八年级数学上册全等三角形知识点总结

合集下载

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

八年级数学上册《三角形全等的判定》知识点总结

八年级数学上册《三角形全等的判定》知识点总结

千里之行,始于足下。

八年级数学上册《三角形全等的判定》知识点
总结
三角形全等的判定是数学中非常重要的一部分,它通过观察以及一定的几何定理来判断两个三角形是否全等。

根据边和角的关系,我们可以有以下几个判定方法。

1. SSS判定法(边边边)
SSS判定法是通过三边的长度来判断两个三角形是否全等。

如果两个三角形的三条边长度分别相等,则这两个三角形是全等的。

2. SAS判定法(边角边)
SAS判定法是通过两边的长度和它们之间夹角的大小来判断两个三角形是否全等。

如果两个三角形的两边的长度相等,并且这两边夹角的大小也相等,则这两个三角形是全等的。

3. ASA判定法(角边角)
ASA判定法是通过两个角和它们之间的边的长度来判断两个三角形是否全等。

如果两个三角形的两个角相等,并且它们夹着的边的长度也相等,则这两个三角形是全等的。

4. AAS判定法(角角边)
AAS判定法是通过两个角和它们对应的边的长度来判断两个三角形是否全等。

如果两个三角形的两个角相等,并且它们对应的边的长度也相等,则这两个三角形是全等的。

除了上述判定法,还有一些特殊情况需要注意:
第1页/共2页
锲而不舍,金石可镂。

5. RHS判定法(正弦定理)
如果两个三角形的一个角相等,而这个角的两边分别和另一个三角形的两
个边成正比,则这两个三角形是全等的。

总的来说,通过这些判定方法,我们可以判断两个三角形是否全等,从而
解决与全等三角形相关的各种问题。

在解题时,我们可以根据题目提供的条件,选择合适的判定方法进行判断,进而得出结论。

八年级(上册)数学《全等三角形》全等三角形的判定-知识点整理

八年级(上册)数学《全等三角形》全等三角形的判定-知识点整理

三角形三条中线的交于一点,这一点叫做“三角形的重心〞。

三角形的中线可以将三角形分为面积相等的两个小三角形。

3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。

∠1=∠2=∠BAC.要区分三角形的“角平分线〞与“角的平分线〞,其区别是:三角形的角平分线是条线段;角的平分线是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的内心〞。

要求会的题型:①三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度“等积法〞,将三角形的面积用两种方式表达,求出未知量。

三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性三角形的内角1. 三角形的内角和定理三角形的内角和为180°,与三角形的形状无关。

2. 直角三角形两个锐角的关系直角三角形的两个锐角互余〔相加为90°〕。

有两个角互余的三角形是直角三角形。

三角形的外角1. 三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。

2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。

三角形的一个外角大于与它不相邻的任何一个内角。

多边形1. 多边形的概念在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。

多边形的边与它邻边的延长线组成的角叫做外角。

连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

一个n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.3. 正多边形各角相等,各边相等的多边形叫做正多边形。

〔两个条件缺一不可,除了三角形以外,因为假设三角形的三内角相等,那么必有三边相等,反过来也成立〕要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n边形从一个顶点出发的对角线的条数为〔n-3〕条,其所有的对角线条数为.将边数带入公式即可。

多边形的内角和1. n边形的内角和定理n边形的内角和为2. n边形的外角和定理多边形的外角和等于360°,与多边形的形状和边数无关。

2022年八年级数学上册 第十二章 全等三角形知识点归纳 (新版)新人教版

2022年八年级数学上册 第十二章 全等三角形知识点归纳 (新版)新人教版

第十二章:全等三角形12.1全等三角形〔1〕、全等图形:形状、大小相同的图形能够完全重合;〔2〕、全等形:能够完全重合的两个图形叫做全等形;〔3〕、全等三角形:能够完全重合的两个三角形叫做全等三角形;〔4〕、平移、翻折、旋转前后的图形全等;〔5〕、对应顶点:全等三角形中相互重合的顶点叫做对应顶点;〔6〕、对应角:全等三角形中相互重合的角叫做对应角;〔7〕、对应边:全等三角形中相互重合的边叫做对应边;〔8〕、全等表示方法:用“ 〞表示,读作“全等于〞〔注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上〕〔9〕、全等三角形的性质:①全等三角形的对应边相等;②全等三角形的对应角相等;12.2三角形全等的判定〔1〕假设满足一个条件或两个条件均不能保证两个三角形一定全等;〔2〕三角形全等的判定:①三边对应相等的两个三角形全等;〔“边边边〞或“SS〞S〕②两边和它们的夹角对应相等的两个三角形全等;〔“边角边〞或“SAS〞〕③两角和它们的夹边对应相等的两个三角形全等;〔“角边角〞或“ASA〞〕④两角和其中一角的对边对应相等的两个三角形全等;〔“角角边〞或“AAS〞〕⑤斜边和一条直角边对应相等的两个直角三角形全等;〔“斜边直角边〞或“HL〞〕注:①证明三角形全等:判断两个三角形全等的推理过程;②经常利用证明三角形全等来证明三角形的边或角相等;③三角形的稳定性:三角形的三边确定了,那么这个三角形的形状、大小就确定了;〔用“SSS〞解释〕12.3角的平分线的性质〔1〕、角的平分线的作法:课本第19页;〔2〕、角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;〔3〕、证明一个几何中的命题,一般步骤:①明确命题中的和求证;②根据题意,画出图形,并用数学符号表示和求证;③经过分析,找出由推出求证的途径,写出证明过程;〔4〕、性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;〔利用三角形全等来解释〕〔5〕、三角形的三条角平分线相交于一点,该点为内心;练习题:5.△ABC≌△DEF,且∠A=100°,∠E=35°,那么∠F=〔〕A.35° B.45° C.55° D.70°【考点】全等三角形的性质.6.如图,∠ABC=∠DCB,以下所给条件不能证明△ABC≌△DCB的是〔〕A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【考点】全等三角形的判定.7.以下条件中能判定△ABC≌△DEF的是〔〕A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF【考点】全等三角形的判定.8.如图,△ABC中,AB=AC,AD=AE,∠BAE=30°,那么∠DEC等于〔〕A.7.5°B.10° C.15° D.18°【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质.9.如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,求证:①△ACE≌△DCB;②CM=CN.【考点】全等三角形的判定与性质;等边三角形的性质.10.如图,A、B、C在同一直线上,且△ABD,△BCE都是等边三角形,AE交BD于点M,CD 交BE于点N,求证:〔1〕∠BDN=∠BAM;〔2〕△BMN是等边三角形.【考点】全等三角形的判定与性质;等边三角形的判定与性质.11.:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.【考点】全等三角形的判定与性质;等腰直角三角形.参考答案与试题解析5.【解答】解:∵△ABC≌△DEF,∴∠A=∠D,∵∠A=100°,∴∠D=100°,∵∠E=35°,∴∠F=180°﹣∠D﹣∠E=45°,应选B.6.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;应选:D.7.【解答】解:A、根据AB=DE,BC=EF,∠A=∠D,不能判断△ABC≌△DEF,故本选项错误;B、根据∠A=∠D,∠B=∠E,∠C=∠F,不能判断△ABC≌△DEF,故本选项错误;C、根据AC=DF,∠B=∠F,AB=DE,不能判断△ABC≌△DEF,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF〔AAS〕,故本选项正确;应选D.8.【解答】解:∵AC=AB,∴∠B=∠C,∵∠AEC=∠B+∠BAE=∠B+30°=∠AED+α,∴∠B=∠C=∠AED+α﹣30°,∵AE=AD,∴∠AED=∠ADE=∠C+α,即∠AED=∠AED+α﹣30°+α,∴2α=30°,∴α=15°,∠DEC=α=15°,应选C.9.【解答】证明:①∵△DAC和△EBC都是等边三角形,∴AC=CD,CE=BC,∠ACD=∠ECB=60°,∴∠ACE=∠DCB,在△ACE与△DCB中,,∴△ACE≌△DCB〔SAS〕,②∵△ACE≌△DCB,∴∠AEC=∠DBC,∵∠DCE+∠ACD+∠ECB=180°,∠ACD=∠ECB=60°,∴∠DCE=∠ECB=60°,∵CE=BC,∠DCE=∠ECB=60°,∠AEC=∠DBC,在△EMC与△BNC中,,∴△EMC≌△BNC〔ASA〕,∴CM=CN.10.【解答】证明:〔1〕∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,,∴△ABE≌△DBC〔SAS〕∴∠BDN=∠BAM;〔2〕∵△ABE≌△DBC,∴∠AEB=∠DCB,又∵∠ABD=∠EBC=60°,∴∠MBE=180°﹣60°﹣60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,,∴△MBE≌△NBC〔ASA〕,∴BM=BN,∠MBE=60°,∴△BMN为等边三角形.11.【解答】证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD〔SAS〕.∴∠B=∠EAC〔全等三角形的对应角相等〕.。

人教版八年级数学上册第12章 全等三角形 小结与复习

人教版八年级数学上册第12章  全等三角形 小结与复习

∠A =∠D,∠B =∠E,∠C =∠F
( 全等三角形的对应角相等).
二、三角形全等的判定方法
1. 三边分别相等的两个三角形全等 (可以简写为
“边边边”或“SSS”).
A
用符号语言表示为:
在△ABC 和△ DEF 中,
AB = DE, BC = EF,
B
C
D
CA = FD,
∴△ABC≌△DEF (SSS).
∠PEA =∠PFC = 90°,
∠EAP =∠FCP,
PE = PF, ∴△APE≌△CPF (AAS). ∴ AP = CP.
E
A 1
N P
2
B
FC
证法2 思路分析:由角是轴对称图形,其对称轴是角
平分线所在的直线,所以可想到构造轴对称图形. 方法
是在 BC 上截取 BD = BA,连接 PD (如图).
1 2
N P
FC
∴∠EAP =∠FCP =∠PCB. ∵∠BAP +∠EAP = 180°, ∴∠PCB +∠BAP = 180°.
E
N
A 1 2
B
P FC
想一想:本题如果不给图,条件不变,请问∠PCB 与∠PAB 有怎样的数量关系呢?
性质
全等 三角形
判定
作用 角的平分线 的性质定理 角的平分线 的判定定理
构造角平分线模型.
1 2
N P
B
FC
证明:过点 P 作 PE⊥BA,PF⊥BC,垂足分别为 E,F.
又∵∠1 =∠2,∴ PE = PF,∠PEA =∠PFC = 90°.
∵∠PCB + ∠BAP = 180°,∠BAP +∠EAP = 180°,

八年级上册数学知识点总结

八年级上册数学知识点总结

八年级上册数学知识点总结全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).轴对称一.知识框架二.知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数5.等腰三角形的判定:等角对等边。

八年级上册数学全等三角形知识点总结

八年级上册数学全等三角形知识点总结

八年级上册数学全等三角形知识点总结鉴于数学知识点的重要性,小编为您提供了这篇八年级上册数学全等三角形知识点总结,希望对同学们的数学有所帮助。

定义能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中相似比为1:1的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;表示:全等用≌表示,读作全等于。

判定公理1、三组对应边分别相等的两个三角形全等(简称SSS或边边边),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(SAS或边角边)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或角边角)。

由3可推到4、有两角及其一角的对边对应相等的两个三角形全等(AAS 或角角边)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或斜边,直角边) 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

注意:在全等的判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状。

A是英文角的缩写(angle),S是英文边的缩写(side)。

H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。

6.三条中线(或高、角分线)分别对应相等的两个三角形全等。

性质三角形全等的条件:1、全等三角形的对应角相等。

2、全等三角形的对应边相等3、全等三角形的对应顶点相等。

4、全等三角形的对应边上的高对应相等。

5、全等三角形的对应角平分线相等。

初二上册数学知识点总结归纳【五篇】

初二上册数学知识点总结归纳【五篇】

初二上册数学知识点总结归纳【五篇】第十一章全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章轴对称一.知识框架二.知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

(完整版)八年级数学上册全等三角形知识点总结

(完整版)八年级数学上册全等三角形知识点总结

第十二章《全等三角形 》 知识点归纳一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形.2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等.SSS(2)两角和它们的夹边对应相等的两个三角形全等。

ASA(3)两角和其中一角的对边对应相等的两个三角形全等.AAS(4)两边和它们的夹角对应相等的两个三角形全等。

SAS(5)斜边和一条直角边对应相等的两个直角三角形全等.HL4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:角的内部到角的两边的距离相等的点在角的平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:1。

确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

苏教版初中数学八年级上册三角形全等知识点总结

苏教版初中数学八年级上册三角形全等知识点总结

一、全等三角形的定义
1、全等三角形:
能够完全重合的两个三角形叫做全等三角形。

2、理解:
(1)全等三角形形状与大小完全相等,与位置无关;
(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;
(3)三角形全等不因位置发生变化而改变。

二、全等三角形的性质
1、全等三角形的对应边相等、对应角相等。

理解:
(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。

2、全等三角形的周长相等、面积相等。

3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。

三、全等三角形的判定
1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

4、边边边公理(SSS) 有三边对应相等的两个三角形全等。

5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。

四、证明两个三角形全等的基本思路
1、已知两边:
(1)找第三边(SSS);
(2)找夹角(SAS);
(3)找是否有直角(HL)。

2、已知一边一角:
(1)找一角(AAS或ASA);
(2)找夹边(SAS)。

3、已知两角:
(1)找夹边(ASA);(2)找其它边(AAS)。

八年级上册数学全等三角形知识点总结

八年级上册数学全等三角形知识点总结

八年级上册数学全等三角形知识点总结
1. 三角形的边与角的关系:任意两边之和大于第三边,任意两角的和小于180°。

2. 全等三角形定义:如果两个三角形的对应的三边和三个内角都相等,则这两个三角形全等。

3. 全等三角形的性质:
- 对应的三边相等:若两个三角形全等,则对应的三边相等。

- 对应的三个角相等:若两个三角形全等,则对应的三个角相等。

- 对应的等角对应的边相等:若两个三角形全等,则对应的等角对应的边相等。

- 直角三角形的斜边相等:若两个直角三角形的两直角相等且一边对应相等,则两个直角三角形全等。

- 几何体的面与体全等条件:若两个几何体的对应面全等,且它们相应的边垂直,则两个几何体全等。

4. 全等三角形的判定方法:
- SSS判定法:如果两个三角形的三边分别相等,则这两个三角形全等。

- SAS判定法:如果两个三角形的一对边和它们之间的夹角分别相等,则这两个三角形全等。

- ASA判定法:如果两个三角形的一对角和它们夹着的两边分别相等,则这两个三角形全等。

- RHS判定法:如果两个直角三角形的斜边和一条直角边分别相等,则这两个直角三角形全等。

5. 全等三角形的应用:
- 用全等三角形的判定法判断两个三角形是否全等。

- 在平面几何问题中,利用全等三角形的性质推导出结论或解决问题。

例如,求线段的长、角的度数等。

八年级数学上册“第十二章全等三角形”必背知识点

八年级数学上册“第十二章全等三角形”必背知识点

八年级数学上册“第十二章全等三角形”必背知识点一、全等三角形的基本概念1. 全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

2. 对应边和对应角:全等三角形中互相重合的边和角分别称为对应边和对应角。

3. 对应顶点:全等三角形中互相重合的顶点称为对应顶点。

二、全等三角形的性质1. 对应边相等:全等三角形的对应边相等。

2. 对应角相等:全等三角形的对应角相等。

3. 其他性质:全等三角形的周长和面积也相等;对应边上的高、中线、角平分线分别相等;对应角的三角函数值相等。

三、全等三角形的判定定理全等三角形的判定定理是本章的核心内容,主要包括以下几种:1. SSS(边边边):三边分别相等的两个三角形全等。

2. SAS(边角边):两边和它们的夹角分别相等的两个三角形全等。

3. ASA(角边角):两角和它们的夹边分别相等的两个三角形全等。

4. AAS(角角边):两个角和其中一个角的对边分别相等的两个三角形全等。

5. HL(直角三角形的斜边、直角边):在直角三角形中,斜边和一条直角边分别相等的两个直角三角形全等。

四、找全等三角形的方法1. 从结论出发:看要证明相等的两条线段 (或角)分别在哪两个可能全等的三角形中。

2. 从已知条件出发:看已知条件可以确定哪两个三角形相等。

3. 综合考虑:从条件和结论综合考虑,看它们能一同确定哪两个三角形全等。

4. 添加辅助线:若上述方法均不行,可考虑添加辅助线,构造全等三角形。

五、角平分线的性质1. 性质定理:角平分线上的点到角的两边的距离相等。

2. 逆定理:角的内部到角的两边距离相等的点在角的平分线上。

六、注意事项1. 在应用判定定理时,必须注意对应边和对应角的对应关系,不能随意搭配。

2. 证明两个三角形全等时,必须明确写出判定定理的依据,并写出完整的证明过程。

3. 注意区分全等三角形和相似三角形的判定条件,不要混淆。

通过掌握以上知识点,可以更好地理解和应用全等三角形的相关概念和性质,解决与全等三角形相关的问题。

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

提示:在BC上取一点F使得BF=BA,连结EF。

(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。

如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。

初二数学全等三角形知识点总结

初二数学全等三角形知识点总结

以下是为⼤家整理的关于初⼆数学全等三⾓形知识点总结的⽂章,供⼤家学习参考!⼀.定义
1.全等形:形状⼤⼩相同,能完全重合的两个图形.
2.全等三⾓形:能够完全重合的两个三⾓形.
⼆.重点
1.平移,翻折,旋转前后的图形全等.
2.全等三⾓形的性质:全等三⾓形的对应边相等,全等三⾓形的对应⾓相等.
3.全等三⾓形的判定:
SSS三边对应相等的两个三⾓形全等[边边边]
SAS两边和它们的夹⾓对应相等的两个三⾓形全等[边⾓边]
ASA两⾓和它们的夹边对应相等的两个三⾓形全等[⾓边⾓]
AAS两个⾓和其中⼀个⾓的对边开业相等的两个三⾓形全等[边⾓边]
HL斜边和⼀条直⾓边对应相等的两个三⾓形全等[斜边,直⾓边]
4.⾓平分线的性质:⾓的平分线上的点到⾓的两边的距离相等.
5.⾓平分线的判定:⾓的内部到⾓的两边的距离相等的点在⾓的平分线上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章《全等三角形 》 知识点归纳
一、知识网络
⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩
⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理
二、基础知识梳理
(一)、基本概念
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。

SSS
(2)两角和它们的夹边对应相等的两个三角形全等。

ASA
(3)两角和其中一角的对边对应相等的两个三角形全等。

AAS
(4)两边和它们的夹角对应相等的两个三角形全等。

SAS
(5)斜边和一条直角边对应相等的两个直角三角形全等。

HL
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:角的内部到角的两边的距离相等的点在角的平分线上
(二)灵活运用定理
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边
对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA)②任一组等角的对边相等(AAS)
(2)已知条件中有两边对应相等,可找
①夹角相等(SAS)②第三组边也相等(SSS)
(3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);
2.回顾三角形判定公理,搞清还需要什么;
3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

常见考法
(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等;
(2)利用判定公理来证明两个三角形全等;
(3)题目开放性问题,补全条件,使两个三角形全等。

相关文档
最新文档