拖尾性 k :截尾性
时间序列分析教材(PPT 113页)
反映现象在较长一段时间内总的发展变动程度,也称为发展 总速度。
9-29
发展速度(续)
二者关系:
定基发展速度=相应时期的环比发展速度之积。 相邻两定基发展速度之商=相应的环比发展速度。
yt y1 y2 ... yt
y0 y0 y1
yt 1
yt yt1 yt y0 y0 yt1
为了消除季节变动因素的影响,可计算:
根据表9-1中各年年末人口数,计算2001~2010年这 10年间的平均人口数。
解:
由不连续时点序列计算平均发展水平的计算公式是有假 定条件的。实际中,计算结果通常只是近似值。
一般认为,间隔越短,计算结果就越准确。
例如,由一年中各月底数计算的全年平均数,就比只用年初和年末两 项数据计算的结果更准确。
8
8
9-28
二、时间序列分析的速度指标
(一)发展速度=报告期水平/基期水平
说明现象在观察期内发展变化的相对程度; 有环比发展速度与定基发展速度之分
环比发展速度=报告期水平/上期水平 yi / yi1
反映现象逐期发展变动的程度,也可称为逐期发展速度。
定基发展速度=报告期水平/固定基期水平 yt / y0
居民消费 水平(元)
——
2236 2641 2834 2972 3138 3397 3609 3818 4089
9-11
三、时间序列的编制原则
保证时间序列中各项数据的可比性,是 编制时间序列的基本原则。
(一) 时间一致 (二) 总体范围一致 (三) 经济内容、计算口径和计算方法一致
9-12
18
35%
16
30%
14
12
25%
10
20%
9-29
发展速度(续)
二者关系:
定基发展速度=相应时期的环比发展速度之积。 相邻两定基发展速度之商=相应的环比发展速度。
yt y1 y2 ... yt
y0 y0 y1
yt 1
yt yt1 yt y0 y0 yt1
为了消除季节变动因素的影响,可计算:
根据表9-1中各年年末人口数,计算2001~2010年这 10年间的平均人口数。
解:
由不连续时点序列计算平均发展水平的计算公式是有假 定条件的。实际中,计算结果通常只是近似值。
一般认为,间隔越短,计算结果就越准确。
例如,由一年中各月底数计算的全年平均数,就比只用年初和年末两 项数据计算的结果更准确。
8
8
9-28
二、时间序列分析的速度指标
(一)发展速度=报告期水平/基期水平
说明现象在观察期内发展变化的相对程度; 有环比发展速度与定基发展速度之分
环比发展速度=报告期水平/上期水平 yi / yi1
反映现象逐期发展变动的程度,也可称为逐期发展速度。
定基发展速度=报告期水平/固定基期水平 yt / y0
居民消费 水平(元)
——
2236 2641 2834 2972 3138 3397 3609 3818 4089
9-11
三、时间序列的编制原则
保证时间序列中各项数据的可比性,是 编制时间序列的基本原则。
(一) 时间一致 (二) 总体范围一致 (三) 经济内容、计算口径和计算方法一致
9-12
18
35%
16
30%
14
12
25%
10
20%
新编统计学时间系列分析PPT课件
y0 y0
y0
第31页/共64页
环比发展速度与定基发展速度的关系
•各期环比发展速度的连乘积等于定基发展速度
y1 y2 y3 yn yn
y0 y1 y2
yn1 y0
•相邻两个时期的定基发展速度之商等于相应的环比发展速度
yn y0 yn yn1 y0 yn1
第32页/共64页
已知2006年、2007年、2008年三年的环比发展速度分别为110%、
2007 2008 330 500
第3页/共64页
二、 时间序列的种类
时期数列
(一)绝对数时间序列 时点数列
特点?
间隔相等时点数列 连续时点数列 间断时点数列
间隔不等时点数列
某企业某年职工人数统计表
例如 时间
一月底 三月底 八月底
职工人数(人)
230
238
229
12月底 240
第4页/共64页
(二)相对指标时间序列 (三)平均指标时间序列
yn y0 (y1 y0)(y2 y1) (yn yn1)
4.平均增长量的计算
【例8-6】
计算方法
平均增长量
逐期增长量之和 逐期增长量个数
平均增长量 累计增长量 n 1
(n代表动态数列的项数)
第28页/共64页
第三节 现象发展的速度指标分析
现象发展变化的速度指标反映了现象在不同时间上发展变化的程度。主要 包括以下指标:
第8页/共64页
(一)由绝对数时间序列计算序时平均数 (1)由时期序列计算序时平均数
yy n
公式(9.1)
第9页/共64页
某商业企业1—5月份商品销售资料如下:
单位:万元
统计学课件第六章时间序列分析
• 由表6—1可看出,时间数列由两个基本要素构成: 一是被研究现象所属的时间;二是反映现象在各个 时间上的发展水平,亦称动态水平。
可编辑ppt
7
中南大学
时间序列的种类
统计学概论
基 本 序 列
时 间 序派 列生 的数 种列 类
中南大学
总量指标时间序列
时期序列 时点序列
相对数时间序列 平均数时间序列
由两个时期序列对比而成的相对数 时间序列 由两个时点序列对比而成的相对数 时间序列 由一个时期序列和一个时点序列对 比形成的相对数时间序列 静态平均数时间序列
可编辑ppt
12
中南大学
统计学概论
2、时点序列。指由时点总量指标编制而成的时间序列。 在时点序列中,每个指标数值所反映的社会经济现 象都是在某一时点(时刻)上所达到的水平。
• 表6-3所列的我国历年年末职工人数情况,就是一个时点数列。
可编辑ppt
13
中南大学
统计学概论
• 时点序列的特点: (l)时点序列的每一个指标数值,都表示社会经济
本章内容安排
统计学概论
§6.1 时间序列编制及分析指标 §6.2 时间序列的分解分析
可编辑ppt
3
中南大学
学习目标
统计学概论
• 1. 时间序列及其分析指标的计算 • 2. 时间序列的分解分析
可编辑ppt
4
中南大学
§6.1 时间序列的编制及分析指标 统 计 学 概 论
一、时间序列的编制 二、时间序列的水平指标 三、时间序列的速度指标
可编辑ppt
16
中南大学
(三)平均数时间序列
统计学概论
• 平均数时间序列由一系列同类平均指标按照时间的 先后顺序排列而成的动态数列。反映的是社会经济 现象一般水平的发展过程及其变动趋势。
时间序列分析课件
引例
• 某一城市从2003年到2013年中,每年参加体育锻炼的人口数,排列起来,共 有10个数据构成一个时间序列。人们希望用某个数学模型,根据这10个历史 数据,来预测2014年或以后若干年中每年的体育锻炼人数是多少,以便于该 城市制订一个有关体育健身的发展战略。
年份
参加锻炼人数(万人)
2004
1500
周
天
天数
1
星期一
1
星期二
2
星期三
3
星期四
4
星期五
5
2
星期一
6
星期二
7
星期三
8
星期四
9
星期五
10
3
星期一
11
星期二
12
星期三
13
星期四
14
星期五
15
4
星期一
16
星期二
17
星期三
18
星期四
19
星期五
20
5
星期一
21
星期二
22
星期三
23
星期四
24
星期五
25
6
星期一
26
星期二
27
星期三
28
星期四
29
星期五
0.700+2.767=3.467
2018
19×0.0389
0.739+2.767=3.506
表 7—7 年份
2014 2015 428 3.467 3.506
把Yˆ 转换为收入
预测收入
2241 2451 2681 2932 3207
表 7—8
新计数之后,得到如下数据集:
• 某一城市从2003年到2013年中,每年参加体育锻炼的人口数,排列起来,共 有10个数据构成一个时间序列。人们希望用某个数学模型,根据这10个历史 数据,来预测2014年或以后若干年中每年的体育锻炼人数是多少,以便于该 城市制订一个有关体育健身的发展战略。
年份
参加锻炼人数(万人)
2004
1500
周
天
天数
1
星期一
1
星期二
2
星期三
3
星期四
4
星期五
5
2
星期一
6
星期二
7
星期三
8
星期四
9
星期五
10
3
星期一
11
星期二
12
星期三
13
星期四
14
星期五
15
4
星期一
16
星期二
17
星期三
18
星期四
19
星期五
20
5
星期一
21
星期二
22
星期三
23
星期四
24
星期五
25
6
星期一
26
星期二
27
星期三
28
星期四
29
星期五
0.700+2.767=3.467
2018
19×0.0389
0.739+2.767=3.506
表 7—7 年份
2014 2015 428 3.467 3.506
把Yˆ 转换为收入
预测收入
2241 2451 2681 2932 3207
表 7—8
新计数之后,得到如下数据集:
统计学课件动态相对数时间序列分析
不规则波动
时间序列中无法预测的随机波 动。
时间序列分析的方法与步骤
收集数据
收集具有时间顺序的数据,确保数据的准确 性和完整性。
数据预处理
对数据进行清洗、整理和转换,使其满足分析 要求。
描述性分析
对数据进行描述性统计,如均值、方差、中位数 等,以初步了解数据分布和变化规律。
趋势分析
通过图表或数学方法分析数据随时间变化的趋势, 如线性回归、指数平滑等。
优点
能够直观地反映现象在不同时间点上的变化情况,便于比较和评估。能够消除不同时间点上规模大小的影响,突 出变化趋势。计算方法简单易懂,易于操作。
缺点
容易受到数据波动的影响,导致结果不稳定。无法反映现象的绝对水平,只能反映相对变化情况。计算过程中可 能存在数据失真和误差问题。
02 时间序列分析基础
时间序列的定义与分类
根据预测结果和实际需求,制定相应的决策方案,如投资决策、市场预测、政策制定等,以提高决策 的科学性和准确性。
04 动态相对数时间序列分析案例
案例一
总结词
销售额的波动性
详细描述
通过分析某公司销售额的动态相对数时间序列,可以观 察到销售额随时间的变化趋势,了解其波动性。例如, 是否存在季节性波动、周期性变化等。
通过机器学习算法的应用,可以进一 步提高动态相对数时间序列分析的自 动化和智能化水平,减少人工干预和 误差。
可视化与交互性
通过可视化技术和交互性设计,可以 更加直观地展示动态相对数时间序列 分析的结果,便于用户理解和使用。
THANKS 感谢观看
通过时间序列分析,可以对市场情绪进行评估。例如, 当市场情绪高涨时,股价通常会上涨;当市场情绪低迷 时,股价则可能下跌。
时间序列中无法预测的随机波 动。
时间序列分析的方法与步骤
收集数据
收集具有时间顺序的数据,确保数据的准确 性和完整性。
数据预处理
对数据进行清洗、整理和转换,使其满足分析 要求。
描述性分析
对数据进行描述性统计,如均值、方差、中位数 等,以初步了解数据分布和变化规律。
趋势分析
通过图表或数学方法分析数据随时间变化的趋势, 如线性回归、指数平滑等。
优点
能够直观地反映现象在不同时间点上的变化情况,便于比较和评估。能够消除不同时间点上规模大小的影响,突 出变化趋势。计算方法简单易懂,易于操作。
缺点
容易受到数据波动的影响,导致结果不稳定。无法反映现象的绝对水平,只能反映相对变化情况。计算过程中可 能存在数据失真和误差问题。
02 时间序列分析基础
时间序列的定义与分类
根据预测结果和实际需求,制定相应的决策方案,如投资决策、市场预测、政策制定等,以提高决策 的科学性和准确性。
04 动态相对数时间序列分析案例
案例一
总结词
销售额的波动性
详细描述
通过分析某公司销售额的动态相对数时间序列,可以观 察到销售额随时间的变化趋势,了解其波动性。例如, 是否存在季节性波动、周期性变化等。
通过机器学习算法的应用,可以进一 步提高动态相对数时间序列分析的自 动化和智能化水平,减少人工干预和 误差。
可视化与交互性
通过可视化技术和交互性设计,可以 更加直观地展示动态相对数时间序列 分析的结果,便于用户理解和使用。
THANKS 感谢观看
通过时间序列分析,可以对市场情绪进行评估。例如, 当市场情绪高涨时,股价通常会上涨;当市场情绪低迷 时,股价则可能下跌。
统计学 时间序列分析
7
商品流转次数(c)
1.9 65 75 2.41 2.22 2.4 80.7
2 2.0 2.4
4 2.27
72
120 145+185+190+200+250
c
a(平均销售额) b(平均库存额)
60
6 65 75 78 80 100 105
2.27次
2
2
6
3. 增长量和平均增长量
增长量说明社会经济现象在一定时期内所增长的绝对数量, 它是报告期水平与基期水平之差。 由于采用的基期不同,增长量分为逐期增长量和累积增长量
某企业1996-2000年产量增长速度
年份
1996 1997 1998 1999 2000
环比增长速度(%) 20 (2) 25 15 (5)
定基增长速度(%) (1) 50 (3) (4) 132.5
解: 1996年定基增长速度=20%
1997年环比增长速度=
1+50% 1+20%
1
25%
1998年定基增长速度
535 552 562 676
a 2
2 573人
4 1
例.某地区2008年城乡居民储蓄余款额资料如下
日期
1月1日 3月1日 7月1日 8月1日 12月31日
储蓄余款额
38
42
54
56
60
(亿元)
38 42 2 42 54 4 54 56 1 56 60 5
a 2
2
2
2
53.29万元
定基发展速度: 环比发展ቤተ መጻሕፍቲ ባይዱ度:
x1 , x2 , , xn
x0 x0
x0
时间序列分析课件
模型的诊断
残差诊断
检查模型是否符合残差的正态性和 平稳性,如是否存在自相关性等。
精度评估
使用MAPE、RMSE等指标对预测值 和实际值的误差进行评价。
过度拟合
注意模型过度拟合数据,需要在稳 定性和预测精度之间寻找平衡点。
时间序列模型的应用
股票价格的时间序列 分析
利用ARIMA模型对股票价格进行 预测和交易策略的优化。
真实案例:COVID-1 9疫情数据的时间序列分 析
数据收集
收集全球COVID-19疫情历史数据, 包括新增确诊、治愈、死亡等。
数据可视化
数据分析和预测
使用时间序列图表和热力图等方式, 使用ARIMA模型对未来疫情趋势进 展示疫情随时间和地域的变化趋势。 行预测和分析。
宏观经济指标的时间 序列分析
理解各项经济数据的趋势和关系, 对政策制定具有重要意义。
人口统计数据的时间 序列分析
预测社会变化,如人口流动、城 市化趋势等。
时间序列分析的未来展望
机器学习与数据挖掘
在更大的数据集上应用机器学习和 数据挖掘技术,进行复杂变量和非 线性关系的预测。
动态因果模型
建立具有时间约束和因果关系的复 杂模型,包括时间滞后、时间间隔 等。
差分技术
减少时间序列的非平稳性,包括一阶差分、季节性差分 等。
ARIMA模型
1
自回归模型
当前值受前阶数的过去值和噪声的影响。
2
差分
将非平稳时间序列转化为平稳时间序列。
3
移动平均模型
误差受前阶数的过去误差和噪声的影响。
Байду номын сангаас
ARMA模型
1 自回归模型
2 移动平均模型
统计学ppt课件
数据分析工具
预测分析
Excel内置了多种数据分析工具,如直方图 、排列图、控制图等,有助于进行数据探 索和可视化。
Excel的数据分析工具还可以进行回归分析 、时间序列分析等预测分析,帮助用户预 测未来的趋势。
SPSS在统计学中的应用
数据输入和管理
SPSS提供了强大的数据输入和管理功能,可以方便地导 入、导出各种数据格式,并进行数据清洗和整理。
公式
(y = a_1x_1 + a_2x_2 + ... + a_nx_n + b) 其中 (a_1, a_2, ..., a_n) 是自变量的系 数,(b) 是截距。
目的
通过最小化残差平方和,找 到最佳拟合平面。
非线性回归
总结词
非线性回归是用于分析非线性关系的回归模型。
公式
(y = f(x)) 其中 (f) 是一个非线性函数。
将数据按大小排序后,位于中间位置的数值 ,反映数据的分布情况。
众数
出现次数最多的数值,反映数据的普遍情况 。
标准差和方差
衡量数据离散程度的指标,反映数据的波动 情况。
数据的可视化
图表
使用图表(如柱状图、折线图 、饼图等)直观展示数据之间
的关系和变化趋势。
直方图
用直方图展示数据的分布情况 ,便于观察数据的集中和离散 程度。
统计学ppt课件
目录
CONTENTS
• 统计学简介 • 统计学基本概念 • 描述性统计 • 推断性统计 • 回归分析 • 时间序列分析 • 统计软件介绍
01 统计学简介
统计学的定义
统计学是一门研究数据收集、整理、 分析和推断的科学,旨在通过数据揭 示现象的本质和规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编辑ppt
16
中南大学
(三)平均数时间序列
统计学概论
• 平均数时间序列由一系列同类平均指标按照时间的 先后顺序排列而成的动态数列。反映的是社会经济 现象一般水平的发展过程及其变动趋势。
• 表6-5所列的我国历年来职工平均工资情况,就是 一个平均数时间序列。
可编辑ppt
17
中南大学
编制和研究时间序列的意义
现象在某一时点(时刻)上的数量。
(2)时点序列中的每个指标不能相加。由于时点序 列中的指标数值都是反映现象在某一瞬间的数量, 几个指标相加后无法说明这个数值属于哪一个时点 上的数量,没有实际意义。
可编辑ppt
14
中南大学
统计学概论
• 时点序列的特点:
(3)时点序列中每个指标数值大小和“时点间隔” 长短没有直接关系。时点序列中每个指标只是现象 在某一时点上的水平,因此它的大小与时点间隔的 长短没有直接关系。例如,年末的人口数不一定比 某月底的人口数大。
可编辑ppt
12
中南大学
统计学概论
2、时点序列。指由时点总量指标编制而成的时间序列。 在时点序列中,每个指标数值所反映的社会经济现 象都是在某一时点(时刻)上所达到的水平。
• 表6-3所列的我国历年年末职工人数情况,就是一个时点数列。
可编辑ppt
13
中南大学
统计学概论
• 时点序列的特点: (l)时点序列的每一个指标数值,都表示社会经济
6
中南大学
统计学概论
• 如将我国历年的某产品产量发展情况按时间先后顺 序排列起来就是一个动态数列。如表6—1所示。
• 由表6—1可看出,时间数列由两个基本要素构成: 一是被研究现象所属的时间;二是反映现象在各个 时间上的发展水平,亦称动态水平。
可编辑ppt
7
中南大学
时间序列的种类
统计学概论
可编辑ppt
一、时间序列的编制 二、时间序列的水平指标 三、时间序列的速度指标
可编辑ppt
5
中南大学
时间序列的编制
统计学概论
1.同一现象(指标)在不同时间上的相继观察值排列 而成的数列
2.形式上由现象所属的时间和现象在不同时间上的 观察值两部分组成
3.排列的时间可以是年份、季度、月份或其他任何 时间形式
可编辑ppt
(4)时点序列中每个指标数值通常都是定期(间断) 登记取得的。
可编辑ppt
15
中南大学
(二)相对数时间序列
统计学概论
• 相对数时间序列是指一系列相对指标按照时间先 后顺序排列所组成的时间序列。它是用来反映现 象各方面之间数量对比关系的发展变化过程及其 规律。
• 表6—4所列的我国的民政事业费支出占国家财政支出的比 重,就是一个相对数时间序列。
统计学概论
1. 通过时间序列列的编制和分析,可以从事物在不同 时间上的量变过程中,认识社会或经济现象的发展 变化的方向、程度、趋势和规律,为制定政策、编 制计划提供依据。
2. 通过对时间序列资料的研究,可以对某些经济现象 进行预测。
可编辑ppt
18
中南大学
编制和研究时间序列列的意义 统 计 学 概 论
可编辑ppt
9
中南大学
统计学概论
• 如表6-2所列的1990年—2001年我国税收基本情 况就是一个时期序列。
可编辑ppt
10
中南大学
统计学概论
• 时期序列的特点:
(l) 序列中每一个指标,都是表示社会经济现象在 一定时期内发展过程的总量。
(2) 序列中的各个指标是可以相加的。由于时期序 列中每一个指标数值都是在一段时期内发展的总数, 所以相加之后指标数值就表明现象在更长时期发展 的总量。如全年的国内生产总值是一年中每个月国 内生产总值相加的结果,各月份的国内生产总值又 是月份内每天的国内生产总值之和。
统计学概论内容
统计学概论
➢ 第一章 ➢ 第二章 ➢ 第三章 ➢ 第四章 ➢ 第五章 ➢ 第六章 ➢ 第七章 ➢ 第八章 ➢ 第九章 ➢ 第十章
中南大学
统计总论
统计调查
统计数据的整理与显示
统计指标
统计指数 时间序列分析 抽样推断 相关与回归分析 统计预测 统计的综合评价
可编辑ppt
Байду номын сангаас
3. 利用不同的时间序列对比,可以揭示各种社会现象 的不同发展方向、发展规律及其相互之间的变化关 系。
4. 利用时间序列,可以在不同地区或国家之间进行对 比分析。
可编辑ppt
19
中南大学
时间序列的编制原则
统计学概论
–编制时间序列的目的,就是要通过同一指标在不 同时间上的对比来分析现象的发展变化过程及其 规律性。
1
第六章
统计学概论
时间序列分析
可编辑ppt
2
中南大学
本章内容安排
统计学概论
§6.1 时间序列编制及分析指标 §6.2 时间序列的分解分析
可编辑ppt
3
中南大学
学习目标
统计学概论
• 1. 时间序列及其分析指标的计算 • 2. 时间序列的分解分析
可编辑ppt
4
中南大学
§6.1 时间序列的编制及分析指标 统 计 学 概 论
8
中南大学
(一)总量指标(绝对数)时间序列 统 计 学 概 论
总量指标时间序列是指将反映某种社会经济现象 的一系列总量指标按时间的先后顺序排列而形成 的序列。总量指标时间序列反映了社会经济现象 总量在各个时期所达到的绝对水平及其发展变化 过程。有时期序列和时点序列之分.
1、时期序列。是指由时期总量指标编制而成的序 列。在时期序列中,每个指标都反映某社会经济 现象在一定时期内发展过程的总量。
可编辑ppt
11
中南大学
统计学概论
• 时期序列的特点:
(3)时期序列中,每个指标数值的大小与时期长短 有直接关系。由于时期序列中每个指标都是社会经 济现象在一段时期内的发展过程中不断累计的结果, 所以一般来说,时期愈长指标数值就愈大,反之就 愈小。
(4)时期序列中每一个指标数值,通常都是通过连 续不断的登记取得的。
–时间的长短要统一
–总体范围要统一
–计算方法、计量单位要统一 –经济内容要统一
可编辑ppt
20
中南大学
统计学概论
图形描述
可编辑ppt
21
中南大学