(江苏)高考数学 压轴大题突破练 圆锥曲线
数学-2023届新高考必刷-圆锥曲线大题综合解析版

【2023届新高考1.(2023春·江苏扬州·高三统考开学考的准线l 上.当AB 过抛物线焦点F 且(1)求抛物线G 的方程;(2)若∠ACB 为直角,求证:直线AB 过【答案】(1)y 2=4x(2)证明见解析,y 1,B y 224,y 2,直线AB 的方程:x =ty +n ,联立方程组,由韦达定理可得y 1+y 2=4t ,y 1y 2=-4n ,又因为∠ACB 为直角可得CA ⋅CB=0,化简求解可得n =1,所以得出直线过定点1,0 .【详解】(1)设A x A ,y A ,B x B ,y B ,则由题意得|AB |=x A +x B +p =8x A +x B 2=3,解得p =2,所以抛物线的方程为y 2=4x (2)直线AB 过定点1,0 ,证明如下:设C -1,c ,Ay 214,y 1 ,B y 224,y 2,直线AB 的方程:x =ty +n ,将x =ty +n 代入y 2=4x 得y 2-4ty -4n =0,则Δ>0,得t 2+n >0,由韦达定理可得y 1+y 2=4t ,y 1y 2=-4n ,所以CA =y 214+1,y 1-c ,CB =y 224+1,y 2-c,因为∠ACB =90∘,所以CA ⋅CB =0,即y 21y 2216+y 21+y 224+1+y 1y 2-c y 1+y 2 +c 2=0,即n 2+4t 2+2n +1-4n -4tc +c 2=0,即(n -1)2+(2t -c )2=0,所以n =1,所以直线AB 过定点1,0 .2.(2023·江苏泰州·统考一模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,过左焦点F 的直线与C 交于P ,Q 两点.当PQ ⊥x 轴时,PA =10,△PAQ 的面积为3.(1)求C 的方程;(2)证明:以PQ 为直径的圆经过定点.b 2a 2+c -a 2=10212⋅2b 2a ⋅c -a=3c 2=a 2+b 2,进而求解;1 ,Q x 2,y 2 ,联立直线和双曲线方程组,可得3m 2-1 y 2-12my +9x 1 x -x 2 +y -y 1 y -y 2 =0,由对称性知以PQ 为直径的圆必1x 2 x +x 1x 2+y 1y 2=0,进而求解.【详解】(1)当PQ ⊥x 轴时,P ,Q 两点的横坐标均为-c ,代入双曲线方程,可得y P =b 2a ,y Q =-b 2a ,即PF =b 2a ,由题意,可得b 2a 2+c -a 2=10212⋅2b 2a ⋅c -a =3c 2=a 2+b 2,解得a =1,b =3,c =2,∴双曲线C 的方程为:x 2-y 23=1;(2)方法一:设PQ 方程为x =my -2,P x 1,y 1 ,Q x 2,y 2 ,x =my -23x 2-y 2=3⇒3m 2y 2-4my +4 -y 2=3⇒3m 2-1 y 2-12my +9=0, 以PQ 为直径的圆的方程为x -x 1 x -x 2 +y -y 1 y -y 2 =0,x 2-x 1+x 2 x +x 1x 2+y 2-y 1+y 2 y +y 1y 2=0,由对称性知以PQ 为直径的圆必过x 轴上的定点,令y =0,可得x 2-x 1+x 2 x +x 1x 2+y 1y 2=0,而x 1+x 2=m y 1+y 2 -4=12m 23m 2-1-4=43m 2-1,x 1x 2=my 1-2 my 2-2 =m 2y 1y 2-2m y 1+y 2 +4=-3m 2-43m 2-1,∴x 2-43m 2-1x +-3m 2-43m 2-1+93m 2-1=0⇒3m 2-1 x 2-4x +5-3m 2=0⇒3m 2-1 x +3m 2-5 x -1 =0对∀m ∈R 恒成立,∴x =1,∴以PQ 为直径的圆经过定点1,0 ;方法二:设PQ 方程为x =my -2,P x 1,y 1 ,Q x 2,y 2 ,x =my -23x 2-y 2=3⇒3m 2-1 y 2-12my +9=0, 由对称性知以PQ 为直径的圆必过x 轴上的定点.2-5 t -1 =0对∀m ∈R 恒成立,∴t =1,即以PQ 为直径的圆经过定点1,0 .3.(2023秋·浙江绍兴·高三期末)在平面直角坐标系xOy 中,已知点A (-2,0),B (2,0),直线PA 与直线PB 的斜率之积为-14,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)若直线l :y =kx +m 与曲线C 交于M ,N 两点,直线MA ,NB 与y 轴分别交于E ,F 两点,若EO=3OF ,求证:直线l 过定点.【答案】(1)x 24+y 2=1(x ≠±2)(2)证明见解析【分析】(1)设P 点坐标为(x ,y ),由y x +2⋅y x -2=-14可得结果;(2)设M x 1,y 1 ,N x 2,y 2 ,联立y =kx +m x 24+y 2=1,得x 1+x 2和x 1x 2,再求出E ,F 的坐标,根据EO =3OF得k =m ,从而可得结果.【详解】(1)设P 点坐标为(x ,y ),则y x +2⋅y x -2=-14,即x 24+y 2=1(x ≠±2),所以曲线C 的方程为x 24+y 2=1(x ≠±2).(2)设M x 1,y 1 ,N x 2,y 2 ,由y =kx +m x 24+y 2=1,消去y 并整理得4k 2+1 x 2+8km x +4m 2-4=0,由Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,得4k 2+1>m 2,所以x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.MA :y =y 1x 1+2(x +2)⇒E 0,2y 1x 1+2,NB :y =y 2x 2-2x -2 ⇒F 0,-2y 2x 2-2 ,因为EO =3OF ,所以-2y 1x 1+2=3⋅-2y 2x 2-2,即y 1(x 2-2)=3y 2(x 1+2),∴kx 1+m x 2-2 =3kx 2+m x 1+2 ,∴2kx 1x 2+(2k +3m )x 1+x 2 +4(k -m )x 2+8m =0,4(k -m )x 2+8m =0,对任意x 2都成立,463,233 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,B 与=π2.(-4,0),与双曲线的右支交于点M ,N ,且直线MN 经过F ,求圆C 的方程.【答案】(1)x 28-y 24=1(2)x 2+(y ±26)2=40【分析】(1)由已知条件列方程求出a ,b ,c ,即可求出双曲线的方程;(2)讨论直线MN 的斜率不存在时不满足题意;当斜率存在时设直线MN 的方程为y =kx +m ,联立双曲线的方程,由韦达定理求出MN 的中点Q 的坐标以及C 的坐标,根据勾股定理有CN 2=CP 2=CQ 2+12MN2,代入解方程即可得出答案.【详解】(1)由已知条件得:463+c ,233 ⋅463-c ,233 =0323a 2-43b 2=1a 2+b 2=c 2⇒a 2=8b 2=4c =23双曲线方程为:x 28-y 24=1.(2)若直线MN 的斜率不存在,则圆C 的圆心不在y 轴上,因此不成立.设直线MN 的方程为y =kx +m ,由y =k (x -23)x 28-y 24=1消元得:2k 2-1 x 2-83k 2x +24k 2+8 =0⇒2k 2-1≠0Δ=32k 2+1 >0x 1+x 2=83k 22k 2-1,y 1+y 2=k x 1+x 2 -43k =83k 32k 2-1-43k =43k2k 2-1∴MN 的中点Q 的坐标为43k 22k 2-1,23k2k 2-1.设C (0,m ),直线CQ :y =-1k x +m ,得C 0,63k2k 2-1,22k 2+1 2k 2-12.5.(2023春·广东揭阳·高三校考阶段练习)已知抛物线E :y 2=2px p >0 的焦点为F ,点F 关于直线y =12x +34的对称点恰好在y 轴上.(1)求抛物线E 的标准方程;(2)直线l :y =k x -2 k ≥6 与抛物线E 交于A ,B 两点,线段AB 的垂直平分线与x 轴交于点C ,若D 6,0 ,求AB CD的最大值.【答案】(1)y 2=4x(2)2915【分析】(1) 由题意得F p 2,0 ,设F 关于直线y =12x +34的对称点为F 0,m ,根据题意列出方程组,解之即可求解;(2)将直线方程与抛物线方程联立,利用韦达定理和弦长公式,并求得线段AB 的垂直平分线方程为y -2k =-1k x -2k 2+2k 2 ,进而得到AB CD=22+49t +36t-12,利用函数的单调性即可求解.【详解】(1)由题意得F p 2,0 ,设F 关于直线y =12x +34的对称点为F0,m ,则m -p 2=-2m 2=18p +34 ,解得m =p =2,∴抛物线E 的标准方程为y 2=4x .(2)由y =k x -2 y 2=4x 可得k 2x 2-4k 2+4 x +4k 2=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k 2+4k 2,x 1x 2=4,∴AB =1+k 2⋅x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅4k 2+4k 22-16=42k 4+3k 2+1k 2,y 1+y 2=k x 1+x 2 -4k =4k ,∴线段AB 的中点坐标为2k 2+2k 2,2k ,则线段AB 的垂直平分线方程为y,22+49t+36t-12,取得最小值,,b 0 的右顶点为A,左焦点C于A,B两点,且AB(2)过点T6,0的直线l2与双曲线C交于P,Q两点,直线AP,AQ分别与直线x=6相交于M,N 两点,试问:以线段MN为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【答案】(1)x29-y24=1(2)以线段MN为直径的圆过定点6-23,0和6+23,0.【分析】(1)根据点到直线的距离公式即可求解b=2,进而联立直线与双曲线方程,根据弦长公式即可求解a=3,(2)联立直线与曲线的方程得韦达定理,根据圆的对称性可判断若有定点则在x轴上,进而根据垂直关系得向量的坐标运算,即可求解.【详解】(1)∵双曲线C的左焦点F-c,0到双曲线C的一条渐近线bx+ay=0的距离为d=bca2+b2=b,而d=2,∴b=2.∴双曲线C的方程为x2a2-y24=10<a<10.依题意直线l1的方程为y=13x-a.由x2a2-y24=1,y=13x-a,消去y整理得:36-a2x2+2a3x-a2a2+36=0,依题意:36-a2≠0,Δ>0,点A,B的横坐标分别为x A,x B,x A -x B =8103,∴x A -x B =8.a =12(舍去),且a =3时,Δ>0,l 2的方程为x =my +6.由x =my +6,x 29-y 24=1,消去x 整理得:4m 2-9 y 2+48my +108=0,∴4m 2-9≠0,Δ1>0.设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-48m 4m 2-9,y 1y 2=1084m 2-9.直线AP 的方程为y =y 1x 1-3x -3 ,令x =6得:y =3y 1x 1-3,∴M 6,3y 1x 1-3 .同理可得N 6,3y 2x 2-3.由对称性可知,若以线段MN 为直径的圆过定点,则该定点一定在x 轴上,设该定点为R t ,0 ,则RM =6-t ,3y 1x 1-3 ,RN =6-t ,3y 2x 2-3 ,故RM ⋅RN =6-t 2+9y 1y 2x 1-3 x 2-3 =6-t 2+9y 1y 2my 1+3 my 2+3 =6-t 2+9y 1y 2m 2y 1y 2+3m y 1+y 2 +9=6-t 2+9×1084m 2-9m 2×1084m 2-9-3m ×48m 4m 2-9+9=6-t 2-12=0.解得t =6-23或t =6+23.故以线段MN 为直径的圆过定点6-23,0 和6+23,0 .【点睛】关键点睛:本题解题的关键是根据圆的对称性可判断定点在坐标轴上,结合向量垂直的坐标运算化简求解就可,对计算能力要求较高.7.(2023春·湖南长沙·高三雅礼中学校考阶段练习)定义:一般地,当λ>0且λ≠1时,我们把方程x 2a 2+y 2b 2=λ(a >b >0)表示的椭圆C λ称为椭圆x 2a 2+y 2b2=1(a >b >0)的相似椭圆.)如图,已知F1-3,0,F2 ,M为⊙O:x2+y2=4上的动点,延长F1M至点N,使得MN=MF1 ,F1N的垂直平分线与F2P,记点P的轨迹为曲线C,求C的方程;(2)在条件(1)下,已知椭圆Cλ是椭圆C的相似椭圆,M1,N1是椭圆Cλ的左、右顶点.点Q是Cλ上异于四个顶点的任意一点,当λ=e2(e为曲线C的离心率)时,设直线QM1与椭圆C交于点A,B,直线QN1与椭圆C交于点D,E,求AB+DE的值.【答案】(1)x24+y2=1(2)5【分析】(1)由图可知OM是△F1NF2的中位线,由此可得F2N长为定值,因为点P在F1N的垂直平分线上,所以PF1+PF2=PF2+PN,根据椭圆定义求解析式即可;(2)假设出点Q坐标,表示直线QM1与直线QN1的斜率,并找出两斜率关系,最后表示出两直线方程,分别与椭圆C联立方程,利用弦长公式和韦达定理求出AB+DE的值.【详解】(1)连接OM,易知OM∥12F2N且OM=12F2N,∴F2N=4,又点P在F1N的垂直平分线上,∴PF1=PN,∴PF1+PF2=PF2+PN=NF2=4>23,满足椭圆定义,∴a=2,c=3,b=1,∴曲线C的方程为x24+y2=1.(2)由(1)知椭圆C方程为x24+y2=1,则离心率e=32⇒λ=34,∴楄圆Cλ的标准方程为x23+4y23=1,设Q x0,y0为椭圆Cλ异于四个顶点的任意一点,直线QM1,QN1斜率k QM1,k QN1,则k QM1⋅k QN1=y0x0+3⋅y0x0-3=y20x20-3,又x203+4y203=1⇒y20=143-x20,∴k QM1⋅k QN1=-14k QM1≠±12.)2+y 2=3的两条切线,设切点为P ,Q ,直线PQ 恰为抛物E :y 2=2px ,(p >0)的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点A ,B ,M ,N 满足:TA =2TM ,TB =2TN,设AB 中点为D .(i )求直线TD 的斜率;(ii )设△TAB 面积为S ,求S 的最大值.【答案】(1)y 2=2x(2)(i )0;(ii )48【分析】(1)设直线PQ 与x 轴交于P 0-p 2,0 ,由几何性质易得:CP 2=CP 0 ⋅CO ,即可解决;(2)设T x 0,y 0 ,A x 1,y 1 ,B x 2,y 2 ,(i )中,由于TA 中点M 在抛物线E 上,得y 0+y 12 2=2⋅x 0+x 12,将A x 1,y 1,B x 2,y 2 ,代入联立得D 点纵坐标为y 1+y 22=y 0,即可解决;(ⅱ)由(i )得点D 3y 20-4x 02,y 0,S =12TD ⋅y 1-y 2 =322⋅y 20-2x 03,又点T 在圆C 上,得y 20=-x 20-4x 0-1,可得:S =322⋅-x 0+32+8 3即可解决.【详解】(1)设直线PQ 与x 轴交于P 0-p2,0 .由几何性质易得:△CPP 0与△OCP 相似,所以CP CP 0=CO CP,CP2=CP 0 ⋅CO ,即:3=-p2+2 ⋅2,解得:p =1. 所以抛物线E 的标准方程为:y 2=2x .代入上式可得:9.(2023·山东·潍坊一中校联考模拟预测)已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.【答案】(1)y2=4x(2)存在,-1,0或-1,-4【分析】(1)设点M的坐标为-p 2,a,根据直线MF的斜率为-1,得到a=p,再根据△OFM的面积为1求出p,即可得解;(2)假设存在点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方.设直线l 的方程为x=my,k NA +k NB =求出t 的值,即可得解.的坐标为-p 2,a ,1,即a =p ,=1,故抛物线C 的方程为y 2=4x .(2)解:假设存在点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方.由(1)得F 1,0 ,抛物线C 的准线l 的方程为x =-1.设直线l 的方程为x =my +1,A x 1,y 1 ,B x 2,y 2 ,N -1,t ,联立x =my +1y 2=4x得y 2-4my -4=0,所以Δ=16m 2+16>0,y 1+y 2=4m ,y 1y 2=-4.因为k NF =0-t 1+1=-t 2,k NA +k NB =y 1-t x 1+1+y 2-t x 2+1=2my 1y 2+2-tm y 1+y 2 -4t m 2y 1y 2+2m y 1+y 2 +4=2m ⋅-4 +4m 2-tm -4t -4m 2+2m ⋅4m +4=-4t m 2+14m 2+1 =-t ,所以-t =-t22,解得t =0或t =-4.故存在定点N ,使得直线NA 与NB 的斜率之和等于直线NF 斜率的平方,其坐标为-1,0 或-1,-4 .10.(2023·山东菏泽·统考一模)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1-3,0,F 23,0 ,A 为椭圆C 上一点,△F 1AF 2的面积最大值为3.(1)求椭圆C 的方程;即可得到结果;kx +m ,联立直线与椭圆方程,结合韦达定理,再由k 2=-3k 1列出b =1,a =b 2+3=2,故椭圆的方程为x 24+y 2=1;+m ,P x 1,y 1 ,Q x 2,y 2 ,+4k 2 x 2+8km x +4m 2-4=0,Δ=64k 2m 2-41+4k 2 4m 2-4 =161+4k 2-m 2 >0,两边同除x 1,y 2+1x 1x 2=-3⋅y 1-1x 21=-3⋅y 1-141-y 21 =341+y 1 ,kx 1+m ,y 2=kx 2+m 代入上式得:3x 1x 2-41+y 1 1+y 2 =3x 1x 2-4kx 1+m +1 kx 2+m +1 =3-4k 2 x 1x 2-4k m +1 x 1+x 2 -4m +1 2=3-4k 2 4m 2-41+4k 2-4k m +1 -8km 1+4k 2 -4m +1 2=0,整理得:m 2-m -2=0所以m =2或m =-1(舍),S △PQB =12⋅1⋅x 1-x 2 =12x 1+x 2 2-4x 1x 2=12-8km 1+4k 2 2-44m 2-41+4k 2=24k 2-31+4k 2=24k 2-3+44k 2-3≤12,当k =±72时等号成立,满足条件,所以△PQB 面积的最大值为12.11.(2023·福建泉州·统考三模)已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B .直线l 与C 相切,且与圆O :x 2+y 2=4交于M ,N 两点,M 在N 的左侧.(1)若|MN |=455,求l 的斜率;(2)记直线AM ,BN 的斜率分别为k 1,k 2,证明:k 1k 2为定值.【答案】(1)k =±12;(2)证明过程见解析.【分析】(1)根据圆弦长公式,结合点到直线距离公式、椭圆切线的性质进行求解即可;(2)根据直线斜率公式,结合一元二次方【详解】(1)当直线l 不存在斜率时,方程设直线l 的斜率为k ,方程为y =kx +m +y 23=1y =kx +m⇒(3+4k 2)x 2+8km x +4m 2-12=0,因为直线l 与C 相切,所以有Δ=64k 2m 2-43+4k 2 4m 2-12 =0⇒m 2=4k 2+3,圆O :x 2+y 2=4的圆心坐标为0,0 ,半径为2,圆心0,0 到直线y =kx +m 的距离为mk 2+-12,因为|MN |=455,所以有455=2×4-mk 2+-1 22⇒45=4-4k 2+3k 2+1⇒k =±12;(2)A -2,0 ,B 2,0 ,由x 2+y 2=4y =kx +m ⇒1+k 2 x 2+2km x +m 2-4=0,设M x 1,y 1 ,N x 2,y 2 ,x 1<x 2,则有x 1+x 2=-2km k 2+1,x 1x 2=m 2-4k 2+1=4k 2-1k 2+1,x 1=-km -11+k 2,x 2=-km +11+k 2,k 1k 2=y 1x 1+2⋅y 2x 2-2=kx 1+m kx 2+mx 1x 2-2x 1+2x 2-4=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2-2x 1+2x 2-4,把x 1+x 2=-2km k 2+1,x 1x 2=m 2-4k 2+1=4k 2-1k 2+1,x 1=-km -11+k 2,x 2=-km +11+k 2代入上式,得k 1k 2=k 24k 2-1k 2+1+km -2km k 2+1+m 24k 2-1k 2+1-2⋅-km -1k 2+1+2⋅-km +1k 2+1-4=m 2-4k 2m 2-4-4k2,而m 2=4k 2+3,所以k 1k 2=4k 2+3-4k 24k 2+3-4-4k 2=-3.【点睛】关键点睛:利用一元二次方程根与系数关系,结合椭圆切线的性质进行求解是解题的关键.12.(2023·江苏南通·统考模拟预测)已知A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 三个点在椭圆x 22+y 2=1,椭圆外一点P 满足OP =2AO ,BP =2CP,(O 为坐标原点).(1)求x 1x 2+2y 1y 2的值;(2)证明:直线AC 与OB 斜率之积为定值.【答案】(1)12(2)证明见解析【分析】(1)设P x ,y ,根据向量关系用x 1,x 2,y 1,y 2表示x 3,y 3,代入椭圆方程即可求解;(2)用x 1,x 2,y 1,y 2表示x 3,y 3,代入斜率公式即可求解.【详解】(1)设P x ,y ,因为OP =2AO ,所以x ,y =2-x 1,-y 1 解得x =-2x 1y =-2y 1 ,x 2y 3=-y 1+12y 2,y 21+14x 222+y 22-12x 1x 2-y 1y 2=1,-2y 1y 2+12y 22-2x 1x 2+12x 22-12是定值.C :y 2=2px p >0 ,过焦点F 的直线交抛物线C 于A ,B 两点,且AB =AF ⋅BF .(1)求抛物线C 的方程;(2)若点P 4,4 ,直线PA ,PB 分别交准线l 于M ,N 两点,证明:以线段MN 为直径的圆过定点.【答案】(1)y 2=4x (2)证明见解析【分析】(1)设AB :x =my +p2m ∈R ,联立抛物线方程,由根与系数的关系及抛物线的定义,根据AB =AF ⋅BF 建立方程求出p 得解;(2)由直线方程求出M ,N 的坐标,计算y M ⋅y N =-4,设Q x ,y 是以线段MN 为直径的圆上任意一点,根据MQ ⋅NQ=0化简0=x +1 2+y -y M y -y N ,根据对称性令y =0可得解.【详解】(1)设AB :x =my +p2m ∈R ,A x 1,y 1 ,B x 2,y 2 ,则联立y 2=2pxx =my +p 2得y 2-2pmy -p 2=0,所以Δ=4p 2m 2+4p 2>0y 1+y 2=2pm y 1y 2=-p 2,所以x 1+x 2=2m 2+1 px 1x 2=p 24,又AF =x 1+p 2,BF =x 2+p2,所以AB =AF +BF =x 1+x 2+p 由AB =AF ⋅BF 得x 1+x 2+p =x 1+p 2 x 2+p2,即x 1+x 2+p =x 1x 2+p 2x 1+x 2 +p 24-4即0=x +1 2+y -y M y -y N ,由对称性令y =0得0=x +1 2+y M y N =x +1 2-4,所以x =1或x =-3所以以线段MN 为直径的圆经过定点,定点坐标为-3,0 与1,0 .【点睛】关键点点睛:求出M ,N 的点的坐标,计算出y M ⋅y N 为定值-4,是解题的关键之一,其次写出以MN 为直径的圆的方程,根据圆的方程0=x +1 2+y -y M y -y N ,由对称性,令y =0求定点是解题的关键.14.(2023·江苏连云港·统考模拟预测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的焦距为23,且经过点P -3,12 .(1)求椭圆E 的标准方程:(2)过椭圆E 的左焦点F 1作直线l 与椭圆E 相交于A ,B 两点(点A 在x 轴上方),过点A ,B 分别作椭圆的切线,两切线交于点M ,求AB MF 1的最大值.【答案】(1)x 24+y 2=1(2)2【分析】(1)由待定系数法求解析式;(2)设出直线方程,由韦达定理法及导数法求得两切线方程,即可联立两切线方程解得交点M ,再由弦长公式及两点距离公式表示出AB MF 1,进而讨论最值.【详解】(1)由题意得2c =233a 2+14b 2=1a 2=b 2+c2 ,所以a =2b =1 ,即椭圆方程为x24+y 2=1;(2)当直线l 斜率为0时,A ,B 分别为椭圆的左右顶点,此时切线平行无交点.故设直线l :x =ty -3,由x 24+y 2=1x =ty -3,得t 2+4 y 2-23ty -1=0.Δ=16t 2+16>0,y 1+y 2=23t t 2+4,y 1y 2=-1t 2+4.AB =1+t 2y 1-y 2 =1+t 2y 1+y 22-4y 1y 2=1+t212t 2t 2+42+4t 2+4=4t 2+1t 2+4不妨设A x 1,y 1 在x 轴上方,则B x 2,y 2 在x 轴下方.椭圆在x 轴上方对应方程为y =1-x 24,y =-x41-x 24,则A 处切线斜率为-x 141-x 214=-x 14y 1,得切线方程为y -y 1=-x 14y 1x -x 1 ,整理得x 1x4+y 1y =1.同理可得B 处的切线方程为x 2x4+y 2y =1.由x 1x 4+y 1y =1①x 2x 4+y 2y =1②得x M =4y 2-y 1 x 1y 2-x 2y 1=4y 2-y 1 ty 1-3 y 2-ty 2-3 y 1=4y 2-y 1 3y 1-y 2 =-433,代入①得y M =1+33x 1y 1=1+33ty 1-3 y 1=3t 3,所以M -433,3t 3 .因为MF 1 =-433+3 2+t 23=1+t 23,所以AB MF 1 =4t 2+1t 2+41+t 23=43t 2+1t 2+4设m =t 2+1≥1,则t 2=m 2-1,则AB MF 1=43m m 2+3=43m +3m≤4323=2,当且仅当m 2=3,即t =±2时,ABMF 1的最大值是2.另解:当直线l 的斜率存在时,设l :y =k x +3 ,由x 24+y 2=1y =k x +3得1+4k 2 x 2+83k 2x +12k 2-4=0,所以Δ=k 2+1>0,x 1+x 2=-83k 21+4k 2,x 1x 2=12k 2-41+4k 2,AB =1+k 2x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅64×3k 21+4k 22-412k 2-41+4k 2=41+k 21+4k 2容,进而进行进一步讨论.15.(2023春·江苏常州·高三校联考开学考试)已知点P2,-1在椭圆C:x2a2+y2b2=1(a>b>0)上,C的长轴长为42,直线l:y=kx+m与C交于A,B两点,直线PA,PB的斜率之积为14.(1)求证:k为定值;(2)若直线l与x轴交于点Q,求QA|2+QB|2的值.【答案】(1)证明见解析(2)10【分析】(1)根据题意求出椭圆方程为:x28+y22=1,将椭圆,及相关直线、点进行平移,将y1x1,y2x2看作方程8n-4X2+8t-4nX-4t+1=0的两不等实根,进而可得n=-2t,代入直线方程化简即可;(2)联立直线与椭圆方程,结合韦达定理得y3+y4=m,y3y4=m2-22,化简QA|2+QB|2=5y3+y42-2y3y4,代入韦达定理即可求解.【详解】(1)由题意知2a=424a2+1b2=1⇒a=22b=2,∴椭圆方程为:x28+y22=1.2+4y2+4x-8y=0,x1,y1,B x2,y2,x2+4y2+4x-8ytx+ny=0,x2=0,两边同除以x2=0,-2n,即n=-2t,=12x-12t,即2y2-2my+m2-2=0,Δ>0,y4 2=5y23+y24=5y3+y42-2y3y416.(2023春·江苏苏州·高三统考开学考试)已知抛物线y2=a2x的焦点也是离心率为32的椭圆x2a2+y2 b2=1a>b>0的一个焦点F.(1)求抛物线与椭圆的标准方程;(2)设过F的直线l交抛物线于A、B,交椭圆于C、D,且A在B左侧,C在D左侧,A在C左侧.设a=AC,b=μCD,c=DB.①当μ=2时,是否存在直线l,使得a,b,c成等差数列?若存在,求出直线l的方程;若不存在,说明理由;②若存在直线l,使得a,b,c成等差数列,求μ的范围.【答案】(1)抛物线的标准方程是y2=12x,椭圆的标准方程为x212+y23=13,得到答案.计算AB =12m 2+1 ,方程无解得到答案;整理得到m 2=,0 ,由于e =c a =32,即F 32a ,0 ,3,y 2=12x .,C x 3,y 3 ,D x 4,y 4 ,将直线与抛物线联立,则有y 2=12xx =my +3 ,y 2-12my -36=0,Δ=144m 2+36×4>0,则y 1+y 2=12m y 1y 2=-36,于是x 1x 2=my 1+3 my 2+3 =m 2y 1y 2+3m y 1+y 2 +9=9,将直线与椭圆联立,则有x 2+4y 2-12=0x =my +3,得到二次方程m 2+4 y 2+6my -3=0,Δ>0,则有y 3+y 4=-6m m 2+4y 3y 4=-3m 2+4,则AB =x 1-x 22+y 1-y 2 2=1+m 2⋅y 1+y 22-4y 1y 2=12m 2+1 ,CD =x 3-x 42+y 3-y 4 2=1+m 2⋅y 3+y 4 2-4y 3y 4=1+m236m 2m 2+4 2+12m 2+48m 2+42=43m 2+1 m 2+4,AC +DB =AB -CD =12m 2+1 -43m 2+1m 2+4,假设存在直线l ,使得a ,b ,c 成等差数列,即AC +DB =4CD 即有12m 2+1 -43m 2+1 m 2+4=2×2×43m 2+1m 2+4,整理得到12m 2=203-48,方程无解,因此不存在l 满足题设.②只需使得方程12m 2+1 -43m 2+1 m 2+4=2μ×43m 2+1m 2+4有解即可.整理得到m 2=3+23μ-123,故m 2=3+23μ-123>0,等差数列性质,直线和抛物线,椭圆的位置关系,其中,利用韦达定理得到根与系数的关系,根据设需要熟练掌握.)已知椭圆C 1:x 2a 2+y 2b 2=1a >b >0 的右焦点F 和抛物线C 2:C 2的一个公共点是23,263.1和C 2的方程;(2)过点F 作直线l 分别交椭圆于A ,B ,交抛物线C 2于P ,Q ,是否存在常数λ,使1AB -λPQ为定值?若存在,求出λ的值;若不存在,说明理由.【答案】(1)x 24+y 23=1, y 2=4x (2)存在,λ=13【分析】(1)先求出抛物线的方程,进而求出焦点,再根据椭圆的右焦点与其重合,列出方程组求解即可;(2)利用弦长公式分别表示出AB ,PQ ,然后代入1AB-λPQ ,可求出使1AB -λPQ 为定值的常数λ.【详解】(1)解:由题意知2632=2p ⋅23⇒p =2,∴y 2=4x ,抛物线焦点1,0 ,∴c =149a 2+83b 2=1a 2=b 2+c2 ⇒a =2b =3 ⇒C 1方程:x24+y 23=1,C 2方程:y 2=4x .(2)解:方法一:假设存在这样的l ,设直线l 的方程为:x =my +1,A x 1,y 1 ,B x 2,y 2 ,x =my +13x 2+4y 2=12⇒3m 2y 2+2my +1 +4y 2=12,3m 2+4 y 2+6my -9=0.Δ=36m 2+363m 2+4 =144m 2+1 ,∴AB =1+m 2⋅y 1-y 2 =1+m 2⋅144m 2+1 3m 2+4=12m 2+13m 2+4.设P x 3,y 3 ,Q x 4,y 4 ,x =my +1y 2=4x ⇒y 2=4my +4,y 2-4my -4=0,Δ=16m 2+16,∴PQ =1+m 2⋅y 3-y 4 =1+m 2⋅16m 2+16=4m 2+1 ,∴1AB -λPQ =3m 2+412m 2+1 -λ4m 2+1 =3m 2+4-3λ12m 2+1 为定值.∴312=4-3λ12⇒λ=13,∴存在常数λ=13使1AB -λPQ为定值14.θ前系数λ=13.为定值,1的左、右顶点分别为A ,B ,点C 是椭圆上M ,N ,AC 的中点为点D ,直线OD 与椭圆交于点P ,Q ,点P ,C ,M 在x 轴的上方.(1)当AC =5时,求cos ∠POM ;(2)求PQ ⋅MN 的最大值.【答案】(1)-35(2)10【分析】(1)根据题意求出k AC ⋅k OD =-14,根据AC =5分析出点C 满足的方程,求出点C 坐标,进而求出cos ∠POM ;(2)利用弦长公式求出PQ 和MN ,再利用基本不等式求出最值.【详解】(1)由题知A -2,0 ,设C x 0,y 0 ,则D x 0-22,y 02,则k AC ⋅k OD =y 0x 0+2⋅y 0x 0-2=1-14x 2x 20-4=-14.因为AC =5,所以C 在圆(x +2)2+y 2=5上,又C 在椭圆x 24+y 2=1上,所以C x 0,y 0 满足(x +2)2+y 2=5x 24+y 2=1,所以(x +2)2+1-x 24=5,tan2θ-1tan2θ+1=-35x,420k2+524k2+12=100【点睛】方法点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.(2023·浙江·校联考模拟预测)设双曲线C:x2a2-y2b2=1的右焦点为F3,0,F到其中一条渐近线的距离为2.(1)求双曲线C的方程;(2)过F的直线交曲线C于A,B两点(其中A在第一象限),交直线x=53于点M,(i)求|AF|⋅|BM||AM|⋅|BF|的值;(ii)过M平行于OA的直线分别交直线OB、x轴于P,Q,证明:MP=PQ.【答案】(1)x25-y24=1(2)(i)1;(ii)证明见解析【分析】(1)结合点F到其中一条渐近线的距离为2和a2+b2=c2,即可求得本题答案;直线方程与双曲线方程联立消x,即可求得本题答案;(ii)到它的距离为2,故P 为线段MQ 的中点,所以|MP |=|P 【点睛】关键点点睛:本题第二小题第一如何用y 1,y 2,y M 表示出来,进而利用韦达定理进行化简求值,考查了学生的转化能力以及对复杂运算的求解能力20.(2023春·浙江绍兴·高三统考开学考试)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,B 1,0 .(1)设P 是椭圆C 上的一个动点,求PO ⋅PB的取值范围;(2)设与坐标轴不垂直的直线l 交椭圆C 于M ,N 两点,试问:是否存在满足条件的直线l ,使得△MB N 是以B 为直角顶点的等腰直角三角形?若存在,求出直线l 的方程,若不存在,请说明理由.【答案】(1)23,6(2)y =54x -355或y =-54x +355【分析】(1)设点P (x 0,y 0),将PO ⋅PB转化为坐标表示,求取值范围;(2)设直线方程,与椭圆方程联立,设MN 中点为D ,若△MB N 是以B 为直角顶点的等腰直角三角形,则BM ⊥BN ,BD ⊥MN ,解出直线方程.【详解】(1)设点P (x 0,y 0),则x 204+y 20=1,PO ⋅PB =(-x 0,-y 0)⋅(1-x 0,-y 0)=x 0(x 0-1)+y 20=34x 0-23 2+23,因为-2≤x 0≤2,所以当x 0=-2时,PO ⋅PB max =34×-2-23 2+23=6,当x 0=23时,PO ⋅PB min =34×23-23 2+23=23,所以PO ⋅PB ∈23,6 .(2)设直线l :y =kx +m (k ≠0),M (x 1,y 1),N (x 2,y 2),y =kx +mx 24+y 2=1,消去y 得,(4k 2+1)x 2+8km x +4m 2-4=0,由题,Δ=64k 2m 2-4(4k 2+1)(4m 2-4)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,y 1+y 2=kx 1+m +kx 2+m =2m 4k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=m 2-4k 24k 2+1,若△MB N 是以B 为直角顶点的等腰直角三角形,则BM ⊥BN , BM ⋅BN=(x 1-1,y 1)⋅(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+y 1y 2=8km +5m 2-34k 2+1=0,所以8km +5m 2-3=0,①设MN 中点为D ,则D -4km4k 2+1,m 4k 2+1,因为BD ⊥MN ,,即3km +4k 2+1=0,②=-54,m =355,满足Δ>0,为直角顶点的等腰直角三角形,-54x +355.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点MQ x 0,y 0 为平面内一个动点,其中y 0>0,记直线QF 1与椭圆C 在x 轴上方的交点为A x 1,y 1 ,直线QF 2与椭圆C 在x 轴上方的交点为B x 2,y 2 .(1)求椭圆C 的标准方程;(2)①若AF 2∥BF 1,证明:1y 1+1y 2=1y 0;②若QF 1 +QF 2 =3,探究y 0,y 1,y 2之间关系.【答案】(1)x 24+y 23=1(2)①证明见解析 ;②4y 0=31y 1+1y 2【分析】(1)根据椭圆的离心率和a =2即可求解;(2)①根据两点求斜率公式和直线的点斜式方程表示出直线AF 1、BF 2,得x 1y 2-x 2y 1+y 1+y 2=2y 1y 2y 0.根据平面平行向量的坐标表示可得x 2y 1-x 1y 2+y 1+y 2=0,即可证明;②设直线QF 2方程,联立椭圆方程,消去x ,得关于y 的一元二次方程,化简整理方程可得1y 2=x 0-1 +2QF 23y 0.同理可得1y 1=-x 0+1 +2QF 1 3y 0,对于1y 1+1y 2化简计算即可求解.【详解】(1)由题意得:e =c a=12a =2⇒a =2b =3c =1,因此,椭圆C 的标准方程为x 24+y 23=1;(2)①由(1)知,F 1(-1,0),F 2(1,0),∵k AF 1=y 1x 1+1,k BF 2=y 2x 2-1,∴x =x 1+1y 1y -1,x =x 2-1y 2y +1,∴x 2-1y 2y 0+1=x 1+1y 1y 0-1,∴x 1+1y 1y 0-x 2-1y 2y 0=2,∴x 1+1 y 2-x 2-1 y 1=2y 1y 2y 0,即x 1y 2-x 2y 1+y 1+y 2=2y 1y 2y 0,又∵F 1B=x 2+1,y 2 ,F 2A =x 1-1,y 1 ,∴x 2+1 y 1-x 1-1 y 2=0,=-2+2⋅33y0=43y0.的左右焦点分别为F1,F2,点A0,y1,经过点B(3,0)且与x轴垂直的直线l与直线AP交于点Q.(1)求证:y0y1=1.(2)试问:x轴上是否存在不同于点B的定点M,满足当直线MP,MQ的斜率存在时,两斜率之积为定值?若存在定点M,求出点M的坐标及该定值;若不存在,请说明理由.MQ 的斜率之积为定值,该定值为-920.-b )2=r 2(r >0),代入-3,0 、x 0,y 0 及A 0,y 1 可解得y 1=k AP =k AQ 得y Q ,即可表示出k MP ⋅k MQ 讨论定值是否存在.0 ,F 23,0 设圆的方程为x 2+(y -b 0)2=r 2(r >0),代入F 1-3,0 及x 0,y 0 ,得3+b 20=r 2x 20+y 0-b 0 2=r 2 ,两式相减,得b 0=x 02+y 02-32y 0=4-4y 02+y 02-32y 0=121y 0-3y 0 ,所以圆的方程为x 2+y 2-2b 0y -3=0即x 2+y 2+3y 0-1y 0y -3=0,令x =0,得y 2+3y 0-1y 0y -3=0,由y 1>0,可得y 1=1y 0,即y 0y 1=1.(2)设M (m ,0)(m ≠3),由(1)知A 0,1y 0 ,由A ,P ,Q 三点共线,得y 0-1y 0x 0=y Q -1y 03,解得Y Q =3y 02-1 +x 0x 0y 0,则k MP ⋅k MQ =y 0x 0-m ⋅3y 02-1 +x 0x 0y 03-m =3y 02-1 +x 0x 0x 0-m 3-m,代入y 20-1=-x 204,得k MP ⋅k MQ =-34x 02+x 0x 0x 0-m 3-m =-34x 02+1x 0-m 3-m,当且仅当-34=1-m ,即m =43时,k MP ⋅k MQ =-920为定值.综上,存在点M 43,0 ,可使得直线MP 与MQ 的斜率之积为定值,该定值为-920.【点睛】探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.23.(2023春·广东·高三校联考阶段练习)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A 2,0 ,直线l 过点P 4,0 ,当直线l 与双曲线E 有且仅有一个公共点时,点A 到直线l 的距离为255.c=5b,结合双曲线中a,b,c的关系即可求解b=1,c=5,将∠MQP=∠NQP转化成斜率关系,即可代入求解.A2,0,所以a=2.当直线l与双曲线E有且仅有一个公共点时,直线l平行于双曲线E的一条渐近线.不妨设直线l的方程为y=ba x-4,即bx-ay-4b=0,所以点A到直线l的距离d=2bb2+a2=2b c=255,所以c=5b.因为c2=a2+b2,所以b=1,c=5,故双曲线E的方程为x24-y2=1.(2)设直线l的方程为x=my+4,M x1,y1,N x2,y2,联立方程组x=my+4x24-y2=1,得m2-4y2+8my+12=0,则y1+y2=-8mm2-4,y1y2=12m2-4,m2-4≠0且Δ>0.因为∠MQP=∠NQP,所以k QM+k QV=y1x1-t+y2x2-t=y1my1+4-t+y2my2+4-t=0,所以y1my2+4-t+y2my1+4-t=2my1y2+4-ty1+y2=24mm2-4-4-t8mm2-4=8m t-1m2-4=0,解得t=1.当直线l恰好为x轴时,t=1也满足题意,故t=1【点睛】直线与双曲线抛物线的位置关系和直线与椭圆、抛物线的位置关系类似,一般要用到根与系数的关系;解析几何简化运算的常见方法:(1)正确画出图形,利用平面几何知识简化运算;(2)坐标化,把几何关系转化为坐标运算;(3)巧用定义,简化运算.24.(2023·广东梅州·统考一模)已知动圆M经过定点F1-3,0,且与圆F2:x-32+y2=16内切.(1)求动圆圆心M的轨迹C的方程;.直(ii)证明见解析,定点1,0利用两圆内切即可得出半径之和等于圆心距,再根据椭圆A,B即为椭圆的左右顶点,设出点P,Q坐标,利用共线时斜率相等即可得出k AP⋅k AQ的表达式,化简即可得出k Ap⋅k AQ=-112;(ii)根据(i)中的结论,写出直线PQ的方程,将表达式化简即可得出直线PQ经过定点1,0.【详解】(1)设动圆的半径为r,由题意得圆F2的圆心为F23,0,半径R=4;所以MF1=r,MF2=R-r,则MF1+MF2=4>23=F1F2.所以动点M的轨迹C是以F1,F2为焦点,长轴长为4的椭圆.因此轨迹C方程为x24+y2=1.(2)(i)设P x1,y1,Q x2,y2,T4,m.由题可知A-2,0,B2,0,如下图所示:则k AP=y1x1+2,k AQ=k AT=m-04--2=m6,而k BP=k BT=y1x1-2=m2,于是m=2y1x1-2,所以k AP⋅k AQ=y1x1+2×m6=y1x1+2×y13x1-2=y213x21-4,又x214+y21=1,则y21=144-x21,因此k Ap⋅k AQ=144-x213x21-4=-112为定值.(ii)设直线PQ的方程为x=ty+n,P x1,y1,Q x2,y2.n 2-4=0,y 2x 2+2=y 1y 2ty 1+n +2 ty 2+n +2=-112,=1或n =-2(舍去),因此直线PQ 经过定点1,0 .【点睛】方法点睛:解决定值或定点问题时,经常会用到设而不求的方法,即首先设出点坐标或直线方程,再根据题目条件寻找等量关系即可实现整体代换求得定值或定点.25.(2023春·湖北武汉·高三华中师大一附中校考阶段练习)已知双曲线E :x 24-y 2=1与直线l :y =kx -3相交于A 、B 两点,M 为线段AB 的中点.(1)当k 变化时,求点M 的轨迹方程;(2)若l 与双曲线E 的两条渐近线分别相交于C 、D 两点,问:是否存在实数k ,使得A 、B 是线段CD 的两个三等分点?若存在,求出k 的值;若不存在,说明理由.【答案】(1)x 2=4y 2+12y ,其中y ≤-3或y >13(2)存在,k =±32【分析】(1)设A x 1,y 1 ,B x 2,y 2 ,M x 0,y 0 ,联立直线l 与双曲线E 的方程,消去y ,得1-4k 2 x 2+24kx -40=0,根据已知直线l 与双曲线E 相交于A 、B 两点,得Δ=160-64k 2>0且1-4k 2≠0,即k 2<52且k 2≠14,由韦达定理,得x 1+x 2=-24k 1-4k 2,则x 0=-12k 1-4k 2,y 0=-31-4k 2,联立消去k ,得x 20=4y 20+12y 0,再根据k 的范围得出y 的范围,即可得出答案;(2)设C x 3,y 3 ,D x 4,y 4 ,根据双曲线E 的渐近线方程与直线l 的方程联立即可得出x 3=62k -1,x 4=62k +1,则x 3+x 42=-12k 1-4k 2=x 0,即线段AB 的中点M 也是线段CD 的中点,若A ,B 为线段CD 的两个三等分点,则CD =3AB ,结合弦长公式列式得x 3-x 4 =3x 1-x 2 ,即可化简代入得出124k 2-1 =3-24k 1-4k 2 2+1601-4k 2,即可解出答案.【详解】(1)设A x 1,y 1 ,B x 2,y 2 ,M x 0,y 0 ,联立直线l 与双曲线E 的方程,得y =kx -3x 2-4y 2=4,且k 2≠14.3=-12k 21-4k2-3=-31-4k 2.y 0.13.y ,其中y ≤-3或y >13..3得x 3=62k -1,同理可得x 4=62k +1,的中点.若A ,B 为线段CD 的两个三等分点,则CD =3AB .即1+k 2x 3-x 4 =31+k 2x 1-x 2 ,x 3-x 4 =3x 1-x 2 .而x 1-x 2 =x 1+x 2 2-4x 1x 2=-24k 1-4k 2 2+1601-4k2,x 3-x 4 =62k -1-62k +1 =124k 2-1 .所以,124k 2-1 =3-24k 1-4k 2 2+1601-4k 2,解得k =±32,所以k =±32,存在实数,使得A 、B 是线段CD 的两个三等分点.26.(2023·山东·日照一中校考模拟预测)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,斜率为-3的直线l 与双曲线C 交于A ,B 两点,点M (4,-22)在双曲线C 上,且MF 1 ⋅MF 2 =24.(1)求△MF 1F 2的面积;(2)若OB +OB=0(O 为坐标原点),点N 3,1 ,记直线NA ,NB 的斜率分别为k 1,k 2,问:k 1⋅k 2是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)82(2)k 1⋅k 2为定值-1.·【分析】(1)设F 1(-c ,0),F 2(c ,0),根据两点间长度得出MF 1 与MF 2 ,即可根据已知列式解出c ,即可得出答案;24,又c>0,所以c=4,则F1F2=8,所以△MF1F2的面积S=12×8×22=82.(2)由(1)可16a2-8b2=1a2+b2=16,解得a2=b2=8,所以双曲线C的方程为x28-y28=1,设A x1,y1,B x2,y2,则B -x2,-y2,则k1=y1-1x1-3,k2=-y2-1-x2-3,设直线l的方程为y=-3x+m,与双曲线C的方程联立,消去y得:8x2-6mx+m2+8=0,由Δ=(-6m)2-32m2+8>0,得m >8,由一元二次方程根与系数的关系得x1+x2=3m4,x1x2=m2+88,所以y1y2=(-3x1+m)(-3x2+m)=9x1x2-3m(x1+x2)+m2=-m28+9,y1-y2=-3x1-x2,则k1⋅k2=y1-1x1-3⋅-y2-1-x2-3=y1y2+y1-y2-1x1x2+3x1-3x2-9=-m28+8-3x1-x2m28-8+3x1-x2=-1,故k1⋅k2为定值-1.·27.(2023秋·山东泰安·高三统考期末)已知椭圆E:x2a2+y2b2=1a>b>0过A1,62,B3,22两点.(1)求椭圆E的方程;(2)已知Q4,0,过P1,0的直线l与E交于M,N两点,求证:MPNP =MQNQ.【答案】(1)x24+y22=1(2)证明见解析【分析】(1)将两点坐标代入,求出椭圆方程;M2,0,N-2,0或M-2,0,N2,0.x1,y1,N x2,y2,+y2x2-4=y1my1-3+y2my2-3sin∠NQPsin∠NPQ,>0,b>0)的焦距为10,且经过点M(8,33).连接PA,PB交双曲线E于点C,D(不同于A,B).(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)x216-y29=1(2)直线CD过定点,定点坐标为(8,0).【分析】(1)方法一:将M(8,33)代入方程,结合a2+b2=c2求得a,b得双曲线方程;方法二:根据双曲线定义求得a得双曲线方程.t 相(a 2=16,b 2=9,∴双曲线E 的标准方程为x 216-y 29=1.∴c =5,2a =MF 1-MF 2 =196-36=8,∴a =4,b 2=c 2-a 2=9,∴双曲线E 的标准方程为x 216-y 29=1.(2)直线CD 不可能水平,故设CD 的方程为x =my +t ,C x 1,y 1 ,D x 2,y 2 ,联立x =my +tx 216-y 29=1消去x 得9m 2-16 y 2+18mty +9t 2-144=0,9m 2-16≠0 ,∴y 1+y 2=-18mt 9m 2-16,y 1y 2=9t 2-1449m 2-16,y 1-y 2=±24t 2+9m 2-169m 2-16,AC 的方程为y =y 1x 1+4(x +4),令x =2,得y p =6y 1x 1+4,BD 的方程为y =y 2x 2-4(x -4),令x =2,得y p =-2y 2x 2-4,∴6y 1x 1+4=-2y 2x 2-4⇔3x 2y 1-12y 1+x 1y 2+4y 2=0⇔3my 2+t y 1-12y 1+my 1+t y 2+4y 2=0⇔4my 1y 2+3t -12 y 1+t +4 y 2=0⇔4my 1y 2+2t -4 y 1+y 2 +t -8 y 1-y 2 =0⇔4m 9t 2-144 9m 2-16-(2t -4)18mt 9m 2-16±24(t -8)t 2+9m 2-169m 2-16=0⇔3m (8-t )±(t -8)t 2+9m 2-16=0⇔(8-t )3m ±t 2+9m 2-16 =0,解得t =8或t 2+9m 2-16=±3m ,即t =8或t =4(舍去)或t =-4(舍去),∴CD 的方程为x =my +8,∴直线CD 过定点,定点坐标为(8,0).方法二.直线CD 不可能水平,设CD 的方程为x =my +t ,C x 1,y 1 ,D x 2,y 2 ,P (2,n ),联立x =my +t ,x 216-y 29=1,,消去x 得9m 2-16 y 2+18mty +9t 2-144=0,∴y 1+y 2=-18mt 9m 2-16,y 1y 2=9t 2-1449m 2-16,AC 的方程为y =n 6(x +4),BD 的方程为y =n-2(x -4),。
压轴题10 圆锥曲线压轴解答题常考套路题型(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题10圆锥曲线压轴解答题常考套路题型解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题;(3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大考向展开.考向一:轨迹方程考向二:向量搭桥进行翻译考向三:弦长、面积范围与最值问题考向四:斜率之和差商积问题考向五:定值问题考向六:定点问题1、直接推理计算,定值问题一般是先引入参数,最后通过计算消去参数,从而得到定值.2、先猜后证,从特殊入手,求出定点或定值,再证明定点或定值与参数无关.3、建立目标函数,使用函数的最值或取值范围求参数范围.4、建立目标函数,使用基本不等式求最值.5、根据题设不等关系构建不等式求参数取值范围.1.(2023·北京海淀·统考一模)已知椭圆:2222:1(0)x y E a b a b+=>>的左、右顶点分别为12,A A ,上、下顶点分别为12,B B ,122B B =,四边形1122A B A B的周长为.(1)求椭圆E 的方程;(2)设斜率为k 的直线l 与x 轴交于点P ,与椭圆E 交于不同的两点M ,N ,点M 关于y 轴的对称点为M '、直线M N '与y 轴交于点Q .若OPQ △的面积为2,求k 的值.【解析】(1)由122B B =,得22b =,即1b =,由四边形1122A B A B的周长为,得=25a =,所以椭圆的方程为2215x y +=.(2)设直线l 的方程为y kx m =+(0k ≠,0m ≠),11(,)M x y ,22(,)N x y ,则(,0)m P k-,11(,)M x y '-,联立方程组2215x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得,222(51)10550k x kmx m +++-=,222(10)4(51)(55)0km k m ∆=-+->,得2251k m >-,1221051km x x k +=-+,21225551m x x k -=+,直线M N '的方程为212212()y y y y x x x x --=-+,令0x =,得211221221212(0)y y x y x y y x y x x x x -+=-+=++,又因为()()1221122112122102()51k x y x y x kx m x kx m kx x m x x k -+=+++=++=+,所以1(0,)Q m ,OPQ △的面积1122m k m ⨯-=,得14k =±,经检验符合题意,所以k 的值为14±.2.(2023·山西太原·太原五中校考一模)如图,小明同学先把一根直尺固定在画板上,把一块三角板的一条直角边紧靠在直尺边沿,再取一根细绳,它的长度与另一直角边相等,让细绳的一端固定在三角板的顶点A 处,另一端固定在画板上点F 处,用铅笔尖扣紧绳子,让细绳紧贴住三角板的直角边,然后将三角板沿着直尺上下滑动,这时笔尖在平面上留下轨迹C .已知细绳长度为3cm ,经测量,当笔尖运动到点P 处时,30,90FAP AFP ∠∠== .设直尺边沿所在直线为a ,以过F 垂直于直尺的直线为x 轴,以过F 垂直于a 的垂线段的中垂线为y 轴,以1cm 为单位长度,建立平面直角坐标系.(1)求C 的方程;(2)过点()0,3D -且斜率为k 的直线l 与C 交于,M N 两点,k 的取值范围为()0,2,探究:是否存在λ,使得DM DN λ= ,若存在,求出λ.的取值范围,若不存在,说明理由.【解析】(1)依题意,笔尖到点F 的距离与它到直线a 的距离相等,因此笔尖留下的轨迹为以F 为焦点,a 为准线的抛物线,设其方程为22(0)y px p =>,则(,0)2p F ,由30,90FAP AFP ︒︒∠=∠=,得2PA PF =,又||||3PF PA +=,所以1PF =,所以点P 到直线a 的距离为1,由60FPA ︒∠=得点P 的横坐标122p -,而抛物线的准线方程为2p x =-,则11222p p -+=,解得32p =,所以轨迹C 的方程为23y x =.(2)假设存在λ,使得DM DN λ= ,设()()1122,,,M x y N x y ,直线l 的方程为3y kx =-,由233y kx y x=-⎧⎨=⎩消去y 得:22(63)90k x k x -++=,而(0,2)k ∈,22(63)363690k k k ∆=+-=+>,121222639,k x x x x k k++==,222121222112263()(14249)k x x x x k x x x x k k k ++++==++,由DM DN λ= 得12x x λ=,即12x x λ=,于是21142k kλλ+=++,令11(,)2t k =∈+∞,22214242(2)2t t t k k ++=++=+-17(,)4∈+∞,因此1174λλ+>,又0λ>,即217104λλ-+>,解得104λ<<或4λ>,所以存在1(0,(4,)4λ∈⋃+∞,使得DM DN λ= 成立.3.(2023·浙江杭州·统考二模)已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右顶点分别为A 、B ,点P 、Q 为椭圆上异于A 、B 的两点,PAB 面积的最大值为2.(1)求椭圆C 的方程;(2)设直线AP 、BQ 的斜率分别为1k 、2k ,且1235k k =.①求证:直线PQ 经过定点.②设PQB △和PQA △的面积分别为1S 、2S ,求12S S -的最大值.【解析】(1)当点P 为椭圆C 短轴顶点时,PAB 的面积取最大值,且最大值为112222AB b ab ab ⋅=⨯==,由题意可得22222c a ab c a b ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,所以,椭圆C 的标准方程为2214x y +=.(2)①设点()11,P x y 、()22,Q x y .若直线PQ 的斜率为零,则点P 、Q 关于y 轴对称,则12k k =-,不合乎题意.设直线PQ 的方程为x ty n =+,由于直线PQ 不过椭圆C 的左、右焦点,则2n ≠±,联立2244x ty n x y =+⎧⎨+=⎩可得()2224240t y tny n +++-=,()()()22222244441640t n t n t n ∆=-+-=+->,可得224n t <+,由韦达定理可得12224tn y y t +=-+,212244n y y t -=+,则()2121242n ty y y y n -=+,所以,()()()()()()()()212121121112221212122122422222422222n y y n y ty n y ty y n y k y x n n k x y ty n y ty y n y y y n y n-++-+-+--=⋅===-++++++++()()()()1211222222522223n y y ny n n n n y y ny n ++---=⋅==+-+++,解得12n =-,即直线PQ 的方程为12x ty =-,故直线PQ 过定点1,02M ⎛⎫- ⎪⎝⎭.②由韦达定理可得1224t y y t +=+,()1221541y y t =-+,所以,12121·2S S AM BM y y -=--=41=++,20t ≥因为函数()1f x x x=+在)+∞上单调递增,故15≥=,所以,12161515S S -≤0=t 时,等号成立,因此,12S S -的最大值为154.4.(2023·全国·校联考二模)在平面直角坐标系xOy 中,椭圆2222:1(0)C bb x a a y +>>=的上焦点为F ,且C 上的点到点F的距离的最大值与最小值的差为过点F 且垂直于y 轴的直线被C 截得的弦长为1.(1)求C 的方程;(2)已知直线l :(0y kx m m =+≠)与C 交于M ,N 两点,与y 轴交于点P ,若点P 是线段MN靠近N 点的四等分点,求实数m 的取值范围.【解析】(1)设C 的焦距为2c,由题意知2222()()21a c a c b a a b c ⎧+--=⎪⎪=⎨⎪=+⎪⎩解得21a b c ⎧=⎪=⎨⎪=⎩故C 的方程为2214y x +=.(2)设()()1122,,,M x y N x y ,联立2214y kx m y x =+⎧⎪⎨+=⎪⎩消去y 整理得()2224240k x mkx m +++-=,所以()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+.因为点P 是线段MN 靠近点N 的四等分点,所以3MP PN = ,所以123x x =-,所以()()()221222212332434x x x x x x x +=⨯-=-⨯-=-.所以()21212340x x x x ++=所以()()2222224412044m k m k k -+=++,整理得222240m k m k +--=,显然21m =不成立,所以22241m k m -=-.因为3240k m -+>,所以2224401m m m --+>-,即()222401m m m ->-.解得21m -<<-,或12m <<,所以实数m 的取值范围为(2,1)(1,2)--⋃.5.(2023·河北沧州·统考模拟预测)已知()2,0A -,()2,0B ,动点(),Q x y 关于x 轴的对称点为1Q ,直线AQ 与1BQ 的斜率之积为14-.(1)求点Q 的轨迹C 的方程;(2)设点P 是直线1x =上的动点,直线PA ,PB 分别与曲线C 交于不同于A ,B 的点M ,N ,过点B 作MN 的垂线,垂足为D ,求AD 最大时点P 的纵坐标.【解析】(1)由题意得()1,Q x y -,且2x ≠±,2AQ k y x =+,12BQ y k x -=-,所以1224y y x x -⋅=-+-,整理得曲线()22:124x C y x -=≠±.(2)设()01,P y ,()11,M x y ,()22,N x y ,若直线MN 平行于x 轴,根据双曲线的对称性,可知点P 在y 轴上,不符合题意,故设直线MN :()2,0x ty m m =+≠±,代入曲线C 中,得()2224240t y tmy m -++-=,则12224tm y y t -+=-,212244m y y t -=-,则()2121242m ty y y y m -=-+,由P ,A ,M 三点共线得PA MA k k =,即01132y y x =+,同理,由P ,B ,N 三点共线得2022y y x -=-,消去0y ,得()()21122320y x y x ++-=,即()()121243220ty y m y m y +-++=,得()()()()21212243220m y y m y m y m --++-++=,得()()()()1224240m m y m m y ---+-=,即对任意1y ,2y ,都有[]12(4)(2)(2)0m m y m y ---+=成立,故4m =或12(2)(2)0m y m y --+=,若12(2)(2)0m y m y --+=,由212244m y y t -=-,12224tm y y t -+=-可得:1222(2)(2),,44m t m t y y t t -+--==--所以22222(4)444m t m t t --=--即224t t =-,矛盾,故12(2)(2)0m y m y --+≠,所以4m =.所以直线MN :4x ty =+恒过点()4,0H ,则点D 的轨迹是以HB 为直径的圆,其方程为()2231x y -+=,当D 与H 重合时,AD 最大,此时MN x ⊥轴,AM :)2y x =+,1,2P ⎛± ⎝⎭.所以当AD 最大时,点P 的纵坐标为2±.6.(2023·湖南·校联考二模)已知椭圆E :()222210x y a b a b+=>>经过点(,且离心.F 为椭圆E 的左焦点,点P 为直线l :3x =上的一点,过点P 作椭圆E 的两条切线,切点分别为A ,B ,连接AB ,AF ,BF .(1)求证:直线AB 过定点M ,并求出定点M 的坐标;(2)记△AFM 、△BFM 的面积分别为1S 和2S ,当12S S -取最大值时,求直线AB 的方程.参考结论:点()00,Q x y 为椭圆22221x ya b+=上一点,则过点Q 的椭圆的切线方程为00221x x y ya b+=.【解析】(1)由题意可得b =,ca =222a b c =+,所以26a =,22b =,椭圆E 的方程为22162x y +=.设()11,A x y ,()22,B x y ,()03,P y ,由参考结论知过点P 在A 处的椭圆E 的切线方程为11162x x y y +=,同理,过点P 在B 处的椭圆E 的切线方程为22162x x y y +=.因为点P 在直线PA ,PB 上,所以101202122122y y x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线AB 的方程为0122x y y+=,则直线AB 过定点()2,0M .(2)设直线AB 的方程为2x ty =+,联立方程组222162x ty x y =+⎧⎪⎨+=⎪⎩,得()223420t y ty ++-=,故12243ty y t +=-+,12223y y t =-+,1212122882233t S S y y y y t t t-=-=+==≤++,当且仅当3tt=,即t =此时直线AB 的方程为2x =+.7.(2023·上海金山·统考二模)已知椭圆:Γ()2221024x y b b+=<<.(1)已知椭圆ΓΓ的标准方程;(2)已知直线l 过椭圆Γ的右焦点且垂直于x 轴,记l 与Γ的交点分别为A 、B ,A 、B 两点关于y 轴的对称点分别为A '、B ',若四边形ABB A ''是正方形,求正方形ABB A ''的内切圆的方程;(3)设О为坐标原点,P 、Q 两点都在椭圆Γ上,若OPQ △是等腰直角三角形,其中OPQ ∠是直角,点Р在第一象限,且O 、P 、Q 三点按顺时针方向排列,求b 的最大值.【解析】(1)由题意得2a =,c a =c =所以2221b a c =-=,所以椭圆Γ的标准方程为2214x y +=;(2)设右焦点()1,0F c ,左焦点()2,0F c -,因为四边形ABB A ''是正方形,不妨设点A 在第一象限,则(),A c c ,所以12,AF c AF ===,由(12124AF AF c a +===,得1c ,正方形ABB A ''的内切圆的圆心为()0,01-,所以所求圆的方程为226x y +=-;(3)设直线OP 的倾斜角为π,0,2θθ⎛⎫∈ ⎪⎝⎭,斜率为()0k k >,则直线OQ 的斜率为π1tan 41k k θ-⎛⎫-= ⎪+⎝⎭,设()()1122,,,P x y Q x y ,则2110,0x x y >>>,联立22214x y b y kx⎧+=⎪⎨⎪=⎩,得2212244b x k b =+,同理可得()()()2222222222414141141b k b x k k b k b k +==--++⎛⎫+ ⎪+⎝⎭,由OQ 得222OQ OP =,即()2222222211121k x x x k x k -⎛⎫+=+ ⎪+⎝⎭,整理得()()222244002b k b k b +-+=<<,注意到()22240b b->且240b >,则要使上述关于k 的一元二次方程有正数解,只需要()222Δ44160b b =--≥,解得01b <≤,所以b 1.8.(2023·上海黄浦·统考二模)已知双曲线C 的中心在坐标原点,左焦点1F 与右焦点2F 都在x 轴上,离心率为3,过点2F 的动直线l 与双曲线C 交于点A 、B .设222AF BF ABλ⋅=.(1)求双曲线C 的渐近线方程;(2)若点A 、B 都在双曲线C 的右支上,求λ的最大值以及λ取最大值时1AF B ∠的正切值;(关于求λ的最值.某学习小组提出了如下的思路可供参考:①利用基本不等式求最值;②设2||AF AB 为μ,建立相应数量关系并利用它求最值;③设直线l 的斜率为k ,建立相应数量关系并利用它求最值).(3)若点A 在双曲线C 的左支上(点A 不是该双曲线的顶点,且1λ=,求证:1AF B △是等腰三角形.且AB 边的长等于双曲线C 的实轴长的2倍.【解析】(1)设双曲线方程为22221x y a b-=(),0a b >,焦距为2c ,由3c e a ==,所以b a ==y =±.(2)由(1)可得3c a =,b =,所以双曲线C 的方程为222218x y a a-=,设21AF t =,22BF t =,因为点A 、B 都在双曲线C 的右支上,所以12AB t t =+,所以()()2212122221214AF BF t t t t t t ABλ⋅==≤=+,当且仅当12t t =时取等号,即max 14λ=,当14λ=时12t t =,所以121122AF a t a t BF =+=+=,所以l x ⊥轴且1212AF F BF F ∠=∠,又双曲线C 的方程为222218x y a a -=,即22288x y a -=,由222388x a x y a =⎧⎨-=⎩,解得8y a =±,可知28AF a =,又126F F a =,所以2121284tan 63a AF F AF F F a ∠===,121122122tan 24tan tan 21tan 7AF F AF B AF F AF F ∠∠=∠==--∠.(3)设直线l 的方程为3x my a =+,将它代入22288x y a -=,可得()22228148640my may a -++=,设()11,A x y ,()22,B x y ,可得1224881am y y m +=--,21226481a y y m =-,由1λ=,可得222AF BF AB ⋅=,)21212y -=,又1y 、2y 同号,所以()21212y y y y =-,即()212125y y y y =+,所以2222644858181a am m m ⎛⎫= ⎪⎝--⎭⨯-,解得254m =,此时直线l<l 与双曲线的两支都相交,又221226464819a a y y m ==-,所以()2212222296411649A a m y y B a AF BF =⋅==+=⨯,则4AB a =,它等于双曲线实轴长的2倍,此时211222422AF AF a BF a a BF a BF =-=+-=+=,所以1AF B △是等腰三角形.9.(2023·江西九江·校联考模拟预测)已知P 为椭圆22142x y +=上一点,过点P 引圆222x y +=的两条切线PA 、PB ,切点分别为,A B ,直线AB 与x 轴、y 轴分别交于点M 、N .(1)设点P 坐标为0(x ,0)y ,求直线AB 的方程;(2)求MON △面积的最小值(O 为坐标原点).【解析】(1)先求在圆上一点的切线方程:设圆U 的方程为()()222x a y b r -+-=,圆心为(),U a b ,半径为r ,设()00,V x y 是圆U 上的一点,则()()22200x a y b r -+-=①,设(),W x y 是圆U 在()00,V x y 处的切线方程上任意一点,则0VU VW ⋅=,即()()()()()()00000000,,0a x b y x x y y a x x x b y y y --⋅--=--+--=②,-①②并整理得()()()()200x a x a y b y b r --+--=,即圆U 在()00,V x y 处的切线方程为()()()()200x a x a y b y b r --+--=.根据题意,设1(A x ,1)y ,2(B x ,2)y ,0(P x ,0)y ,PA 是圆222x y +=的切线且切点为A ,则PA 的方程为112x x y y +=,同理PB 的方程为222x x y y +=,又由PA 、PB 交于点P ,则有10102x x y y +=,20202x x y y +=,则直线AB 的方程为002x x y y +=.(2)要使,,O M N 围成三角形,则P 不是椭圆的顶点,所以000,0x y ≠≠,由(1)可得M 的坐标为02(x ,0),N 的坐标为2(0,)y ,00122OMN S OM ON x y =⋅= ,又由点P 是椭圆22142x y +=上的动点(非顶点),则有2200142x y +=,则有220000142x y y =+≥,即00||x y ≤当且仅当22001422x y ==时等号成立,0012=2OMN S OM ON x y =⋅ 即OMN.10.(2023·河南商丘·商丘市实验中学校联考模拟预测)已知椭圆()2222:10x y C a b a b+=>>的上顶点为A ,右顶点为B ,坐标原点O 到直线AB,AOB 的面积为2.(1)求椭圆C 的方程;(2)若过点()2,0P 且不过点()3,1Q 的直线l 与椭圆C 交于M ,N 两点,直线MQ 与直线4x =交于点E ,证明://PQ NE .【解析】(1)依题意,(0,),(,0)A b B a,有||AB =,因为AOB 的面积为2,则122AOB S ab == ,又点O 到直线AB的距离为5,则有1||22AOB S AB == ,于是22410ab a b =⎧⎨+=⎩,而0a b >>,解得a b ⎧=⎪⎨=⎪⎩,所以椭圆C 的方程为22182x y +=.(2)直线PQ 的斜率10132PQ k -==-,当直线l 的斜率不存在时,直线l 的方程为2x =,代入椭圆方程得1y =±,不妨设此时(2,1)M ,(2,1)N -,则(4,1)E ,直线NE 的斜率1(1)142NE PQ k k --===-,因此//PQ NE ;当直线l 的斜率存在时,设其方程为(2)(1)y k x k =-≠,设1122(,),(,)M x y N x y ,则直线MQ 的方程为1111(3)3y y x x --=--,令4x =,得1114(4,)3y x E x +--,由2248(2)x y y k x ⎧+=⎨=-⎩消去y 得:2222(14161680)k x k x k +-+-=,由于点P 在椭圆C 内,必有0∆>,则21221614k x x k +=+,212216814k x x k -=+,1121243114NE y x y x k x +----=--()()()11212143143y x y x x x +---=---()()()()()()()1121212124234343k x x k x x x x x x -+-------=--[]()()()()22221212212148168(1)(8)(1)3(814140)4343k k k k x x x x k k x x x x -----+--++===----,因此1NE PQ k k ==,即//PQ NE ,所以//PQ NE .11.(2023·重庆·统考模拟预测)已知椭圆C :()222210x y a b a b+=>>的长轴长是短轴长的2倍,直线12y x =被椭圆截得的弦长为4.(1)求椭圆C 的方程;(2)设M ,N ,P ,Q 为椭圆C 上的动点,且四边形MNPQ 为菱形,原点О在直线MN 上的垂足为点H ,求H 的轨迹方程.【解析】(1)由题意可得2a b =,则椭圆C :222214x y b b +=,联立22221412x y b b y x⎧+=⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩或2x y b ⎧=⎪⎨=⎪⎩,4=,解得285b =,所以2325a =,所以椭圆C 的方程为22132855x y +=,即2252032x y +=;(2)因为四边形MNPQ 为菱形,所以,MP NQ 垂直且平分,设()()1122,,,M x y P x y ,则2222112252032,52032x y x y +=+=,两式相减得()()222212125200x x y y -+-=,即()()()()1212121240x x x x y y y y -++-+=,设菱形的中心为()00,x y ,若直线,MP NQ 的斜率都存在,设直线,MP NQ 的斜率分别为12,k k ,由()()()()1212121240x x x x y y y y -++-+=,得()()()()1212121240y y x x y y x x -+++=-,所以001280x y k +=,即00140x y k +=,同理00240x y k +=,所以0102y k y k =,由121k k =-得00y =,所以00x =,即菱形的中心为原点,则直线MP 的方程为1y k x =,直线NQ 的方程为2y k x =,联立12252032y k x x y =⎧⎨+=⎩,解得212132520x k =+,所以()()22122221111213211520k OM x y k x k +=+=+=+,同理()22222321520k ON k +=+,因为1122OMN S OH OM ON ==,所以2222222111OM ON OHOMONOMON+==()()22222212121222222212121252052028555321321321k k k k k k k k k k k k +++++=+=⋅+++++()()2222121222221212285525525321132232k k k k k k k k +++++=⋅=⋅=+++++,所以点H 在圆222532x y +=上;若直线,MP NQ 中有一条直线的斜率不存在,由对称性可知棱形的中心为原点,,,,M N P Q 四点分别为椭圆的顶点,不妨设M 为右顶点,N 为上顶点,则22328,55OM ON ==,同理可得22222221112532OM ON OHOMONOMON+==+=,点H 任在圆222532x y +=上,综上所述,H 的轨迹方程为222532x y +=.12.(2023·上海闵行·统考二模)已知O 为坐标原点,曲线1C :()22210xy a a -=>和曲线2C :22142x y +=有公共点,直线1l :11y k x b =+与曲线1C 的左支相交于A 、B 两点,线段AB 的中点为M .(1)若曲线1C 和2C 有且仅有两个公共点,求曲线1C 的离心率和渐近线方程;(2)若直线OM 经过曲线2C 上的点)2,1T-,且2a 为正整数,求a 的值;(3)若直线2l :22y k x b =+与曲线2C 相交于C 、D 两点,且直线OM 经过线段CD 中点N ,求证:22121k k +>.【解析】(1)因为曲线1C 和2C 有且仅有两个公共点,所以曲线1C 和2C 的两公共点为左右顶点,则2a =,曲线1C 的半焦距5c =所以曲线1C 的离心率52c e a ==,渐近线方程为12y x =±;(2)联立222111x y a y k x b⎧-=⎪⎨⎪=+⎩,得()()22222211111210a k x a k b x a b ---+=,设()()1122,,,A x y B x y ,则()222111121222221112,11a b a k b x x x x a k a k -++==--,所以2112211M a k b x a k =-,21111122221111M a k b b y k b a k a k =+=--,故直线OM 的方程为211y x a k =,依题意直线OM 经过点)2,1T -,代入得212a k =4212a k =,所以2142k a =,因为直线1l 与曲线1C 的左支相交于两点,故()()221221101a b a k -+>-,得2211a k >,则422212a aa >=,所以22a <,又曲线1C 和2C 有公共点,所以204a <≤,所以202a <<,又2a 为正整数,所以21a =,所以1a =;(3)由(2)可得()12102M M y k a x a=<≤,同理,联立直线2l :22y k x b =+与曲线2C :22142x y +=,可得212N N y k x =-,因为N M M N y y x x =,所以2212a k k =-,又因为2211a k >,所以42222221121114a k k k k a k +=+>≥,即22121k k +>.13.(2023·重庆九龙坡·统考二模)已知椭圆C :()222210x y a b a b+=>>的离心率为12,左、右焦点分别为1F ,2F ,过1F 的直线()1y t x =+交椭圆于M ,N 两点,交y 轴于P 点,1PM MF λ= ,1PN NF μ=,记OMN ,2OMF △,2ONF △的面积分别为1S ,2S ,3S .(1)求椭圆C 的标准方程;(2)若123S mS S λ=-,433μ-≤≤-,求m 的取值范围.【解析】(1)由题意得,左焦点1(1,0)1F c -⇒=,122c a a =⇒=,2223b a c =-=,所以椭圆C 的标准方程为:22143x y +=.(2)设1122(,),(,)M x y N x y ,令0x =,y t =,则()0,P t ,则11(,)PM x y t =-uuu r,()1111,MF x y =--- 由1PM MF λ=得()()1111,1,x y t x y λ-=---,解得11t y λ=-,同理21ty μ=-.由()221431x y y t x ⎧+=⎪⎨⎪=+⎩,得2236490y y t t ⎛⎫+--= ⎪⎝⎭,则1226,43t y y t +=+2122943ty y t -=+,()1212128223t y y t t y y y y λμ++=+-=-=-.不妨设120y y >>,1121211122S y y y y =⋅⋅-=-(),21111122S y y =⋅⋅=,32211122S y y =⋅⋅=-,由11t y λ=-,21t y μ=-.得11t y λ=+,21t y μ=+,2111513y y λλμλ++==-++.代入123S mS S λ=-,有()2121121122y y y m y λ-+=,则1212m y y y y λ=-+,解得22221114(1)15911(1)1()553333y y y m y y y λλλλλλ+=--=-+=+=-+++++,43,3μ-≤≤-Q 511[,2]33λμ∴+=--∈设53u λ=+,则1[,2]3u ∈,则()4193h u u u=-++,则()2419h u u -'=-,令()0h u '>,解得223u <<,令()0h u '<,解得1233u <<,故()h u 在12,33⎛⎫⎪⎝⎭上单调递减,在2,23⎛⎫ ⎪⎝⎭上单调递增,则()min 213h u h ⎛⎫== ⎪⎝⎭,且()1417,2339h h ⎛⎫== ⎪⎝⎭,则()171,9h u ⎡⎤∈⎢⎥⎣⎦,则171,9m ∈⎡⎤⎢⎥⎣⎦.14.(2023·上海静安·统考二模)已知双曲线Γ:22221x y a b-=(其中0,0a b >>)的左、右焦点分别为1F (-c ,0)、2F (c ,0)(其中0c >).(1)若双曲线Γ过点(2,1)且一条渐近线方程为2y x =;直线l 的倾斜角为4π,在y轴上的截距为2-.直线l 与该双曲线Γ交于两点A 、B ,M 为线段AB 的中点,求△12MF F 的面积;(2)以坐标原点O 为圆心,c 为半径作圆,该圆与双曲线Γ在第一象限的交点为P .过P 作圆的切线,若切线的斜率为Γ的离心率.【解析】(1)双曲线Γ:22221x y a b -=渐近线方程为b y x a =±,已知一条渐近线方程为y =,所以a =,双曲线Γ经过点(2,1),所以22411a b -=,解得222,1a b ==.所以双曲线Γ:2212x y -=.直线l 的倾斜角为π4,则斜率为1,又l 在y 轴上的截距为2-,则l 方程为:2y x =-,代入双曲线方程得:28100x x -+=,设两点A 、B 坐标分别为(1x ,1y )、(2x ,2y ),M (x ,y ),则1284,2x x x y +=⇒==.又12F F =则12MF F △的面积1111222F F y =⋅⋅=⨯=(2)方法一:由题可知圆方程为:222x y c +=,将其与双曲线方程联立:22222222222221x y c b b x b c x y x y a c ab ⎧+=⎪⇒+-=⇒==⎨-=⎪⎩,即2,b P c c ⎛⎫⎪ ⎪⎝⎭,又切线斜率为2OP b k c =⋅=()22442242334803840c a c a a c e e ⇒-=⇒+-=⇒-+=,解得22e =,所以双曲线Γ;方法二:设切线与x 轴交于E点,因切线斜率为3πPEO ∠=,又2πOPE ∠=,则1566ππ,POE POF ∠=∠=.注意到12OF OF c OP ===,则在2 POF 中,由余弦定理,22PF c -===,在1POF △中,由余弦定理,1PF ===.则()12122c a PF PF c e a=-=⇒==15.(2023·辽宁大连·统考一模)已知双曲线C 上的所有点构成集合()(){}22,10,0P x y axby a b =-=>>和集合()(){}22,010,0Q x y axby a b =<-<>>,坐标平面内任意点()00,N x y ,直线00:1l ax x by y -=称为点N 关于双曲线C 的“相关直线”.(1)若N P ∈,判断直线l 与双曲线C 的位置关系,并说明理由;(2)若直线l 与双曲线C 的一支有2个交点,求证:N Q ∈;(3)若点N Q ∈,点M 在直线l 上,直线MN 交双曲线C 于A ,B ,求证:MA MBAN BN=.【解析】(1)直线l 与双曲线C 相切.理由如下:联立方程组220011ax by ax x by y ⎧-=⎨-=⎩,∴()222220000210aby a x x ax x by -+--=①,∵N P ∈,∴22001ax by -=,即22001ax by -=,代入①得,220020ax ax x ax -+-=,∴222200440a x a x ∆=-=,∴直线l 与双曲线C 相切.(2)由(1)知()222220000210aby a x x ax x by -+--=,∵直线l 与双曲线C 的一支有2个交点,则2220020222000Δ010aby a x by aby a x ⎧⎪-≠⎪⎪>⎨⎪--⎪>⎪-⎩,∴()()()22222222000000044141a x a by ax by aby by ax ∆=----=+-,∴22001ax by -<,∵()2200222220000110by by aby a x a ax by --+=>--,∴220001ax by <-<,∴()00,N x y Q ∈.(3)设()11,M x y ,(),A x y ,设MA AN λ= ,MB BN μ=,∵()00,N x y l ∉,∴1λ≠-,则101011x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,代入双曲线22:1C ax by -=,利用M 在l 上,即01011ax x by y -=,整理得()222220011110ax by ax by λ--+--=,同理得关于μ的方程()222220011110ax by ax by μ--+--=.即λ、μ是()222220011110ax by t ax by --+--=的两根,∴0λμ+=,∴MA MBAN BN=.16.(2023·湖南益阳·统考模拟预测)已知1F 、2F 分别为双曲线22122:1(0,0)y xC a b a b-=>>的上、下焦点,其中1F 坐标为()0,2点M 是双曲线1C 上的一个点.(1)求双曲线1C 的方程;(2)已知过点()4,1P 的直线与22122:1(0,0)y x C a b a b-=>>上支交于不同的A 、B 两点,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明:点Q 总在某条定直线上.【解析】(1)由1F 坐标为()0,2得224a b +=,点M在双曲线1C 上得22231a b -=,解得2213a b ⎧=⎨=⎩,双曲线方程为221.3x y -=(2)设直线与双曲线交于()11,A x y ,()22,B x y ,点(),Q x y ,由AP QB AQ PB ⋅=⋅得(0AP AQ PBQBλλ==>且1)λ≠,AP PB λ=- ,AQ QB λ=,代入坐标得()()1122414,1,x y x y λ--=---,()()1122,,x x y y x x y y λ--=--,整理得:()1241x x λλ-=-①()121x x x λλ+=+,②,得()22221241x x x λλ-=-③,同理121y y λλ-=-④,()121y y y λλ+=+⑤,得()2222121y y y λλ-=-⑥,由于双曲线1C 上的点满足2233y x -=,⑥3⨯-③得()()()222222112233341y x y x y x λλ---=--,即()()2233341y x λλ-=--,所以343y x -=,表示点(),Q x y 在定直线4330x y -+=上.17.(2023·贵州黔西·校考一模)已知双曲线()2222:10,0x y C a b a b-=>>5点(3,2P -在双曲线C 上.(1)求双曲线C 的方程;(2)设()1,0A -,M 为C 上一点,N 为圆221x y +=上一点(M ,N 均不在x 轴上).直线AM ,AN 的斜率分别记为1k ,2k ,且2140k k +=,判断:直线MN 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由双曲线离心率为2215c b e a a ==+224b a =,所以双曲线方程为222214x y a a-=,又点(3,2P -在双曲线上,即2293214a a -=,解得21a =,24b =,所以双曲线的方程为2214y x -=;(2)由已知得10k ≠,20k ≠,设直线()1:1AM y k x =+,点()11,M x y ,由()122114y k x y x ⎧=+⎪⎨-=⎪⎩得()22221114240k x k x k ----=,0∆>,则212144A M k x x k +=--,即212144M k x k +-=--,212144M k x k +=-,所以211221148,44k k M k k ⎛⎫+ ⎪--⎝⎭由2140k k +=,得124k k =-,所以2222222418,141k k M k k ⎛⎫+ ⎪--⎝⎭设直线()2:1AN y k x =+,联立直线与圆221x y +=,得()22222221210k x k x k +++-=,0∆>,则222211A N k x x k -=+,即222211N k x k --=+,222211N k x k -=+,所以222222212,11k k N k k ⎛⎫- ⎪++⎝⎭,所以222222222222222281141141114MNk k k k k k k k k k --+-==--+-+-,即21MN k k ⋅=-,所以MN AN ⊥,又点A 在圆221x y +=上,设圆221x y +=与x 轴的另一个交点为B ,则()10B ,,且AN BN ⊥,即直线BN 与MN 重合,所以直线MN 恒过点()10B ,.18.(2023·浙江宁波·统考二模)已知双曲线2222:1x y E a a-=,点(0,2)D 与双曲线上的点的(1)求双曲线E 的方程;(2)直线:l y kx m =+与圆22:(2)1C x y ++=相切,且交双曲线E 的左、右支于A ,B 两点,交渐近线于点M ,N .记DAB ,OMN 的面积分别为1S ,2S ,当12847S S -=时,求直线l 的方程.【解析】(1)设(,)P x y 是双曲线上的任意一点,则2222222(2)2442(1)2DP x y y y a y a =+-=-++=-++,所以当1y =时,2DP 的最小值为22a +,所以223a +=,得21a =,所以双曲线E 的方程为221x y -=.(2)由直线:l y kx m =+与圆22:(2)1C x y ++=1=,由直线交双曲线的左、右支于A ,B 两点,设()11,A x y ,()22,B x y ,联立221x y y kx m⎧-=⎨=+⎩,消y 整理得()()2221210k x mkx m ---+=,则()221Δ410m k=+->,212211m x x k +=-,12221mk x x k +=--,所以12x x -=所以221222110142m m x x k m m ++==<-++,即2420m m ++<,解得22m -<<-,1=,则21m +≥,解得1m ≥-或3m ≤-,所以(231,2m ⎤⎡∈--⋃--⎦⎣,所以12AB x x =-=,又点(0,2)D 到AB 的距离1d =1121(2242m S AB d m m -==---,设()33,M x y ,()44,N x y ,联立方程组220x y y kx m⎧-=⎨=+⎩,消y 整理得()222120k x mkx m ---=,则22Δ4m =,34221mk x x k +=-,23421m x x k -⋅=-,所以34221m x x k --=-,所以34221mMN x x k -=-=-,又点O 到MN 的距离2d =22221242mS MN d m m ==---,所以当12847S S -=时,有222(2)428442427m m m m m m --=------,整理得()24(25847m m m -=--,即4(2(52)(2)7m m m -=+-,又2m ≠,4(52)7m -=+,即2200258810m m ++=,解得134m =-,22750m =-(舍去),所以34m =-,则34k =±,所以直线方程为3344y x =±-.19.(2023·上海松江·统考二模)已知椭圆2212:12x y C b+=的左、右焦点分别为12F F 、,离心率为1e ;双曲线2222:12x y C b -=的左、右焦点分别为34F F 、,离心率为2e ,12e e ⋅=.过点1F 作不垂直于y 轴的直线l 交曲线1C 于点A 、B ,点M 为线段AB 的中点,直线OM 交曲线2C 于P 、Q 两点.(1)求1C 、2C 的方程;(2)若113AF F B =,求直线PQ 的方程;(3)求四边形APBQ 面积的最小值.【解析】(1)由题意可知:12e e ==所以12222e e ⋅===,解得:21b =,所以椭圆方程为2212x y +=,双曲线方程为:2212x y -=.(2)由(1)知()11,0F -,因为直线AB 不垂直与y 轴,设直线AB 的方程为:1x my =-,设点()()1122,,,A x y B x y ,则()1111,,AF x y =---()1221,F B x y =+ ,由113AF F B =,则123y y -=,即123y y =-,联立:22112x my x y =-⎧⎪⎨+=⎪⎩,可得:()222210m y my +--=,()()222442810m m m ∆=++=+>,由韦达定理可得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,将123y y =-代入得:()222222132m y m y m -⎧=⎪+⎪⎨=⎪+⎪⎩解得1m =±,当1m =时,弦AB 的中点21,33M ⎛⎫- ⎪⎝⎭,此时直线PQ 的方程为:12y x =-;当1m =-时,弦AB 的中点21,33M ⎛⎫-- ⎪⎝⎭,此时直线PQ 的方程为:12y x =.所以直线PQ 的方程为12y x =-或12y x =.(3)设AB 的中点()00,M x y ,由(2)可得)2212m AB m +=+,且000222,122m y x my m m -==-=++,点222,22m M m m -⎛⎫ ++⎝⎭,2PQ OM m k k ==-,直线PQ 的方程为:2my x =-,联立22212m y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩可得:2242x m =-,2222m y m =-,且220m ->,由双曲线的对称性,不妨取点P ⎛⎫⎪⎭、Q ⎛⎫,所以点P 到直线AB的距离为:21d =,点Q 到直线AB的距离为:22d ==21222m d d ++=,所以四边形APBQ的面积为()1212S AB d d =+===2022m <-≤,所以当222m -=,即0m =时,四边形APBQ 的面积取最小值2.20.(2023·湖北武汉·统考模拟预测)过点()4,2的动直线l 与双曲线()2222:10,0x y E a b a b-=>>交于,M N 两点,当l 与x 轴平行时,MN=l 与y 轴平行时,MN =(1)求双曲线E 的标准方程;(2)点P 是直线1y x =+上一定点,设直线,PM PN 的斜率分别为12,k k ,若12k k 为定值,求点P 的坐标.【解析】(1)由题意可知:双曲线()2222:10,0x y E a b a b-=>>过点()2±,(4,±,将其代入方程可得:222284116121a b a b⎧-=⎪⎪⎨⎪-=⎪⎩,解得:2244a b ⎧=⎨=⎩,∴双曲线E 的标准方程为:22144x y -=.(2)方法一:设()()1122,,,M x y N x y ,点()4,2与,M N 三点共线,12122244y y x x --∴=--,()()12124422x x y y λλ⎧-=-⎪∴⎨-=-⎪⎩(其中R λ∈,0λ≠),()()12124121x x y y λλλλ⎧=+-⎪∴⎨=+-⎪⎩,()()222241214x y λλλλ⎡⎤⎡⎤∴+--+-=⎣⎦⎣⎦,又22224x y -=,整理可得:()()2212420x y λλλλ--+-=,当1λ=时,12x x =,12y y =,不合题意;当1λ≠时,由222420x y λλλ-+-=得:22122y x λ=-+,设()00,P x y ,则001y x =+,()()102012102011y x y x k k x x x x -+-+∴⋅=⋅--()()()22220202202220222211243222y y x x x y x y x x x y x x ⎛⎫-+--++ ⎪-+⎝⎭=⋅-⎛⎫-+--+ ⎪⎝⎭()()()0220020020220031212223422x y x x x y x x x x y x x x ⎛⎫-+-- ⎪-+⎝⎭=⋅-⎛⎫-+-+- ⎪⎝⎭,若12k k 为定值,则根据约分可得:000121x x x --=-且000114222x x x --=--,解得:03x =;当03x =时,()3,4P ,此时22122226441322x y k k x y --=⋅=--;∴当()3,4P 时,124k k =为定值.方法二:设()()()112200,,,,,M x y N x y P x y ,直线()():420MN y k x k =-+≠,由()22424y k x x y ⎧=-+⎨-=⎩得:()224240x k x ⎡⎤--+-=⎣⎦,12,x x 为方程()224240x k x ⎡⎤--+-=⎣⎦的两根,()()()()222124241x k x k x x x x ⎡⎤∴--+-=---⎣⎦,则()()()()222001024241x k x k x x x x --+-=---⎡⎤⎣⎦,由()42y k x =-+得:24y x k-=+,由22244y x k x y -⎧=+⎪⎨⎪-=⎩可得:222440y y k -⎛⎫+--= ⎪⎝⎭,同理可得:()()()()222220001022441y k k y k k y y y y -+--=---,则()()()()()()()()()()201020102122121211k y y y y y y y y k k x x x x k x x x x -----==-----()()2222002200244424y k k y k x k x -+--=--+-⎡⎤⎣⎦()()()()2220000222000012816448164168y k y k y y x x k x k x -++-+-+=-+-+-++-,若12k k 为定值,则必有22000022000012816448164168y y y y x x x x -+--+==-+--+-,解得:0034x y =⎧⎨=⎩或00x y ⎧=⎪⎪⎨⎪=⎪⎩或00x y ⎧=⎪⎪⎨⎪=⎪⎩又点P 在直线1y x =+上,∴点P 坐标为()3,4;当直线MN 斜率为0时,,M N坐标为()2±,若()3,4P ,此时124k k ==;当直线MN 斜率不存在时,,M N坐标为(4,±,若()3,4P ,此时124443434k k -+=--;综上所述:当()3,4P 时,124k k =为定值.21.(2023·贵州黔西·校考一模)已知双曲线2222:1(0,0)x y C a b a b-=>>(3,P -在双曲线C 上.(1)求双曲线C 的方程;(2)设()1,0A -,M 为C 上一点,N 为圆221x y +=上一点(,M N 均不在x 轴上).直线,AM AN 的斜率分别记为12,k k ,且2140k k +=,判断:直线MN 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由双曲线2222:1(0,0)x y C a b a b-=>>可得222225,4c a b b a a a+=∴=∴=,又点(3,P -在双曲线C 上,即2293214a a-=,解得221,4a b ==,故双曲线C 的方程为2214y x -=.(2)由题意可知120,0k k ≠≠,且AM 的方程为11y k x k =+,联立112214y k x k y x =+⎧⎪⎨-=⎪⎩,可得2222111(4)240k x k x k ----=,2140k -≠,Δ640=>,设11(,)M x y ,由题意可知该方程有一根为1-,故221111221144(1),44k k x x k k --+-=∴=--,则111112184k y k x k k =+=-,AN 的方程为22y k x k =+,联立22221y k x k x y =+⎧⎨+=⎩,可得2222222(1)210k x k x k +++-=,40'∆=>,设2221(,),N x y x x ≠,由题意可知该方程有一根为1-,故222222222211(1),11k k x x k k ---=∴=++,则222222221k y k x k k =+=+,由于2140k k +=,即124k k =-,由于2140k -≠,故224160k -≠,故22122164416k x k +=-,212232416k y k -=-,所以直线MN 的斜率为222221222222212222232141611641416MNk k y y k k k k k x x k k ---+-==-+--+-2222222222222222222(416)(1)(32)401(1)(416)(1)(164)40k k k k k k k k k k k --+-===----++-,故直线MN 的方程为1121()y y x x k -=--,即22222222321641()416416k k y x k k k ++=----,即222(164)(1)0k x k y -+-=,由于224160k -≠,故210x k y +-=,即直线MN 过定点(1,0).22.(2023·上海宝山·统考二模)已知抛物线Γ:24y x =.(1)求抛物线Γ的焦点F 的坐标和准线l 的方程;(2)过焦点F 且斜率为12的直线与抛物线Γ交于两个不同的点A 、B ,求线段AB 的长;(3)已知点()1,2P ,是否存在定点Q ,使得过点Q 的直线与抛物线Γ交于两个不同的点M 、N (均不与点Р重合),且以线段MN 为直径的圆恒过点P ?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)∵抛物线Γ:24y x =,则2p =,且焦点在x 轴正半轴,故抛物线Γ的焦点()1,0F ,准线:1l x =-.(2)由(1)可得:()1,0F ,可得直线()1:12AB y x =-,设()()1122,,,A x y B x y ,联立方程()21124y x y x⎧=-⎪⎨⎪=⎩,消去y 得21810x x -+=,可得()212184113200,18x x ∆=--⨯⨯=>+=,故1220AB x x p =++=.(3)存在,理由如下:设直线()()3443:,,,,MN x my n M x y N x y =+,联立方程24x my n y x=+⎧⎨=⎩,消去x 得2440y my n --=,则()23434160,4,4m n y y m y y n ∆=+>+==-,可得()()33441,2,1,2PM x y PN x y =--=--uuu r uuu r,若以线段MN 为直径的圆恒过点P ,则PM PN ⊥,。
高考数学专项突破圆锥曲线专题

高考数学专项突破:圆锥曲线专题目录一、知识考点讲解 (2)第一部分了解基本题型 (3)第二部分掌握基本知识 (6)第三部分掌握基本方法 (8)二、知识考点深入透析 (15)三、圆锥曲线之高考链接 (18)四、基础知识专项训练 (22)五、解答题专项训练 (30)附录:圆锥曲线之高考链接参考答案 (35)附录:基础知识专项训练参考答案 (39)附录:解答题专项训练参考答案 (41)一、知识考点讲解一、圆锥曲线的考查重点:高考试卷对圆锥曲线的考查主要是:给出曲线方程,讨论曲线的基本元素和简单的几何性质;或给出曲线满足的条件,判断(或求)其轨迹;或给出直线及曲线、曲线及曲线的位置关系,讨论及其有联系的有关问题(如直线的方程、直线的条数、弦长、曲线中参数的取值范围等);或讨论直线及曲线、曲线及曲线的关系;或考查圆锥曲线及其它知识的综合(如及函数、数列、不等式、向量、导数等)等。
二、圆锥曲线试题的特点:1、突出重点知识的考查。
直线及圆的方程、圆锥曲线的定义、标准方程、几何性质等是圆锥曲线命题的根本,在对圆锥曲线的考查中,直线及圆锥曲线的位置关系仍然是重点。
2、注重数学思想及方法的考查。
3、融合代数、三角、不等式、排列组合、向量和几何等知识,在知识网络的交汇点处设计问题是高考的一大特点,由于向量具有代数和几何的双重身份,使得圆锥曲线及平面向量的整合交汇成为高考命题的热点,导数知识的引入为我们解决圆锥曲线的最值问题和切线问题提供了新的视角和方法。
三、命题重点趋势:直线及圆锥曲线或圆及圆锥曲线1、高考圆锥曲线内容重点仍然是直线及圆锥曲线或圆及圆锥曲线,直线及圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现。
2、热点主要体现在:直线及圆锥曲线的基础题;涉及位置关系的判定;轨迹问题;范围及位置问题;最值问题;存在性问题;弦长问题;对称问题;及平面向量或导数相结合的问题。
3、直线及圆锥曲线的题型涉及函数的及方程,数形结合,分类讨论,化归及转化等重要的数学思想方法,是高考必考内容之一,这类题型运算量比较大,思维层次较高,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能,对学生的能力要求也相对较高,是每年高考中平面几何部分出题的重点内容第一部分了解基本题型一、高考中常见的圆锥曲线题型1、直线及圆锥曲线结合的题型(1)求圆锥曲线的轨迹方程:这类题主要考查学生对圆锥曲线的标准方程及其相关性质,要求较低,一是出现在选择题,填空题或者解答题的第一问,较容易。
高考数学复习考点突破专题讲解12 圆锥曲线的方程与性质

高考数学复习考点突破专题讲解第12讲圆锥曲线的方程与性质一、单项选择题1.(2022·广东惠州一模)若抛物线y2=2px(p>0)上一点P(2,y0)到其焦点的距离为4,则抛物线的标准方程为()A.y2=2xB.y2=4xC.y2=6xD.y2=8x2.(2022·山东临沂二模)已知双曲线C:=1(a>0,b>0)的焦距为4,实轴长为4,则C的渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x3.(2022·广东肇庆二模)已知F1,F2分别是椭圆C:=1(a>b>0)的左、右焦点,A是椭圆上一点,O 为坐标原点,若|OA|=|OF1|,直线F2A的斜率为-3,则椭圆C的离心率为()A. B. C. D.4.(2022·河北保定高三期末)为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)为某双曲线(离心率为2)的一部分,曲线AB与曲线CD中间最窄处间的距离为30 cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=36 cm,则|AD|=()A.12 cmB.6 cmC.38 cmD.6 cm5.(2022·全国甲·文11)已知椭圆C:=1(a>b>0)的离心率为,A1,A2分别为C的左、右顶点,B为C的上顶点.若=-1,则C的方程为()A.=1B.=1C.=1D.+y2=16.(2022·广东执信中学模拟)已知双曲线C的离心率为,F1,F2是C的两个焦点,P为C上一点,|PF1|=3|PF2|,若△PF1F2的面积为,则双曲线C的实轴长为()A.1B.2C.3D.47.(2022·江西宜春期末)已知抛物线E:y2=8x的焦点为F,P是抛物线E上的动点,点Q与点F关于坐标原点对称,当取得最小值时,△PQF的外接圆半径为()A.1B.2C.2D.48.(2022·山东滨州二模)已知椭圆C1和双曲线C2有相同的左、右焦点F1,F2,若C1,C2在第一象限内的交点为P,且满足∠POF2=2∠PF1F2,设e1,e2分别是C1,C2的离心率,则e1,e2的关系是()A.e1e2=2B.=2C.+e1e2+=2D.=2二、多项选择题9.(2022·湖北武昌高三期末)已知双曲线C:=1,下列对双曲线C判断正确的是()A.实轴长是虚轴长的2倍B.焦距为8C.离心率为D.渐近线方程为x±y=010.(2022·新高考Ⅱ·10)已知O为坐标原点,过抛物线C:y2=2px(p>0)的焦点F的直线与C交于A,B两点,点A在第一象限,点M(p,0),若|AF|=|AM|,则()A.直线AB的斜率为2B.|OB|=|OF|C.|AB|>4|OF|D.∠OAM+∠OBM<180°11.(2022·山东临沂三模)2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”,如图,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点F(0,2),椭圆的短轴与半圆的直径重合,下半圆与y轴交于点G.若过原点O的直线与上半椭圆交于点A,与下半圆交于点B,则()A.椭圆的长轴长为4B.线段AB长度的取值范围是[4,2+2]C.△ABF的面积最小值是4D.△AFG的周长为4+412.(2022·江苏南通高三检测)已知椭圆C1:=1(m>n>0)的上焦点为F1,双曲线C2:=1的左、右焦点分别为F2,F3,直线F1F2与C2的右支相交于点A,若AF3⊥F2F3,则()A.C1的离心率为B.C2的离心率为C.C2的渐近线方程为y=±xD.△AF1F3为等边三角形三、填空题13.(2021·全国乙·理13)已知双曲线C:-y2=1(m>0)的一条渐近线为x+my=0,则C的焦距为.14.(2022·河北保定模拟)已知椭圆C的中心为坐标原点,焦点在y轴上,F1,F2为C的两个焦点,C的短轴长为4,且C上存在一点P,使得|PF1|=6|PF2|,写出椭圆C的一个标准方程:.15.(2022·山东威海高三期末)已知抛物线C1:y2=8x,圆C2:x2+y2-4x+3=0,点M(1,1),若A,B分别是C1,C2上的动点,则|AM|+|AB|的最小值为.16.(2022·河北石家庄二模)已知椭圆C1和双曲线C2有公共的焦点F1,F2,曲线C1和C2在第一象限内相交于点P,且∠F1PF2=60°.若椭圆C1的离心率的取值范围是,则双曲线C2的离心率的取值范围是.高考数学复习考点突破专题讲解12圆锥曲线的方程与性质1.D解析∵抛物线y2=2px上一点P(2,y0)到其焦点的距离等于到其准线的距离,∴+2=4,解得p=4,∴抛物线的标准方程为y2=8x.2.C解析由已知得,双曲线的焦点在y轴上,双曲线的焦距2c=4,解得c=2,双曲线的实轴长为2a=4,解得a=2,则b=--=4,故双曲线C的渐近线方程为y=±x=±x.3. D解析如图,由|OA|=|OF1|,得|OA|=|OF1|=|OF2|=c,故∠F1AF2=90°.因为直线F2A的斜率为-3,所以tan∠F1F2A=3,所以|AF1|=3|AF2|.又|AF1|+|AF2|=2a,所以|AF1|=,|AF2|=.又|AF1|2+|AF2|2=|F1F2|2,即a2+a2=4c2,得,所以.4. D解析以双曲线的对称中心为坐标原点,建立平面直角坐标系xOy,因为双曲线的离心率为2,所以可设双曲线的标准方程为=1(a>0),依题意可得2a=30,则a=15,即双曲线的标准方程为=1.因为|AB|=36cm,所以点A的纵坐标为18.由=1,得|x|=3,故|AD|=6cm.5.B解析由题意知,A1(-a,0),A2(a,0),B(0,b),则=(-a,-b)·(a,-b)=-a2+b2=-1,①由e=,得e2=-=1-,即b2=a2.②联立①②,解得a2=9,b2=8.故选B.6.B解析根据双曲线的定义,可得|PF1|-|PF2|=2a,又|PF1|=3|PF2|,解得|PF1|=3a,|PF2|=a.因为双曲线C的离心率为,所以c= a.在△PF1F2中,由余弦定理,可得cos∠F1PF2=-=-,则sin∠F1PF2=.由△PF1F2的面积为,可得|PF1||PF2|sin∠F1PF2=a2=,解得a=1.故双曲线C的实轴长为2.7. C解析过点P作准线的垂线,垂足为M,由抛物线的定义知|PF|=|PM|,所以=cos∠QPM=cos∠PQF,要使取得最小值,则cos∠PQF取得最小值,即tan∠PQF取得最大值0<∠PQF<,此时直线PQ与抛物线相切.设直线PQ的方程为y=k(x+2),由得k2x2+(4k2-8)x+4k2=0,所以Δ=(4k2-8)2-4k2·4k2=64(1-k2)=0,即k2=1,解得k=±1,不妨取k=1,此时直线PQ的倾斜角∠PQF=,且有x2-4x+4=0,所以x=2,所以P(2,4),所以|PF|=4.设△PQF的外接圆半径为R,在△PQF中,由正弦定理知,2R==4.所以此时△PQF的外接圆半径R=2.8. D解析因为∠POF2=∠PF1F2+∠F1PO,∠POF2=2∠PF1F2,所以∠PF1F2=∠F1PO,所以|OF1|=|OP|=|OF2|=c,所以PF1⊥PF2.记椭圆长半轴长为a1,双曲线实半轴长为a2,椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,则由椭圆和双曲线定义可得,m+n=2a1,①m-n=2a2,②①2+②2可得2(m2+n2)=4().由勾股定理知,m2+n2=4c2,代入上式可得2c2=,整理得=2,即=2,所以=2.9.BD解析由双曲线C:=1,可得a2=12,b2=4,则c2=a2+b2=16,所以a=2,b=2,c=4,故A不正确,B正确;e=,故C不正确;易知渐近线方程为y=±x,即x±y=0,故D正确.10.ACD解析选项A,由题意知,点A为FM的中点,设A(x A,y A),则x A=p,所以=2px A=2p·p=p2(y A>0).=2,故选项A正确;所以y A=p,故k AB=-选项B,由斜率为2可得直线AB的方程为x=y+,联立抛物线方程得y2-py-p2=0,设B(x B,y B),则p+y B=p,则y B=-,代入抛物线方程得-=2p·x B,解得x B=.∴|OB|=,故选项B错误;选项C,|AB|=p++p=p>2p=4|OF|,故选项C正确;选项D,由选项A,B知,A p,p,B,-p,所以=p,p·,-p=-p2=-p2<0,所以∠AOB为钝角.又=-p·-,-p=-p2=-p2<0,所以∠AMB为钝角.所以∠OAM+∠OBM<180°.故选项D正确.故选ACD.11. ABD解析由题知,椭圆中b=c=2,则a=2,则2a=4,故A正确;|AB|=|OB|+|OA|=2+|OA|,由椭圆性质可知2≤|OA|≤2,所以4≤|AB|≤2+2,故B正确;若A,B,F能构成三角形,则AB不与y轴重合,此时2≤|OA|<2,记∠AOF=θ,则S△ABF=S△AOF+S△OBF=|OA||OF|sinθ+OB·OF sin(π-θ)=|OA|·sinθ+2sinθ=(|OA|+2)sinθ,取θ=,则S△ABF=1+|OA|<1+×2<4,故C错误;由椭圆定义知,|AF|+|AG|=2a=4,所以△AFG的周长L=|FG|+4=4+4,故D正确.12. ACD解析易知F1(0,-),F2(-,0),F3(,0),将x=代入双曲线C2的方程得=1,可得y2=,则点A.因为O为F2F3的中点,且OF1∥AF3,所以OF1为△F2AF3的中位线,所以-,整理可得m4=4m2n2-4n4,即m2=2n2.椭圆C1的离心率为e1=-,故A正确;双曲线C2的离心率为e2=,故B错误;双曲线C2的渐近线方程为y=±x=±x,故C正确;易知点A(n,2n),F2(-n,0),则,则∠AF2F3=30°,故∠F2AF3=60°.因为|AF3|=2n,|AF1|=|AF2|=(|AF3|+2n)=2n,所以△AF1F3为等边三角形,故D正确.13.4解析由双曲线方程可知其渐近线方程为±y=0,即y=±x,得-=-,解得m=3.可得C 的焦距为2=4.14.=1(答案不唯一)解析因为|PF1|=6|PF2|,所以|PF1|+|PF2|=7|PF2|=2a,则|PF2|=.又因为a-c≤|PF2|≤a+c,所以≥a-c,即.根据题意可设C的标准方程为=1(a>b>0),因为椭圆C的短轴长为4,所以2b=4,b=2.又由,可得--,解得a2≥,所以椭圆C的一个标准方程为=1.15. 2解析由抛物线C1:y2=8x得焦点F(2,0),准线方程为x=-2.由圆C2:x2+y2-4x+3=0,得(x-2)2+y2=1,所以圆C2是以F(2,0)为圆心,以r=1为半径的圆.所以|AM|+|AB|≥|AM|+|AF|-1,所以当|AM|+|AF|取得最小值时,|AM|+|AB|取得最小值.又根据抛物线的定义得|AF|等于点A到准线的距离,所以过点M作准线的垂线,垂足为N,且与抛物线C1:y2=8x相交,当点A为此交点时,|AM|+|AF|取得最小值,最小值为|1-(-2)|=3.所以此时|AM|+|AB|≥|AM|+|AF|-1≥3-1=2,所以|AM|+|AB|的最小值为2.16.解析设椭圆C1:=1(a>b>0),双曲线C2:=1,椭圆与双曲线的半焦距为c,椭圆的离心率e=,双曲线的离心率e1=,|PF1|=s,|PF2|=t,如图,由椭圆的定义可得s+t=2a,由双曲线定义可得s-t=2a1,联立可得s=a1+a,t=a-a1.由余弦定理可得4c2=s2+t2-2st cos∠F1PF2=(a+a1)2+(a-a1)2-2(a+a1)(a-a1)cos60°=a2+3,即4=,解得.-因为e∈,所以≤e2≤,2≤≤3,可得≤3,故≤e1≤.。
圆锥曲线大题压轴练-高考数学重点专题冲刺演练(原卷版)

圆锥曲线大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·广东·统考一模)已知点A ,点B 和点C 为椭圆2222:1(0)x y C a b a b+=>>上不同的三个点.当点A ,点B 和点C 为椭圆的顶点时,△ABC 恰好是边长为2的等边三角形.(1)求椭圆C 标准方程;(2)若O 为原点,且满足0OA OB OC ++= ,求ABC 的面积.2.(2023·广东广州·统考一模)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线l :(1)(0)y k x k =-≥与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,直线OP 的斜率为k '(O 为坐标原点),△APQ 的面积为1S .BPQ V 的面积为2S ,若21||||AP S BP S ⋅=⋅,判断k k '⋅是否为定值?并说明理由.3.(2023·广东湛江·统考一模)已知12,F F 分别为椭圆()2222:10x y E a b a b+=>>的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,1F AB 的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.4.(2023·广东深圳·深圳中学校联考模拟预测)已知双曲线C 以20x =为渐近线,其上焦点F 坐标为()0,3.(1)求双曲线C 的方程;(2)不平行于坐标轴的直线l 过F 与双曲线C 交于,P Q 两点,PQ 的中垂线交y 轴于点T ,问TF PQ 是否为定值,若是,请求出定值,若不是,请说明理由.5.(2023·江苏连云港·统考模拟预测)已知椭圆E :()222210x y a b a b+=>>的焦距为且经过点12P ⎛⎫ ⎪⎝⎭.(1)求椭圆E 的标准方程:(2)过椭圆E 的左焦点1F 作直线l 与椭圆E 相交于A ,B 两点(点A 在x 轴上方),过点A ,B 分别作椭圆的切线,两切线交于点M ,求1ABMF 的最大值.6.(2023·江苏南通·校联考模拟预测)已知A ,B 是椭圆22:143x y C +=上关于坐标原点O 对称的两点,点()4,0D ,连结DA 并延长交C 于点M ,连结DB 交C 于点N .(1)若A 为线段DM 的中点,求点A 的坐标;(2)设DMN ,DAB 的面积分别为12,S S ,若1237S S =,求线段OA 的长.7.(2023·辽宁·哈尔滨三中校联考一模)已知双曲线C :()222210,0x y a b a b-=>>过点(3,A,且渐近线方程为0x =.(1)求双曲线C 的方程;(2)如图,过点()10B ,的直线l 交双曲线C 于点M 、N .直线MA 、NA 分别交直线1x =于点P 、Q ,求PB BQ的值.8.(2023·江苏·二模)如图,过y 轴左侧的一点P 作两条直线分别与抛物线24y x =交于,A C 和,B D 四点,并且满足3PC PA = ,3PD PB =.(1)设CD 的中点为M ,证明PM 垂直于y 轴.(2)若P 是双曲线2214x y -=左支上的一点,求PAB 面积的最小值.9.(2023·河北邢台·校联考模拟预测)已知双曲线()2222:10,0x y E a b a b-=>>过点()2,2P ,且P 与E 的两个顶点连线的斜率之和为4.(1)求E 的方程;(2)过点()1,0M 的直线l 与双曲线E 交于A ,B 两点(异于点P ).设直线BC 与x 轴垂直且交直线AP 于点C ,若线段BC 的中点为N ,证明:直线MN 的斜率为定值,并求该定值.10.(2023·山东·日照一中校考模拟预测)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,斜率为3-的直线l 与双曲线C 交于,A B 两点,点(4,M -在双曲线C 上,且1224MF MF ⋅=.(1)求12MF F △的面积;(2)若0'+= OB OB (O 为坐标原点),点()31N ,,记直线,'NA NB 的斜率分别为12,k k ,问:12k k ⋅是否为定值?若是,求出该定值;若不是,请说明理由.11.(2023·山东潍坊·统考一模)已知椭圆2222:1(0)x y E a b a b+=>>的焦距为率为2,直线():1(0)l y k x k =+>与E 交于不同的两点,M N .(1)求E 的方程;(2)设点()1,0P ,直线,PM PN 与E 分别交于点,C D .①判段直线CD 是否过定点?若过定点,求出该定点的坐标;若不过定点.请说明理由:②记直线,CD MN 的倾斜角分别为,αβ,当αβ-取得最大值时,求直线CD 的方程.12.(2023·山东·河北衡水中学统考一模)在平面直角坐标系中,已知点P 到点F的距离与到直线x =(1)求点P 的轨迹C 的方程;(2)过点(0,1)且斜率为122k k ⎛⎫≤≤ ⎪⎝⎭的直线l 与C 交于A ,B 两点,与x 轴交于点M ,线段AB 的垂直平分线与x 轴交于点N ,求||||AB MN 的取值范围.13.(2023·湖北·统考模拟预测)已知椭圆22195x y +=的右顶点为A ,左焦点为F ,过点F 作斜率不为零的直线l 交椭圆于,M N 两点,连接AM ,AN 分别交直线92x =-于,P Q 两点,过点F 且垂直于MN 的直线交直线92x =-于点R .(1)求证:点R 为线段PQ 的中点;(2)记MPR △,MRN △,NRQ △的面积分别为1S ,2S ,3S ,试探究:是否存在实数λ使得213S S S λ=+?若存在,请求出实数λ的值;若不存在,请说明理由.14.(2023·江苏·统考一模)已知双曲线C :()22221,0x y a b a b-=>,直线1l :2y x =+C 仅有一个公共点.(1)求双曲线C 的方程(2)设双曲线C 的左顶点为A ,直线2l 平行于1l ,且交双曲线C 于M ,N 两点,求证:AMN 的垂心在双曲线C 上.15.(2023·湖南·模拟预测)已知椭圆2221x y aΓ+=:,(1)a >的上、下顶点是1B ,2B ,左,右顶点是1A ,2A ,点D 在椭圆Γ内,点M 在椭圆Γ上,在四边形12MB DB 中,若11MB B D ⊥,22MB B D ⊥,且四边形12MB DB 面积的最大值为52.(1)求a 的值.(2)已知直线1x my =+交椭圆Γ于P ,Q 两点,直线1A P 与2A Q 交于点S ,证明:当m 变化时,存在不同于2A 的定点T ,使得2A S ST =.16.(2023·湖南·湖南师大附中校联考模拟预测)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y W a b a b +=>>的离心率为2,椭圆W 上的点与点()0,2P 的距离的最大值为4.(1)求椭圆W 的标准方程;(2)点B 在直线4x =上,点B 关于x 轴的对称点为1B ,直线1,PB PB 分别交椭圆W 于,C D 两点(不同于P 点).求证:直线CD 过定点.17.(2023·湖南郴州·统考三模)已知椭圆方程为22122:1(0)x y C a b a b+=>>,过椭圆的1C的焦点12,F F 分别做x 轴的垂线与椭圆交于四点,依次连接这四个点所得的四边形恰好为正方形.(1)求该椭圆1C 的离心率.(2)若椭圆1C 的顶点恰好是双曲线2C 焦点,椭圆1C 的焦点恰好是双曲线2C 顶点,设椭圆1C 的焦点12,F F ,双曲线2C 的焦点12,,F F A ''为1C 与2C 的一个公共点,记12F AF ∠α=,12F AF ∠β''=,求cos cos αβ⋅的值.18.(2023·湖南岳阳·统考二模)已知点()0,2P -,点,A B 分别为椭圆2222:1(0)x y C a b a b +=>>的左、右顶点,直线BP 交C 于点,Q ABP 是等腰直角三角形,且32PQ QB = .(1)过椭圆C 的上顶点M 引两条互相垂直的直线12,l l ,记C 上任一点N 到两直线12,l l 的距离分别为12,d d ,求2212d d +的最大值;(2)过点()4,0H 且斜率不为零的直线与椭圆C 相交于,E F 两点试问:是否存在x 轴上的定点G ,使得EGO FGH ∠∠=.若存在,求出定点G 的坐标;若不存在,说明理由.19.(2023·浙江·校联考模拟预测)设双曲线2222:1x y C a b-=的右焦点为()3,0F ,F 到其中一条渐近线的距离为2.(1)求双曲线C 的方程;(2)过F 的直线交曲线C 于A ,B 两点(其中A 在第一象限),交直线53x =于点M ,(i )求||||||||AF BM AM BF ⋅⋅的值;(ii )过M 平行于OA 的直线分别交直线OB 、x 轴于P ,Q ,证明:MP PQ =.20.(2023·浙江·校联考三模)设双曲线()2222:10,0x y C a b a b-=>>的右焦点为),右焦点到双曲线的渐近线的距离为1.(1)求双曲线C 的方程;(2)若()()2,1,2,1A B -,点C 在线段AB 上(不含端点),过点C 分别作双曲线两支的切线,切点分别为,P Q .连接PQ ,并过PQ 的中点F 分别作双曲线两支的切线,切点分别为,D E ,求DEF 面积的最小值.21.(2023·广东·校联考模拟预测)已知椭圆C :()222210x y a b a b+=>>的短轴长为2,离心率为2.点()4,2P ,直线l :210x y +-=.(1)证明:直线l 与椭圆C 相交于两点,且每一点与P 的连线都是椭圆的切线;(2)若过点P 的直线与椭圆交于,A B 两点,与直线l 交于点Q ,求证:PA QB PB AQ ⋅=⋅ .22.(2023·江苏南通·二模)已知椭圆()2222:10x y E a b a b +=>>的离心率为2,焦距为2,过E 的左焦点F 的直线l 与E 相交于A 、B 两点,与直线2x =-相交于点M .(1)若()2,1M --,求证:MA BF MB AF ⋅=⋅;(2)过点F 作直线l 的垂线m 与E 相交于C 、D 两点,与直线2x =-相交于点N .求1111MA MB NC ND+++的最大值.23.(2023·河北衡水·河北衡水中学校考模拟预测)已知抛物线22y px =()0p >,点1P 为抛物线焦点.过点1P 作一条斜率为正的直线l 从下至上依次交抛物线于点1A 与点1B ,过点1B 作与l 斜率互为相反数的直线分别交x 轴和抛物线于2P 、2A .(1)若直线12A A 斜率为k ,证明抛物线在点1B 处切线斜率为k -;(2)过点t A ()*N ,>1t t ∈作直线分别交x 轴和抛物线于21t P -、t B ,过点t B 作直线分别交x 轴和抛物线于2t P 、1t A +,且*N t ∀∈,直线t t A B 斜率与直线1t t A B +斜率互为相反数.证明数列{}1n n P P + 为等差数列.24.(2023·河北·河北衡水中学校考模拟预测)椭圆()222210x y a b a b+=>>的上、下顶点分别为A ,B .在椭圆上任取两点C ,D ,直线CD 斜率存在且不过A ,B .BC 交AD 于1P ,AC 交BD 于2P ,直线CD 交y 轴于R ,直线AC 交x 轴于1Q ,直线BD 交x 轴于2Q .(1)若a ,b 为已知量,求1OR OP ⋅ ;(2)分别作1P E ,12Q F P B ⊥于E ,F ,求112112PE Q Q Q F PP ⋅⋅ .25.(2023·福建漳州·统考三模)已知椭圆C 的中心为坐标原点O ,对称轴为x 轴、y 轴,且点和点)2在椭圆C 上,椭圆的左顶点与抛物线()2:20y px p Γ=>的焦点F 的距离为4.(1)求椭圆C 和抛物线Γ的方程;(2)直线():0l y kx m k =+≠与抛物线Γ变于,P Q 两点,与椭圆C 交于,M N 两点.(ⅰ)若m k =,抛物线Γ在点,P Q 处的切线交于点S ,求证:22PF SQ QF SP ⋅=⋅;(ⅱ)若2m k =-,是否存在定点()0,0T x ,使得直线,MT NT 的倾斜角互补?若存在,求出0x 的值;若不存在,请说明理由.26.(2023·山东·沂水县第一中学校联考模拟预测)已知曲线22:163x y E +=,直线:l y x m =+与曲线E 交于y 轴右侧不同的两点,A B .(1)求m 的取值范围;(2)已知点P 的坐标为()2,1,试问:APB △的内心是否恒在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.27.(2023·湖北·宜昌市一中校联考模拟预测)设点A 为双曲线22:13y C x -=的左顶点,直线l 经过点(1,2)-,与C 交于不与点A 重合的两点P ,Q .(1)求直线,AP AQ 的斜率之和;(2)设在射线AQ 上的点R 满足APQ ARP ∠=∠,求直线PR 的斜率的最大值.28.(2023·湖南·模拟预测)已知椭圆C :()222210x y a b a b+=>>的上顶点为B ,O 为坐标原点,,02a P ⎛⎫- ⎪⎝⎭为椭圆C 的长轴上的一点,若45BPO ∠=︒,且△OPB 的面积为12.(1)求椭圆C 的标准方程;(2)椭圆C 与x 轴负半轴交于点A ,过点A 的直线AM ,AN 分别与椭圆C 交于M ,N 两点,直线AM ,AN 的斜率分别为AM k ,AN k ,且112AM AN k k ⋅=-,求证:直线MN 过定点,并求出该定点坐标,求出△AMN 面积的最大值.29.(2023·湖南长沙·湖南师大附中校考一模)已知双曲线2222:1(0)x y C a b a b-=>>的一个焦点为()2,0,F O 为坐标原点,过点F 作直线l 与一条渐近线垂直,垂足为A ,与另一条渐近线相交于点B ,且,A B 都在y 轴右侧,OA OB +=(1)求双曲线C 的方程;(2)若直线1l 与双曲线C 的右支相切,切点为1,P l 与直线23:2l x =交于点Q ,试探究以线段PQ 为直径的圆是否过x 轴上的定点.30.(2023·浙江温州·统考二模)已知点12,F F 分别是双曲线2212:C x y -=的左右焦点,过2F 的直线交双曲线右支于,P A 两点,点P 在第一象限.(1)求点P 横坐标的取值范围;(2)线段1PF 交圆222:(2)8C x y ++=于点B ,记2211,,PF B AF F PAF 的面积分别为12,,S S S ,求12S S S S +的最小值.。
高考数学复习历年压轴题归类专题讲解: 圆锥曲线解答题突破(解析版)

高考数学复习历年压轴题归类专题讲解 圆锥曲线解答题突破(解析版)1.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,其离心率12e =,点P为椭圆上的一个动点,12PF F △面积的最大值为(1)求椭圆的标准方程;(2)若A ,B ,C ,D 是椭圆上不重合的四个点,AC 与BD 相交于点1F ,0AC BD ⋅=,求+AC BD 的取值范围.【答案】(1)2211612x y +=;(2)96,147⎡⎤⎢⎥⎣⎦. 解:(1)由题意得,当点P 是椭圆的上、下顶点时,12PF F △的面积取最大值此时121212PF F S F F OP bc ∆=⋅⋅=所以bc = 因为12e =,所以b =4a = 所以椭圆方程为2211612x y +=(2)由(1)得椭圆方程为2211612x y +=,则1F 的坐标为(2,0)-因为0AC BD ⋅=,所以AC BD ⊥①当直线AC 与BD 中有一条直线斜率不存在时,易得6814AC BD +=+= ②当直线AC 斜率k 存在且0k ≠,则其方程为(2)y k x =+,设11(,)A x y ,22(,)C x y则点A 、C 的坐标是方程组22(2)11612y k x x y =+⎧⎪⎨+=⎪⎩的两组解所以2222(34)1616480k x k x k +++-=所以212221221634164834k x x k k x x k ⎧+=-⎪⎪+⎨-⎪⋅=⎪+⎩所以212224(1)134k AC x k+=+-=+ 此时直线BD 的方程为()12y x k=-+ 同理由221(2)11612y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩可得2224(1)43k BD k +=+ 2222222224(1)24(1)168(1)3443(34)(43)k k k AC BD k k k k ++++=+=++++令21(0)t k k =+≠,则1t >,2168112AC BD t t+=-+ 因为1t >,所以21104t t -<≤ 所以96[,14)7AC BD +∈ 综上96[,14]7AC BD +∈2.已知椭圆C :2212x y +=.(1)曲线D :3y x =与C 相交于A ,B 两点,H 为C 上异于A ,B 的点,若直线HA 的斜率为1,求直线HB 的斜率;(2)若C 的左焦点为F ,右顶点为E ,直线l :4x =.过F 的直线l '与C 相交于P ,Q (P 在第一象限)两点,与l 相交于M ,是否存在l '使PFE △的面积等于△MPE 的面积与QFE △的面积之和.若存在,求直线l '的方程;若不存在,请说明理由.【答案】(1)12-;(2)直线l '不存在,理由见解析(1)由已知设(),H x y ,()11,A x y ,()11,B x y --, 因为点,H A 均在椭圆C 上,所以2222x y +=,221122x y +=,两式相减得()2222112x x y y -=-,又221112211112HA HBy y y y y y k k x x x x x x -+-⋅=⋅==--+-,且1HA k =, ∴12HB k =-;(2)设()04,M y ,()33,P x y ,()44,Q x y ,则()0303111222MPE S FE y FE y FE y y =⋅⋅-⋅⋅=⋅⋅-△,312PFESFE y =⋅⋅, ()412QFESFE y =⋅⋅-, 假设存在l '使得PFE △的面积等于△MPE 的面积与QFE △的面积之和,则PFE MPE QFE S S S =+△△△,即0342y y y =+①, 设l :1x my =-,令4x =,得05y m =,∴3452y y m+=②, 把1x my =-,将之代入2212x y +=,整理得()222210m y my +--=,∴34222my y m +=+③, 34212y y m =-+④,②③联立得32522m y m m =-+,42452m y m m=-+⑤, 把⑤代入④得22252451222m m m m m m m ⎛⎫⎛⎫--=- ⎪⎪+++⎝⎭⎝⎭, 化简得4219500m m ++=,由于此方程无解,故所求直线l '不存在.3.如图,已知椭圆2214y x +=,点()1,0F 是抛物线()220y px p =>的焦点,过点F 作直线l 交抛物线于,M N 两点,延长,MO NO 分别交椭圆于,A B 两点,记OMN ,OAB 的面积分别是12,S S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12S S 的最小值及此时直线l 的方程. 【答案】(Ⅰ)2p =,准线方程1x =-;(2)12S S 的最小值为2,此时:1l x =. (Ⅰ)因为点()1,0F 是抛物线()220y px p =>的焦点,所以12p=,即2p =,因此该抛物线的准线方程为:1x =-; (Ⅱ)由(Ⅰ)得抛物线方程为:24y x =,根据题意,不妨令点M 在第一象限,点N 在第四象限,则点A 在第三象限,点B 在第二象限;若直线l 的斜率不存在,则:1l x =,代入24y x =可得2y =±,即()1,2M ,()1,2N -,则1122OMNS SOF MN ==⋅=;2OM k =,2ON k =-, 则直线:2OM y x =,直线:2ON y x =-,由22214y x y x =⎧⎪⎨+=⎪⎩得22122AA x y ⎧=⎪⎨⎪=⎩,所以2A A x y ⎧=-⎪⎨⎪=⎩,即A ⎛ ⎝;同理:B ⎛ ⎝,则AB x ⊥轴,因此21122OABS S==⨯⨯=; 此时122S S =,:1l x =;若直线l 的斜率存在,设直线l 的方程为()1y k x =-,(1,M x,(2,N x -,由()214y k x y x⎧=-⎨=⎩得()2214k x x -=,整理得()2222240k x k x k -++=, 则212224k x x k++=,121=x x ;()224224416160k k k ∆=+-=+>,所以11sin 2OMNS SOM ON MON MON ==⋅∠=∠MON MON =∠=∠;又1OM k==,2ON k ==, 所以直线:OM y x=,:ON y x =, 由2214y x y x ⎧=⎪⎪⎨⎪+=⎪⎩得1221x x x +=,即2111A x x x =+,则2211441A y x x x ==+,所以OA ==;同理OB =,所以21sin 2OABS SOA OB AOB AOB ==∠=∠A OB ∠=又AOB MON ∠=∠,所以12S S MON ===∠2==>=; 综上,12S S 的最小值为2,此时:1l x =.4.在平面直角坐标系xOy 中,已知椭圆2222:1(0,0)x y C a ba b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,两准线之间的距离为.(1)求椭圆C 的标准方程;(2)直线:(0,0)l y kx m k m =+>≠与椭圆C 交于P ,Q 两点,设直线OP ,OQ 的斜率分别为1k ,2k .已知212·k k k =. ①求k 的值;②当OPQ △的面积最大时,求直线PQ 的方程.【答案】(1)2214x y +=;(2)①12k =;②112y x =±.解:(1)设椭圆的焦距为2c ,则222c a b =-.因为短轴的两个顶点与右焦点的连线构成等边三角形,所以=c .,则22a c = 所以2a =,1b =,所以椭圆C 的标准方程为2214x y +=.(2)①设1(P x ,1)y ,2(Q x ,2)y ,联立22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得222(41)8440k x kmx m +++-=, 2222644(41)(44)0k m k m ∆=-+->,化简得2241m k <+,所以122841km x x k -+=+,212244·41m x x k -=+, 又OP 的斜率111y k x =,OQ 的斜率222y k x =,所以2221212121212121212()()()·y y kx m kx m k x x km x x m k k k x x x x x x +++++====,化简得212()0km x x m ++=,所以228·041kmkm m k -+=+.又因为0m ≠,即241k =, 又0k >,所以12k =. ②由①得12k =,直线PQ 的方程为12y x m =+, 且122x x m +=-,212·22x x m =-,22m <. 又0m ≠,所以0m <<所以12PQ x ==-== 点O 到直线PQ的距离d ==,所以221(2)·122OPQm m SPQ d +-===≤=, 当且仅当222m m =-,即1m =±时,OPQ △的面积最大, 所以,直线PQ 的方程为112y x =±. 5.已知椭圆2222:1(0)x y C a b a b+=>>的两焦点为1(F,2F ,且椭圆上一点P ,满足12|||4|PF PF +=,直线:l y kx m =+与椭圆C 交于A 、B 两点,与x 轴、y 轴分别交于点G 、H ,且OA OB OM λ+=.(1)求椭圆C 的方程;(2)若k =||2AB λ==,求||||HG HM ⋅的值;(3)当△OAB 面积取得最大值,且点M 在椭圆C 上时,求λ的值.【答案】(1)2214x y +=(2)3(3)λ=(1)由题意可得2,1a c b ==⇒=,∴椭圆方程为2214x y +=(2)由题意得,此时直线方程为y m =+,将其代入椭圆方程整理可得229440x m ++-=,其中()222212836441441609m m m m ∆=--=->⇒<设()()1122,,,A x y B x y ,则2121244,99m x x x x -+=-=∴12322AB x m =-==⇒=±,由椭圆具有对称性,∴不妨取32m =,则310,,,26H G M ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴3HG HM ⋅ (3)将直线方程y kx m =+代入椭圆方程整理可得()222418440k x kmx m +++-=,其中()()222222644414464160k m k m k m ∆=-+-=-+16>,设()()1122,,,A x y B x y ,则2121222844,4141km m x x x x k k -+=-=++,∴12AB x=-=原点到直线的距离d=,∴()222241141ABCm k mSk∆++-=≤=+,当且仅当22412k m+=时等号成立,又()()121211,M x x y yλλ⎛⎫++⎪⎝⎭代入椭圆方程可得()()2212122214x x y yλλ+++=,其中221114xy+=,222214xy+=,∴整理得212128284x x y yλ++=再将1122,kx m y kx my=+=+代入,()()122128284kx mx m kxxλ+=+++整理得()()2221212828884k x x km x x mλ+++++=,()2222224488288844141m kmk km mk kλ-⎛⎫++-++=⎪++⎝⎭,整理得22λ=,λ=6.已知椭圆2222:1(0)x yC a ba b+=>>的焦距为2,过点(-.(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,定点()2,0P,过点F且斜率不为零的直线l与椭圆交于A,B两点,以线段AP为直径的圆与直线2x=的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.【答案】(1)2212x y +=;(2)证明见解析,3(,0)2.(1)由题知2211112c a b =⎧⎪⎨+=⎪⎩ , 解得22a =,21b =, 所以椭圆C 的方程为2212x y +=;(2)设11(,)A x y ,22(,)B x y 因为直线l 的斜率不为零,令l 的方程为:1x my =+,由22112x my x y =+⎧⎪⎨+=⎪⎩ 得22(2)210m y my ++-=, 则12222m y y m +=-+,12212y y m ⋅=-+, 因为以AP 为直径的圆与直线2x =的另一个交点为Q ,所以AQ PQ ⊥,则1(2,)Q y ,则2122BQ y y k x -=-,故BQ 的方程为:2112(2)2y y y y x x --=-- , 由椭圆的对称性,则定点必在x 轴上,所以令0y =,则1212121212121(2)(1)222y x y my my y y x y y y y y y -----+=+=+=+---,而12222m y y m +=-+,12212y y m ⋅=-+,12122y y my y +-=-, 所以121211322222y y y x y y +-+=+=-+=-,故直线BQ 恒过定点,且定点为3(,0)2.7.已知()()1122,,,A x y B x y 是抛物线()2:20C x py p =>上不同两点.(1)设直线:4p l y =与y轴交于点M ,若,A B 两点所在的直线方程为1y x =-,且直线:4pl y =恰好平分AMB ∠,求抛物线C 的标准方程. (2)若直线AB 与x 轴交于点P ,与y 轴的正半轴交于点Q ,且2124p y y =,是否存在直线AB ,使得113PA PB PQ+=?若存在,求出直线AB 的方程;若不存在,请说明理由. 【答案】(1)28x y =(2)AB 方程为122py x =±+.(1)设()()1122p A x ,y ,B x ,y ,M 0,4⎛⎫⎪⎝⎭,由2x 2{1py y x ==-,消去y 整理得2x 2px 2p 0-+=,则212124p 80{x x 2x x 2p pp∆=->+==, ∵直线py 4=平分AMB ∠, ∴k k 0AM BM +=, ∴1212p p y y 440x x --+=,即:12121212p px 1x 1x x p 44210x x 4x x ----+⎛⎫+=-+= ⎪⎝⎭,∴p 4=,满足Δ0>,∴抛物线C 标准方程为2x 8y =. (2)由题意知,直线AB 的斜率存在,且不为零, 设直线AB 的方程为:y kx b(k 0b 0)=+≠>,,由2{x 2y kx bpy=+=,得2x 2pkx 2pb 0--=, ∴2212124p k 80{x x 2x x 2pb pkpb∆=+>+==-,∴()2222121222pb x x y y ?b 2p 2p 4p -===, ∵212p y y 4=, ∴22p b 4=, ∵b 0>, ∴p b 2=.∴直线AB 的方程为:p y kx 2=+. 假设存在直线AB ,使得113PA PB PQ +=,即PQ PQ 3PA PB+=, 作AA x '⊥轴,BB x '⊥轴,垂足为A B ''、,∴121212p pPQ PQ OQ OQ y y p 22·PA PB AA BB y y 2y y ++=+'=+=', ∵()21212y y k x x p 2pk p +=++=+,212p y y 4=,∴222PQ PQp 2pk p·4k 2pPA PB 24++==+,由24k 23+=,得1k 2=±, 故存在直线AB ,使得113PA PB PQ +=,直线AB 方程为1p y x 22=±+. 8.已知椭圆E :22221(0)x y a b a b +=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=. 【解析】(Ⅰ)由已知,a =,则椭圆E 的方程为222212x y b b+=.由方程组得22312(182)0x x b -+-=.①方程①的判别式为2=24(3)b ∆-,由=0∆,得2=3b , 此时方程①的解为=2x ,所以椭圆E 的方程为22163x y +=.点T 坐标为(2,1).(Ⅱ)由已知可设直线l '的方程为1(0)2y x m m =+≠, 由方程组1{23y x m y x =+=-+,, 可得223{21.3mx my =-=+, 所以P 点坐标为(222,133m m -+),2289PT m =. 设点A ,B 的坐标分别为1122(,)(,)A x y B x y ,.由方程组22163{12x y y x m +==+,,可得2234(412)0x mx m ++-=.②方程②的判别式为2=16(92)m ∆-,由>0∆,解得m <<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==--,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+ 2109m =. 故存在常数45λ=,使得2PT PA PB λ=⋅. 9.已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆经过点)1P-,且12PF F △的面积为2.(1)求椭圆C 的标准方程;(2)设斜率为1的直线l 与圆22:O x y b +=交于A ,B 两点,与椭圆C 交于C ,D 两点,且()R CD AB λλ=∈,当λ取得最小值时,求直线l 的方程并求此时λ的值.【答案】(1)22184x y +=;(2)3,y x =. 解:(1)由12PF F △的面积可得12122c ⨯⨯=.即2c =,∴224a b -=.①又椭圆C 过点)1P,∴22611a b +=.②由①②解得a =2b =.故椭圆C 的标准方程为22184x y +=.(2)由题知圆221:2O x y +=,设直线l 的方程为y x m =+,则原点到直线l的距离d =,由弦长公式可得AB ==.将y x m =+代入椭圆方程22184x y+=,得2234280x mx m ++-=,由判别式()221612280m m ∆=-->,解得m -<由直线和圆相交的条件可得d r <<,也即22m -<<,综上可得m 的取值范围是()2,2-. 设()11,C x y ,()22,D x y ,则1243m x x +=-,212283m x x -=,由弦长公式,得CD === 由CD AB λ=,得CD AB λ===∵22m -<<,∴2044m <-≤,则当0m =时,λ取得最小值3,此时直线l 的方程为y x =.10.在平面直角坐标系中,已知椭圆()2222:10x y C a b a b +=>>,直线():,R,0l y kx t k t k =+∈≠.(1)若椭圆C 的一条准线方程为4x =,且焦距为2,求椭圆C 的方程;(2)设椭圆C 的左焦点为F ,上顶点为A ,直线l 过点F ,且与FA 垂直,交椭圆C 于M ,N (M 在x 轴上方),若2NF FM =,求椭圆C 的离心率;(3)在(1)的条件下,若椭圆C 上存在相异两点P ,Q 关于直线l 对称,求2t 的取值范围(用k 表示).【答案】(1)22143x y +=;(2)e =(3)220,34k k ⎡⎫⎪⎢+⎣⎭.(1)设椭圆C 的半焦距为c ,因为椭圆C 的一条准线方程为4x =,且焦距为2,所以22224,22a c c a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2,1a b c =⎧⎪=⎨⎪=⎩C 的方程为22143x y +=.(2)如图,因为()0,A b ,(),0F c -,所以AF b k c=, 因为直线l 过点F ,且与FA 垂直,所以直线l 的方程为bx y c c=--,与椭圆C 的方程联立得()4222324220b a c y b c y b c ++-=,因为l 过左焦点F , 所以>0∆恒成立,设()11,M x y ,()22,N x y ,则321242242124222,b c y y b a cb c y y b a c ⎧+=-⎪⎪+⎨⎪=-⎪+⎩(*), 因为2NF FM =, 所以212y y =-,代入(*)得32142242214222,2b c y b a cb cy b a c ⎧-=-⎪⎪+⎨⎪-=-⎪+⎩, 消去1y 并化简得4222280b a c b c +-=, 因为222b a c =-, 所以()()2222222280a ca c a a c c -+--=,即4224990c a c a -+=, 因为c e a=,所以429910e e -+=,解得2e =,所以6e ==.(3)如图,设()11,P x y ,()22,Q x y ,PQ 的中点()00,x y ,则221122221,43143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减并化简得 2121212134y y y y x x x x -+⋅=--+,即0034PQ y k x ⋅=-,因为1PQ k k=-,所以0034ky x =, 又00y kx t =+,所以004,3t x k y t⎧=-⎪⎨⎪=-⎩, 因为点()00,x y 在椭圆C 的内部,所以()2243143t t k ⎛⎫- ⎪-⎝⎭+<,化简得22234k t k <+.故2t 的取值范围为220,34kk ⎡⎫⎪⎢+⎣⎭.11.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F,离心率为2,P 是椭圆上一点,且△12PF F 面积的最大值为1.(1)求椭圆C 的方程;(2)过2F 且不垂直坐标轴的直线l 交椭圆C 于A ,B 两点,在x 轴上是否存在一点(,0)N n ,使得22||:||:AN BN AF BF =,若存在,求出点(,0)N n ,若不存在,说明理由.【答案】(1)2212x y +=;(2)(1,0)N ,过程见解析(1)121212PF F P SF F y =,由椭圆性质知当=P y b 时,△12PF F 面积最大. 由题得:22212122c b c a a b c ⎧⨯⨯=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得1a b ⎧=⎪⎨=⎪⎩所以椭圆方程为:2212x y +=(2)设直线方程为(1)y k x =-,1122(,),(,)A x y B x y22(1)21y x x y k =-+=⎧⎪⎨⎪⎩ 化简得2222(21)4220k x k x k +-+-= 22121222422,2121k k x x x x k k -+==++ 22||:||:AN BN AF BF =,如图,作//AM BN 交2NF 延长线与M 点, 易证得22||||AF AM BN BF =,22||:||:AN BN AF BF = AM AN ∴= 22ANF BNF ∴∠=∠所以2F N 是ANB ∠的角平分线,则有0NB NA k k +=12120y yx n x n+=-- ,1221(1)(1)0y x y x ∴-+-= 1122,y kx k y kx k =-=-1221()(1)()(1)0kx k x kx k x ∴--+--= 12212()(+)20kx x kn k x x kn ∴+++=22222242()202121k k k kn k kn k k -∴⨯+++=++ 化简得1n =所以存在点(1,0)N 满足题意.12.已知椭圆()2222:10x y E a b a b +=>>的上顶点为P ,4,33b Q ⎛⎫ ⎪⎝⎭是椭圆E 上的一点,以PQ 为直径的圆经过椭圆E 的右焦点F .(1)求椭圆E 的方程;(2)过椭圆E 右焦点F 且与坐标轴不垂直的直线l 与椭圆E 交于A ,B 两点,在直线2x =上是否存在一点D ,使得ABD △为等边三角形?若存在,求出等边三角形ABD △的面积;若不存在,请说明理由.【答案】(1)2212x y +=;(2.解:依据题意得22224331b a b⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+=,得22a =,()0,P b ,(),0F c 又2220a b c PF QF ⎧=+⎨⋅=⎩, 22224033b cb c c ⎧=+⎪⎨⎛⎫---= ⎪⎪⎝⎭⎩, 1b c ∴==, ∴椭圆的方程为2212x y +=.(2)假设在直线2x =上存在一点D 使得ABD ∆为等边三角形,设直线():1l y k x =-由()22112y k x x y ⎧=-⎪⎨+=⎪⎩得,()2222214220k x k x k +-+-= ()()()42221642122810k k k k ∆=-+-=+>,设()11,A x y ,()22,B x y ,AB 的中点为()00,M x y则2122421k x x k ,21222221k x x k -=+ 202221k x k =+,()002121k y k x k -=-=+ )22121k AB k +∴=+.DBA △为等边三角形,所以MD 的斜率为1k-,又D 点的横坐标为2,2022221D k x k MD +∴=-=+DBA △为等边三角形,DM B ∴=)222212221221k k k k ++=++,得22k =.AB ∴=,DBA ∴△的面积为2513.已知椭圆()2222:10x y C a b a b+=>>的短轴长为13.(1)求椭圆C 的标准方程;(2)设椭圆C 的左,右焦点分别为1F ,2F 左,右顶点分别为A ,B ,点M ,N ,为椭圆C 上位于x 轴上方的两点,且12//F M F N ,记直线AM ,BN 的斜率分别为1k ,2k ,若12320k k +=,求直线1F M 的方程.【答案】(1)22198x y (2)0y -+=(1)由题意,得2b =c 1a 3=.又222a c b -=,∴a 3=,b =c 1=.∴椭圆C 的标准方程为22x y 198+=(2)由(1),可知()A 3,0-,()B 3,0,()1F 1,0-. 据题意,直线1F M 的方程为x my 1=-记直线1F M 与椭圆的另一交点为M ',设()()111M x ,y y 0>,()22M x ,y '.∵12FM //F N ,根据对称性,得()22N x ,y --. 联立228x 9y 721x my ⎧+=⎨=-⎩,消去x ,得()228m 9y 16my 640+--=,其判别式Δ0>,∴12216m y y 8m 9+=+,12264y y 8m 9=-+.① 由123k 2k 0+=,得12123y 2y 0my 2my 2+=++,即12125my y 6y 4y 0++=.② 由①②,解得12128m y 8m 9=+,22112my 8m 9-=+ ∵1y 0>,∴m 0>.∴()()12222128m?112m 64y y 8m 98m 9--==++.∴m = ∴直线1F M的方程为x y 1=-,即y 0-+=. 14.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,T 为椭圆上一点,O 为坐标原点,椭圆的离心率为,且TFO △面积的最大值为12.(1)求椭圆的方程;(2)设点()0,1A ,直线l :(1)y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ;直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若2OM ON ⋅=,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)证明见解析.(1)设()00,T x y ,(c,0)F,由2c a =,可得222a c =, 依题意max 1122S cb =⋅=,所以a =1b =,所以椭圆C 的方程为2212x y +=.(2)设()11,P x y ,()22,Q x y .联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得()222124220k x ktx t +++-=,>0∆,122412kt x x k +=-+,21222212t x x k -=+,直线AP :1111y y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-. 因为2OM ON =,所以()12121212122111x x x x y y y y y y --==---++化简得221121t t t -=-+,解得只有0t =满足题意, 所以直线方程为y kx =,所以直线l 恒过定点(0,0).15.已知抛物线C :24y x =的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,其中点A 在第一象限,AD DB =.(1)若49OD k =(O 为坐标原点),求直线l 的方程; (2)点P 在x 轴上运动,若0,2FAP π⎛⎫∠∈ ⎪⎝⎭,求点P 横坐标的取值范围.【答案】(1) 210x y --=或440x y --=;(2) [)()0,11,9;解:(1)由题意得(1,0)F ,设直线l 的方程为:1x ty =+,设()()1122,,,A x y B x y ,线段MN 的中点()00,D x y ,联立直线与抛物线的方程:214x ty y x=+⎧⎨=⎩,整理可得:2440y ty --=,可得124y y t +=,124y y =-,所以02y t =,200121x ty t =+=+,即()221,2D t t +,所以2221OD t k t =+,由题意可得224219t t =+,解得2t =或14t =, 所以直线l 的方程为:210x y --=或440x y --=;(2)0,2FAP π⎛⎫∠∈ ⎪⎝⎭,即FAP ∠恒为锐角,等价于0AF AP ⋅>,设()2110,,(1,0),,0,4y A y F P x ⎛⎫⎪⎝⎭2211011,,1,44y y AP x y AF y ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,则224222111101103110441644y y y y AP AF x y y x ⎛⎫⎛⎫⎛⎫⋅=--+=++-> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立, 令214y t =,则0t >,原式等价于203(1)0t t t x ++->,对任意的0t >恒成立,令200()(3)h t t x t x =+-+,①△220000(3)41090x x x x =--=-+<,解得:019x <<,②00302(0)0x h ⎧⎪-⎪⎨⎪⎪⎩,解得:001x , 又01x ≠,故001x <, 综上所述:0x 的取值范围[)()0,11,9.16.已知()1,0F -,Q 是圆K :222150x x y -+-=上的任意一点,线段FQ 的垂直平分线交QK 于点P .(1)求动点P 的轨迹E 的方程;(2)过F 作E 的不垂直于y 轴的弦AB ,M 为AB 的中点,O 为坐标原点,直线OM 与E 交于点C 、D ,求四边形ABCD 面积的取值范围.【答案】(1)22143x y +=;(2)6S ≤< (1)由题意可知42PF PK PQ PK FK +=+=>=, 所以动点P 的轨迹是以F 、K 为焦点且长轴长为4的椭圆.因此E 的方程为22143x y +=.(2)由题意可设AB 的方程为1x ky =-,代入2234120x y +-=,得()2234690k y ky +--=,设()11,A x y ,()22,B x y , 则122634k y y k +=+,122934y y k =-+.设1200023(,),234y y kM x y y k +==+, 2002234113434k x ky k k =-=-=-++, 所以2243,3434k M k k ⎛⎫- ⎪++⎝⎭,OM 的斜率为34k -. 直线OM 的方程为34ky x =-, 代入2234120x y +-=,解得221634x k =+,所以CD ==, 设点A ,B 到OM 的距离分别为1d ,2d ,则1d =,2d =()1212ACBDS CD d d =+===12y =-==== 所以,6S ≤<(当且仅当0k =等号成立).17.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,且12F F =过椭圆的右焦点2F 作长轴的垂线与椭圆,在第一象限交于点P ,且满足127PF PF =.(1)求椭圆的标准方程;(2)若矩形ABCD 的四条边均与椭圆相切,求该矩形面积的取值范围.【答案】(1)2214x y +=(2)[]8,10(1)由12F F =c =设2PF x =,因为127PF PF =,所以17PF x =,在Rt △12PF F 中,2221212PF PF F F =+,即224912x x =+,所以12x =, 所以284a x ==,解得2222,1a b a c ==-=,所以椭圆的标准方程为2214x y +=.(2)记矩形面积为S ,当矩形一边与坐标轴平行时,易知8S =.当矩形的边与坐标轴不平行时,根据对称性,设其中一边所在直线方程为y kx m =+,则对边所在直线方程为y kx m =-,另一边所在的直线方程为1y x n k =-+,则对边所在直线方程为1y x n k=--, 联立2244x y y kx m⎧+=⎨=+⎩,得()()222148410k x kmx m +++-=,由题意知()()222264161140k m m k ∆=--+=,整理得2241k m +=,矩形的一边长为1d =,同理2241n k +=,矩形的另一边长为2d =,122|4|1mnkS d dk=⋅==+44==44==因为0k≠,所以20k>,所以2212kk+≥(当且仅当21k=时等号成立),所以22990,142kk⎛⎤∈ ⎥⎝⎦++52,2⎛⎤⎥⎝⎦,所以(8,10]S∈.综上所述,该矩形面积的取值范围为[]8,10.18.已知椭圆2214yx+=,直线1l y kx=+:分别与x轴y轴交于,M N两点,与椭圆交于,A B两点.(1)若AM NB=,求直线l的方程;(2)若点P的坐标为()0,2,-求PAB△面积的最大值.【答案】(1)21y x=±+;(2(1)设()()1122,,,A x yB x y联立直线方程与椭圆方程有22141yxy kx⎧+=⎪⎨⎪=+⎩有()224230,k x kx++-=有12224x x kk+=-+,()1212224224k x xy yk+++==+,所以AB 中点坐标为224,44k k k ⎛⎫- ⎪++⎝⎭,(0)k ≠ 由1,0M k ⎛⎫- ⎪⎝⎭,()0,1N ,MN 中点坐标为11,22k ⎛⎫- ⎪⎝⎭.因为AM NB =,所以线段MN 的中点与AB 的中点重合,有221241424k k k k ⎧-=-⎪⎪+⎨⎪=⎪+⎩ 解得:2k =± (2)12|3|21PABSx x =⨯⨯-=由(1)中可知12224kx x k +=-+,12243x x k =-+⋅故PABS=661==因为3,43所以6331PAB S ∆=,当0k =时PAB △面积最大.19.如图所示,椭圆()222210x y a b a b +=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B ,右焦点为F ,13A F =,离心率为12.(1)求椭圆的方程;(2)过点()0,1E 作不与y 轴重合的直线l 与椭圆交于点M 、N ,直线1MB 与直线2NB 交于点T ,试讨论点T 是否在某条定直线上,若存在,求出该直线方程,若不存在,请说明理由.【答案】(1)22143x y +=;(2)存在,且定直线方程为3y =. (1)由题意可得1123c e a A F a c ⎧==⎪⎨⎪=+=⎩,解得2a =,1c =,b ∴==因此,椭圆的标准方程为22143x y +=;(2)由题意可知直线l 的斜率存在,设直线l 的方程为1y kx =+,设点()11,M x y 、()22,N x y ,联立2213412y kx x y =+⎧⎨+=⎩,消去x 并整理得()2243880k x kx ++-=, ()()22264324396210k k k ∆=++=+>, 由韦达定理得122843k x x k +=-+,122843x x k =-+.易知点(1B、(20,B ,直线1MB的斜率为(11111kx k x +==,直线1MB的方程为1y k x = 直线2NB的斜率为(222221kx y k x x ++==,直线2NB的方程为2y k x =由1y k x =,2y k x =(112212211kx kx x x k k x ++-===,其中12122843kkx x x x k =-=++,((121221222122x x x x x x x ⎡⎤-+++++====解得3y =.因此,点T 在定直线3y =上.20.如图,焦点在x 轴上的椭圆1C 与焦点在y 轴上的椭圆2C 都过点(0,1)M ,中心都在坐标原点,且椭圆1C 与2C.(1)求椭圆1C 与椭圆2C 的标准方程;(2)过点M 且互相垂直的两直线分别与椭圆1C ,2C 交于点A ,B (点A 、B 不同于点M ),当MAB △的面积取最大值时,求直线MA ,MB 斜率的比值.【答案】(1)2213x y +=,22+31y x =;(2.(1)设椭圆2212211:1x y C a b +=,2222222:1y x C a b +=,依题意得对1C :11b =,222112123a b e e a -=⇒==,得213a ,1C ∴:2213x y +=,同理对2C :21a =,2222222233a b e e a -=⇒==,得2213b , 2C ∴:22+311x y =,即22+31y x=;(2)设直线MA MB ,的斜率分别为12k k ,, 则MA :11y k x =+,与椭圆方程联立得:2222111313031x y x k x y k x ⎧+=⎪⇒++-=⎨⎪=+⎩(), 得22113160k x k x ()++=,得1216=31A k x k -+,212131=31A k y k -++,所以2112211631(,)3131k k A k k -+-++,同理可得222222223,33k k B k k ⎛⎫-- ⎪++⎝⎭, 所以221122222211226622=(,),,313133k k k k MA MB k k k k ⎛⎫----= ⎪++++⎝⎭,MA MB ⊥,从而可以求得611=22S MA MB ⎛⋅=- 112222222242436412334163k k k k k k 121=2313k k ++, 因为121k k =-,所以()()3112216+=31k k S k+,不妨设()()31111221+031k k k f k k >=+,,()()2341112136131k k f kk'--+=+,令()0f k '=,即4211361=0k k --+,解得2113=,3k k -=当1111()0,),(0)k f k k f k ∈'>∈+∞'<,当1k =时,1()f k 取得极大值也是最大值,即S 取得最大值, 此时两直线MA ,MB斜率的比值21123==3k k k --. 21.已知椭圆D :22221x y a b +=(0a b >>)的短轴长为2(1)求椭圆D 的方程;(2)点()0,2E ,轨迹D 上的点A ,B 满足EA EB λ=,求实数λ的取值范围.【答案】(1)2214x y +=(2)1,33⎡⎤⎢⎥⎣⎦(1)由已知2221a b c b c a⎧⎪=+⎪⎪=⇒⎨⎪⎪=⎪⎩ 2a =,1b =,c =所以D 的方程为2214x y +=(2)过()0,2E 的直线若斜率不存在,则13λ=或3.设直线斜率k 存在()11,A x y ,()22,B x y222440y kx x y =+⎧⇒⎨+-=⎩ ()221416120k x kx +++=则()()()()122122120,116,21412,314,4k x x k x x kx x λ⎧∆≥⎪-⎪+=⎪+⎨⎪=⎪+⎪=⎩由(2)(4)解得1x ,2x 代入(3)式得()2222161214141k k k λλ-⎛⎫⋅= ⎪++⎝⎭+ 化简得()22314641k λλ⎛⎫=+ ⎪⎝⎭+ 由(1)0∆≥解得234k ≥代入上式右端得 ()2311641λλ<≤+ 解得133λ<<综上实数λ的取值范围是1,33⎡⎤⎢⎥⎣⎦.点睛:解析中出现EA EB λ=属于 λ问题,由EA EB λ=得出12x x λ=,结合韦达定理找到λ与k的关系,再利用0∆≥建立不等关系即得解.22.已知点F 是抛物线2:2(0)C x py p =>的焦点,点00(3,)(1)P y y >是抛物线C 上一点,且134PF =,Q 的方程为22(3)6x y +-=,过点F 作直线l ,与抛物线C 和Q 依次交于.(如图所示)(1)求抛物线C 的方程; (2)求()MB NA AB +的最小值.【答案】(1);(2).由在抛物线上得,又由得,解得,,又,故.所以抛物线的方程为.由题知直线的斜率一定存在,设直线的方程为.则圆心到直线的距离为,.设,,由得,则,由抛物线定义知,.设,则,,函数在上都是单调递增函数,当时即时,有最小值.23.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.【答案】(1)6;(2)2,2⎡⎢⎣⎦.(1)由已知,())12,F F ,设(),P x y ,由1PF x ⎫===⎪⎪⎭,同理22PF x ⎫=⎪⎪⎭,可得21216222PF PF x x x ⎫⋅==-⎪⎪⎭,())2212,,3x y x y x PF y PF ⋅=--⋅-=+-.结合22163x y +=,得22132y x =-,故221212116622PF PF PF PF x x ⋅+⋅=-+=;(2)当直线l 的斜率不存在时,其方程为x=由对称性,不妨设x =,此时()(),,1,1,1,1ABC D -,故12221S S ==. 若直线l 的斜率存在,设其方程为y kx m =+,由已知可得=()2221m k =+,设()11,A x y 、()22,B x y ,将直线l 与椭圆方程联立,得()222214260k x kmx m +++-=,由韦达定理得122421km x x k +=-+,21222621m x x k -=+.结合OC OD ==22221122113,322x y y x =-=-,可知121sin 1212sin 2OA OB AOBS OA OB S OC OD COD ⋅⋅∠==⋅=⋅⋅∠==将根与系数的关系代入整理得:12S S = 结合()2221m k =+,得12S S = 设2211t k =+≥,(]10,1u t=∈,则122,2S S ⎡===⎢⎣⎦. 12S S ∴的取值范围是⎡⎢⎣⎦..24.如图在平面直角坐标系xOy 中,已知椭圆22122:1x y C a b+=,()22222:1044x y C a b a b+=>>,椭圆2C 的右顶点和上顶点分别为A 和B ,过A ,B 分别引椭圆1C 的切线1l,2l ,切点为C ,D .(1)若2a =,1b =,求直线1l 的方程; (2)若直线1l 与2l 的斜率之积为916-,求椭圆1C 的离心率. 【答案】(1))4y x =±-;(2(1)当2a =,1b =,221:14x C y +=,222:1164x y C +=.()4,0A , 设过()4,0A 处的切线方程为()4y k x =-,代入1C ,得()222214326440k x k x k +-+-=.令()()()2222324146440k k k ∆=-+-=,得2112k =,k =, 所以1l的方程为:)4y x =-. (2)设1l ,2l 的斜率分别为1k ,2k ,则12916k k =-, 1l ,2l 的方程分别:()12y k x a =-,22y b k x -=.联立()1222221y k x a x y ab ⎧=-⎪⎨+=⎪⎩,消去y ,得()2222324222111440b a k x a k x a k a b +-+-=. 由()()64222422211116440a k b a k a k a b ∆=-+-=,得22213a k b =.联立2222221y b k x x y ab -=⎧⎪⎨+=⎪⎩,消去y ,得()222222222430b a k x a bk x a b +++=.由()422222222216120a b k b a k a b '∆=-+=,得22223a k b =.故422412a k k b =,344a b e ⇒=⇒=.25.已知椭圆()2222:10x y C a b a b +=>>1)2M -是椭圆C 上的一点.(1)求椭圆C 的方程;(2)过点(4,0)P -作直线l 与椭圆C 交于不同两点A 、B ,A 点关于x 轴的对称点为D ,问直线BD 是否过定点?若是,求出该定点的坐标;若不是,请说明理由.【答案】(1)2214x y +=;(2)是,(1,0)-.(1)∵c a =,222a b c =+,∴224a b =,∴222214x y b b+=,将1)2M -代入椭圆C ,∴21b =,∴22:14xC y +=.(2)显然AB 斜率存在,设AB 方程 为:(4)y k x =+,2222221(14)3264404(4)x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩, 2161920k ∆=->,∴2112k <. 设11(,)A x y ,22(,)B x y ,11(,)D x y -,∴21223214k x x k +=-+,212264414k x x k -=+,∵()211121:y y BD y y x x x x ++=--,∴0y =时211112*********()()8x y x y kx x k x x x x y y k x x k -++=+=+++2233222332644322()4()1288128141413232832()814k k k k k k k k k k k k k k kk -+---++===--++-++,∴直线BD 过定点(1,0)-.26.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F,离心率为2,过2F 且与x 轴不重合的直线l 交椭圆C 于A ,B 两点,1ABF ∆的周长为8.(1)求椭圆C 的方程;(2)已知直线1l 的方程为y kx m =+,直线2l 的方程为2()y kx m =+,其中01m <<.设1l 与椭圆C 交于M ,N 两点,2l 与圆22:4O x y +=交于P ,Q 两点,求MONPOQS S ∆∆的值.【答案】(1)2214x y +=;(2)12.(1)由题意,椭圆2222:1(0)x y C a b a b+=>>,且1ABF 的周长为8,根据椭圆的定义,可得1ABF 的周长为12124AF AF BF BF a ,即48a =,即2a =,又因为c e a ==c =1b ==, 所以椭圆C 的标准方程为2214x y +=.(2)设()11,M x y ,()22,N x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()()222418410k x kmx m +++-=.由()()222264164110k m k m ∆=-+->,可得2241k m +>,且2121222844,1414km m x x x x k k-+=-+=++由弦长公式,可得12214MN x k=-=⋅+ 又因为点O 到直线1l的距离1d ==所以112MONS MN d =⋅=△.因为圆O 的方程为224x y +=,所以圆O 的圆心到直线2l的距离2d =所以PQ ==,所以212POQS PQ d =⋅=△,所以12MON POQ S S =△△. 27.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.【答案】(1)2214x y +=;(2)证明见解析.(Ⅰ)由题意得解得.所以椭圆的方程为.(Ⅱ)由(Ⅰ)知,,设,则.当时,直线的方程为.令,得,从而.直线的方程为.令,得,从而.所以. 当时,,所以. 综上,为定值.28.已知椭圆C :()222210x y a b a b +=>>的左焦点()1F ,点1,2Q ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆O :225x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点.(i )当直线PA ,PB 的斜率都存在时,记直线PA ,PB 的斜率分别为1k ,2k .求证:121k k =-;(ii )求ABMN的取值范围.。
【考前三个月】(江苏专用)2015高考数学 压轴大题突破练 直线与圆锥曲线(一)

压轴大题突破练压轴大题突破练——直线与圆锥曲线(一)1.(2013·课标全国Ⅰ)已知圆M :(x +1)2+y2=1,圆N :(x -1)2+y2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求AB.解 (1)设圆P 的半径为r ,则PM =1+r ,PN =3-r ,∴PM +PN =4>MN ,∴P 的轨迹是以M 、N 为焦点的椭圆,左顶点除外,且2a =4,2c =2,∴a =2,c =1,∴b2=a2-c2=3.∴P 的轨迹曲线C 的方程为x24+y23=1(x≠-2).(2)由(1)知:2r =(PM -PN)+2≤MN +2=4,∴圆P 的最大半径为r =2.此时P 的坐标为(2,0).圆P 的方程为(x -2)2+y2=4.①当l 的方程为x =0时,AB =23,②设l 的方程为y =kx +b(k ∈R), ⎩⎪⎨⎪⎧ |-k +b|1+k2=1|2k +b|1+k2=2解之得:⎩⎪⎨⎪⎧k =24b =2或⎩⎪⎨⎪⎧k =-24b =-2.∴l 的方程为y =24x +2,y =-24x - 2.联立方程⎩⎪⎨⎪⎧x24+y23=1y =24x +2化简:7x2+8x -8=0.∴x1+x2=-87,x1x2=-87,∴AB =1+k2(x1+x2)2-4x1x2=187. 综上,AB =23或187.2.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,中心在原点.若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的标准方程;(2)设直线y =kx +m (k≠0)与椭圆相交于不同的两点M ,N.当AM =AN 时,求m 的取值范围.解 (1)依题意可设椭圆方程为x2a2+y2=1,则右焦点F(a2-1,0), 由题设|a2-1+22|2=3,解得a2=3. 故所求椭圆的方程为x23+y2=1.(2)设P(xP ,yP),M(xM ,yM),N(xN ,yN),P 为弦MN 的中点, 由⎩⎪⎨⎪⎧y =kx +m ,x23+y2=1得(3k2+1)x2+6mkx +3(m2-1)=0, ∵直线与椭圆相交,∴Δ=(6mk)2-4(3k2+1)×3(m2-1)>0⇒m2<3k2+1.①∴xP =xM +xN 2=-3mk 3k2+1, 从而yP =kxP +m =m 3k2+1, ∴kAP =yP +1xP =-m +3k2+13mk ,又∵AM =AN ,∴AP ⊥MN ,则-m +3k2+13mk =-1k ,即2m =3k2+1.②把②代入①得m2<2m ,解得0<m<2;由②得k2=2m -13>0,解得m>12.综上求得m 的取值范围是12<m<2.3.(2013·福建) 如图,抛物线E :y2=4x 的焦点为F ,准线l 与x 轴的交点为A.点C 在抛物线E 上,以C 为圆心,CO 为半径作圆,设圆C 与准线l 交于不同的两点M ,N.(1)若点C 的纵坐标为2,求MN ;(2)若AF2=AM·AN ,求圆C 的半径.解 (1)抛物线y2=4x 的准线l 的方程为x =-1.由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2,又CO =5,所以MN =2CO2-d2=25-4=2.(2)设C(y204,y0),则圆C 的方程为(x -y204)2+(y -y0)2=y4016+y20,即x2-y202x +y2-2y0y =0.由x =-1,得y2-2y0y +1+y202=0,设M(-1,y1),N(-1,y2),则⎩⎨⎧ Δ=4y20-4(1+y202)=2y20-4>0,y1y2=y202+1.由AF2=AM·AN ,得|y1y2|=4,所以y202+1=4,解得y0=±6,此时Δ>0.所以圆心C 的坐标为(32,6)或(32,-6),从而CO2=334,CO =332,即圆C 的半径为332.4.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形.(1)求椭圆的方程;(2)过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB 过定点⎝⎛⎭⎫-12,-2.(1)解 由已知,可得b =2,a2=(2b)2=8, 所求椭圆方程为x28+y24=1.(2)证明 设A ,B 两点的坐标分别为(x1,y1),(x2,y2), 若直线AB 的斜率存在,设方程为y =kx +m , 由⎩⎪⎨⎪⎧ x28+y24=1,y =kx +m ,得(1+2k2)x2+4kmx +2m2-8=0. 则x1+x2=-4km 1+2k2,x1x2=2m2-81+2k2.由k1+k2=8,得y1-2x1+y2-2x2=8,所以kx1+m -2x1+kx2+m -2x2=8,即2k +(m -2)·x1+x2x1x2=8.所以k -mk m +2=4,整理得m =12k -2.故直线AB 的方程为y =kx +12k -2,即y =k ⎝⎛⎭⎫x +12-2.所以直线AB 过定点⎝⎛⎭⎫-12,-2.若直线AB 的斜率不存在,设AB 的方程为x =x0, 设A(x0,y0),B(x0,-y0),由已知y0-2x0+-y0-2x0=8,得x0=-12.此时AB 的方程为x =-12,显然过点⎝⎛⎭⎫-12,-2.综上,直线AB 过定点⎝⎛⎭⎫-12,-2.。
(新高考Ⅰ卷)高考数学一题多解探寻圆锥曲线压轴破解之策与算法优化(含解析)

2022新高考Ⅰ卷21题解析几何压轴题解法探究2022新高考Ⅰ卷数学试题,据称是近20年来史上第二难高考数学试题(史上最难2003).本文将对该卷21题解析几何压轴题,从不同的角度进行解析剖析.以期总结方法规律,优化思考方向,破解难点疑点,为广大的2023届高考师生提供有益的参考和帮助.【2022新高考1卷21题】已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【答案】(1)1-(2)9方法一:直线双参+韦达法【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设直线PQ 的方程为y kx m =+,设1122(,),(,)P x y Q x y , 联立2212x y y kx m ⎧-=⎪⎨⎪=+⎩消去y 得222(21)4220k x kmx m -+++=2121222422,2121km m x x x x k k +∴+=-=--, 由121211022AP BP y y k k x x --+=+=--可得1221(1)(2)(1)(2)0y x y x --+--= 即1221(1)(2)(1)(2)0kx m x kx m x +--++--=展开整理得12122(12)()4(1)0kx x m k x x m +--+--= 即2222242(12)()4(1)02121m km k m k m k k +⋅+--⋅---=-- 即2(1)210m k k k +++-=,(1)(21)0k m k ++-=故1k =-或12m k =-当12m k =-时的方程为12y kx k =+-,其恒过定点(2,1)A ,与题意不符故直线PQ 的斜率1k =-.(2)不妨设0AP k >,其倾斜角为θ,由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为±tan θ= 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==直线AP的方程为12)y x -=-,直线AP的方程为12)y x -=-,221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x ++-+= 方程的两根为点,A P的横坐标,所以1623P x -+=,103P x -=221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x -+++= 方程的两根为点,A Q的横坐标,所以2Q x +=,Q x =于是||2|1)P AP x =-=,||2|1)Q AQ x =-=而由tan PAQ ∠=sin 3PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=.【点评】联立方程韦达定理,是解析几何压轴大题最流行的方法套路.本题引入直线PQ 的双参方程y kx m =+,参与计算变形,使得运算过程相对繁复,产生了较大的运算量.要想变形到(1)(21)0k m k ++-=这一步,没有过硬的计算能力是很难达到的.方法二:直线单参+设点求点【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设1122(,),(,)P x y Q x y ,设直线AP 的倾斜角为θ,不妨设其斜率0k >,则直线AQ 的斜率为k -直线AP 的方程为1(2)y k x -=-,代入2212x y -=整理得点,A P 的横坐标为方程的两根,故2122(21)2221k x k -+=-,22122(21)14422121k k k x k k -+-+∴==--,2112241(2)121k k y k x k -+-=-+=-于是点P 坐标为2222442241(,)2121k k k kP k k -+-+---,用k -代换k 可得2222442241(,)2121k k k kQ k k ++----- 故22222222241241212114424422121PQ k k k k k k k k k k k k k ----+----==-++-+---(2)由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan θ= 因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=±因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==在,P Q的坐标中令k =P Q x x ==于是||2|1)P AP x =-=,||2|1)Q AQ x =-=而由tan PAQ ∠=sin 3PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】直线过圆锥曲线上已知一点时,可尝试设点求点的套路求出另一点的坐标.本题引入直线AP 的单参方程1(2)y k x -=-,可直接求出点P 的坐标,用k -代换k 立即可得点Q 的坐标,从而顺利求得PQ 的斜率.本解法思路清晰自然,单参变形所产生的运算量适中,无需特殊方法技巧.方法三:点差法+整体代换【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设1122(,),(,)P x y Q x y ,则121211,22AP BP y y k k x x --==--, 代入0AP BP k k +=化简整理得122112122240x y x y x x y y +----+=⋅⋅⋅⋅⋅⋅①点,,P Q A 在双曲线上,故221122222212122112x y x y ⎧-=⋅⋅⋅⋅⋅⋅⎪⎪⎪-=⋅⋅⋅⋅⋅⋅⎨⎪⎪-=⋅⋅⋅⋅⋅⋅⎪⎩②③④-②③整理得121212122()y y x x x x y y -+=-+即12122()PQ x x k y y +=+ 同理②-④,③-④可得121222,2(1)2(1)AP AQ x x k k y y ++==++ 代入0AP BP k k +=化简整理得122112122240x y x y x x y y ++++++=⋅⋅⋅⋅⋅⋅⑤①-⑤得12122()4()0x x y y +++=,所以12122()x x y y +=-+所以1PQ k =-.(2)不妨设0AP k >,其倾斜角为θ,由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=± 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==由11111222(1)AP y x k x y -+===-+142(13x -=由22221222(1)AQ y x k x y -+===-+解得242(13x -=-故1||2|1)AP x =-=,2||2|1)AQ x =-=而由tan PAQ ∠=sin PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】点差法在解决圆锥曲线上两点连线斜率有关问题时往往事半功倍.本题充分利用点差法及两点斜率公式,得到直线,AP AQ 斜率的两种表达形式进行整体变形,轻松求得直线PQ 的斜率.本解法运算简洁,思路清晰自然,求斜率事半功倍.方法四:齐次化【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 双曲线可化为22[(2)2][(1)1]12x y -+--+=即22(2)2(1)4[(2)(1)]0x y x y ---+---=设直线PQ 的方程为(2)(1)1a x b y -+-=联立22(2)2(1)4[(2)(1)]0(2)(1)1x y x y a x b y ⎧---+---=⎨-+-=⎩可得22(2)24[(2)(1)][(2)(1)]0x y x y a x b y --+----+-=即22(41)(2)4()(2)(1)(42)(1)0a x b a x y b y +-+----+-=两边同除2(2)x -整理得211(42)()4()(41)022y y b a b a x x --++--+=-- 其中12y x --表示直线AP 与BP 的斜率,AP AQ k k 由于4()024AP AQ a b k k b-+=-=+ 所以a b =,直线PQ 的斜率为1a k b =-=-. (2)不妨设直线AP 的斜率0AP k >,设其倾斜角为θ由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=±因为双曲线2212x y -=渐近线斜率为±tan θ=因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==直线AP 的方程为12)y x -=-,直线AP 的方程为12)y x -=-,221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x ++-+= 方程的两根为点,A P的横坐标,所以1623P x -+=,103P x -=221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x -+++= 方程的两根为点,A Q的横坐标,所以1623Q x ++=,103Q x +=于是||2|1)P AP x =-=,||2|1)Q AQ x =-=而由tan PAQ ∠=sin PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】齐次化在解决圆锥曲线同构问题上往往有奇效.本题直线,AP AQ 的斜率具有相同的结构,即12y x --的形式,于是可考虑构造关于1y -与2x -的二次齐次方程.直接将直线PQ 的方程设为(2)(1)1a x b y -+-=,进行“1代换”,为齐次化带来了方便.本解法思路奇巧,运算简洁明了.但需要考生平时付出大量训练才能掌握此方法的精髓和技巧! 方法五:坐标平移+齐次化【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 对坐标系进行平移,使坐标原点与点A 重合,在新坐标系下: 双曲线方程为22(2)(1)12x y ---=即2224()0x y x y -+-= 设直线PQ 的方程为1ax by +=联立2224()01x y x y ax by ⎧-+-=⎨+=⎩可得2224()()0x y x y ax by -+-+=即22(41)4()(42)0a x b a xy b y ++--+=两边同除2x 得2(42)()4()(41)0yy b a b a x x++--+= 其中y x表示直线AP 与BP 的斜率,AP AQ k k 由于平移不改变直线的斜率,故4()024AP AQ a b k k b -+=-=+ 所以a b =,直线PQ 的斜率为1-.(2)不妨设直线AP 的斜率0AP k >,设其倾斜角为θ由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为±tan θ= 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==在新坐标系下,直线,AP BP的方程分别为,y y ==联立2224()0x y x y y ⎧-+-=⎪⎨=⎪⎩解得4(13P x =,于是|||1)P AP x ==联立2224()0x y x y y ⎧-+-=⎪⎨=⎪⎩解得4(13Q x =-,于是|||1)Q AQ x ==而由tan PAQ ∠=sin PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】坐标平移后,在新坐标系下的齐次化过程更加直观自然.运算也变得简单明了了.方法六:参数方程法【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设直线AP :112cos 1sin x t y t θθ=+⎧⎨=+⎩,其中θ为AP 的倾斜角 则直线AQ :222cos()1sin()x t y t πθπθ=+-⎧⎨=+-⎩,即222cos 1sin x t y t θθ=-⎧⎨=+⎩代入双曲线方程得 解得1222224cos 4sin 4cos 4sin ,cos 2sin cos 2sin t t θθθθθθθθ-++==-- 直线PQ 的斜率12121212sin 1cos y y t t k x x t t θθ--==⋅=--+ (2)不妨设直线AP 的斜率0AP k >,其倾斜角为θ由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=± 因为tan 0θ>,故舍去tan θ=tan θ=可得sin θθ==于是12t t ==而由tan PAQ ∠=sin PAQ ∠=所以121||||sin 29PAQ S t t PAQ ∆=∠=. 【点评】直线参数方程的介入,使问题转化为对两参数12,t t 的讨论,思路自然,运算量适中.新教材《选择性必修第一册》68P 探究与发现栏目,对直线的参数方程进行了简单的介绍.所以新高考使用直线参数方程解题是被允许的.此方法同样需要考生付出大量训练才能掌握精髓和技巧!方法七:点差法+分式合分比定理【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设1122(,),(,)P x y Q x y ,则121211,22AP BP y y k k x x --==--, 点,,P Q A 在双曲线上,故221122222212122112x y x y ⎧-=⋅⋅⋅⋅⋅⋅⎪⎪⎪-=⋅⋅⋅⋅⋅⋅⎨⎪⎪-=⋅⋅⋅⋅⋅⋅⎪⎩②③④-②③整理得121212122()y y x x x x y y -+=⋅⋅⋅⋅⋅⋅-+⑤ 同理②-④,③-④可得121222,2(1)2(1)AP AQ x x k k y y ++==++ 由0AP BP k k +=可得121212*********(1)2(1)AP y y x x k x x y y --++==-==---++ 由分式合分比定理可得12121212121212121442(2)2()AP y y y y x x x x k x x x x y y y y -+--++====+--++- 变形得1212121242(2)y y x x x x y y -+-=-++ 结合⑤得121212121212121212124(4)()12(2)2()2(2)2()y y x x x x x x x x x x y y y y y y y y -+-++--+====--+++++-+ 即1PQ k =-.(2)不妨设0AP k >,其倾斜角为θ,由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan θ=因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=± 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==由11111222(1)AP y x k x y -+===-+142(13x -=由22221222(1)AQ y x k x y -+===-+解得242(13x -=-故1||2|1)AP x =-=,2||2|1)AQ x =-=而由tan PAQ ∠=sin 3PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】点差法在解决圆锥曲线上两点连线斜率有关问题时往往事半功倍.本题充分利用点差法及两点斜率公式,得到直线,AP AQ 斜率的两种表达形式,结合分式合分比定理进行整体变形,求得直线PQ 的斜率.本解法运算简洁,思路清晰自然,求斜率事半功倍.但要求考生对分式合分比定理有较深刻的认识并能较熟练的应用.【总结】解决解析几何压轴题的方法策略主要有三种:1、根与系数的关系法(主流方法).设出动直线的方程:①y kx m =+,②x my n =+,③00()y y k x x -=-, ④{00cos sin x x t y y t αα=+=+(t 为参数),与圆锥曲线方程联立消元得到关于(x y t )或参数的一元二次方程,得两根之和两根之积,同时兼顾0,0∆>∆=或的要求,利用两根之和两根之积进行整体代换整体变形而求解.2、多变量多参数联动变换法.此种方法有别于方法1,不联立方程消元求解,而是直接将所设出点的坐标代入曲线(直线)方程和题设中,得到若干个关于点的坐标与参数间的关系式,对这些关系式进行整体变形整体代换而求解.如弦中点问题常用点差法处理.同构问题齐次化处理.此种方法对多变量多参数的代数式的驾驭能力及变换技巧是一种考验.3、设点求点法.方法1、2均采用了设而不求的策略.当问题中直线与曲线的交点易求时,可考虑直接求出点的坐标进行求解,即设点求点法.如:动直线过曲线上一已知点时,则另一交点坐标可直接求出;再如动直线y kx =与椭圆22221x y a b+=的交点易求出. 以上七种解决方案中,本人最青睐的是方法三点差整体变形法,轻巧灵动四两拔千斤!其次是方法二设点求点法,思路清晰自然运算简单明了!。
【新步步高】2017版高考数学江苏(理)考前三个月考前抢分必做 压轴大题突破练(一) Word版含解析

压轴大题突破练压轴大题突破练(一) 直线与圆锥曲线(1)1.在平面直角坐标系中,已知点A (1,0),点B 在直线l :x =-1上运动,过点B 与l 垂直的直线和线段AB 的垂直平分线相交于点M .(1)求动点M 的轨迹E 的方程;(2)过(1)中轨迹E 上的点P (1,2)作两条直线分别与轨迹E 相交于C (x 1,y 1),D (x 2,y 2)两点.试探究:当直线PC ,PD 的斜率存在且倾斜角互补时,直线CD 的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.解 (1)依题意,得MA =MB .∴动点M 的轨迹E 是以A (1,0)为焦点,直线l :x =-1为准线的抛物线, ∴动点M 的轨迹E 的方程为y 2=4x .(2)∵P (1,2),C (x 1,y 1),D (x 2,y 2)在抛物线y 2=4x 上,∴⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ② 由①-②得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2),∴直线CD 的斜率为k CD =y 1-y 2x 1-x 2=4y 1+y 2.③ 设直线PC 的斜率为k ,则PD 的斜率为-k ,则直线PC 方程为y -2=k (x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =kx -k +2,得ky 2-4y -4k +8=0. 由2+y 1=4k ,求得y 1=4k-2, 同理可求得y 2=-4k-2. ∴k CD =4y 1+y 2=4(4k -2)+(-4k-2)=-1, ∴直线CD 的斜率为定值-1 .2.(2016·课标全国丙)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.由题意知F ⎝⎛⎭⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b 22,b ,P ⎝⎛⎭⎫-12,a ,Q ⎝⎛⎭⎫-12,b , R ⎝⎛⎭⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.(1)证明 由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a=-ab a =-b =b -0-12-12=k 2. 所以 AR ∥FQ .(2)解 设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·FD =12|b -a |⎪⎪⎪⎪x 1-12, S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去).设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE可得2a +b =y x -1(x ≠1). 而a +b 2=y ,所以y 2=x -1(x ≠1). 当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0),满足方程y 2=x -1.所以所求轨迹方程为y 2=x -1.3.椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =22.设动直线l :y =kx +m 与椭圆E 相切于点P 且交直线x =2于点N ,△PF 1F 2的周长为2(2+1).(1)求椭圆E 的方程;(2)求两焦点F 1、F 2到切线l 的距离之积;(3)求证:以PN 为直径的圆恒过点F 2.(1)解 设F 1(-c,0),F 2(c,0),则⎩⎪⎨⎪⎧ c a =22,2a +2c =2(2+1),解得a =2,c =1.∴b 2=a 2-c 2=1,∴椭圆E 的方程为x 22+y 2=1. (2)解 由⎩⎪⎨⎪⎧ x 22+y 2=1,y =kx +m⇒(1+2k 2)x 2+4kmx +2(m 2-1)=0.设直线l 与椭圆E 相切于点P (x 0,y 0),则Δ=0,化简2k 2+1=m 2,焦点F 1,F 2到直线l 的距离d 1,d 2分别为d 1=|-k +m |k 2+1,d 2=|k +m |k 2+1, 则d 1·d 2=m 2-k 2k 2+1=k 2+1k 2+1=1. (3)证明 ∵x 0=-2km 1+2k2=-2k m , ∴y 0=kx 0+m =-2k 2m +m =m 2-2k 2m =1m , ∴P (-2k m ,1m). 又联立y =kx +m 与x =2,得到N (2,2k +m ), PF 2→=(1+2k m ,-1m),F 2N →=(1,2k +m ). ∴PF 2→·F 2N →=(1+2k m ,-1m)·(1,2k +m ) =1+2k m -1m(2k +m ) =1+2k m -2k m-1=0. ∴PF 2→⊥F 2N →,∴以PN 为直径的圆恒过点F 2.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,过点M (2,0)的直线l 与椭圆C 相交于A ,B 两点,O 为坐标原点.(1)求椭圆C 的方程;(2)求OA →·OB →的取值范围;(3)若B 点关于x 轴的对称点是N ,证明:直线AN 恒过一定点.(1)解 由题意知b =1,e =c a =22, 得a 2=2c 2=2a 2-2b 2,故a 2=2.故所求椭圆C 的方程为x 22+y 2=1. (2)解 设l :y =k (x -2),与椭圆C 的方程联立,消去y 得(1+2k 2)x 2-8k 2x +8k 2-2=0.由Δ>0得0≤k 2<12. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2, ∴OA →·OB →=x 1x 2+y 1y 2=x 1x 2+k 2(x 1-2)(x 2-2)=(1+k 2)x 1x 2-2k 2(x 1+x 2)+4k 2=10k 2-21+2k 2=5-71+2k 2. ∵0≤k 2<12,∴72<71+2k 2≤7, 故所求范围是[-2,32). (3)证明 由对称性可知N (x 2,-y 2),定点在x 轴上,直线AN :y -y 1=y 1+y 2x 1-x 2(x -x 1). 令y =0得:x =x 1-y 1(x 1-x 2)y 1+y 2=x 1y 2+x 2y 1y 1+y 2=2kx 1x 2-2k (x 1+x 2)k (x 1+x 2-4)=2x 1x 2-2(x 1+x 2)x 1+x 2-4=16k 2-41+2k 2-16k 21+2k 28k 21+2k 2-4=1, 故直线AN 恒过定点(1,0).。
高考数学江苏(理)考前三个月考前抢分必做 压轴大题突破练(二) Word版含解析

压轴大题突破练(二) 直线与圆锥曲线(2)1.(2016·浙江)如图,设椭圆x 2a 2+y 2=1(a >1). (1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解 (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0, 故x 1=0,x 2=-2a 2k 1+a 2k 2, 因此AM =1+k 2|x 1-x 2|=2a 2|k |1+a 2k 2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2.由(1)知,AP =2a 2|k 1|1+k 211+a 2k 21,AQ =2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由于k 1≠k 2,k 1,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2).① 因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,由e =c a =a 2-1a ,得0<e ≤22. 所求离心率的取值范围是(0,22]. 2.已知过点M ⎝⎛⎭⎫p 2,0的直线l 与抛物线y 2=2px (p >0)交于A ,B 两点,且OA →·OB →=-3,其中O 为坐标原点.(1)求p 的值;(2)当AM +4BM 最小时,求直线l 的方程.解 (1)设A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =my +p 2. 联立⎩⎪⎨⎪⎧x =my +p 2,y 2=2px消去x ,得y 2-2pmy -p 2=0. ∴y 1+y 2=2pm ,y 1y 2=-p 2.∵OA →·OB →=-3,∴x 1x 2+y 1y 2=-3.又x 1x 2=y 212p ·y 222p =p 24, ∴p 24-p 2=-3⇒p 2=4.∵p >0,∴p =2. (2)由抛物线定义,得AM =x 1+p 2=x 1+1, BM =x 2+p 2=x 2+1, ∴AM +4BM =x 1+4x 2+5≥24x 1x 2+5=9,当且仅当x 1=4x 2时取等号.将x 1=4x 2代入x 1x 2=p 24=1,得x 2=12(负值舍去). 将x 2=12代入y 2=4x ,得y 2=±2,即点B ⎝⎛⎭⎫12,±2. 将点B 代入x =my +1,得m =±24. ∴直线l 的方程为x =±24y +1,即4x ±2y -4=0. 3.已知动点S (x ,y )到直线l :x =22的距离是它到点T (2,0)的距离的2倍.(1)求动点S 的轨迹C 的方程;(2)设轨迹C 上一动点P 满足:OP →=λOM →+2μON →,其中M ,N 是轨迹C 上的点,直线OM与ON 的斜率之积为-12,若Q (λ,μ)为一动点,E 1(-32,0),E 2(32,0)为两定点,求QE 1+QE 2的值.解 (1) 点S (x ,y )到直线x =22的距离,是到点T (2,0)的距离的2倍,则|x -22|= 2(x -2)2+y 2,化简得x 24+y 22=1.所以轨迹C 的方程为x 24+y 22=1. (2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则OP →=λOM →+2μON →,即x =λx 1+2μx 2,y =λy 1+2μy 2,因为点P ,M ,N 在椭圆x 24+y 22=1上, 所以x 21+2y 21=4,x 22+2y 22=4,x 2+2y 2=4,故x 2+2y 2=λ2(x 21+2y 21)+4μ2(x 22+2y 22)+4λμ(x 1x 2+2y 1y 2)=4λ2+16μ2+4λμ(x 1x 2+2y 1y 2)=4,设k OM ,k ON 分别为直线OM ,ON 的斜率,由题意知,k OM ·k ON =y 1y 2x 1x 2=-12, 因此x 1x 2+2y 1y 2=0,所以λ2+4μ2=1,所以点Q 是椭圆λ2+4μ2=1上的点,而E 1,E 2恰为该椭圆的左,右焦点,所以由椭圆的定义可得,QE 1+QE 2=2.4.已知曲线C 上任意一点P 到两定点F 1(-1,0)与F 2(1,0)的距离之和为4.(1)求曲线C 的方程;(2)设曲线C 与x 轴负半轴交点为A ,过点M (-4,0)作斜率为k 的直线l 交曲线C 于B 、C 两点(B 在M 、C 之间),N 为BC 中点.①证明:k ·k ON 为定值;②是否存在实数k ,使得F 1N ⊥AC ?如果存在,求直线l 的方程,如果不存在,请说明理由.(1)解 由已知可得:曲线C 是以两定点F 1(-1,0)和F 2(1,0)为焦点,长轴长为4的椭圆,所以a =2,c =1⇒b =a 2-c 2=3,故曲线C 的方程为x 24+y 23=1. (2)①证明 设过点M 的直线l 的方程为y =k (x +4),设B (x 1, y 1),C (x 2, y 2)(x 2>x 1).联立方程组⎩⎪⎨⎪⎧y =k (x +4),x 24+y 23=1, 得(4k 2+3)x 2+32k 2x +64k 2-12=0, 则⎩⎪⎨⎪⎧ x 1+x 2=-32k 24k 2+3,x 1x 2=64k 2-124k 2+3.故x N =x 1+x 22=-16k 24k 2+3,y N =k (x N +4)=12k 4k 2+3. 所以k ON =-34k ,所以k ·k ON =-34为定值. ②解 若F 1N ⊥AC ,则k AC ·kF 1N =-1,因为F 1(-1,0),kF 1N =12k4k 2+3-16k 24k 2+3+1=4k 1-4k 2, 因为A (-2,0),k AC =y 2x 2+2, 故y 2x 2+2·4k 1-4k 2=-1, 代入y 2=k (x 2+4)得x 2=-2-8k 2,y 2=2k -8k 3, 而x 2≥-2,故只能k =0,显然不成立,所以这样的直线不存在.。
高考数学压轴题突破训练——圆锥曲线(含详解)

(Ⅰ)若当点P的坐标为 时, ,求双曲线的方程;
(Ⅱ)若 ,求双曲线离心率 的最值,并写出此时双曲线的渐进线方程.
15. 若F 、F 为双曲线 的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足; .
(1)求该双曲线的离心率;
(Ⅱ)若直线 与(Ⅰ)中所求点Q
的轨迹交于不同两点F,H,O是坐标原点,
且 ,求△FOH的面积的取值范围。
18. 如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中 。
(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;
(2)D分有向线段 的比为 ,A、D同在以B、C为焦点的椭圆上,
当 ―5≤ ≤ 时,求椭圆的离心率e的取值范围.
29.在直角坐标平面中, 的两个顶点 的坐标分别为 , ,平面内两点 同时满足下列条件:
① ;② ;③ ∥
(1)求 的顶点 的轨迹方程;
(2)过点 的直线 与(1)中轨迹交于 两点,求 的取值范围
由 消去 得: ①
,
而
由方程①知 > <
, < < , .
7.解:解:令
则 即
即
又∵ ∴
所求轨迹方程为
(Ⅱ)解:由条件(2)可知OAB不共线,故直线AB的斜率存在
设AB方程为
则
∵OAPB为矩形,∴OA⊥OB
∴ 得
所求直线方程为 …
8.解:(I)由题意,抛物线顶点为(-n,0),又∵焦点为原点∴m>0
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.
压轴题09 圆锥曲线压轴小题常见题型(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题09圆锥曲线压轴小题常见题型1、圆锥曲线的定义、方程与几何性质是每年高考必考的内容.一是求圆锥曲线的标准方程;二是求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题;三是抛物线的性质及应用问题.多以选择、填空题的形式考查,难度中等.2、通过对椭圆、双曲线、抛物线的定义、方程及几何性质的考查,着重考查了数学抽象、数学建模、逻辑推理与数学运算四大核心素养.考向一:阿波罗尼斯圆、蒙日圆与圆锥曲线考向二:离心率考向三:焦半径问题考向四:切线问题考向五:焦点三角形问题1、在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据定义判定轨迹曲线并写出方程.有时还要注意轨迹是不是完整的曲线,如果不是完整的曲线,则应对其中的变量x或y进行限制.2、应用圆锥曲线的定义时,要注意定义中的限制条件.在椭圆的定义中,要求12>;2a F FF F;在抛物线的定义中,定直线不经过定点.此外,在双曲线的定义中,要求2a<12通过到定点和到定直线的距离之比为定值可将三种曲线统一在一起,称为圆锥曲线.3、圆锥曲线定义的应用主要有:求标准方程,将定义和余弦定理等结合使用,研究焦点三角形的周长、面积,求弦长、最值和离心率等.4、用解析法研究圆锥曲线的几何性质是通过方程进行讨论的,再通过方程来研究圆锥曲线的几何性质.不仅要能由方程研究曲线的几何性质,还要能运用儿何性质解决有关问题,如利用坐标范围构造函数或不等关系等.一、单选题1.(2023·湖南·校联考二模)已知()2,0A ,点P 为直线50x y -+=上的一点,点Q 为圆221x y +=上的一点,则12PQ AQ +的最小值为()AB.22-CD【答案】D【解析】设()()110,,,M x Q x y ,令12AQ MQ =,则()22211148144233x x x xy --=⇒++=2211112x y x ⇔+=⇒=,则M 1,02⎛⎫⇒ ⎪⎝⎭12PQ AQ +=PQ MQ +.如图,当,,P Q M 三点共线时,且PM 垂直于直线50x y -+=时,PQ MQ +有最小值,为PM ,即直线50x y -+=到点M4=.故选:D2.(2023·河南商丘·商丘市实验中学校联考模拟预测)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点,M N 是C 的一条渐近线上的两点,且2MN MO =(O 为坐标原点),12MN F F =.若P 为C 的左顶点,且135MPN ∠=︒,则双曲线C 的离心率为()A 3B .2C 5D 7【答案】C【解析】设双曲线的焦距为2(0)c c >,因为2MN MO = ,所以ON MO = ,所以,M N 关于原点对称,所以四边形12MF NF 为平行四边形,又12MN F F =,所以四边形12MF NF 为矩形,因为以12F F 为直径的圆的方程为222x y c +=,不妨设,M N 所在的渐近线方程为()00,,by x M x y a=,则()00,N x y --,由222,,b y x a x yc ⎧=⎪⎨⎪+=⎩解得,x a y b =⎧⎨=⎩或,.x a y b =-⎧⎨=-⎩,不妨设()(),,,M a b N a b --,因为P 为双曲线的左顶点,所以(),0P a -,所以,PM PN b ==,又2,135MN c MPN ∠==︒,由余弦定理得222||||||2||||cos135MN MP NP MP NP ︒=+-⋅,即22224()c a a b b =+++2b a =,所以离心率c e a ==.故选:C.3.(2023·河北沧州·统考模拟预测)已知A 、B 是椭圆()222210x y a b a b +=>>与双曲线()222210,0x y a b a b -=>>的公共顶点,P 是双曲线上一点,PA ,PB 交椭圆于M ,N .若MN 过椭圆的焦点F ,且tan 3AMB ∠=-,则双曲线的离心率为()A .2BC D 【答案】D【解析】如图,设00(,)P x y ,点,,P M A 共线,点,,P B N 共线,所在直线的斜率分别为,PA PB k k,点P 在双曲线上,即2200221x y a b -=,有200200y y b x a x a a ⋅=-+,因此22PA PB b k k a⋅=,点11(,)M x y 在椭圆上,即2211221x y a b +=,有211211y y b x a x a a⋅=--+,直线,MA MB 的斜率,MA MB k k ,有22MA MBb k k a⋅=-,即22PA MBb k k a⋅=-,于是MB PB BN k k k =-=-,即直线MB 与NB 关于x 轴对称,又椭圆也关于x 轴对称,且,M N 过焦点F ,则MN x ⊥轴,令(c,0)F ,由22221x c x y a b =⎧⎪⎨+=⎪⎩得2||b y a=,显然222tan a c a ac AMF b b a ++∠==,222tan a c a acBMF b b a--∠==,22222222222tan tan 2tan 31tan tan 1a ac a acAMF BMF a b b AMB a ac a ac AMF BMF b a b b +-+∠+∠∠====-+--∠⋅∠--⋅,解得2213b a =,所以双曲线的离心率233e a ===.故选:D4.(2023·辽宁·校联考二模)已知双曲线()2222:10,0x y E a b a b -=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上一点,212PF F F ⊥,12F PF ∠的平分线与x 轴交于点Q ,1253PF Q PF Q S S =△△,则双曲线E 的离心率为()AB .2CD【答案】B【解析】∵212PF F F ⊥,则122122152132△△PF Q PF QPF F Q S S PF F Q ⋅==⋅,可得1253F Q F Q =,分别在12,PQF PQF 中,由正弦定理可得:12121122sin sin ,sin sin PF PF PQF PQF FQ QPF F Q QPF ∠∠==∠∠∵PQ 平分12F PF ∠,可得12QPF QPF ∠=∠,即12sin sin QPF QPF ∠=∠,且()122sin sin πsin PQF PQF PQF ∠=-∠=∠,故1212sin sin sin sin PQF PQF QPF QPF ∠∠=∠∠,则1212PF PF F Q F Q=,所以112253PF F Q PF F Q==,又∵22b PF a =,则21222b PF PF a a a =+=+,所以22253b aa b a+=,整理得223b a =,故2223c a a -=,得224c a =,即2c a =,所以2ce a==.故选:B.5.(2023·江西宜春·统考一模)已知双曲线221927x y -=的左、右焦点分别为12,F F ,过右焦点2F 的直线l 与双曲线的右支交于,A B 两点,若1212,AF F BF F 的内心分别为,I K ,则12IF F △与12KF F 面积之和的取值范围是()A .36,3⎡⎣B .36,483⎡⎣C .[)18π,30πD .[)18π,36π【答案】A 【解析】由双曲线方程得:3a =,33b =226c a b +=,设12AF F △内切圆与三边相切于点,,M N E ,AM AN = ,11F M F E =,22F N F E =,12121226AF AF F M F N F E F E a ∴-=-=-==,又12212F E F E c +==,19F E ∴=,23F E =,设(),0E t ,则6963t t +=⎧⎨-=⎩,解得:3t =,即()3,0E ;同理可知:12KF F 内切圆与x 轴相切于点()3,0E ;22,IF KF 分别为212,AF F BF F ∠∠的角平分线,2121π2IF F KF F ∴∠+∠=,又12IK F F ⊥,2IF E ∴ ∽2F KE ,则22IE EF EF KE=,设1212,AF F KF F 内切圆半径分别为12,r r ,2633EF =-= ,229IE KE EF ∴⋅==,即129r r =,()12121212111962IF F KF F S S F F r r r r ⎛⎫∴+=⋅+=+ ⎪⎝⎭,双曲线的渐近线斜率k =,∴直线l 的倾斜角π2π,33θ⎛⎫∈⎪⎝⎭,()2211π22IF E AF E θ∴∠=∠=-,则2ππ,63IF E ⎛⎫∠∈ ⎪⎝⎭,122tan 3IE r IF E F E∴∠==∈⎝,解得:1r ∈,又119r r +在)上单调递减,在(上单调递增,当1r =119r r +=1r =时,119r r +=;当13r =时,1196r r +=;1196,r r ⎡∴+∈⎣,1212119636,IF F KF F S S r r ⎛⎫⎡∴+=+∈ ⎪⎣⎝⎭.故选:A.6.(2023·江西吉安·统考一模)椭圆()2222:10x y E a b a b +=>>的内接四边形ABCD 的对角线,AC BD 交于点()1,1P ,满足2AP PC = ,2BP PD = ,若直线AB 的斜率为14-,则椭圆的离心率等于()A .14BC .12D .13【答案】B【解析】设点()()()1122,,,,,A x y B x y C x y ,()1,1P ,且2AP PC =,可得()()111,121,1x y x y --=--,即()()11121121x x y y ⎧-=-⎪⎨-=-⎪⎩,解得1133,22x y C --⎛⎫⎪⎝⎭,由,A C 两点在椭圆E 上,有()()()()22112222112211331244x y a b x y a b ⎧+=⎪⎪⎨--⎪+=⎪⎩,()()124-⨯得:()()11223233233x y ab--+=-,即2222221122330b x a y a b a b ++--=,同理可得2222222222330b x a y a b a b ++--=,因此,直线AB 的方程为22222222330b x a y a b a b ++--=,从而直线AB 的斜率为2214b a -=-,由222131144b e a =-=-=,可得e =故选:B7.(2023·广东汕头·金山中学校考模拟预测)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过点F 且斜率为()0k k ≠的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若AB ≥,则双曲线的离心率取值范围是()A.⎛ ⎝⎦B.(C.)+∞D.⎫+∞⎪⎪⎣⎭【答案】A【解析】设双曲线的右焦点为()()()1122,0,,,,F c A x y B x y ,则直线():l y k x c =-,联立方程()22221x y a b y k x c ⎧-=⎪⎨⎪=-⎩,消去y 得:()()222222222220b a k x a k cx a k c b -+-+=,则可得()222222222121222222220,0,,a k c b a k cb a k x x x x b a k b a k+-≠∆>+=-=---,则()2222221ab k AB b k a +==-,设线段AB 的中点()00,M x y ,则()2222212000222222222,2x x a k c a k c b kcx y k x c k c b a k b a k b a k ⎛⎫+==-=-=--=- ⎪---⎝⎭,即222222222,a k c b kc M b a k b a k ⎛⎫-- ⎪--⎝⎭,且0k ≠,线段AB 的中垂线的斜率为1k-,则线段AB 的中垂线所在直线方程为2222222221b kc a k c y x b a k k b a k ⎛⎫+=-+ ⎪--⎝⎭,令0y =,则2222222221b kc a k c x b a k k b a k ⎛⎫=-+ ⎪--⎝⎭,解得23222k c x b a k =--,即23222,0k c D b a k ⎛⎫- ⎪-⎝⎭,则()22232222221b c k k c DF c b a k b a k +=--=--,由题意可得:AB ≥,即()()2222222222121ab k b a k c k b a k +≥-+-,整理得2a ,则c e a=注意到双曲线的离心率1e >,∴双曲线的离心率取值范围是⎛ ⎝⎦.故选:A.8.(2023·河南·校联考模拟预测)已知实数a ,b 满足22122a b a b ++=+,则()2341a b +-的最小值是()A .1B .2C .4D .16【答案】A 【解析】依题意可知曲线(),0f a b =表示一个以()1,1为圆心,1为半径的圆,求()2341a b +-的最小值相当于先求341a b d +-==的最小值,即求圆()()22111a b -+-=上一点到直线3410x y +-=的距离d 的最小值,所以min 314111155d ⨯+⨯-=-=,即()2341a b +-的最小值为1.故选:A .9.(2023·全国·模拟预测)已知O 为坐标原点,椭圆22:142x y C +=上两点A ,B 满足12OA OB k k ⋅=-.若椭圆C 上一点M 满足OM OA OB λμ=+ ,则λμ+的最大值为()A .1BCD .2【答案】B【解析】设()()001122(,),,,,M x y A x y B x y ,则220022112222142142142x y x y x y ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,由OM OA OB λμ=+ ,得01212x x x y y y λμλμ=+⎧⎨=+⎩,222222222200121211221212()()()()424242422x y x x y y x y x y x x y y λμλμλμλμλμ+++=++++++221212()2x xy y λμλμ=+++,由12OA OBk k ⋅=-,得121212y y x x =-,即121202x x y y +=,又2200142x y +=,因此221λμ+=,而2222()()2()2λμλμλμ++-=+=,于是||λμλμ+≤+≤λμ==“=”,所以λμ+.故选:B10.(2023·山东潍坊·统考模拟预测)已知双曲线()22122:10,0x y C a b a b-=>>的左,右焦点分别为1F ,2F ,点2F 与抛物线()22:20C y px p =>的焦点重合,点P 为1C 与2C 的一个交点,若△12PF F 的内切圆圆心的横坐标为4,2C 的准线与1C 交于A ,B 两点,且92AB =,则1C 的离心率为()A .94B .54C .95D .74【答案】B【解析】由题设12(,0),(,0)F c F c -,又点2F 与抛物线的焦点重合,即02pc =>,由()22222221c y a ba b c ⎧-⎪-=⎨⎪+=⎩,则2b y a =±,故2292b AB a ==,即249b a =,如下图示,内切圆与△12PF F 各边的切点为,,D E K,所以1122,,PD PE DF KF EF KF ===,又12||||2PF PF a -=,则121212()()2PD DF PE EF DF EF KF KF a+-+=-=-=,所以K 为双曲线右顶点,又△12PF F 的内切圆圆心的横坐标为4,即4a =,故29b =,则5c =,所以离心率为54c e a ==.故选:B11.(2023·河南·开封高中校考模拟预测)已知直线l 与椭圆221:12x C y +=相切于点P ,与圆222:4C x y +=交于A ,B 两点,圆2C 在点A ,B 处的切线交于点Q ,O 为坐标原点,则OPQ △的面积的最大值为()A .22B .1C D .2【答案】A【解析】设()00,P x y ,(,)Q m n ,由AQ AO ⊥,BQ BO ⊥,可得四点Q ,A ,O ,B 共圆,可得以OQ 为直径的圆,方程为2222((224m n m n x y +-+-=,联立圆222:4C x y +=,相减可得AB 的方程为40mx ny +-=,又AB 与椭圆相切,若AB 不与x 轴垂直时,当0y >时,2212x y +=可化为y =,设y '=P 的切线方程为00000)()2x y y x x x x y -=--=-,即220000122x x x y y y +=+=,同理可得0y >时,在P 的切线方程为0012x x y y +=,若AB x ⊥轴时,在点()P 处的切线方程为x =0012x xy y +=故过P 的切线方程为0012x xy y +=,即为002440x x y y +-=,由两直线重合的条件可得02m x =,04n y =,由于P 在椭圆上,可设0x α,0sin y α=,02απ≤<,即有m α=,4sin n α=,可得22004cos 4sin 4OP OQ mx ny αα⋅=+=+=uu u r uuu r,且||OP ||OQ =即有1sin ,2OPQ S OP OQ OP OQ =△==22α==≤,当sin 21α=±即π4α=或3π4或5π4或7π4时,OPQ S .故选:A .12.(2023·全国·模拟预测)中国结是一种盛传于民间的手工编织工艺品,它身上所显示的情致与智慧正是中华民族古老文明中的一个侧面.已知某个中国结的主体部分可近似地视为一个大正方形(内部是16个全等的边长为1的小正方形)和凸出的16个半圆所组成,如图,点A 是大正方形的一条边的四等分点,点C 是大正方形的一个顶点,点B 是凸出的16个半圆上的任意一点,则AC AB ⋅的最大值为()A .333172+B .332172+C .332D .9172【答案】C【解析】AC AB ⋅ 等于AB 在AC 上的投影向量与AC 的数量积,因此当AB在AC 上的投影向量与AC同向,且投影向量的模最大时,AC AB ⋅取到最大值,此时点B 在以点C 为半圆弧端点且在AC 上方的半圆上,以大正方形的相邻两边分别为x ,y 轴建立平面直角坐标系xOy ,如图,(0,1),(4,0)A C,则直线AC 的方程为14x y +=,以点C 为半圆弧端点且在AC 上方的半圆圆心为1(4,)2M ,半圆M 的方程为22119(4)()(4)242x y x -+-=≤≤,显然半圆M 在点B 处切线l 垂直于直线AC 时,AC AB ⋅取得最大值,设切线l 的方程为40x y b -+=1|16|122b -+=,而点M 在切线l的左上方,解得b =,即切线l:40x y -=,由4014x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩,因此切线l 与直线AC 的交点2(1733)117(,)1734D +-,此时33171734AD =,又AC =,所以AC AB ⋅的最大值为3317173317342=.故选:C13.(2023·陕西咸阳·校考模拟预测)设双曲线()2222:10,0x y E a b a b -=>>的右焦点为F ,()0,3M b ,若直线l 与E 的右支交于A ,B 两点,且F 为MAB △的重心,则直线l 斜率的取值范围为()A.)3∞⎛⎫⋃+ ⎪ ⎪⎝⎭B.)⋃+∞⎝C.(,∞⎛-⋃- ⎝⎭D.(,∞⎛-⋃- ⎝⎭【答案】C【解析】设D 为AB 的中点,根据重心性质可得2MF FD =,因为()(),0,0,3F c M b ,则33,22c b D ⎛⎫-⎪⎝⎭,因为直线l 与E 的右支交于,A B 两点,所以点D 在双曲线右支内部,故有222299441c b a b ->,解得c a >,当直线l 斜率不存在时,AB 的中点D 在x 轴上,故,,M F D 三点不共线,不符合题意舍,设直线l 斜率为AB k ,设()()1122,,,A x y B x y ,所以123x x c +=,123y y b +=-,因为,A B 在双曲线上,所以22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减可得:2222121222x x y a b y =--,即()()()()1212121222x x x x y y y y a b -+-+=,即有()()12122233c x x b y y a b --=-成立,即有2AB bck a =-,因为,,,M F A B 不共线,即23AB MF bc b k k a c=-≠=-,即223c a ≠,即e ≠,所以E 的离心率的取值范围为)∞⎫⋃+⎪⎪⎝⎭,因为2ABbc k a =-===-因为)3e ∈+∞⎝,即()213,33,9e ⎛⎫∈+∞ ⎪⎝⎭,所以()221152,66,2481e ⎛⎫⎛⎫--∈+∞ ⎪ ⎪⎝⎭⎝⎭ ,所以(,ABk ⎛⎫=∈-∞ ⎪ ⎪⎝⎭.故选:C14.(2023·重庆·统考模拟预测)如图,椭圆()2222:10x y C a b a b+=>>的左焦点为1F ,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ y ⊥轴,四边形1F APQ 是等腰梯形,直线1F P 与y 轴交于点N ⎛⎫⎪ ⎪⎝⎭,则椭圆的离心率为().A .14B 3C 2D .12【答案】D【解析】由题意,做PM x ⊥轴于点M ,因为四边形1F APQ 是等腰梯形,则1FO AM c ==,OM a c =-则点P 的横坐标为P x a c =-,代入椭圆方程()2222:10x yC a b a b+=>>,可得22p b y ac c a =-,即22bPM ac c a-因为34N ⎛⎫ ⎪ ⎪⎝⎭,则3ON =,由11F NO F PM ,则121342F O ON cb F M PM a ac c a=⇒=-,化简可得,434332160a ac c -+=,同时除4a 可得,43163230e e -+=即()()3221812630e e e e ----=,对于()3281263f e e e e =---当1e =时,()1130f =-<,当2e =时,()210f =>,在()1,2e ∈时,方程()()3221812630e e e e ----=有根,且()0,1e ∈,故应舍,所以12e =.故选:D二、多选题15.(2023·湖南·校联考二模)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,过2F A 、B 两点(A 在第一象限),1AB BF =,P 为线段AB 的中点,O 为坐标原点,则下列说法正确的是()A .122AF AF =B .双曲线C 的离心率为2C .12AF F △D .直线OP 的斜率为7【答案】AD【解析】如下图所示:对于A 选项,因为1AB BF =,所以,22122AF AB BF BF BF a =-=-=,由双曲线的定义可得12122AF AF AF a a -=-=,所以,1242AF a AF ==,A 对;对于B 选项,设直线AB 设直线AB 的倾斜角为α,则α为锐角且tan α=由22sin tan cos sin cos 1cos 0αααααα⎧==⎪⎪+=⎨⎪>⎪⎩可得cos α=()21cos cos πcos 4AF F αα∠=-=-=-,在12AF F △中,由余弦定理得2222222121212124416cos 284AF F F AF a c a AF F AF F F ac +-+-∠===-⋅,即22260c a -=,等式22260c a -=两边同时除以2a可得2260e +-=,因为1e >,解得e B 错;对于C选项,因为21cos AF F ∠=21AF F ∠为钝角,所以,21sin 4AF F ∠=,1222122111sin 2222244AF F S AF F F AF F a c a =⋅∠=⨯⨯⨯=⨯=△,C 错;对于D 选项,设()11,A x y ,()22,B x y ,则1212,22x x y y P ++⎛⎫⎝⎭,可得121212120202OPy y y y k x x x x +-+==++-,因为c =,则b a ,由22112222222211x y a b x y a b⎧-=⎪⎪⎨⎪-=⎪⎩得22221212220x x y y a b ---=,所以,2221212122221212121AB OP OP y y y y y yb k k x x x x x x a --+=⋅====--+,则OP k =,则直线OP,D 正确.故选:AD .16.(2023·浙江宁波·统考二模)三支不同的曲线()|1|0,1,2,3i i y a x a i =⋅->=交抛物线24y x =于点,(1,2,3)i i A B i =,F 为抛物线的焦点,记i i A FB △的面积为i S ,下列说法正确的是()A .11(1,2,3)i i i FA FB +=为定值B .112233////A B A B A B C .若1232S S S +=,则1232a a a +=D .若2123S S S =,则2123a a a =【答案】AD【解析】如图,设直线()1i y a x =-与抛物线24y x =的交于点,i i C B ,则i A 与i C 关于x 轴对称,设()()1122,,,i i A x y B x y -,则()11,i C x y ,联立()214i y a x y x ⎧=-⎨=⎩,消x 得2440i y y a --=,则12124,4iy y y y a +==-,又()1i y a x =-,则()()()()212121212411,114i i i iy y a x a x y y a x x a +=-+-==--=-,则21212224,1i i a x x x x a ++==,对于A ,()1,0F ,2212212121221111124221241111i i ii i i FA FB x x a a x x a x x x x a ++++++++++=+===+++,故A 正确;对于B ,212122212121444i i A B y y y y k y y x x y y ++===---因为i a 不是定值,所以i iA B k 不是定值,故B 错误;对于C ,设直线()1i y a x =-的倾斜角为i θ,则tan i i a θ=,则22222sin cos 2tan 2sin 2cos sin 1tan 1i i i ii i i i i a a θθθθθθθ===+++,所以()()122211sin 211221i i i i i i a S A F B F x x a θ==++⋅+()2121222222414111211i i i i i i ia a a x x x x a a a a ⎛⎫+=+++⋅=++= ⎪++⎝⎭,又因1232S S S +=,所以123448a a a +=,所以()1232a a a +=,故C 错误;对于D ,因为2123S S S =,所以21234416a a a ⋅=,所以2123a a a =,故D 正确.故选:AD.17.(2023·全国·校联考三模)已知直线:l y kx m =+与椭圆22:134x y C +=交于,A B 两点,点F 为椭圆C 的下焦点,则下列结论正确的是()A .当1m =时,k ∃∈R ,使得3FA FB +=B .当1m =时,k ∀∈R ,2FA FB +>C .当1k=时,m ∃∈R ,使得4FA FB +=D .当1k =时,m ∀∈R ,65FA FB +>【答案】BC【解析】在椭圆C 中,2a =,b =1c =,由题意可得()0,1F -,上焦点记为()01F ,',对于A 选项,设点()11,A x y ,()22,B x y ,联立2214312y kx x y =+⎧⎨+=⎩,消去y 得()2234690k x kx ++-=,()()22236363414410k k k ∆=++=+>,由韦达定理可得122634kx x k +=-+,122934x x k =-+,()2212134k AB k +==+[)2443,434k =-∈+,所以,(]484,5FA FB a AB AB +=-=-∈,选项A 错;对于B 选项,设线段AB 的中点为(),M x y ,由题意可得22112222134134x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差可得22221212034x x y y --+=,因为直线AB 的斜率存在,则12x x ≠,所以,121212122423y y y y y k x x x x x -+⋅=⋅=--+,整理可得43ky x =-,又因为1y kx =+,消去k 可得224330x y y +-=,其中0y >,所以,()()()()11221212,1,1,22,22FA FB x y x y x x y y x y +=+++=+++=+,所以,FA FB +=2=>,选项B 对;对于C 选项,当1k =时,直线l 的方程为y x m =+,即x y m =-,联立224312x y mx y =-⎧⎨+=⎩可得22784120y my m -+-=,()()2226428412162130m m m ∆=--=->,解得m <<由韦达定理可得1287m y y +=,2124127m y y -=,112222y y FA =+=+ ,同理222y FB =+,所以,124444,427y y m FA FB ⎛⎫++=+=+∈ ⎪ ⎪⎝⎭,因为544277⎛∈-+ ⎪ ⎪⎝⎭,所以,当1k =时,m ∃∈R ,使得52FA FB += ,选项C 对;对于D 选项,设线段AB 的中点为(),M x y ,由B 选项可知,121212122423y y y y y x x x x x -+⋅==--+,即43y x =-,即430x y +=,由22434312y x x y ⎧=-⎪⎨⎪+=⎩可得x =M的横坐标的取值范围是77⎛⎫- ⎪ ⎪⎝⎭,,而点F 到直线430x y +=的距离为35d =,由430314x y y x +=⎧⎪⎨=-⎪⎩可得1225x ⎛=∈- ⎝⎭,当且仅当点1216,2525M ⎛⎫- ⎪⎝⎭时,FA FB + 取最小值65,选项D 错.故选:BC.18.(2023·云南·统考二模)已知抛物线C :()220x py p =>的焦点为F ,过F 作直线l与抛物线C 交于A 、B 两点,分别以A 、B 为切点作抛物线C 的切线,两切线交于点T ,设线段AB 的中点为M .若点T 的坐标为12,2⎛⎫- ⎪⎝⎭,则()A .点M 的横坐标为2B .点M 的纵坐标为3C .直线l 的斜率等于2D .5TM =【答案】ACD【解析】抛物线C :()220x py p =>,直线AB :y kx b =+,2p b ⎛⎫= ⎪⎝⎭,设()()1122:,,:,A x y B x y 显然当12x x =时,根据对称性易得T 点位于x 轴上,不合题意,故12x x ≠,且均大于0,22p x xy y p '=⇒=,1AT k p x =,11:()x AT y y x x P-=-,整理:211111()2p y y x x x x x py -=--=,得:()11:AT p y y x x +=⋅,①同理()22:BT p y y x x +=⋅,②①-②:1212()()p y y x x x -=-,1212,T y y x ppk x x -==-1122:y y x y y x +=+①②()()()1221211221121212,kx b x kx b x b x x y x y x y b x x x x x x +-+--⇒====----又因为直线y kx b =+,2pb =,由此知:1122p =故22x y =;因为22x y =,所以y x'=设交点1122(,),(,)A x y B x y ,过点A 的切线斜率为11k x =,所以切线方程为111()y y x x x -=-,整理得1112y y x x y -=-,即11y x x y =-,同理,过点B 的切线的方程为22y x x y =-,又点T 在直线上,代入得AB 直线方程:12,2y x =+故选项C 正确;由21222y x x y⎧=+⎪⎨⎪=⎩消去y 整理得2410x x --=,因为直线与抛物线相交,设()()1122,,,A x y B x y ,则12124,1,x x x x +==-,故点M 的横坐标()1212,2x x x =+=故A 正确,因为点M 的横坐标()1212,2x x x =+=所以1922,22y =⨯+=5TM ==,故选项B 错误,D 正确;故选:ACD19.(2023·浙江杭州·统考一模)设F 为抛物线C :22(0)y px p =>的焦点,过点F 的直线l 与抛物线C 交于()()1122,,A x y B x y 两点,过B 作与x 轴平行的直线,和过点F 且与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,则()A .1212x x y y +为定值B .当直线l 的斜率为1时,OAB (其中O 为坐标原点)C .若Q 为C 的准线上任意一点,则直线QA ,QF ,QB 的斜率成等差数列D .点M 到直线FN 的距离为2p 【答案】ACD【解析】A.,02p F ⎛⎫ ⎪⎝⎭,设直线l 的方程为2p ty x =-,联立222y px p ty x ⎧=⎪⎨=-⎪⎩,化为2220y pty p --=,212y y p ∴=-,122y y pt +=,22412124()p x x y y p == ,2124p x x ∴=,2121234x x y y p ∴+=-为定值,因此A 正确.B.当直线l 的斜率为1时,直线l 的方程为2p y x =-,代入椭圆方程可得:22304p x px -+=,123x x p ∴+=,124AB x x p p ∴=++=,点O 到直线l的距离24pd =,OAB ∴的面积为214242p p ⨯=,因此B 不正确.C.设,2p Q m ⎛⎫- ⎪⎝⎭,则22QF m mk p p p ==---,112211222QA y m py pm k p y p x --==+⎛⎫-- ⎪⎝⎭,222222QB py pm k y p -=+,12222212222222QF QA QB py pm py pm m k k k p y p y p --∴--=--++,通分后分子()()()()()()222222221212212m y p y p p py pm y p p py pm y p ⎡⎤=-+++-++-+⎣⎦,()()()()2224222222222212121212122212m y y mp y y mp p y y y p my mp p y y y p my mp ⎡⎤=-+++++--++--⎢⎥⎣⎦()()2224121222[m y y mp y y mp =-+++()()()242224121212122]p y y y y p y y mp y y mp ++-+-++,()()()1224412122122m y y p y y y y p y y mp ⎡⎤++⎢⎥+-⎣-+⎦=,()()()()2222442202pt pt m p p p p mp =+⎡⎤---+⎢-=⎥⎣⎦即2QF QA QB k k k --0=,则直线QA ,QF ,QB 的斜率成等差数列,因此C 正确.D.如图所示,过点M 作MH FN ⊥,垂足为H ,12AM y MNy =-,122AN y y MN y -∴=-,又AN AF MN MH =,122AF y y MH y -∴=-,22121221212121222222y p py p y p y y x p p p MH y y y y y y ⎛⎫-⎛⎫+++⎪ ⎪⎝⎭⎝⎭∴====---,因此D 正确.故选:ACD .20.(2023·安徽滁州·统考二模)在平面直角坐标系xOy 中,△OAB 为等腰三角形,顶角OAB θ∠=,点()3,0D 为AB 的中点,记△OAB 的面积()S f θ=,则()A .()18sin 54cos f θθθ=-B .S 的最大值为6C .AB 的最大值为6D .点B 的轨迹方程是()22400x y x y +-=≠【答案】ABD【解析】由OAB θ∠=,OA AB =,()3,0D 为AB 的中点,若(,)A x y 且0y ≠,则(6,)B x y --,故222222(62)(2)4(3)4x y x y x y +=-+-=-+,整理得:22(4)4x y -+=,则A 轨迹是圆心为(4,0),半径为2的圆(去掉与x 轴交点),如下图,由圆的对称性,不妨令A 在轨迹圆的上半部分,即02A y <≤,令22OA AB AD a ===,则222||||2cos OD OA AD OA AD θ=+-,所以2254cos 9a a θ-=,则2954cos a θ=-,所以2118sin sin 2sin 254cos OAB OAD OBD S S S OA AB a θθθθ=+===- ,A 正确;由113(0,6]22OAB OAD OBD A B A S S S y OD y OD y =+=⋅+⋅=∈ ,则S 的最大值为6,B 正确;由下图知:(2,6)OA AB =∈,所以AB 无最大值,C 错误;令(,)B m n ,则60A A x my n =-⎧⎨=-≠⎩代入A 轨迹得22(2)4m n -+=,即2240m m n -+=,所以B 轨迹为2240x x y -+=且0y ≠,D 正确;故选:ABD21.(2023·广东深圳·深圳中学校联考模拟预测)已知()11,P x y ,()22,Q x y 是椭圆229144x y +=上两个不同点,且满足121292x x y y +=-,则下列说法正确的是()A .1122233233x y x y +-++-的最大值为65+B .1122233233x y x y +-++-的最小值为35-C .11223535x y x y -++-+的最大值为21025+D .11223535x y x y -++-+的最小值为1022-【答案】AD【解析】由229144x y +=,可得2294x y +=,又()11,P x y ,()22,Q x y 是椭圆2294x y +=上两个不同点,可得2222112294,94x y x y +=+=,设,3x m y n ==,则224m n +=,设1122(,),(,)C m n D m n ,O 为坐标原点,可得11(,)OC m n =,22(,)OD m n = ,可得222211224,4m n m n +=+=,且12122m m n n +=-,所以2OC OD ⋅=-,1cos ,2OC OD OC OD OC OD⋅==-⋅,又[],0,πOC OD ∈ ,可得C D 、两点均在圆224m n +=的圆上,且2π3COD ∠=,设CD 的中点为E ,则π2cos 13OE ==,点C D 、两点到直线230x y +-=的距离12d d 、之和,设E 到直线230x y +-=的距离3d ,由题可知圆心到直线230x y +-=的距离为=,则12322(2(12d d d EO =≤==+1232)1)2d d d EO =≥==+可得12d d +的最大值为2+12d d +2;可得112212233233)x y x y d d +-++-+,可得1122233233x y x y +-++-的最大值为(26=,最小值为6-,故A 正确,B 错误;C D 、两点到直线50x y -+=的距离45d d 、之和,设E 到直线50x y -+=的距离6d ,由题可知圆心到直线50x y -+==则45621)2d d d =≤=+,45621)2d d d =≥-=-+,可得1122453535)x y x y d d -++-+=+,可得1122233233x y x y +-++-的最大值为10+10-C 错误,D 正确.故选:AD.三、填空题22.(2023·浙江·统考二模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F .若1F 关于直线2y x =的对称点P 恰好在C 上,且直线1PF 与C 的另一个交点为Q ,则12cos FQF ∠=__________.【答案】1213【解析】设1(,0)F c -关于直线2y x =的对称点11(,)P x y ,由111121222y x c y x c ⎧⋅=-⎪+⎪⎨-⎪=⋅⎪⎩,得34(,)55c c P -,可知1PF =,2PF =,又知122F F c =,所以2221212PF PF F F +=,则12F PF ∠为直角,由题意,点P 恰好在C 上,根据椭圆定义122PF PF a +=,得a =,122QF QF a +=,设1QF m =,则225QF a m c m =-=-,在直角三角形2QPF △中,222())()m m +=-,解得25m c =,从而225QF =,25QP =,所以22112cos 13F QP QF F Q ∠==.故答案为:121323.(2023·山东枣庄·统考二模)已知点()1,2A 在抛物线22y px =上,过点A 作圆()2222x y -+=的两条切线分别交抛物线于B ,C 两点,则直线BC 的方程为____________.【答案】330x y ++=【解析】因为点()1,2A 在抛物线22y px =上,则2221p =⨯,解得2p =,即抛物线方程为24y x =,显然过点A 作圆()2222x y -+=的两条切线斜率存在,设此切线方程为2(1)y k x -=-,即20kx y k --+=,,解得1222k k ==-221212(,),()44y y B y C y ,不妨令直线,AB AC 的斜率分别为12,k k,于是1211242214y y y -==++-,12y =,同理22y =,直线BC 的斜率122212124414432244y y k y y y y -====-+---,而点,B ,直线BC的方程为1(3y x +=-,即330x y ++=.故答案为:330x y ++=24.(2023·陕西商洛·统考二模)已知椭圆22:143x y C +=,()12,0A -,()11,0F -,斜率为(0)k k ≠的直线与C交于P ,Q 两点,若直线1A P 与1AQ 的斜率之积为14-,且1PFQ ∠为钝角,则k 的取值范围为_______.【答案】3737,00,77⎛⎫⎛⎫-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【解析】设:PQ l y kx m =+,()11,P x y ,()22,Q x y ,联立方程组22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()2223484120k x kmx m +++-=,由0∆>,即22430k m -+>,所以122834km x x k -+=+,212241234m x x k -=+,122634m y y k +=+,2212231234m k y y k -=+,所以()()1122122212312122416164A P A Qy y m k k k x x m km k -⋅===-++-+,解得2m k =(舍去)或m k =-.由1PFQ ∠为钝角,得110F РFQ ⋅<,即()()11221212121,1,10x y x y x x x x y y +⋅+=++++<,所以2222222241289791034343434k k k k k k k k---+++=<++++,解得k <因为0k ≠,所以0,77k ⎛⎫⎛∈-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.故答案为:,00,77⎛⎫⎛-⋃ ⎪ ⎪ ⎝⎭⎝⎭.25.(2023·辽宁葫芦岛·统考一模)已知双曲线2222:1(0,0)x y M a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线右支上的一点,Q 为12F F P 的内心,且12234QF QF PQ +=,则M 的离心率为______.【答案】4【解析】如图所示,在焦点三角形中,处长PQ 交12F F 于点A ,因为Q 为12F F P 的内心,所以有111122=,=PF PQ PF AF AF QA PF AF ,()()1111111111PF PF PQ QA PQ QF F A AF PQ PF QF F AAF AF =⋅⇒=⋅+⇒⋅=⋅+ 11111111111212AF AF PQ PF QF PF F A AF PQ PF QF PF F F F F ⎛⎫⇒⋅=⋅+⋅⇒⋅=⋅+⋅⋅ ⎪ ⎪⎝⎭ ()111111212AF AF PQ PF QF PF FQ QF F F ⇒⋅=⋅+⋅⋅+()11211211112AF F F PQ PF F F QF PF AF F Q QF ⇒⋅⋅=⋅⋅+⋅⋅+1121121111112AF F F PQ PF F F QF PF AF F Q PF AF QF ⇒⋅⋅=⋅⋅+⋅⋅+⋅⋅112121112AF F F PQ PF AF QF PF AF QF ⇒⋅⋅=⋅⋅+⋅⋅12121121PF AF F F PQ QF PF QF AF ⋅⇒⋅=⋅+⋅12121121PF PF F F PQ QF PF QF PF ⋅⇒⋅=⋅+⋅122112F F PQ PF QF PF QF ⇒⋅=⋅+⋅,因为12234QF QF PQ += ,所以有12124,3,2F F k PF k PF k ===,因此M 的离心率为1212242F F c ca a PF PF ===-,故答案为:426.(2023·浙江嘉兴·统考二模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为e ,点P 在椭圆上,连接1PF 并延长交C 于点Q ,连接2QF ,若存在点P使2PQ QF =成立,则2e 的取值范围为___________.【答案】)8211,1⎡-⎣【解析】设11,QF m PF n ==,则22QF a m =-.显然当P 靠近右顶点时,2PQ QF >,所以存在点P 使2PQ QF =等价于()22min0,22PQ QF PQ QF m n a -≤-=+-,在12PF F △中由余弦定理得22221121122cos PF PF F F PF F F θ=+-⋅⋅,即()2222422cos a n n c n c θ-=+-⋅⋅,解得2cos b n a c θ=-,同理可得2cos b m a c θ=+,所以2112a m n b +=,所以()(222322112223222b b b n m m n m n a m n a m n a +⎛⎫⎛⎫+=++=++≥ ⎪ ⎪⎝⎭⎝⎭,所以22min(21)(22)22b m n a a a+-=-,当且仅当2n m =时等号成立.由221)202b a a-≤得2212b a ≤-,所以2111e -≤<.故答案为:)11,1⎡⎣27.(2023·全国·东北师大附中校联考模拟预测)已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,过点F 且斜率为2的直线与双曲线C 的两条渐近线分别交于M 、N 两点,若P 是线段MN的中点,且5PF c =,则双曲线的离心率为___________.【答案】()()()222111.8?1211.7?1211.9?1220⎡⎤⨯+++⎣⎦【解析】设直线MN 为()2y x c =-,双曲线的渐近线方程为by x a=±,联立()2b y x a y x c ⎧=⎪⎨⎪=-⎩可得,22ac x a b =-,22bc y a b =-,不妨令22,22c M acb a b a b ⎛⎫ ⎝-⎭-,同理可得22,22b N ac c a b a b ⎛⎫⎪⎝-+⎭+,设()00,P x y ,则20222242224ac ac a c a b a b x a b +-+==-,2222222224bc bcb c a b a b y a b --+==-,故22222242,44a c b cP a b a b⎛⎫ ⎪--⎝⎭,故PF ==,解得4224320b a b a +-=,方程两边同时除以4a 得,42320b b a a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令22b t a =,可得2320t t +-=,解得23t =或-1(舍去),故c e a =.28.(2023·陕西汉中·统考二模)已知()30A -,,()3,0B ,P 为平面内一动点(不与,A B 重合),且满足2PA PB=,则PA PB ⋅的最小值为______.【答案】8-【解析】设(),P x y ,∵2PA PB=2=,整理得221090x y x +-+=,即()22516x y -+=,可得[]22109,1,9x y x x +=-∈,又∵()()3,,3,PA x y PB x y =---=--uu r uu r,则()()()()22233910991018PA PB x x y x y x x ⋅=---+-=+-=--=-uu r uu r ,∵[]1,9x ∈,可得当1x =时,PA PB ⋅取到最小值101188⨯-=-.故答案为:8-.29.(2023·辽宁丹东·统考一模)经过坐标原点O 的直线与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,过A 垂直于AB 的直线与C 交于点D ,直线DB 与y 轴相交于点E ,若22OB OE OE ⋅=,则C 的离心率为_______.【解析】设直线BD 的方程为()11(0),,y kx m k B x y =+≠,()22,D x y ,则()()11,,0,A x y E m --,由22221y kx m x y ab =+⎧⎪⎨+=⎪⎩,得()22222222220b a k x kma x a m a b +++-=,显然存在,k m ,使得0∆>,故由韦达定理得222121222222222,2kma k ma x x y y m b a k b a k +=-+=-+++,因为22OB OE OE ⋅= ,则212y m m =,即12y m =,则2211222212,,2,2,AB y m m k ma x B m k k y k k x b a k ⎛⎫====- ⎪+⎝⎭,因为AB AD ⊥,所以121212ADy y k x x k +==-+,即22222222221222k ma kma m b a k k b a k ⎛⎫-+=-- ⎪++⎝⎭,即222222222k a b k a a -++=,化简得222a b =,所以2c e a ===,故答案为:2.30.(2023·山西·校联考模拟预测)抛物线的光学性质是:位于抛物线焦点处的点光源发出的每一束光经抛物线反射后的反射线都与抛物线的对称轴平行或重合.设抛物线C :24y x =的焦点为F ,过点()7,0的直线交C 于A ,B 两点,且AF BF ⊥,若C 在A ,B 处的切线交于点P ,Q 为PAB 的外心,则QAB 的面积为______.【答案】108【解析】如图,易知C 的焦点为()1,0F ,显然当AB ⊥x 轴时,AF 不垂直于BF ,设过点()7,0的直线l 的斜率为k (0k >).则l :()7y k x =-,将()7y k x =-代入24y x =,得()2274k x x -=,即22222(72)490k x k x k -++=.设()11,A x y ,()22,B x y ,则()2122272k x x k++=,1249x x=,又()111,FA x y =- ,()221,FB x y =-,所以()()1212110FA FB x x y y ⋅=--+= ,所以()()()()121211770x x k x k x --+-⨯-=,即()()()22212121171490kx x k x x k+-++++=,所以()()()22222272149171490k k k kk ++⨯-+⨯++=,即2840k -=,解得212k =,所以()222222121212227211()41()449k AB k x kx x x x kk+=+-=++-=+-⨯242161121123k k k=++=,设PA ,PB 与x 轴正方向的夹角分别为,αβ,由抛物线的光学性质可知APB αβ∠=+,π222AFB αβ∠=+=,故π4APB αβ∠=+=,且由圆的性质可知π22AQB APB ∠=∠=,所以QAB 是等腰直角三角形,其中22AQ BQ ==,故221|108224QAB AQ S AQ BQ AB∆=⋅===.故答案为:108.。
高考数学压轴题——圆锥曲线大题十个大招含答案全解析

终结圆锥曲线大题十个大招招式一:弦的垂直平分线问题 (25)招式二:动弦过定点的问题 (26)招式四:共线向量问题 (28)招式五:面积问题 (35)招式六:弦或弦长为定值、最值问题 (38)招式七:直线问题 (43)招式八:轨迹问题 (47)招式九:对称问题 (54)招式十、存在性问题 (57)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
例题分析1:已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=.招式二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
圆锥曲线(学生版)--2024年高考数学大题突破

圆锥曲线目录【题型一】轨迹【题型二】新结构卷中19题“定义”型轨迹【题型三】直线所过定点不在坐标轴上【题型四】面积比值范围型【题型五】非常规型四边形面积最值型【题型六】“三定”型:圆过定点【题型七】“三定”型:斜率和定【题型八】“三定”型:斜率积定【题型九】圆锥曲线切线型【题型十】“韦达定理”不能直接用【题型十一】“非韦达”型:点带入型【题型一】轨迹求轨迹方程的常见方法有:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q的坐标x、y表示相关点P的坐标x0、y0,然后代入点P的坐标x0,y0所满足的曲线方程,整理化简可得出动点Q的轨迹方程;(4)参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一参数t得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.1(2024·重庆·模拟预测)已知点F-1,0和直线m:x=2,点P到m的距离d=4-2PF.(1)求点P的轨迹方程;(2)不经过圆点O的直线l与点P的轨迹交于A,B两点. 设直线OA,OB的斜率分别为k1,k2,记k1k2 =t,是否存在t值使得△OAB的面积为定值,若存在,求出t的值;若不存在,说明理由.2(2024·辽宁·一模)已知平面上一动点P到定点F12,0的距离比到定直线x=-2023的距离小40452,记动点P的轨迹为曲线C.(1)求C的方程;(2)点A2,1,M,N为C上的两个动点,若M,N,B恰好为平行四边形MANB的其中三个顶点,且该平行四边形对角线的交点在第一、三象限的角平分线上,记平行四边形MANB的面积为S,求证:S≤86 9.3(2024·山东淄博·一模)在平面直角坐标系xOy 中,点.F 5,0 ,点P x ,y 是平面内的动点.若以PF 为直径的圆与圆D :x 2+y 2=1相切,记点P 的轨迹为曲线C .(1)求C 的方程;(2)设点A (1,0),M (0,t ),N (0,4-t )(t ≠2),直线AM ,AN 分别与曲线C 交于点S ,T (S ,T 异于A ),过点A 作AH ⊥ST ,垂足为H ,求|OH |的最大值.【题型二】新结构卷中19题“定义”型轨迹1(2024·新疆乌鲁木齐·二模)在平面直角坐标系xOy 中,重新定义两点A x 1,y 1 ,B x 2,y 2 之间的“距离”为AB =x 2-x 1 +y 2-y 1 ,我们把到两定点F 1-c ,0 ,F 2c ,0 c >0 的“距离”之和为常数2a a >c 的点的轨迹叫“椭圆”.(1)求“椭圆”的方程;(2)根据“椭圆”的方程,研究“椭圆”的范围、对称性,并说明理由;(3)设c =1,a =2,作出“椭圆”的图形,设此“椭圆”的外接椭圆为C ,C 的左顶点为A ,过F 2作直线交C 于M ,N 两点,△AMN 的外心为Q ,求证:直线OQ 与MN 的斜率之积为定值.2(2024·湖南·二模)直线族是指具有某种共同性质的直线的全体,例如x=ty+1表示过点(1,0)的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆C1:x2+y2=1是直线族mx+ny=1(m,n∈R)的包络曲线,求m,n满足的关系式;(2)若点P x0,y0不在直线族:Ω:(2a-4)x+4y+(a-2)2=0(a∈R)的任意一条直线上,求y0的取值范围和直线族Ω的包络曲线E;(3)在(2)的条件下,过曲线E上A,B两点作曲线E的切线l1,l2,其交点为P.已知点C0,1,若A,B,C三点不共线,探究∠PCA=∠PCB是否成立?请说明理由.3(2024·全国·模拟预测)已知复平面上的点Z对应的复数z满足z2-z2-9=7,设点Z的运动轨迹为W.点 O 对应的数是0.(1)证明W是一个双曲线并求其离心率e;(2)设W的右焦点为 F1 ,其长半轴长为L,点Z到直线x=Le的距离为d(点Z在W的右支上),证明:ZF1=ed;(3)设W的两条渐近线分别为 l1,l2 ,过Z分别作 l1,l2 的平行线l3,l4分别交l2,l1于点 P,Q ,则平行四边形OPZQ的面积是否是定值?若是,求该定值;若不是,说明理由.【题型三】直线所过定点不在坐标轴上存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.1已知点M 是抛物线C :x 2=2py p >0 的对称轴与准线的交点,过M 作抛物线的一条切线,切点为P ,且满足PM =22.(1)求抛物线C 的方程;(2)过A -1,1 作斜率为2的直线与抛物线C 相交于点B ,点T 0,t t >0 ,直线AT 与BT 分别交抛物线C 于点E ,F ,设直线EF 的斜率为k ,是否存在常数λ,使得t =λk ?若存在,求出λ值;若不存在,请说明理由.2已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为233,点P 2,3 到其左右焦点F 1,F 2的距离的差为2.(1)求双曲线C 的方程;(2)在直线x +2y +t =0上存在一点Q ,过Q 作两条相互垂直的直线均与双曲线C 相切,求t 的取值范围.3已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上任意一点Q (异于顶点)与双曲线两顶点连线的斜率之积为19,E 在双曲线C 上,F 为双曲线C 的右焦点,|EF |的最小值为10-3.(1)求双曲线C 的标准方程;(2)过椭圆x 2m 2+y 2n2=1(m >n >0)上任意一点P (P 不在C 的渐近线上)分别作平行于双曲线两条渐近线的直线,交两渐近线于M ,N 两点,且|PM |2+|PN |2=5,是否存在m ,n 使得椭圆的离心率为223?若存在,求出椭圆的方程,若不存在,说明理由.【题型四】面积比值范围型圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.1(2022·全国·高三专题练习)F c,0是椭圆C:x2a2+y2b2=1a>b>0的右焦点,其中c∈N*.点A、B分别为椭圆E的左、右顶点,圆F过点B与坐标原点O,P是椭圆上异于A、B的动点,且△PBF的周长小于8.(1)求C的标准方程;(2)连接BP与圆F交于点Q,若OQ与AP交于点M,求S△OPQS△MBQ的取值范围.2(2023下·福建福州·高三校考)如图,已知圆C:x2a2+y2b2=1(a>b>0)的左顶点A(-2,0),过右焦点F的直线l与椭圆C相交于M,N两点,当直线l⊥x轴时,|MN|=3.(1)求椭圆C的方程;(2)记△AMF,△ANF的面积分别为S1,S2,求S1S2的取值范围.3(2022·湖北黄冈·蕲春县第一高级中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,左、右焦点分别为F 1,F 2,圆A 2:(x -2)2+y 2=r 2(r >0),椭圆C 与圆A 2交于点D ,且k DA2⋅k DA 1=-34.(1)求椭圆方程.(2)若过椭圆右焦点F 2的直线l 与椭圆C 交于P ,Q 两点,与圆A 2交于M ,N 两点,且S △A 1PQS △A 2MN=3,求r 的取值范围.【题型五】非常规型四边形面积最值型求非常规型四边形的面积最大值,首先要选择合适的面积公式,对于非常规四边形,如果使用的面积公式为S DMEN=12x N-x My1-y2,为此计算y1-y2,x N-x M代入转化为k的函数求最大值.1(2023·全国·高三专题练习)已知圆O:x2+y2=4,O为坐标原点,点K在圆O上运动,L为过点K的圆的切线,以L为准线的拋物线恒过点F1-3,0,F23,0,抛物线的焦点为S,记焦点S的轨迹为S.(1)求S的方程;(2)过动点P的两条直线l1,l2均与曲线S相切,切点分别为A,B,且l1,l2的斜率之积为-1,求四边形PAOB面积的取值范围.2(2023·全国·高三专题练习)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点,以F1F2为直径的圆和椭圆C在第一象限的交点为G,若三角形GF1F2的面积为1,其内切圆的半径为2-3.(1)求椭圆C的方程;(2)已知A是椭圆C的上顶点,过点P-2,1的直线与椭圆C交于不同的两点D,E,点D在第二象限,直线AD、AE分别与x轴交于M,N,求四边形DMEN面积的最大值.3(2023·全国·高三专题练习)如图.已知圆M :(x -2)2+y 2=81,圆N :(x +2)2+y 2=1.动圆S 与这两个圆均内切.(1)求圆心S 的轨迹C 的方程;(2)若P 2,3 、Q 2,-3 是曲线C 上的两点,A 、B 是曲线C 上位于直线PQ 两侧的动点.若直线AB 的斜率为12,求四边形APBQ 面积的最大值.【题型六】“三定”型:圆过定点圆过定点思维:1.可以根据特殊性,计算出定点,然后证明2.利用以“某线段为直径”,转化为向量垂直计算2.利用对称性,可以猜想出定点,并证明。
江苏省一轮复习专题突破训练:圆锥曲线

江苏省2017年高考一轮复习专题突破训练圆锥曲线一、填空题1、(2016年江苏高考)在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.2、(2016年江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2by =与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是 ▲ .3、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值为___ __________。
4、(南京市2016届高三三模)设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为▲________.5、(南通市2016届高三一模)在平面直角坐标系xOy 中,已知双曲线)0,0(12222>>=-b a by a x 过点)1,1(P ,其一条渐近线方程为x y 2=,则该双曲线的方程为6、(苏锡常镇四市2016届高三一模)在平面直角坐标系xOy 中,已知方程2242x y m m--+=1 表示双曲线,则实数m 的取值范围为 .7、(苏锡常镇四市市2016届高三二模)若双曲线221x my +=过点()22-,,则该双曲线的虚轴长为 ▲8、(镇江市2016届高三一模)以抛物线y 2=4x 的焦点为焦点,以直线y =±x 为渐近线的双曲线标准方程为________.9、(南通市海安县2016届高三上期末)在平面直角坐标系xOy 中,已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线的方程为x y 3=则该双曲线的离心率为 10、(苏州市2016届高三上期末)双曲线22145x y -=的离心率为 ▲11、(泰州市2016届高三第一次模拟)在平面直角坐标系xOy 中,双曲线2212x y -=的实轴长为 ▲ .12、(无锡市2016届高三上期末)设ABC ∆是等腰三角形,120ABC ∠=,则以A 、B 为焦点且过点C 的双曲线的离心率为13、(扬州市2016届高三上期末)双曲线116922=-y x 的焦点到渐近线的距离为 ▲ 二、解答题1、(2016年江苏高考)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M:221214600x y x y +--+=及其上一点A(2,4)(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x=6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC=OA,求直线l 的方程;(3)设点T (t,o )满足:存在圆M 上的两点P 和Q,使得,TA TP TQ +=,求实数t 的取值范围。
江苏省高考数学一轮复习 专题突破训练 圆锥曲线-人教版高三全册数学试题

江苏省2016年高考一轮复习专题突破训练圆锥曲线一、填空题1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P到直线10x y -+=的距离大于c 恒成立,则c 的最大值为__________。
2、(2013年江苏高考)双曲线191622=-y x 的两条渐近线的方程为 。
3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 。
4、(2015届南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C :y x 42=的焦点为F ,定点)0,22(A ,若射线FA 与抛物线C 相交于点M ,与抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市2015届高三教学情况调研(二))已知双曲线22221(,0)x y a b a b-=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲6、(泰州市2015届高三第二次模拟考试)已知双曲线2214x y m-=的渐近线方程为2y x =±,则m = ▲7、(盐城市2015届高三第三次模拟考试)若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则n 的值为 ▲8、(2015届江苏南京高三9月调研)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±3x ,则该双曲线的离心率为 ▲9、(2015届江苏苏州高三9月调研)已知双曲线2215x y m -=的右焦点与抛物线212y x =的焦点相同,则此双曲线的渐近线方程为 ▲Y10、(南京市、盐城市2015届高三)若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ .11、(南通市2015届高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是12、(苏州市2015届高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为13、(泰州市2015届高三上期末)双曲线12222=-by a x 的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e = ▲14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线2219x y m-=的一个焦点为(5,0),则实数m = ▲15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 ▲ 二、解答题1、(2015年江苏高考)如图,在平面直角坐标系xoy 中,已知椭圆22221x y a b+=(0)a b >>的离心率为22,且右焦点F 到左准线l 的距离为3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中档大题规范练——圆锥曲线1.已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为 3.(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l0与y 轴交于M(0,b),求b 的取值范围.解 (1)设双曲线方程为x2a2-y2b2=1 (a>0,b>0),由已知,得a =3,c =2,b2=c2-a2=1,故双曲线方程为x23-y2=1.(2)设A(xA ,yA),B(xB ,yB),将y =kx +2代入x23-y2=1,得(1-3k2)x2-62kx -9=0.由题意,知⎩⎪⎨⎪⎧ 1-3k2≠0,Δ=36(1-k2)>0,xA +xB =62k 1-3k2<0,xAxB =-91-3k2>0,解得33<k<1. 所以当33<k<1时,直线l 与双曲线C 的左支有两个交点.(3)由(2),得xA +xB =62k 1-3k2, 所以yA +yB =(kxA +2)+(kxB +2)=k(xA +xB)+22=221-3k2, 所以AB 中点P 的坐标为⎝ ⎛⎭⎪⎫32k 1-3k2,21-3k2. 设l0的方程为y =-1k x +b ,将P 点的坐标代入l0的方程,得b =421-3k2, ∵33<k<1,∴-2<1-3k2<0,∴b<-2 2.∴b 的取值范围是(-∞,-22).2.已知离心率为12的椭圆C1的左,右焦点分别为F1,F2,抛物线C2:y2=4mx(m>0)的焦点为F2,设椭圆C1与抛物线C2的一个交点为P(x0,y0),PF1=73.(1)求椭圆C1的标准方程及抛物线C2的标准方程;(2)直线x =m 与椭圆C1在第一象限的交点为Q ,若存在过点A(4,0)的直线l 与椭圆C1相交于不同的两点M ,N ,使得36AQ2=35AM·AN ,求出直线l 的方程.解 (1)∵在椭圆C1中c =m ,e =12,∴a =2m ,b2=3m2,设椭圆C1的方程为x24m2+y23m2=1,联立x24m2+y23m2=1与y2=4mx ,得3x2+16mx -12m2=0,即(x +6m)·(3x -2m)=0,得x =2m 3或-6m(舍去),代入y2=4mx 得y =±26m3, ∴设点P 的坐标为(2m 3,26m3),PF2=2m 3+m =5m3, PF1=2a -5m 3=7m 3=73,∴m =1,此时,椭圆C1的标准方程为x24+y23=1,抛物线C2的标准方程为y2=4x.(2)由题设知直线l 的斜率存在,设直线l 的方程为y =k(x -4),由⎩⎪⎨⎪⎧ y =k (x -4),x24+y23=1,消去y 整理,得(3+4k2)x2-32k2x +64k2-12=0.由题意知Δ=(-32k2)2-4(3+4k2)(64k2-12)>0,解得-12<k<12.设M(x1,y1),N(x2,y2),则x1+x2=32k23+4k2,x1x2=64k2-123+4k2.由(1)知m =1,∴⎩⎪⎨⎪⎧ x=1,x24+y23=1,解得⎩⎪⎨⎪⎧ x =1,y =±32,∴点Q 的坐标是(1,32).∴AQ2=454,由已知条件可知AM·AN =3635×454=817. 又AM·AN =(4-x1)2+y21·(4-x2)2+y22=(4-x1)2+k2(4-x1)2·(4-x2)2+k2(4-x2)2=(k2+1)·(4-x1)·(4-x2)=(k2+1)[x1x2-4(x1+x2)+16]=(k2+1)(64k2-123+4k2-4×32k23+4k2+16) =(k2+1)·363+4k2. ∴(k2+1)·363+4k2=817, 解得k =±24,经检验成立.∴直线l 的方程为x -22y -4=0或x +22y -4=0.3.(2013·课标全国Ⅱ)平面直角坐标系xOy 中,过椭圆M :x2a2+y2b2=1(a>b>0)右焦点的直线x+y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. 解 (1)设A(x1,y1),B(x2,y2),则x21a2+y21b2=1,① x22a2+y22b2=1,②①-②,得(x1-x2)(x1+x2)a2+(y1-y2)(y1+y2)b2=0. 因为y1-y2x1-x2=-1,设P(x0,y0), 因为P 为AB 的中点,且OP 的斜率为12,所以y0=12x0,即y1+y2=12(x1+x2).所以可以解得a2=2b2,即a2=2(a2-c2),即a2=2c2,又因为右焦点(c,0)在直线x +y -3=0上,解得c =3,所以a2=6,所以M 的方程为x26+y23=1. (2)因为CD ⊥AB ,直线AB 方程为x +y -3=0,所以设直线CD 方程为y =x +m ,将x +y -3=0代入x26+y23=1得:3x2-43x =0,即A(0,3),B ⎝⎛⎭⎪⎫433,-33, 所以可得AB =463;将y =x +m 代入x26+y23=1得:3x2+4mx +2m2-6=0,设C(x3,y3),D(x4,y4), 则CD =2(x3+x4)2-4x3x4=22318-2m2,又因为Δ=16m2-12(2m2-6)>0,即-3<m<3,所以当m =0时,CD 取得最大值4,所以四边形ACBD 面积的最大值为12AB·CD =863.4.已知椭圆C :x2a2+y2b2=1(a>b>0),⊙O :x2+y2=b2,点A ,F 分别是椭圆C 的左顶点和左焦点,点P 是⊙O 上的动点.(1)若P(-1,3),PA 是⊙O 的切线,求椭圆C 的方程;(2)是否存在这样的椭圆C ,使得PA PF 恒为常数?如果存在,求出这个常数及C 的离心率e ;如果不存在,请说明理由.解 (1)由P(-1,3)在⊙O :x2+y2=b2上,得b2=1+3=4.直线PA 的斜率kPA =3-0-1-(-a )=3a -1,而直线PA 的斜率kPA =-1kOP =13,所以3a -1=13,解得a =4.所以a2=16,所以椭圆C 的方程为x216+y24=1.(2)假设存在椭圆C ,使得PA PF 恒为常数.设椭圆C 的半焦距为c ,当P(-b,0)时,则有PA PF =a -b |c -b|; 当P(b,0)时,则有PA PF =a +b b +c. 依假设有a -b |c -b|=a +b b +c. ①当c -b>0时,有a -b c -b =a +b b +c, 所以(a -b)(b +c)=(a +b)(c -b),化简整理得a =c ,这是不可能的.②当c -b<0时,有a -b b -c =a +b b +c.所以(a -b)(b +c)=(a +b)(b -c),化简整理得ac -b2=0.所以c2-a2+ac =0,两边同除以a2,得e2+e -1=0.解得e =-1+52,或e =-1-52∉(0,1)(舍去). 可见,若存在椭圆C 满足题意,只可能离心率e =-1+52. 设P(x ,y)为⊙O :x2+y2=b2上任意一点,则PA PF =(x +a )2+y2(x +c )2+y2PA2PF2=(x +a )2+b2-x2(x +c )2+b2-x2=2ax +a2+b22cx +c2+b2=2ax +2a2-c22cx +a2.(*)由上c2-a2+ac =0,得a2-c2=ac , 所以2a2-c2a2·c a =a2+ac a2·c a=a +c a2·c =ac +c2a2=a2a2=1,从而2a2-c2a2=a c .代入(*)式得PA2PF2=a c =5+12,所以存在满足题意的椭圆C ,这个常数为 5+12, 椭圆C 的离心率为e =-1+52. 5.已知平面内一动点P 到点F(1,0)的距离与点P 到y 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C 相交于点A ,B ,l2与轨迹C 相交于点D ,E ,求AD →·EB →的最小值.解 (1)设动点P 的坐标为(x ,y),由题意有(x -1)2+y2-|x|=1.化简得y2=2x +2|x|.当x≥0时,y2=4x ;当x<0时,y =0.所以,动点P 的轨迹C 的方程为y2=4x (x≥0)和y =0 (x<0).(2)由题意知,直线l1的斜率存在且不为0,设为k ,则l1的方程为y =k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y2=4x ,得k2x2-(2k2+4)x +k2=0.设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1+x2=2+4k2,x1x2=1.因为l1⊥l2,所以l2的斜率为-1k .设D(x3,y3),E(x4,y4),则同理可得x3+x4=2+4k2,x3x4=1.故AD →·EB →=(AF →+FD →)·(EF →+FB →)=AF →·EF →+AF →·FB →+FD →·EF →+FD →·FB →=|AF →|·|FB →|+|FD →|·|EF →|=(x1+1)(x2+1)+(x3+1)(x4+1)=x1x2+(x1+x2)+1+x3x4+(x3+x4)+1=1+⎝⎛⎭⎫2+4k2+1+1+(2+4k2)+1 =8+4⎝⎛⎭⎫k2+1k2≥8+4×2k2·1k2=16.当且仅当k2=1k2,即k =±1时,AD →·EB →取最小值16.6.在平面直角坐标系xOy 中,动点P 在椭圆C1:x22+y2=1上,且到椭圆C1的右焦点的距离与到直线x =2的距离之比等于椭圆的离心率.动点Q 是动圆C2:x2+y2=r2(1<r<2)上一点.(1)设椭圆C1上的三点A(x1,y1),B(1,22),C(x2,y2)与点F(1,0)的距离依次成等差数列,线段AC 的垂直平分线是否经过一个定点?请说明理由;(2)若直线PQ 与椭圆C1和动圆C2均只有一个公共点,求P ,Q 两点的距离PQ 的最大值.解 (1)椭圆C1:x22+y2=1的离心率e =22,右焦点为(1,0),由题意可得AF =22(2-x1),BF =22(2-1),CF =22(2-x2).因为2BF =AF +CF , 所以22(2-x1)+22(2-x2)=2×22(2-1),即得x1+x2=2.因为A ,C 在椭圆上,故有x212+y21=1,x222+y22=1,两式相减,得kAC =y2-y1x2-x1=-x2+x12(y2+y1)=-1y2+y1.设线段AC 的中点为(m ,n),而m =x1+x22=1,n =y1+y22,所以与直线AC 垂直的直线斜率为k′=y2+y1=2n. 则线段AC 的垂直平分线的方程为y -n =2n(x -1), 即y =n(2x -1)经过定点(12,0).即线段AC 的垂直平分线过一个定点(12,0).(2)依题意得,直线PQ 的斜率显然存在,设直线PQ 的方程为y =kx +t ,设P(x′1,y′1),Q(x′2,y′2),由于直线PQ 与椭圆C1相切,点P 为切点,从而有⎩⎪⎨⎪⎧ y′1=kx′1+t ,x ′212+y ′21=1,得(2k2+1)x′21+4ktx′1+2(t2-1)=0.故Δ=(4kt)2-4×2(t2-1)(2k2+1)=0,从而可得t2=1+2k2,x′1=-2k t ,①直线PQ 与圆C2相切,则|t|1+k2=r ,得t2=r2(1+k2),②由①②得k2=r2-12-r2,并且PQ2=OP2-OQ2=1+2k21+2k2-r2 =3-r2-2r2≤3-22=(2-1)2.即0<PQ≤2-1,当且仅当r2=2∈(1,4)时取等号, 故P ,Q 两点的距离PQ 的最大值为2-1.。