数学模型在《线性代数》教学中的应用实例(一)

合集下载

线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例

线性代数在数学建模中的应用举例1 基因间“距离”的表示在ABO 血型的人们中,对各种群体的基因的频率进行了研究。

如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。

表1.1基因的相对频率问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。

解 有人提出一种利用向量代数的方法。

首先,我们用单位向量来表示每一个群体。

为此目的,我们取每一种频率的平方根,记ki ki f x =.由于对这四种群体的每一种有141=∑=i ki f ,所以我们得到∑==4121i kix .这意味着下列四个向量的每个都是单位向量.记.44434241,34333231,24232221,141312114321⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=x x x x a x x x x a x x x x a x x x x a在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,则由于| a 1|=| a 2|=1,再由内只公式,得21cos a a ⋅=θ而.8307.03464.02943.03216.0,8228.01778.00000.05398.021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a 故 9187.0cos 21=⋅=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2.表1.2基因间的“距离”爱斯基摩人班图人 英国人 朝鲜人 爱斯基摩人 0° 23.2° 16.4° 16.8° 班图人 23.2° 0° 9.8° 20.4° 英国人 16.4° 9.8° 0° 19.6° 朝鲜人16.8°20.4°19.6°0°由表1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大.2 Euler 的四面体问题问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的.解 建立如图2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为.,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→→→OC OB OA ,,组成右手系时,以它们为棱的平行六面体的体积V 6的16.而)(.3332221116c b a c b a c b a OC OB OA V =⋅⨯= 于是得 .6333222111c b a c b a c b a V = 将上式平方,得.362323233232323231313232322222221212131313121212121212133322211133322211122c b a c c b b a a c c b b a a c c b b a a c b a c c b b a a c c b b a a c c b b a a cb ac b a c b a c b a c b a c b a c b a V ++++++++++++++++++=⋅=根据向量的数量积的坐标表示,有.,,,,232323323232222222313131212121212121c b a OC OC c c b b a a OC OB c b a OB OB c c b b a a OC OA c c b b a a OB OA c b a OA OA ++=⋅++=⋅++=⋅++=⋅++=⋅++=⋅ 于是362OC OC OB OC OB OBOB OBOA OB OA OAV ⋅⋅⋅= (2.1)由余弦定理,可行.2cos 222n q p q p OB OA -+=⋅⋅=⋅θ同理.2,2222222l r q OC OB m r p OC OA -+=⋅-+=⋅将以上各式代入(2.1)式,得.222222362222222222222222222222r l r p m r p l r p p n q p m r p n q p pV -+-+-+-+-+-+=(2.2)这就是Euler 的四面体体积公式.例 一块形状为四面体的花岗岩巨石,量得六条棱长分别为l =10m, m =15m, n =12m, p =14m, q =13m, r =11m.则.952222,462222,5.1102222=-+=-+=-+l r p m r p n q p代入(2.1)式,得.75.13698291219546951695.110465.110196236==V 于是.)195(82639.38050223m V ≈≈即花岗岩巨石的体积约为195m 3.古埃及的金字塔形状为四面体,因而可通过测量其六条棱长去计算金字塔的体积.3 动物数量的按年龄段预测问题问题 某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁.动物从第二年龄组起开始繁殖后代,经过长期统计,第二组和第三组的繁殖率分别为4和3.第一年龄和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为12 和14 .假设农场现有三个年龄段的动物各100头,问15年后农场三个年龄段的动物各有多少头?问题分析与建模 因年龄分组为5岁一段,故将时间周期也取为5年.15年后就经过了3个时间周期.设)(k i x 表示第k 个时间周期的第i 组年龄阶段动物的数量(k =1,2,3;i =1,2,3).因为某一时间周期第二年龄组和第三年龄组动物的数量是由上一时间周期上一年龄组存活下来动物的数量,所以有).3,2,1(41,21)1(2)(3)1(1)(2===--k x x x x k k k k又因为某一时间周期,第一年龄组动物的数量是由于一时间周期各年龄组出生的动物的数量,所以有).3,2,1(34)1(3)1(2)(1=+=--k x x x k k k于是我们得到递推关系式:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=----.41,21,34)1(2)(3)1(1213)1(2)(1k k k k k k k x x x x x x x 用矩阵表示).3,2,1(0410021340)1(3)1(2)1(1)(3)(2)(1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---k x x x x x x k k k k k k则).3,2,1()1()(==-k Lx x k k其中.100010001000,04100021340)0(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=x L 则有),3,2,1()(3)(2)(1)(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k x x x x k k k k,250500700010001000100004100021340)0()1(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x,12535002750250500700004100021340)1()2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x .8751375143751253500275004100021340)2()3(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x 结果分析 15年后,农场饲养的动物总数将达到16625头,其中0~5岁的有14375头,占86.47%,6~10岁的有1375头,占8.27%,11~15岁的有875头,占 5.226%.15年间,动物总增长16625-3000=13625头,总增长率为13625/3000=454.16%.注 要知道很多年以后的情况,可通过研究式)0()1()(x L Lx x k k k ==-中当趋于无穷大时的极限状况得到.关于年龄分布的人口预测模型 我们将人口按相同的年限(比如5年)分成若干年龄组,同时假设各年龄段的田、女人口分布相同,这样就可以通过只考虑女性人口来简化模型.人口发展随时间变化,一个时间周期的幅度使之对应于基本年龄组间距(如先例的5年),令)(k i x 是在时间周期k 时第i 个年龄组的(女性)人口,i =1,2,…,n .用1表示最低年龄组,用n 表示最高年龄组,这意味着不考虑更大年龄组人口的变化.假如排除死亡的情形,则在一个周期内第i 个年龄组的成员将全部转移到i +1个年龄组.但是,实际上必须考虑到死亡率,因此这一转移过程可由一存活系数所衰减. 于是,这一转移过程可由下述议程简单地描述:),1,,2,1()1()(1-==-+n i x b x k ii k i其中i b 是在第i 个年龄组在一个周期的存活率,因子i b 可由统计资料确定.惟一不能由上述议程确定的年龄组是,)(1k x 其中的成员是在后面的周期内出生的,他们是后面的周期内成员的后代,因此这个年龄组的成员取决于后面的周期内各组的出生率及其人数.于是有方程,)1(122)1(11)(1---+++=k n n k k k x a x a x a x (3.1)这里),,2,1(n i a i =是第i 个年龄组的出生率,它是由每时间周期内,第i 个年龄组的每一个成员的女性后代的人数来表示的,通常可由统计资料来确定.于是我们得到了单性别分组的人口模型,用矩阵表示便是,00000000000)1()1(3)1(2)1(11211321)()(3)(2)(1⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------k n k k k n n n k n k k k x x x x b b b a a a a a x x x x 或者简写成.)1()(-=k k Lx x (3.2)矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--000000000001211321n n n b b b a a a a a L称为Leslie 矩阵.由(3.2)式递推可得)0()1()(x L Lx x k k k ==-这就是Leslie 模型.4 企业投入产生分析模型问题 某地区有三个重要产业,一个煤矿、一个发电厂和一条地方铁路.开采一元钱的煤,煤矿要支付0.25元的电费及0.25元的运输费.生产一元钱的电力,发电厂要支付0.65元的煤费,0.05元的电费及0.05元的运输费.创收一元钱的运输费,铁路要支付0.55元的煤费及0.10元的电费.在某一周内,煤矿接到外地金额为50000元的定货,发电厂接到外地金额为25000元的定货,外界对地方铁路没有需求.问三个企业在这一周内总产值多少才能满足自身及外界的需求?数学模型 设x 1为煤矿本周内的总产值,x 2为电厂本周的总产值,x 3为铁路本周内的总产值,则⎪⎩⎪⎨⎧=⨯++-=++-=++⨯-,0)005.025.0(,25000)10.005.025.0(,50000)55.065.00(321332123211x x x x x x x x x x x x (4.1) 即.02500050000005.025.010.005.025.055.065.00321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x x x x 即.025********,005.025.010.005.025.055.065.00,321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Y A x x x X 矩阵A 称为直接消耗矩阵,X 称为产出向量,Y 称为需求向量,则方程组(4.1)为,Y AX X =-即Y X A E =-)(, (4.2)其中矩阵E 为单位矩阵,(E-A )称为列昂杰夫矩阵,列昂杰夫矩阵为非奇异矩阵.投入产出分析表 设,00000,)(3211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--=-x x x A C E A E B D=(1,1,1)C.矩阵B 称为完全消耗矩阵,它与矩阵A 一起在各个部门之间的投入产生中起平衡作用.矩阵C 可以称为投入产出矩阵,它的元素表示煤矿、电厂、铁路之间的投入产出关系.向量D 称为总投入向量,它的元素是矩阵C 的对应列元素之和,分别表示煤矿、电厂、铁路得到的总投入.由矩阵C ,向量Y ,X 和D ,可得投入产出分析表4.1.表4.1 投入产出分析表 单位:元 煤矿电厂铁路外界需求总产出煤矿 11c 12c 13c 1y 1x电厂 21c 22c 23c 2y 2x 铁路 31c32c33c 3y3x总投入1d 2d 3d计算求解 按(4.2)式解方程组可得产出向量X ,于是可计算矩阵C 和向量D ,计算结果如表4.2.表4.2 投入产出计算结果 单位:元 煤矿 电厂 铁路 外界需求 总产出 煤矿 0 36505.96 15581.51 50000 102087.48 电厂 25521.87 2808.15 2833.00 25000 56163.02 铁路 25521.87 2808.15 0 0 28330.02总投入51043.7442122.2718414.525 交通流量的计算模型问题 图5.1给出了某城市部分单行街道的交通流量(每小时过车数).假设:(1)全部流入网络的流量等于全部流出网络的流量;(2)全部流入一个节点的流量等于全部流出此节点的流量.试建立数学模型确定该交通网络未知部分的具体流量.建模与计算 由网络流量假设,所给问题满足如下线方程组:234457612157891091083630050020080080010004002006001000x x x x x x x x x x x x x x x x x x x x -+=⎧⎪+=⎪⎪-=⎪+=⎪⎪+=⎪⎨+=⎪⎪=⎪-=⎪⎪=⎪++=⎪⎩ 系数矩阵为11100000000011000000000011000110000000010001000000000001100000000001000000000110000000001010010100A -⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 增广矩阵阶梯形最简形式为1000100000800010010000000010000000200000110000050000000101008000000001100100000000000104000000000001600000000000000000000000B ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦其对应的齐次方程组为1525345687891000000000x x x x x x x x x x x x x +=⎧⎪-=⎪⎪=⎪+=⎪⎨+=⎪⎪+=⎪=⎪⎪=⎩取(x 5,x 8)为自由取值未知量,分别赋两组值为(1,0),(0,1),得齐次方程组基础解系中两个解向量()11,1,0,1,1,0,0,0,0,0,'η=--()20,0,0,0,0,1,1,1,0,0'η=--其对应的非齐次方程组为1525345687891080002005008001000400600x x x x x x x x x x x x x +=⎧⎪-=⎪⎪=⎪+=⎪⎨+=⎪⎪+=⎪=⎪⎪=⎩赋值给自由未知量(x 5,x 8)为(0,0)得非齐次方程组的特解()800,0,200,500,0,800,1000,0,400,600'x *=于是方程组的通解,*2211x k k x ++=ηη其中k 1,k 2为任意常数,x 的每一个分量即为交通网络未知部分的具体流量,它有无穷多解.6 小行星的轨道模型问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1.表6.1 坐标数据由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为012225423221=+++++y a x a y a xy a x a .问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据:(x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5).由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定系数,将五个点的坐标分别代入上面的方程,得2211211314151221222232425222132333343532214244344454221525535455522212221222122212221a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y a x a x y a y a x a y ⎧++++=-⎪++++=-⎪⎪++++=-⎨⎪++++=-⎪⎪++++=-⎩这是一个包含五个未知数的线性方程组,写成矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11111222222222222222543215525552544244424332333232222222211211121a a a a a y x y y x x y x y y x x y x y y x x y x y y x x y x y y x x 求解这一线性方程组,所得的是一个二次曲线方程.为了知道小行星轨道的一些参数,还必须将二次曲线方程化为椭圆的标准方程形式:12222=+bY a X 由于太阳的位置是小行星轨道的一个焦点,这时可以根据椭圆的长半轴a 和短半轴b 计算出小行星的近日点和远日点距离,以及椭圆周长L .根据二次曲线理论,可得椭圆经过旋转和平移两种变换后的方程如下:[]22120D X Y C λλ++=所以,椭圆长半轴:C D a 1λ=;椭圆短半轴: CDb 2λ=;椭圆半焦矩:22b ac -=.计算求解 首先由五个点的坐标数据形成线性方程组的系数矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=7200.69600.142896.112656.509504.550520.53360.143807.62127.363802.516460.35180.133233.36433.246841.454040.25720.124448.11115.155138.39292.1528.114199.04701.72237.33A使用计算机可求得12345(,,,,)(0.6143,0.3440,0.6942, 1.6351,0.2165)a a a a a =---从而⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=6942.03440.03440.06143.03221a a a a C C C ,3081.0=的特征值120.3080, 1.0005λλ==123235450.61430.3440 1.63510.34400.69420.21651 1.63510.21651a a a D a a a a a ---⎡⎤⎡⎤⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦.8203.1-=D于是,椭圆长半轴a=19.1834,短半轴b=5.9045,半焦距c=18.2521.小行星近日点距和远日点距为039313,37.4355h a c H a c =-==+=最后,椭圆的周长的准确计算要用到椭圆积分,可以考虑用数值积分解决问题,其近似值为84.7887.7 人口迁移的动态分析问题 对城乡人口流动作年度调查,发现有一个稳定的朝向城镇流动的趋势:每年农村居民的2.5%移居城镇,而城镇居民的1%迁出.现在总人口的60%位于城镇.假如城乡总人口保持不变,并且人口流动的这种趋势继续下去,则一年以后住在城镇人口所占比例是多少两年以后呢十年以后呢最终呢解 设开始时,令乡村人口为,0y 城镇人口为,0z 一年以后有乡村人口,10011000975100y z y =+ 城镇人口 ,10099100025100z z y =+或写成矩阵形式⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡00111009910002510011000975z y z y . 两年以后,有.100991000251001100097510099100025100110009750021122⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y z y . 十年以后,有.100991000251001100097500101010⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y 事实上,它给出了一个差分方程:k k Au u =+1.我们现在来解这个差分方程.首先,1009910002510011000975⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Ak 年之后的分布(将A 对角化):.75757275100200193115210000⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y A z y k k k k 这就是我们所要的解,而且容易看出经过很长一个时期以后这个解会达到一个极限状态.7572)(00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎦⎤⎢⎣⎡∞∞z y z y 总人口仍是00z y +,与开始时一样,但在此极限中人口的75在城镇,而72在乡村.无论初始分布是什么样,这总是成立的.值得注意这个稳定状态正是A 的属于特征值1的特征向量.上述例子有一些很好的性质:人口总数保持不变,而且乡村和城镇的人口数决不能为负.前一性质反映在下面事实中:矩阵每一列加起来为1;每个人都被计算在内,而没有人被重复或丢失.后一性质则反映在下面事实中:矩阵没有负元素;同样地0y 和0z 也是非负的,从而1y 和21,y z 和2z 等等也是这样.8 常染色体遗传模型为了揭示生命的奥秘,遗传学的研究已引起了人们的广泛兴趣.动植物在产生下一代的过程中,总是将自己的特征遗传给下一代,从而完成一种“生命的延续”.在常染色体遗传中,后代从每个亲体的基因对中各继承一个基因,形成自己的基因对.人类眼睛颜色即是通过常染色体控制的,其特征遗传由两个基因A 和a 控制.基因对是AA 和Aa 的人,眼睛是棕色,基因对是aa 的人,眼睛为蓝色.由于AA 和Aa 都表示了同一外部特征,或认为基因A 支配a ,也可认为基因a 对于基因A 来说是隐性的(或称A 为显性基因,a 为隐性基因).下面我们选取一个常染色体遗传——植物后代问题进行讨论.某植物园中植物的基因型为AA ,Aa ,aa .人们计划用AA 型植物与每种基因型植物相结合的方案培育植物后代.经过若干年后,这种植物后代的三种基因型分布将出现什么情形我们假设),2,2,0(,, =n c b a n n n 分别代表第n 代植物中,基因型为AA ,Aa 和aa 的植物占植物总数的百分率,令),,()('=n n n n c b a x为第n 代植物的基因分布, ),,(000)0('=c b a x 表示植物基因型的初始分布,显然,我们有.1000=++c b a (8.1)先考虑第n 代中的AA 型,第1-n 代AA 型与AA 型相结合,后代全部是AA 型;第1-n 代的Aa 型与和与AA 相结合,后代是AA 型的可能性为21;1-n 代的aa 型与AA 型相结合,后代不可能是AA 型。

线性代数应用案例

线性代数应用案例

线性代数应用案例线性代数是数学中的一个重要分支,它研究向量空间和线性映射的理论。

线性代数的应用非常广泛,涉及到物理学、工程学、计算机科学等多个领域。

本文将介绍线性代数在实际应用中的一些案例,以帮助读者更好地理解和应用线性代数知识。

1. 机器学习中的特征空间转换。

在机器学习领域,特征空间转换是一种常见的数据预处理方法。

通过线性代数中的矩阵运算,可以将原始的高维特征空间转换为新的低维特征空间,从而实现对数据的降维处理。

这种方法不仅可以减少数据的维度,还可以保留数据的主要特征,提高机器学习模型的训练效果。

2. 图像处理中的矩阵变换。

在图像处理领域,矩阵变换是一种常用的技术。

通过线性代数中矩阵的旋转、缩放、平移等运算,可以实现对图像的各种变换操作,如图像的旋转、放大缩小、平移等。

这些操作可以帮助我们实现图像的处理和增强,提高图像的质量和美观度。

3. 电路分析中的矩阵方程。

在电路分析中,线性代数的矩阵方程是一种常用的建模和求解方法。

通过建立电路元件的电压电流关系,并转化为矩阵方程组,可以利用线性代数的方法求解电路中各个节点的电压和电流。

这种方法不仅简化了电路分析的复杂度,还可以有效地分析和设计各种复杂电路。

4. 控制系统中的状态空间模型。

在控制系统领域,线性代数的状态空间模型是一种常用的描述和分析方法。

通过线性代数的矩阵运算,可以将控制系统的动态方程转化为状态空间模型,从而实现对控制系统的建模和分析。

这种方法不仅可以方便地进行系统的稳定性和性能分析,还可以实现对控制系统的设计和优化。

5. 金融工程中的投资组合优化。

在金融工程领域,线性代数的投资组合优化是一种常见的方法。

通过建立投资组合的收益和风险之间的线性关系,并利用线性代数的优化方法,可以实现对投资组合的优化配置。

这种方法不仅可以帮助投资者实现收益和风险的平衡,还可以提高投资组合的收益率和稳定性。

总结。

线性代数作为一门重要的数学学科,其在实际应用中发挥着重要的作用。

数学建模案例分析线性代数模型

数学建模案例分析线性代数模型

父体-母体的基因对
AA-AA Aa-Aa aa-aa
后 AA 1
1/4
0

基 Aa 0
1/2
0

对 aa 0
1/4
1
在极限状态 下,后代仅 具有基因型 AA和aa。
2020/5/10
数学建模
常染色体的隐性疾病
遗传疾病是常染色体的基因缺陷由父母代传 给子代的疾病。
2020/5/10
数学建模
常染色体遗传的正常基因记为A,不正常基因 记为a,并以AA、Aa 和 aa 分别表示正常人, 隐性患者和显性患者的基因型。若在开始的 一代人口中AA、Aa 和 aa 基因型的人所占百 分比为a0,b0,c0,讨论在下列两种情况下第 n代的基因型分布。
2020/5/10
数学建模
Durer 魔方
德国著名的艺术家 Albrecht Durer (1471--1521) 于1514年曾铸造了一枚名为“Melen cotia I”的铜币。 令人奇怪的是在这枚铜币的画面上充满了数学符 号、数学数字和几何图形。这里我们仅研究铜币 右上角的数字问题。
2020/5/10
0000
N1
1 -1
0 0
0 0
-1 1
0000
2020/5/10
0 1 0 -1
1 0 -1 0
N2 -1 0 0 1
0 -1 1 0
数学建模
0100
1000
N3 0 0 0 1
0010
(5)对数字没有任何要求的数字方 16维空间M
空间 0 G B D Q W M
维数 0 1 5 7 8 10 16
0010 0100
2020/5/10

线性代数建模案例

线性代数建模案例

有下面的线性方程组
5 x1 + 4 x2 + 7 x3 + 10 x4 = 100 20 x1 + 25 x2 + 10 x3 + 5 x4 = 200 2 x + 2 x + 10 x + 6 x = 50 2 3 4
15
【模型求解】
• 对该 线 性方 程 组的增 广矩阵 进行初 等行变 换 ,
1 2 1 r2 × 5 r1 ↔ r3 r3 ×
使之变为行阶梯型矩阵。
5 4 7 10 100 4 → 20 25 10 5 200 5 2 2 10 6 50
r2 − r1 × 4 r3 − r1 ×5
1 1 5 5 2
25 40 4 7 10 100 3 1
200m比赛后各个队的得分与奖金表为
9 5 6 A100 B + A200 B = 8 7 1 120 8 120 17 240 70 8 110 13 180 100 7 90 13 190 + = 110 4 60 12 170 90 9 120 16 210 0 0 1 10 10
电厂 36505.96 2808.15 2808.15 42122.27
案例3 案例3 最佳食谱
• 一个兽医推荐狗的每天食谱中应该包含100个单位的 蛋白质,200个单位的卡路里,50个单位的脂肪。一个商 店的宠物食物部有四钟食品A,B,C,D。每1kg的这四种食品 所包含的蛋白质、卡路里和脂肪的量(单位)如下。
4
200m成绩对应的矩阵为
A200

线性代数在数学建模中的应用

线性代数在数学建模中的应用

线性代数在数学建模中的应用线性代数是一门研究向量空间及其上的线性变换的数学学科。

在数学建模中,线性代数是一门重要的应用数学学科之一。

可以说,线性代数在数学建模中的应用是非常广泛的。

一、线性代数在矩阵计算中的应用在数学建模中矩阵计算是一个重要的应用领域。

矩阵计算中的线性代数运算尤为关键。

通过矩阵计算,我们可以进行线性变换。

例如,在机器学习中,我们可以对图像进行矩阵变换,从而实现对图像的分类和识别。

二、线性代数在图形学中的应用图形学是一门研究计算机图像和多媒体图像处理的学科。

在图形学中,矩阵和向量的运算是关键所在。

例如,在三维图像中,我们可以通过矩阵运算来表示三维空间中的向量,从而进行图形变换。

图形学在现代的娱乐产业、计算机游戏和虚拟现实等领域中得到了广泛的应用。

三、线性代数在金融学中的应用线性代数在金融学中的应用不可忽视。

在金融学中,线性代数可以用来建立金融模型。

例如,在经济学中,我们可以使用线性代数中的矩阵运算来对资产组合进行优化。

通过矩阵运算,我们可以通过协方差矩阵来计算风险和收益性。

这对于分析金融市场和制定投资策略非常重要。

四、线性代数在物理学中的应用在物理学中,线性代数也是一门非常重要的学科。

例如,在量子力学中,矩阵运算是非常核心的。

在计算机模拟中,我们可以使用线性代数的矩阵运算来模拟物理现象。

例如,在计算机游戏中,我们可以使用物理引擎来模拟现实世界中的物理效应,并且可以使用矩阵运算来实现。

总之,线性代数在数学建模中的应用是非常广泛的。

矩阵运算、图形学、金融学和物理学等领域都可以使用到线性代数。

因此,对于想从事这些领域的人来说,学好线性代数是非常必要的。

线性代数在数学建模中的一些应用

线性代数在数学建模中的一些应用

随着社会的发展,数学在社会各领域中的应用越来越广泛,作用越来越大。

不但运用到自然科学各学科、各领域,而且渗透到经济、军事、管理以至于社会科学和社会活动的各领域。

不论是用数学方法解决哪类实际问题,还是与其他学科相结合形成交叉学科,首要的和关键的一步是将研究对象的内在规律用数学的语言和方法表述出来,即建立所谓的数学模型,还要将求解得到的结果返回到实际问题中去,这种解决问题的全过程称为数学建模[1]。

建立数学模型是一个比较复杂的过程,该过程可归纳为以下步棸[2]。

(1)对某个实际问题进行观察、分析。

(2)对实际问题进行必要的抽象、简化,作出合理的假设。

(3)确定要建立的模型中的变量和参数。

(4)根据某种规律,建立变量和参数间确定的数学关系,这是最关键的一步。

(5)解析或近似地求解该数学问题,这里要用到很多数学理论和方法。

(6)数学结果能否展示、解释甚至预测实际问题中出现的现象,或用某种方法来验证结果是否正确。

(7)如果(6)的结果是肯定的,则可用于指导实践;如果是否定的,则要回到前面六步重新进行分析,并重复上述建模过程。

作为数学科学的重要分支,线性代数是以矩阵、线性空间结构及线性变换为基本研究对象,其核心是研究线性代数方程组解的情况以及如何更快地求解线性方程组、线性空间结构及线性变换。

线性代数虽然是一门理论性很强的学科,但是它与实际问题也有着十分密切联系。

线性代数中的基本定义都是从实际问题中抽象和概括得到的,因此通过实际问题的求解来理解线性代数中的定义会更有趣更深刻。

例如:在理解行列式的定义时,可以模拟法国数学家Cauchy求解空间多面体模型体积的过程,从平行四边形面积和空间六面体体积出发,得到2阶和3阶行列式的基本公式;再者,在理解矩阵概念时,可以先了解诺贝尔经济学奖获得者美国数学家和经济学家Leontief的投入产出模型。

因此,线性代数的研究脱离不开实际问题。

事实上,线性代数的知识方法和研究结果也可广泛应用于实际问题的解决。

2)线性代数在数学建模中的应用例举

2)线性代数在数学建模中的应用例举

2)线性代数在数学建模中的应用例举第一篇:2)线性代数在数学建模中的应用例举8015985.docAct3 总复习【Arrangement】1)模拟题2)线性代数在数学建模中的应用例举3)线性代数在考研中的地位和重要性【Content】模拟题一、填空题(每题4分,共20分):1、n阶方阵A的行列式,则行列式。

2、若向量组线性相关,则t=。

3、若可逆方阵A有特征值2,则必有一个特征值为。

4、若n阶方阵A满足,则=。

5、行列式=。

二、(12分)已知 ,解下列方程式8015985.doc三、(14分)设非齐次线性方程组,t取何值时,此方程组无解;t 取何值时,此方程组有解,并在有解时求出该方程组的全部解。

四、(14分)设求:(1)与与的值;(2)满足相似,的可逆阵。

五、(14分)求下列矩阵A的特征值和特征向量。

A=六、(14分)设二次型1.写出f的矩阵表达式;2.用配方法求一可逆线性变换,化f为标准形。

七、证明题(本题12分)设向量组相关性。

线性无关,讨论向量组线性线性代数在数学建模中的应用例举1、森林管理森林中的树木每年都要有一批被砍伐出售。

为使这片森林不被耗尽而且每年都有所收获,每当砍伐一棵时,应该就地补种一棵幼苗,使森林树木总量保持不变。

被出售的树木,其价值取决于树木的高度。

最初,森林中树木有着不同的高度。

我们希望找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济效益?2、遗传模型8015985.doc随着人类的进化,人们为了揭示生命的奥妙,越来越注重遗传学的研究,特别是遗传特征的逐代传播,引起人们更多的注意。

无论是人,还是动、植物都会将本身的特征遗传给下一代,这主要是因为后代继承了双亲的基因,形成自己的基因对,基因对确定了后代所表现的特征。

根据亲体基因遗传给后代的方式,建立矩阵模型,利用这些模型可以逐代研究一个总体的基因型的分布。

线性代数在考研中的地位和重要性1、报考工学、经济学、管理学各学科、专业都要考线性代数;2、数学一考试科目试卷结构数学二考试科目数学三考试科目试卷结构数学四考试科目试卷结构高等数学、线性代数、概率论与数理统计1)题分及考试时间:试卷满分为150分,考试时间为180分钟。

线性代数在数学建模中的一些应用

线性代数在数学建模中的一些应用

线性代数在数学建模中的一些应用摘要:线性代数是许多高校开设的一门重要基础理论课,作为数学的一个重要的分支,它具有较强的逻辑性、抽象性和广泛的实用性。

数学建模是对实际问题进行分析,利用数学知识和方法建立数学模型,对模型求解并用于实际问题的处理。

因此,数学建模是联系数学和实际问题的重要纽带。

本文通过一些实例讨论了线性代数在数学建模中的一些重要应用。

关键词:线性代数数学建模应用随着社会的发展,数学在社会各领域中的应用越来越广泛,作用越来越大。

不但运用到自然科学各学科、各领域,而且渗透到经济、军事、管理以至于社会科学和社会活动的各领域。

不论是用数学方法解决哪类实际问题,还是与其他学科相结合形成交叉学科,首要的和关键的一步是将研究对象的内在规律用数学的语言和方法表述出来,即建立所谓的数学模型,还要将求解得到的结果返回到实际问题中去,这种解决问题的全过程称为数学建模[1]。

建立数学模型是一个比较复杂的过程,该过程可归纳为以下步棸[2]。

(1)对某个实际问题进行观察、分析。

(2)对实际问题进行必要的抽象、简化,作出合理的假设。

(3)确定要建立的模型中的变量和参数。

(4)根据某种规律,建立变量和参数间确定的数学关系,这是最关键的一步。

(5)解析或近似地求解该数学问题,这里要用到很多数学理论和方法。

(6)数学结果能否展示、解释甚至预测实际问题中出现的现象,或用某种方法来验证结果是否正确。

(7)如果(6)的结果是肯定的,则可用于指导实践;如果是否定的,则要回到前面六步重新进行分析,并重复上述建模过程。

作为数学科学的重要分支,线性代数是以矩阵、线性空间结构及线性变换为基本研究对象,其核心是研究线性代数方程组解的情况以及如何更快地求解线性方程组、线性空间结构及线性变换。

线性代数虽然是一门理论性很强的学科,但是它与实际问题也有着十分密切联系。

线性代数中的基本定义都是从实际问题中抽象和概括得到的,因此通过实际问题的求解来理解线性代数中的定义会更有趣更深刻。

线性代数在数学建模中的应用

线性代数在数学建模中的应用

第六章 线性代数模型§6.1 Matlab 求解线性代数工具简介1.矩阵的秩.rref 或 rrefmovie格式 R = rref(A) %用高斯—约当消元法和行主元法求 A 的行最简行矩阵R.rrefmovie(A) %给出每一步化简的过程.2.方阵的行列式:det(A) 3.逆矩阵:inv(A)指令inv(A)给出方阵A 的逆矩阵,如果A 不可逆,则inv(A)给出的矩阵的元素都是Inf .利用初等变换也可以求出逆矩阵,构造n 行2n 列的矩阵(A E),并进行行初等变换,当把A 变为单位矩阵时,E 就变成了A 的逆矩阵.利用matlab 命令rref 可以求出矩阵的行简化阶梯形.输入命令: D=[A,eye(3)] D =1 2 3 1 0 0 2 2 1 0 1 0 3 4 3 0 0 1 rref(D) ans =1.0000 0 0 1.0000 3.0000 -2.0000 0 1.0000 0 -1.5000 -3.0000 2.5000 0 0 1.0000 1.0000 1.0000 -1.0000 n m ⨯线性方程组B AX =的求解是用矩阵除来完成的,B A X \=,当n m =且A 可逆时,给出唯一解.这时矩阵除B A \相当于B A inv *)(;当m n >时,矩阵除给出方程的最小二乘解;当m n <时,矩阵除给出方程的最小范数解.例6.1:解方程组: ⎪⎪⎩⎪⎪⎨⎧=-+=++=+-+=++-12121243132143214321x x x x x x x x x x x x x x 解:输入命令:a=[1 -1 1 2;1 1 -2 1;1 1 1 0;1 0 1 -1]; b=[1;1;2;1]; x=a\b x =0.8333 0.7500 0.4167 0.2500输入命令: z=inv(a)*b z =0.8333 0.7500 0.41670.2500例6.2:解方程组:⎪⎩⎪⎨⎧=-++-=-++-=--++8343242222543215432154321x x x x x x x x x x x x x x x解:方程的个数和未知数不相等,用消去法,将增广矩阵化为行简化阶梯形,如果系数矩阵的秩不等于增广矩阵的秩,则方程组无解;如果系数矩阵的秩等于增广矩阵的秩,则方程组有解,方程组的解就是行简化阶梯形所对应的方程组的解.输入命令:a=[2 1 1 -1 -2 2;1 -1 2 1 -1 4;2 -3 4 3 -1 8]; rref(a) ans =1 0 0 0 0 0 0 1 0 -1 -1 0 0 0 1 0 -1 2由结果看出,4x ,5x 为自由未知量,方程组的解为: 01=x542x x x += 532x x +=例6:解方程组:⎪⎪⎩⎪⎪⎨⎧=+--=--=-+-=+--0320030432142143214321x x x x x x x x x x x x x x x解:输入命令:a=[1 -1 -1 1;1 -1 1 -3;1 -1 0 -1;1 -1 -2 3]; rref(a)ans =1 -1 0 -1 0 0 1 -2 0 0 0 00 0 0 0由结果看出,2x ,4x 为自由未知量,方程组的解为: 421x x x += 432x x =§6.3 交通流量模型城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。

线性代数在数学建模中地应用举例

线性代数在数学建模中地应用举例

线性代数在数学建模中的应用举例1 基因间“距离”的表示在ABO 血型的人们中,对各种群体的基因的频率进行了研究。

如果我们把四种等位基因A 1,A 2,B ,O 区别开,有人报道了如下的相对频率,见表1.1。

表1.1基因的相对频率问题 一个群体与另一群体的接近程度如何?换句话说,就是要一个表示基因的“距离”的合宜的量度。

解 有人提出一种利用向量代数的方法。

首先,我们用单位向量来表示每一个群体。

为此目的,我们取每一种频率的平方根,记ki ki f x =.由于对这四种群体的每一种有141=∑=i ki f ,所以我们得到∑==4121i ki x .这意味着下列四个向量的每个都是单位向量.记.444342414,343332313,242322212,141312111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=x x x x a x x x x a x x x x a x x x x a在四维空间中,这些向量的顶端都位于一个半径为1的球面上. 现在用两个向量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把a 1和a 2之间的夹角记为θ,那么由于| a 1|=| a 2|=1,再由内只公式,得21cos a a ⋅=θ而.8307.03464.02943.03216.0,8228.01778.00000.05398.021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a 故 9187.0cos 21=⋅=a a θ 得 2.23=θ°. 按同样的方式,我们可以得到表1.2.表1.2基因间的“距离”由表1.2可见,最小的基因“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的基因“距离”最大.2 Euler 的四面体问题问题 如何用四面体的六条棱长去表示它的体积?这个问题是由Euler (欧拉)提出的.解 建立如图2.1所示坐标系,设A ,B ,C 三点的坐标分别为(a 1,b 1,c 1),( a 2,b 2,c 2)和(a 3,b 3,c 3),并设四面体O-ABC 的六条棱长分别为.,,,,,r q p n m l 由立体几何知道,该四面体的体积V 等于以向量→→→OC OB OA ,,组成右手系时,以它们为棱的平行六面体的体积V 6的16.而)(.3332221116c b a c b a c b a OC OB OA V =⋅⨯= 于是得 .6333222111c b a c b a c b a V = 将上式平方,得.362323233232323231313232322222221212131313121212121212133322211133322211122c b a c c b b a a c c b b a a c c b b a a c b a c c b b a a c c b b a a c c b b a a cb ac b a c b a c b a c b a c b a c b a V ++++++++++++++++++=⋅=根据向量的数量积的坐标表示,有.,,,,232323323232222222313131212121212121c b a OC OC c c b b a a OC OB c b a OB OB c c b b a a OC OA c c b b a a c b a ++=⋅++=⋅++=⋅++=⋅++=⋅++=⋅ 于是362OC OC OB OC OB OBOB OB OA OBOA OA V ⋅⋅⋅= (2.1)由余弦定理,可行.2cos 222n q p q p -+=⋅⋅=⋅θ同理.2,2222222l r q m r p -+=⋅-+=⋅将以上各式代入(2.1)式,得.222222362222222222222222222222r l r p m r p l r p p n q p m r p n q p pV -+-+-+-+-+-+=(2.2)这就是Euler 的四面体体积公式.例 一块形状为四面体的花岗岩巨石,量得六条棱长分别为l =10m, m =15m, n =12m, p =14m, q =13m, r =11m.则.952222,462222,5.1102222=-+=-+=-+l r p m r p n q p代入(2.1)式,得.75.13698291219546951695.110465.110196236==V 于是.)195(82639.38050223m V ≈≈即花岗岩巨石的体积约为195m 3.古埃及的金字塔形状为四面体,因而可通过测量其六条棱长去计算金字塔的体积.3 动物数量的按年龄段预测问题问题 某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁.动物从第二年龄组起开始繁殖后代,经过长期统计,第二组和第三组的繁殖率分别为4和3.第一年龄和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为12 和14.假设农场现有三个年龄段的动物各100头,问15年后农场三个年龄段的动物各有多少头?问题分析与建模 因年龄分组为5岁一段,故将时间周期也取为5年.15年后就经过了3个时间周期.设)(k i x 表示第k 个时间周期的第i 组年龄阶段动物的数量(k =1,2,3;i =1,2,3).因为某一时间周期第二年龄组和第三年龄组动物的数量是由上一时间周期上一年龄组存活下来动物的数量,所以有).3,2,1(41,21)1(2)(3)1(1)(2===--k x x x x k k k k又因为某一时间周期,第一年龄组动物的数量是由于一时间周期各年龄组出生的动物的数量,所以有).3,2,1(34)1(3)1(2)(1=+=--k x x x k k k于是我们得到递推关系式:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=----.41,21,34)1(2)(3)1(1213)1(2)(1k k k k k k k x x x x x x x 用矩阵表示).3,2,1(04100021340)1(3)1(2)1(1)(3)(2)(1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---k x x x x x x k k k k k k则).3,2,1()1()(==-k Lx x k k其中.100010001000,0410*******)0(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=x L 则有),3,2,1()(3)(2)(1)(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k x x x x k k k k,250500700010001000100004100021340)0()1(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x,12535002750250500700004100021340)1()2(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x .8751375143751253500275004100021340)2()3(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡==Lx x 结果分析 15年后,农场饲养的动物总数将达到16625头,其中0~5岁的有14375头,占86.47%,6~10岁的有1375头,占8.27%,11~15岁的有875头,占 5.226%.15年间,动物总增长16625-3000=13625头,总增长率为13625/3000=454.16%.注 要知道很多年以后的情况,可通过研究式)0()1()(x L Lx x k k k ==-中当趋于无穷大时的极限状况得到.关于年龄分布的人口预测模型 我们将人口按相同的年限(比如5年)分成若干年龄组,同时假设各年龄段的田、女人口分布相同,这样就可以通过只考虑女性人口来简化模型.人口发展随时间变化,一个时间周期的幅度使之对应于基本年龄组间距(如先例的5年),令)(k i x 是在时间周期k 时第i 个年龄组的(女性)人口,i =1,2,…,n .用1表示最低年龄组,用n 表示最高年龄组,这意味着不考虑更大年龄组人口的变化.假如排除死亡的情形,那么在一个周期内第i 个年龄组的成员将全部转移到i +1个年龄组.但是,实际上必须考虑到死亡率,因此这一转移过程可由一存活系数所衰减. 于是,这一转移过程可由下述议程简单地描述:),1,,2,1()1()(1-==-+n i x b x k ii k i其中i b 是在第i 个年龄组在一个周期的存活率,因子i b 可由统计资料确定.惟一不能由上述议程确定的年龄组是,)(1k x 其中的成员是在后面的周期内出生的,他们是后面的周期内成员的后代,因此这个年龄组的成员取决于后面的周期内各组的出生率及其人数.于是有方程,)1(122)1(11)(1---+++=k n n k k k x a x a x a x (3.1)这里),,2,1(n i a i =是第i 个年龄组的出生率,它是由每时间周期内,第i 个年龄组的每一个成员的女性后代的人数来表示的,通常可由统计资料来确定.于是我们得到了单性别分组的人口模型,用矩阵表示便是,00000000000)1()1(3)1(2)1(11211321)()(3)(2)(1⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------k n k k k n n n k n k k k x x x x b b b a a a a a x x x x或者简写成.)1()(-=k k Lx x (3.2)矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--0000000000001211321n n n b b b a a a a a L称为Leslie 矩阵.由(3.2)式递推可得)0()1()(x L Lx x k k k ==-这就是Leslie 模型.4 企业投入产生分析模型问题 某地区有三个重要产业,一个煤矿、一个发电厂和一条地方铁路.开采一元钱的煤,煤矿要支付0.25元的电费及0.25元的运输费.生产一元钱的电力,发电厂要支付0.65元的煤费,0.05元的电费及0.05元的运输费.创收一元钱的运输费,铁路要支付0.55元的煤费及0.10元的电费.在某一周内,煤矿接到外地金额为50000元的定货,发电厂接到外地金额为25000元的定货,外界对地方铁路没有需求.问三个企业在这一周内总产值多少才能满足自身及外界的需求?数学模型 设x 1为煤矿本周内的总产值,x 2为电厂本周的总产值,x 3为铁路本周内的总产值,则⎪⎩⎪⎨⎧=⨯++-=++-=++⨯-,0)005.025.0(,25000)10.005.025.0(,50000)55.065.00(321332123211x x x x x x x x x x x x (4.1) 即.02500050000005.025.010.005.025.055.065.00321321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡x x x x x x 即.025********,005.025.010.005.025.055.065.00,321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Y A x x x X 矩阵A 称为直接消耗矩阵,X 称为产出向量,Y 称为需求向量,则方程组(4.1)为,Y AX X =-即Y X A E =-)(, (4.2)其中矩阵E 为单位矩阵,(E-A )称为列昂杰夫矩阵,列昂杰夫矩阵为非奇异矩阵.投入产出分析表 设,00000,)(3211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--=-x x x A C E A E B D=(1,1,1)C.矩阵B 称为完全消耗矩阵,它与矩阵A 一起在各个部门之间的投入产生中起平衡作用.矩阵C 可以称为投入产出矩阵,它的元素表示煤矿、电厂、铁路之间的投入产出关系.向量D 称为总投入向量,它的元素是矩阵C 的对应列元素之和,分别表示煤矿、电厂、铁路得到的总投入.由矩阵C ,向量Y ,X 和D ,可得投入产出分析表4.1.表4.1 投入产出分析表 单位:元 煤矿电厂铁路外界需求总产出煤矿 11c 12c 13c 1y 1x 电厂 21c22c23c 2y2x铁路 31c 32c 33c3y 3x 总投入1d2d3d计算求解 按(4.2)式解方程组可得产出向量X ,于是可计算矩阵C 和向量D ,计算结果如表4.2.表4.2 投入产出计算结果 单位:元煤矿 电厂 铁路 外界需求 总产出 煤矿 0 36505.96 15581.51 50000 102087.48 电厂 25521.87 2808.15 2833.0025000 56163.02 铁路 25521.87 2808.15 0 0 28330.02总投入51043.7442122.2718414.525 交通流量的计算模型问题 图5.1给出了某城市部分单行街道的交通流量(每小时过车数).假设:(1)全部流入网络的流量等于全部流出网络的流量;(2)全部流入一个节点的流量等于全部流出此节点的流量.试建立数学模型确定该交通网络未知部分的具体流量.建模与计算 由网络流量假设,所给问题满足如下线方程组:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=++==-==+=+=+=-=+=+-.1000,600,200,400,1000,800,800,200,500,3006381091098751216754432x x x x x x x x x x x x x x x x x x x x 系数矩阵为.0010101100000000011000000000100000000001100000000000100010000000011000110000000000110000000001110⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=A 增广矩阵阶梯形最简形式为.0000000000000000000006001000000000400010000000010000011000000800001010000050000000110002000000000100000000100108000000010001⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=B 其对应的齐次方程组为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+=+=+==-=+.0,0,0,0,0,0,0,010987865435251x x x x x x x x x x x x x 取(x 5,x 8)为自由取值未知量,分别赋两组值为(1,0),(0,1),得齐次方程组基础解系中两个解向量(),',0,0,0,0,0,1,1,0,1,11--=η (),'0,0,1,1,1,0,0,0,0,02--=η其对应的非齐次方程组为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+=+=+==-=+.600,400,1000,800,500,200,0,80010987865435251x x x x x x x x x x x x x 赋值给自由未知量(x 5,x 8)为(0,0)得非齐次方程组的特解()'.600,400,0,1000,800,0,500,200,0,800=*x于是方程组的通解,*2211x k k x ++=ηη其中k 1,k 2为任意常数,x 的每一个分量即为交通网络未知部分的具体流量,它有无穷多解.6 小行星的轨道模型问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1.表6.1 坐标数据由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为012225423221=+++++y a x a y a xy a x a .问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据:(x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定系数,将五个点的坐标分别代入上面的方程,得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=++++-=++++-=++++-=++++-=++++.1222122212221222122255542535522514544243442241353423333223125242232222211514213112211y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡11111222222222222222543215525552544244424332333232222222211211121a a a a a y x y y x x y x y y x x y x y y x x y x y y x x y x y y x x 求解这一线性方程组,所得的是一个二次曲线方程.为了知道小行星轨道的一些参数,还必须将二次曲线方程化为椭圆的标准方程形式:12222=+bY a X 由于太阳的位置是小行星轨道的一个焦点,这时可以根据椭圆的长半轴a 和短半轴b 计算出小行星的近日点和远日点距离,以及椭圆周长L .根据二次曲线理论,可得椭圆经过旋转和平移两种变换后的方程如下:[].02221=++C DY X λλ 所以,椭圆长半轴:C D a 1λ=;椭圆短半轴: CDb 2λ=;椭圆半焦矩:22b ac -=.计算求解 首先由五个点的坐标数据形成线性方程组的系数矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=7200.69600.142896.112656.509504.550520.53360.143807.62127.363802.516460.35180.133233.36433.246841.454040.25720.124448.11115.155138.39292.1528.114199.04701.72237.33A使用计算机可求得).2165.0,6351.1,6942.0,3440.0,6143.0(),,,,(54321---=a a a a a从而⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=6942.03440.03440.06143.03221a a a a CC C ,3081.0=的特征值.0005.1,3080.021==λλ .12165.06351.12165.06942.03440.06351.13440.06143.0154532321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a a a a a a a a D .8203.1-=D于是,椭圆长半轴1834.19=a ,短半轴9045.5=b ,半焦距2521.18=c .小行星近日点距和远日点距为.4355.37,039313=+==-=c a H c a h最后,椭圆的周长的准确计算要用到椭圆积分,可以考虑用数值积分解决问题,其近似 值为84.7887.7 人口迁移的动态分析问题 对城乡人口流动作年度调查,发现有一个稳定的朝向城镇流动的趋势:每年农村居民的2.5%移居城镇,而城镇居民的1%迁出.现在总人口的60%位于城镇.假如城乡总人口保持不变,并且人口流动的这种趋势继续下去,那么一年以后住在城镇人口所占比例是多少?两年以后呢?十年以后呢?最终呢?解 设开始时,令乡村人口为,0y 城镇人口为,0z 一年以后有乡村人口,10011000975100y z y =+ 城镇人口,10099100025100z z y =+ 或写成矩阵形式⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡00111009910002510011000975z y z y . 两年以后,有.100991000251001100097510099100025100110009750021122⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y z y . 十年以后,有.100991000251001100097500101010⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y 事实上,它给出了一个差分方程:k k Au u =+1.我们现在来解这个差分方程.首先,1009910002510011000975⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Ak 年之后的分布(将A 对角化):.75757275100200193115210000⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡z y z y A z y k k k k 这就是我们所要的解,而且容易看出经过很长一个时期以后这个解会达到一个极限状态.7572)(00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=⎥⎦⎤⎢⎣⎡∞∞z y z y 总人口仍是00z y +,与开始时一样,但在此极限中人口的75在城镇,而72在乡村.无论初始分布是什么样,这总是成立的.值得注意这个稳定状态正是A 的属于特征值1的特征向量.上述例子有一些很好的性质:人口总数保持不变,而且乡村和城镇的人口数决不能为负.前一性质反映在下面事实中:矩阵每一列加起来为1;每个人都被计算在内,而没有人被重复或丢失.后一性质则反映在下面事实中:矩阵没有负元素;同样地0y 和0z 也是非负的,从而1y 和21,y z 和2z 等等也是这样.8 常染色体遗传模型为了揭示生命的奥秘,遗传学的研究已引起了人们的广泛兴趣.动植物在产生下一代的过程中,总是将自己的特征遗传给下一代,从而完成一种“生命的延续”.在常染色体遗传中,后代从每个亲体的基因对中各继承一个基因,形成自己的基因对.人类眼睛颜色即是通过常染色体控制的,其特征遗传由两个基因A 和a 控制.基因对是AA 和Aa 的人,眼睛是棕色,基因对是aa 的人,眼睛为蓝色.由于AA 和Aa 都表示了同一外部特征,或认为基因A 支配a ,也可认为基因a 对于基因A 来说是隐性的(或称A 为显性基因,a 为隐性基因).下面我们选取一个常染色体遗传——植物后代问题进行讨论.某植物园中植物的基因型为AA ,Aa ,aa .人们计划用AA 型植物与每种基因型植物相结合的方案培育植物后代.经过若干年后,这种植物后代的三种基因型分布将出现什么情形?我们假设),2,2,0(,, =n c b a n n n 分别代表第n 代植物中,基因型为AA ,Aa 和aa 的植物占植物总数的百分率,令),,()('=n n n n c b a x 为第n 代植物的基因分布,),,(000)0('=c b a x 表示植物基因型的初始分布,显然,我们有.1000=++c b a (8.1)先考虑第n 代中的AA 型,第1-n 代AA 型与AA 型相结合,后代全部是AA 型;第1-n 代的Aa 型与和与AA 相结合,后代是AA 型的可能性为21;1-n 代的aa 型与AA 型相结合,后代不可能是AA 型。

线性代数教学中的实用案例

线性代数教学中的实用案例

的 比例 ,如表 中第二列 ,将 电力 的总产 出分配如下 :4 0 %给煤
炭 部 门 ,5 0 %给钢 铁 部 门 ,剩 下 1 0 %给 电 力 部 门 ,因所 有 产 出
都必须分配 ,每一列 的分数之和等于 1 。记符号 P c ,P ,P 分
别代表煤炭 ,钢铁 电力部 门年 度总产 出的价格 ,求 平衡 价格 使
● ●
培 养学生的创 造性 思维 ,增加课 堂教 学的开放性 。 关键词:线性代数 ;实用案例 ;教 学创新
中图分类号:G 4 2 0 文 献 标 识 码 :B 文章编号 :1 0 0 2 — 7 6 6 1( 2 0 1 3 )2 9 — 0 0 2 — 0 1
线 性 代 数 已 经作 为一 门成 熟 的 理论 被诸 多学 科 广 泛 应 用 ,
高守 同 等锹 教育 目
线 性 代 数 教 学 中的 实用 案例
樊 帆 张海 霞 张 欣
( 镇 江 船艇 学 院 基 础 部 数 学教 研 室 江 苏 镇 江 2 1 2 0 0 3 )

要 :本文讨论 了将线性代数在各领域 内的一些应用作为案例 引入线性代数的教学之 中,从 而提 高教 师的授课质量 ,
但 在教 学过程 中很容易 发现 ,由于这 门学科研究 问题 的抽象 性 ,虽然在理论深度上可能不及高等数学 ,但在学 习难度上则
有 过之 而无 不 及 。
为 了解 决这个 问题 国内外很 多教师 尝试着将 线性代 数 的 实际案例编人线性代数教材 ,用行列式 ,矩 阵等知识得具体应 用 来引发学生的想象力 , 而 由于国内教材大多数仍采用传统 的 线 性代 数教材 ,因此作 为教师则须将一些案例作为 引入或应用

线性代数数学建模案例1

线性代数数学建模案例1
网络分析要解决的问题是:在部分信息(如 网络的输入量)已知的情况下,确定每一分支中 的流量。
案例1 交通网络流量分析问题
城市道路网中每条道路、每个交叉 路口的车流量调查,是分析、评价及改 善城市交通状况的基础。根据实际车流 量信息可以设计流量控制方案,必要时 设置单行线,以免大量车辆长时间拥堵。
下图为某城市的局部单行示意图
【模型假设】假设不考虑价格变动等其他因素.
【模型建立】设煤矿, 电厂, 铁路分别产出x元, y元, z元刚好满足需求. 则有下表
产出(1元)
产出



煤0
0.6 0.5
x
分配 0.6y + 0.5z
订单 60000
消 电 0.3 0.1 0.1
y

0.3x + 0.1y + 0.1z 100000
几条道路的流量统计? (3) 当x4 = 350时, 确定x1, x2, x3的值. (4) 若x4 = 200, 则单行线应该如何改动才合
理? 。
【模型假设】: (1) 每条道路都是单行线 (2) 每个交叉路口进入和离开的车辆数目相等.
【模型建立】 根据图3和上述假设, 在①, ②, ③, ④ 四个路口进出车辆数目分别满足:
【模型分析】
(1) 由(A, b)的行最简形可见, 上述方程组中的最
后一个方程是多余的. 这意味着最后一个方程中的
数据“300”x可1 以x4不1用00统计.
(2)由

x2

x4

600
可得
x3 x4 300
x2 x1 500

x3

x1

200

线性代数应用案例

线性代数应用案例
(5)如有困难,请联系老师。
线性代数应用案例之一:传球游戏(难度指数:**)
5个小朋友玩传球游戏。游戏规则:任何两个人之间都可以相互传球,但自己不能
给自己传。请用Matlab完成如下操作:
(1)把5个小朋友看成5个节点,构造这5个节点的邻接矩阵A;
(2)假设从第一个小朋友开始传球,经过四次传球后,球又回到第一个小朋友手
5
35
5
35
55
50
G
9
4
17
25
2
39
25
H
6
5
16
10
10
35
10
I
8
2
12
0
0
6
20
线性代数应用案例之六:药方配制问题
(1)某医院要买这7种特效药,但药厂的第3号药和第6号特效药已经卖完,请问能
否用其他特效药配制出这两种脱销的药品;
(2)现在该医院想用这9种草药配制三种新的特效药,表2中给出新药所需的成分
(1)根据数据矩阵画出字母的形状;
(2)取 =
1 0.25
作为变换矩阵对进行变换,并画出变换后的图形,和(1)
0
1
做个比较。
线性代数应用案例之四:交通流量分析(难度指数:***)
某城市有如图所示的9节点交通图,每一条道路都是单行道,图中数字表示某一个时段
该路段的机动车流量。若针对每一个十字路口,进入和离开的车辆数相等。请计算每两
每年有5%的市区居民搬到郊区,而有15%的郊区居民搬到市区。若开始有
700000人口居住在市区,300000人口居住在郊区,请分析:
(1)10年后市区和郊区的人口各是多少?
(2)30年后、50年后市区和郊区的人口各是多少?

线性代数在数学建模中的应用

线性代数在数学建模中的应用

4.1 问题重述
975 1 y0 + z0 = y1 , 1000 100
25 99 y0 + z0 = z1 , 1000 100
1 975 y1 1000 100 y0 z = 25 99 z0 1 1000 100
4.2 建立模型
975 y 2 1000 z = 25 2 1000 1 975 100 y1 = 1000 99 z1 25 100 1000 1 100 99 100
x 2 x 3 + x 4 = 300 x 4 + x 5 = 500 x 7 x 6 = 200 x 1 + x 2 = 800 x 1 + x 5 = 800 x 7 + x 8 = 1000 x 9 = 400 x 10 x 9 = 200 x 10 = 600 x 8 + x 3 + x 6 = 1000 , , , , , , , , , .
x11 x 21 x 31 x 41 x12 x 22 x 32 x 42 , a 2 = , a3 = , a 4 = . a1 = x13 x 23 x 33 x 43 x14 x 24 x 34 x 44
f ki
( k 1)
4 0 1 4
(k = 1,2,3).
简记为 x
(k )
= Lx
(k = 1,2,3).
3.3 模型求解
0 1 = 2 0
0 1 = 2 0
4 0 1 4
4 0 1 4
x (1) = Lx ( 0 )
3 1000 7000 0 1000 = 500 , 1000 250 0
爱斯基 班图人 英国人 朝鲜人 f3i f4i 摩人f1i f2i A AB B O 0.2914 0.0000 0.0316 0.6770 0.1034 0.0866 0.1200 0.6900 0.2090 0.0696 0.0612 0.6602 0.2208 0.0000 0.2069 0.5723

线性代数在数学建模中的一些应用

线性代数在数学建模中的一些应用
学术论坛
SO TNG2 N8圆 CE EOY O. I &CL 1 l E HO. 。 2 N . 0 。 。 0 2 1 应 用
杨 庆 ( 东海 洋大学 寸金 学院基 础部 广东湛 江 5 4 9 ) 广 2 0 4 摘 要: 线性 代数是 许 多高校 开设 的一 门重要基 础理论课 , 为数 学的一个 重要 的分支 , 作 它具 有较 强的逻辑 性 、 抽象性和 广泛的 实用性 。 数 学建模是 对 实际 问题进行 分析 , 利用数 学知 识和方 法建立数 学模 型 , 对模型求 解并 用于实际 问题 的处理 。 因此 , 学建模是 联 系数 学和 数 实际 问题 的重要 纽 带 。 本文通 过一 些 实例 讨论 了线性代 数在 数 学建 模 中 的一些 重要 应 用 。 关键 词 : 线性 代数 数 学建模 应用 中 图分 类 号 : 1 1 0 5 文献标识码 : A 文 章编 号 : 6 2 7 12 1 ) 3b一0 9 —0 1 7 —3 9 ( O 20 ( ) 1 8 2
应用 举 例 : 一 个 “ ” 型 公路 环 网 , 设 井 字
( ) 据 某 种 规 律 , 立 变 量 和 参 数 间 4根 建 确 定 的 数 学 关 系 , 是 最 关 键 的一 步 。 这 里要用到 很多数学理论和方 法。 实 际 问 题 中 出 现 的 现 象 , 用 某 种 方 法 来 或
c为 密 文 矩 阵 , 有 下 面 的 加 密 算 法 和 解 则 () 密 算 法 。 1加
加 密 时 , 用 矩 阵 乘 法 C:A 或 采 B
C = BA 。
首 要 的 和 关键 的 一 步 是 将研 究对 象 的 内在 空 间 六 面 体 体 积 出 发 , 到 2 和 3 行 列 密 算 法 。 得 阶 阶 规 律 用 数 学 的 语 言 和 方 法 表 述 出 来 , 建 式 的 基 本 公 式 ; 者 , 理 解 矩 阵 概 念 时 , 即 再 在 立 所 谓 的 数 学 模 型 , 要 将 求 解 得 到 的 结 可 以先 了解 诺 贝尔 经 济 学 奖 获 得 者 美 国数 还 果 返 回 到 实 际 问 题 中 去 , 种 解 决 问 题 的 学 家 和 经 济学 家 L o te 的投 入 产 出模 型 。 这 e n if 全 过 程 称 为 数 学 建 模…。 程 , 过 程 可 归纳 为 以 下 步 聚f。 该 2 ] ( ) 某 个 实 际 问题 进 行 观 察 、 析 。 1对 分

数学建模思想在数学公共课教学改革中的应用——以线性代数为例

数学建模思想在数学公共课教学改革中的应用——以线性代数为例
求 学 生 自学教 材 ,并 根 据 相 关 专 业 背 景提 出 问题 。提 出的 问 题
要能引起学生产生认知冲突 ,激发学生的求知欲 ,使其能够在
注 意 力 集 中 ,态 度 积 极 的 状 态 下 主 动地 参 与到 问题 的 探 讨 过 程
中来 。
( 2)引导 学生 收 集 信息 。在 问题 情 景驱 动 下 ,学生 会 主 动
式。在基本 了解背景知识和结论后 ,引导学生思考如何将数 学知识代入 到具 有 相关专业 背景 的实际 问题 中,培养 学生理论联 系实际来进行分析 问题 的能力和 解决 问题 的能力。
随着 中国高等教育的普及 ,国家和社会对高等院校培养大 学生的模式提 出了更高的要求 ,需要高等教育 的结构更加多元
化 ,发 展 应 用型 本 科 教 育 是 社 会 赋 予教 育 的新 的 选 择 和 重 要 选 项 。2 0 1 4 年 仰 恩 大 学就 提 出 了建 设 应 用 型 、创 新 型 本 科 高 校 的
2数 学 建模 思 想融 入数 学公 共 课教 学 改革 的教 学模 式
教学是一种由教师和学生双方共同完成的 、有 目的பைடு நூலகம்、有组
此 都 进 行 了 公开 研 究 。本 文 主 要 以线 性 代 数 为 例 来 讨 论数 学 建
在理 论 上 借 鉴美 国 著 名认 知 教育 学 家杰 罗姆 ・布鲁 纳 ( J e r o me B r u n e r )的认知发现学习论和认知结构教学论 ,提出了 数学公共课教学改革的具体的组织实施步骤。 ( 1 ) 设置具有相关专业背景知识 的问题。根据教学大纲要
收集信 息 ,但是 由于学生对问题的理解 尚未深入 ,此时教师可
引 导学 生深 入 理 解 相 关 知 识 背 景 ,并 给 出部 分 资 料 ,然 后 学 生

线性代数应用案例

线性代数应用案例

行列式的应用案例1大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮食也没有规律,为了身体的健康就需要注意日常饮食中的营养。

大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。

种食物的量。

角牟:设X i,X2,X3分别为三种食物的摄入量,则由表中的数据可以列出下列方程组36x1 51x2 13x3 337x2 1.1x3 352x1 34x2 74x3 45利用matlab可以求得 x =0.277223183614430.391920861637010.23323088049177案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。

假设在一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,神军:设土建师、电气师、机械师的总收入分别是x,x2,x3元,根据题意,建立方程为0.2x2 0.3x3 500x2 0.1x1 0.4x3 700x3 0.3x1 0.4x2 600利用matlab可以求得x =1.0e+003 *1.25648414985591 1.44812680115274 1.55619596541787案例 3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴需含1200cal热量,30g 蛋白质和300mg 维生素c,已知三种食物每100g 中的有关营养的含量如下表, 试求所配菜肴中每种食物的数量。

解:设所配菜肴中蔬菜、鱼和肉松的数量分别为x 1,x 2,x 3百克,根据题意,建立方程组60x 1 300x 2 600x 3 1200 3x 1 9x 2 6x 330 90x 1 60x 2 30x 3300利用matlab 可以求得 x =1.521739130434782.39130434782609 0.65217391304348矩阵的应用的系数a ij (i,j 1,2,L ,n),b j (j 1,2,L ,n)按原来的位置构成一数表案例 1矩阵概念的引入(1)线性方程组a 21x 1 L LH E X Ia 12x2a 22x2a n2x 2a 1n xna 2n%a nnx n现1 a12 L a in b la2i a22 L a2n b2L L L L La ni a n2 L a nn 4该数表决定着上述方程组是否有解,以及如果有解,解是什么等问题,因而研究这个数表就很重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵
数 学 模 型:
生态学:海龟种群统计数据
该模型在高等数学教学应用的目的:
1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。

2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。

培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。

3. 巩固矩阵的概念和计算。

生态学:海龟种群统计数据
管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。

一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。

该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。

举例来说,可以用一个四阶段的模型来分析海龟种群的动态。

如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是
111i i d i i i
d i s p s s -⎛⎫-= ⎪-⎝⎭
种群可以存活且在次年进入下一阶段的比例是
()11i i d i i i d i
s s q s
-=
-
如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵
12341
2233
400000
p e e e q p L q p q p ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭
那么L 可以用来预测未来几年每阶段的种群数。

上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。

根据前面表格数据,我们模型的莱斯利矩阵是
0127790.670.73940000.000600000.810.8077L ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭
假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后
每阶段的种群数可以如下计算
100
0127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭
(这里的计算进行了四舍五入)。

为了得到2年后的种群数,再用矩阵L 乘一次。

2210x Lx L x ==
一般来说,k 年后的种群数由公式0k k x L x =给出。

为了了解更长时期的趋势,计算出x 10、
x 25和x 50,如下表所示。

这个模型预测50年后繁殖期的海龟总数下降了80%。

下面的文献[1]介绍了一个七阶段的种群动态模型,文献[2]是莱斯利原来那篇文章。

思考:海龟最终是否会灭绝?如果不灭绝,海龟种群数有无稳定值?该模型用到了那些数学知识?该模型可以进行怎样的推广?
参考文献
1. Crouse, Deborah T., Larry B. Crowder, and Hal Caswell, “A Stage-Based Population Model
for Loggerhead Sea Turtles and Implications for Conservation,” Ecology , 68(5), 1987
2. Leslie, P. H., “On the Use of Matrices in Certain Population Mathematics,” Biometrika , 33,
1945.
数学模型在《线性代数》教学中的应用实例(二)课程:线性代数
教学内容:矩阵特征值和特征向量
数学模型:互联网:Google搜索引擎的PageRank
该模型在高等数学教学应用的目的:
1.通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。

2.使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。

培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。

3.巩固矩阵特征值和特征向量的概念和计算。

互联网:Google搜索引擎的PageRank
越来越多的人上网,越来越多的人上网时会使用搜索网站,搜索网站越来越多,哪个搜索网站最好?没有最好,只有更好!
Google 使用PageRank™技术检查整个网络链接结构,并确定哪些网页重要性最高。

然后进行超文本匹配分析,以确定哪些网页与正在执行的特定搜索相关。

在综合考虑整体重要性以及与特定查询的相关性之后,Google 可以将最相关最可靠的搜索结果放在首位。

PageRank 技术:通过对由超过50,000 万个变量和20 亿个词汇组成的方程进行计
算,PageRank 能够对网页的重要性做出客观的评价。

PageRank 并不计算直接链接的数量,而是将从网页 A 指向网页 B 的链接解释为由网页 A 对网页 B 所投的一票。

这样,PageRank 会根据网页B 所收到的投票数量来评估该页的重要性。

PageRank 还会评估每个投票网页的重要性,因为某些网页的投票被认为具有较高的价值,这样,它所链接的网页就能获得较高的价值。

重要网页获得的PageRank(网页排名)较高,从而显示在搜索结果的顶部。

Google 技术使用网上反馈的综合信息来确定某个网页的重要性。

搜索结果没有人工干预或操纵,这也是为什么Google 会成为一个广受用户信赖、不受付费排名影响且公正客观的信息来源。

“从许多优质的网页链接过来的网页, 必定还是优质网页”。

可以在查询PageRank。

您查询的页面地址:
您查询的页面地址:
例如,观察如下的网页链接图。

再例如,
可写出如下的邻接矩阵,
0111101100000011000000
11010010110101000100000010
0A ⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝

将邻接矩阵转置后再按列单位化,即可得到概率转移矩阵
010.500.250.500.200.50.330000.2000.330.25000.2
0100.25000.2010.3300.5100000.25000.2000000M ⎛⎫
⎪ ⎪ ⎪

= ⎪ ⎪

⎪ ⎪⎝

将各个网页的PR 记作x i ,记x=(x 1,x 2,x 3,x 4,x 5,x 6,x 7)T ,则应有Mx=x 。

想一想,为什么?
(在此复习特征值和特征向量的定义)
可编写如下的Matlab 程序,prog2.m
A=[0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0]; M=A';
M=M*inv(diag(sum(M))); [V,D]=eig(M);
disp('PageRank:'); disp(V(:,1));
计算后可得如下结果:
>> prog2
PageRank:
0.6995
0.3829
0.3240
0.2430
0.4123
0.1031
0.1399
思考:Matlab中eig函数使用的算法在大规模矩阵(100亿阶矩阵)运算时,不可行,如何解决此困难?
办法:可以使用幂法(x(k+1)=Mx(k))求解M的对应于特征值1的特征向量,即PageRank。

改写程序如下,prog3.m
A=[0 1 1 1 1 0 1
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 1 1 0 1 0
1 0 0 0 1 0 0
0 0 0 0 1 0 0];
M=A';
M=M*inv(diag(sum(M)));
x=ones(7,1);x=x/norm(x);n=50;
for i=1:n
x(:,i+1)=M*x(:,i);
end
disp('PageRank:');
y=x(:,n+1);y=y/norm(y);disp(y);
计算结果与前面程序一致。

(再结合生态学:海龟种群统计数据模型,回答思考题)
参考文献
1.《Google 的秘密- PageRank 彻底解说中文版》,/pagerank_cn.htm
2.《Google 公司信息:技术》,/intl/zh-CN/corporate/tech.html
3.《网页排名算法及其应用》,徐德志、申红婷,贵州大学学报,2007年9月,第24卷第
5期,491~494。

相关文档
最新文档