第3章 流体动力学(1.2.3)

合集下载

流体力学3章讲稿

流体力学3章讲稿

Chapter 3 流体动力学积分形式的基本方程流体动力学用欧拉法研究流体运动与所受外力的关系,功能守衡关系。

§3.1 拉格朗日型基本方程(理论力学质点系基本方程)1) 连续方程:一个确定的质点系, 质量守恒。

数学表达式 0=dtdm2)动量方程:质点系动量对时间的变化率等于作用在该系统上的合外力数学表达式 F K∑=dtd ⎰⎰⎰⎰⎰+=ττρdA d A n p f3)动量矩方程:质点系对某点的动量矩对时间的变化率等于作用在系统上的所有外力对同一点的力矩代数和。

数学表达式 dtd oM ⎰⎰⎰⎰⎰⨯+⨯=ττρdA d A n p r f r4)能量方程:单位时间内由外界传给质点系的热量Q 与外力对质点系所作的功W 之和, 等于系统的总能量E 对于时间的变化率。

数学表达式 =+W Q dt dE ⎰⎰⎰+=ττρd V e dtd)2(2 因 ⎰⎰⎰+⎰⎰=τλτρd q dA q Q R A 传导热 辐射热 ⎰⎰⋅+⎰⎰⎰⋅=A n dA d W V p V f τρτ 质量力功率 表面力功率即=⎰⎰⎰+ττρd V e dt d )2(2⎰⎰⎰+⎰⎰τλτρd q dA q R A ⎰⎰⋅+⎰⎰⎰⋅+A n dA d V p V f τρτ 拉格朗日型积分形式的能量方程§3.2 欧拉型基本方程利用输运公式 ⎰⎰⎰0ττφd dt d =⎰⎰⎰∂∂ττφd t+dA A )(n V ⋅⎰⎰φ或⎰⎰⎰0ττφd dt d =⎰⎰⎰∂∂ττφd t-dA V n A 入入⎰⎰φ+dA V n A 出出⎰⎰φ和拉格朗日型的积分方程转换得到3.2.1 连续方程令输运公式中Φ=ρ,代入拉氏型连续方程得dt dm =0⎰⎰⎰=0ττρd dt d=⎰⎰⎰∂∂ττρd t +dA A )(n V ⋅⎰⎰ρ即 -=⎰⎰⎰∂∂ττρd t dA A )(n V ⋅⎰⎰ρ 欧拉型连续方程或 =⎰⎰⎰∂∂ττρd tdA V n A 入入⎰⎰ρdA V n A 出出⎰⎰-ρ物理意义:控制体内质量的增加速率, 等于通过控制面A 流入的质量(流入-流出)的代数和。

第三章 流体力学

第三章 流体力学
1、理想流体:
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax

P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0

gh

p0

1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮

1 2
V

v
2 1

gh2V


gh1V
即:
p1

1 2

v
2 1

gh1

第3章-流体力学连续性方程微分形式

第3章-流体力学连续性方程微分形式

• 符号说明
物理意义
z 单位重流体的位能(比位能)
p
单位重流体的压能(比压能)
u 2 单位重流体的动能(比动能)
2g
z
p
单位重流体总势能(比势能)
z
p
u2 2g
总比能
第四节 欧拉运动微分方程的积分
几何意义
位置水头 压强水头 流速水头 测压管水头 总水头
( Xdx Ydy
Zdz)
1
(
p x
0
物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量) ,
与流出的流体体积(质量)之差等于零。
适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。
第三节 流体动力学基本方程式
6
二、理想流体运动微分方程
理想流体的动水压强特性与静水压强的特性相同:
px py pz p
从理想流体中任取一(x,y,z)为 中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。
u2
( )dx ( )dy ( )dz
z x x 2
y 2
z 2
u2 d( )
2
由以上得:
gdz
d
(
p
)
d
u2 (
)
2
积分得:
z
p
u2 2g
C
第四节 欧拉运动微分方程的积分
• 理想势流伯努里方程
17
z
p
u2 2g
C

z1
p 1
u2 1
2g
z2
p2
u22 2g
物理意义:在同一恒定不可压缩流体重力势流中 ,理想流体各点的总比能 相等即在整个势流场中,伯努里常数C均相等。(应用条件:“——”所示)

第3章流体力学连续性方程微分形式

第3章流体力学连续性方程微分形式

第四节 欧拉运动微分方程的积分
du p p p du d y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt d
<I> <II> <III>
p 2、均匀不可压缩流体,即=Const; <II>= d ( )
中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。 受力分析(x方向为例): 1.表面力
z
A'
D' M p(x,y,z) B' N
C'
p dx p x 2
dz dx D dy A
O
o’
p dx p Cx 2
B
x
∵理想流体,∴=0
左表面
y
p dx P p A ( p ) dydz M M 2 x p dx 右表面 P p A ( p ) dydz N N 2 x
2 2 2 2 2 2 ,例: 拉普拉斯算符 x y z 2
2 2 2 u u u x x x u x 2 2 2 x y z 2

第三节 流体动力学基本方程式
第四节 欧拉运动微分方程的积分
由于欧拉运动微分方程是一个一阶非线性偏微分方程组(迁移加速度的三 项中包含了未知数与其偏导数的乘积),因而至今还无法在一般情况下积分, 只能在一定条件下积分。 欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距ds 的坐标分量),然而相加得:
du p p p du du y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt dt

第三章一元流体动力学基础

第三章一元流体动力学基础
2
d (gz p 1 u 2 ) 0
2
积分后得 gz p 1 u 2 常数
2
考虑到重度γ=ρg,将上式两端除以重力加速度g,得: z p u 2 常数 (3)
2 . 通过某一空间点在给定瞬间只能有一条流线,一般情况流 线不能相交和分支。否则在同一空间点上流体质点将同时 有几个不同的流动方向。只有在流场中速度为零或无穷大 的那些点,流线可以相交,这是因为,在这些点上不会出 现在同一点上存在不同流动方向的问题。速度为零的点称 驻点,速度为无穷大的点称为奇点。
)
再看右端三式相加: 由于是在重力场中,故流体
dx
u x t
u x x
ux
u x y
uy
u x z
uz
X
1
p x
的质量力只是重力,则 X=0, Y=0, Z=-g。
dy
u y t
u y x
ux
u y y
uy
u y z
uz
Y
1
p y
所以: Xdx+Ydy+Zdz=-gdz
dz
u z t
u z x
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f (x, y, z,t),u f (x, y, z,t)
定常流动
非定常流动
有旋流动(rotational flow):流体在流动中,流场中有若干处 流体微团具有绕通过其自身轴线的旋转运动
无旋流动(irrotational flow):在整个流场中各处的流体微团 均不绕自身轴线的旋转运动
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 的流动状况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程

工程流体力学 - 第3章 - M

工程流体力学 - 第3章 - M

2 、 水力半径 Rh :在总流的过流断面上与流
体相接触的固体边壁周长称为湿周,用χ表 示。总流过流断面面积与湿周χ之比称为水 力半径R,即
R
A

3、当量直径de=4Rh
五、流量与平均流速
1、流量
单位时间内通过过流断面的流体量称为流量。 流体量可以用体积、质量和重量表示,其相应的流量 分别是体积流量qv (m3/s)、质量流量qm (kg/s)和重量 流量Qg(N/s)。
v1 A1 v 2 A 2 q v
上式为一维流动连续性方程。
§3.6理想流体一维稳定流动的伯努里方程 一、欧拉方程
如图,在微元流管中 取一圆柱流体微团, 考察理想流体在重 力场中的一维流动。
轴向长度:δs,
端面面积:δA,
端面⊥轴线,
侧面∥轴线。

流体微团受力分析: 方向:垂直向下
质量力:重力,大小:ρgδAδs 表面力:
一.拉格朗日方法
拉格朗日方法着眼于流体质点,跟踪每个 流体质点的运动全过程及描述运动过程中各质 点、各物理量随时间变化的规律。又称轨迹法。 设t=t0时,流体质点的坐标值是(a,b,c)。 流体质点的空间位置、密度、压强和温度 可表示为: r r a,b,c,t = a,b,c,t p p a,b,c,t T T a,b,c,t
第三章 流体动力学

流体运动学是用几何学的观点来研究流体的运动 规律,是流体力学的一个组成部分。 掌握描述流动的两种方法(拉格朗日法及欧拉

法),结合迹线,流线,流体线等显示流动特性 的曲线图谱研究流动特性。

掌握流体动力学的基本方程,即质量守恒方程, 能量守恒方程动量定理,动量矩定理,重点是关 于控制体的欧拉型方程。

流体力学 第三章 流体动力学

流体力学 第三章 流体动力学
按周界性质: ①总流四周全部被固体边界限制——有压流。如 自来水管、矿井排水管、液压管道。 ②总流周界一部分为固体限制,一部分与气体接 触——无压流。如河流、明渠。 ③总流四周不与固体接触——射流。如孔口、管 嘴出流。
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2

6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点

工程流体力学

工程流体力学

§1.1 流体的定义
一、流体特征(续)
液体与气体的区别 液体的流动性小于气体; 液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积。
流体的定义
流体是一种受任何微小的剪切力作用时,都 会产生连续变形的物质。 流动性是流体的主要特征。
§1.2 连续介质假说
微观:流体是由大量作无规则热运动的分子所组成, 分子间存有空隙,在空间上是不连续的。
在通常情况下,一个很小的体积内流体的分子数量极多;
例如,在标准状态下,1mm3体积内含有2.69×1016个气体分 子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。 结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》 对普通流体的黏性性状作了描述,即现代表达为黏性切应力 与速度梯度成正比—牛顿内摩擦定律。为了纪念牛顿,将黏 性切应力与速度梯度成正比的流体称为牛顿流体。 18世纪~ 19世纪,流体力学得到了较大的发展,成为独立的一门学科。 古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.) 和他的亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了 著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分 方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes, G.G.)建立了黏性流体运动微分方程。拉格朗(Lagrange)、 拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所 开创的新兴的流体动力学推向完美的分析高度。但当时由于 理论的假设与实际不尽相符或数学上的求解困难,有很多疑 不能从理论上给予解决。

2-流体力学-第三章-流体动力学(1)-三大方程-黄国钦

2-流体力学-第三章-流体动力学(1)-三大方程-黄国钦

d ∂ ∂ ∂ ∂ = +u +v + w dt ∂t ∂x ∂y ∂z
质点导数亦称随体导数亦称物质导数等。
11 12
2
例题 例题:
r r r r V = x 2 yi − 3 yj + 2 z 2 k
3.2 几个概念 3.2.1 流动的分类——定常流和非定常流
试求点 (1, 2 , 3) 处流体加速度的三个分量 解:

欧拉法是流场法,
它定义流体质点的速 度矢量场为:
选定某一空 选定某一空 间固定点 间固定点
记录流动空间 某固定位置 处,流体运动 要素(速度、 加速度)随时 间变化规律
r r u =u (x,y,z,t)
综合流场中 许多空间点 随时间的变 化情况
(( x ,, y ,, zz )) 是 x y 是空 空间 间点 点( (场 场 r u 点)。流速 是在 点)。流速 是在 tt 时 时 刻占据 (( x ,, y ,, zz )) 的那个流 刻占据 x y 的那个流
工程流体力学 Engineering Fluid Mechanics
制造工程系:黄国钦
1
2
3.1.2 描述流体运动的两种方法及质点导数概念
3.1.2 描述流体运动的两种方法 3.1.2.1 拉格朗日法
基本思想:以研究个别流体质点的运动为基础,跟踪每个流体质点的运动全 基本思想: 过程,记录它们在运动过程中的各物理量及其变化规律。即通过描述每一质 点的运动了解流体运动。(随体法或跟踪法)
迹线
M(-1,-1)
o
x
流线
t = 0 时过 M(-1,-1)点的流线和迹线示意图
19
dx dy dz = = vx v y vz

流体力学 第三章

流体力学 第三章
无数微元流束的总和称为总流。自然界和工程中所遇到 的管流或渠流都是总流。根据总流的边界情况,可以把总流 流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。

《流体力学》 合肥工业大学 胡小春 曾亿山 答案

《流体力学》 合肥工业大学 胡小春 曾亿山 答案

流体力学第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。

解:由g γρ=得,3327000N/m 714.29kg/m9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。

解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。

解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。

题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。

在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。

(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dyτμ=得du(1250y 50)dy τμρν==-+ y=0cm 时,221510N/m τ-=⨯;y=2cm 时,222 2.510N/m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。

流体动力学理论基础第三章解析

流体动力学理论基础第三章解析

az= x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
式中第一项叫时变加速度或当地加速度 (Local Acceleration),流动过程中流体由于速度 随时间变化而引起的加速度;第二项叫位变速度 ,流动过程中流体由于速度随位置变化而引起的 加速度(Connective Acceleration)。
uz uz (x、y、z、t)
(x,y,z,t)—欧拉变量
考察不同时刻液体质点通过流场中固定空间点 的运动情况,综合足够多的固定空间点的运动情 况,得到整个液流的运动规律。——流场法
欧拉法不直接追究质点的运动过程,而是研究各时 刻质点在流场中的变化规律。将个别流体质点运动过程 置之不理,而固守于流场各空间点。通过观察在流动空 间中的每一个空间点上运动要素随时间的变化,把足够 多的空间点综合起来而得出的整个流体的运动情况。
显然,在欧拉描述中,各空间点上的物理量(实际上是通 过此点的流体质点所具有的物理量)是随时间变化的。因此, 流体的运动参数应该是空间坐标和时间的函数。如流体的速 度、压强和密度可以表示为
z
t时刻
M (x,y,z) O
x
y
ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
算子
全质 导点 数导

d dt
=
t
+ (u )
时变导数 当地导数 局部导数
位变导数 迁移导数 对流导数

流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

流体力学 第3章流体动力学基础

流体力学 第3章流体动力学基础

第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。

如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。

如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。

前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。

如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。

与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。

由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。

教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。

在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。

3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。

在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。

3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。

该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。

按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。

若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。

流体力学第三章流体动力学(1)

流体力学第三章流体动力学(1)

(2)流线的作法
流线的作法如下:在流速场中任取一点1(如下图),绘出
在某时刻通过该点的质点的流速矢量u1,再在该矢量上取距
点1很近的点2处,标出同一时刻通过该处的另一质点的流速
矢量u2……如此继续下去,得一折线1 2 3 4 5 6……,若
折线上相邻各点的间距无限接近,其极限就是某时刻流速场 中经过点1的流线。
(b)非恒定流
mt1 流线 mt2
迹线 mt3
且与迹线重合。
3. 均匀流和非均匀流 划分依据:按流速的大小和方向是否沿程变化
(1)均匀流
流速沿程不变的流动称为均匀流
在均匀流时不存在迁移加速度,即 auuo s
其流线为彼此平行的直线
例:等直径直管中的液流或者断面形状和水深不变的长直渠道中的水流 都是均匀流。
ux
uz x
uy
uz y
uz
uz z
质点的加速度由两部分组成:
auuu t s
欧拉加速度
ax
ux t
ux
ux x
uy
ux y
uz
ux z
ay
uy t
ux
uy x
uy
uy y
uz
uy z
az
uz t
ux
பைடு நூலகம்
uz x
uy
uz y
uz
uz z
①时变加速度(当地加速度)——流动过程中液体由于速度 随时间变化而引起的加速度; ——等号右边第一项是时变 加速度 ②位变加速度(迁移加速度)——流动过程中液体由于速度 随位置变化而引起的加速度。 ——后三项是位变加速度
(1) (a,b,c)=Const , t为变数,可以得出某个指定质点在任意时刻 所处的位置。 (2) (a,b,c)为变数, t =Const ,可以得出某一瞬间不同质点在空 间的分布情况。

第3章 流体动力学微分形式的基本方程

第3章 流体动力学微分形式的基本方程

设微元体积为平行六面体,则: dτ d r1 d r 2 × d r 3 = ∂xα ∂r = dq1 dq1 iα d r1 = ∂q1 ∂q1 ∂xα ∂xβ ∂xγ = ∴ dτ = iα iβ × i γ dq Ddq1dq2 dq3 1dq2 dq3 ∂q1 ∂q2 ∂q3
一、运动流体中的应力张量 静止流体中:p n = −np x3 运动流体中:? n p n 如图四面体微元面的应力:p n , p −α
x2 x1 p −3
−i 3
i3
∆Aα = iα ⋅ n ∆An = nα ∆An
(
)
微团质心 c的运动方程:
p3
Dv c ∆m = f ⋅ ∆m + p n ⋅ ∆An + p −α ⋅ ∆Aα Dt = f ⋅ ∆m + p n − pα nα ⋅ ∆An 令∆m→0,则: p n = pα nα
(
)
pn = pα nα = n ⋅ iα pα = n ⋅ iα pαβ i β = n⋅P
因此,动量矩方程变为:
(
)
三、理想流体中的应力 理想流体全部切应力为零,只有法向应力,即:
= 0 α≠β ⇒ p n = pnn ⋅ n pαβ β ≠ 0 α = pnn nβ =i β ⋅ pnn n =i β ⋅ p n = pnβ =nα pαβ
pnn n1 = n1 p11 + n2 p21 + n3 p31 = n1 p11 −p pnn n2 = n2 p22 p11 = p22 = p33 = ⇒ pnn = pnn n3 = n3 p33

3章1理想流体动力学基本方程

3章1理想流体动力学基本方程

一、Lagrange法(拉格朗日法)
“跟踪”的方法
基本思想:跟踪每个流体质点的运动全过程,记录它 们在运动过程中的各物理量及其变化规律。
x x(a,b,c,t ) y y(a,b,c,t ) 流体质点的位置坐标: z z (a,b,c,t )
基本参数: 位移
独立变量:(a,b,c,t)——区分流体质点的标志 几点说明:
欧拉(Euler):
瑞士数学家及自然科学家。1707年4月15日出生於瑞士的 巴塞尔,1783年9月18日於俄国彼得堡去逝。欧拉出生於牧师 家庭,自幼受父亲的教育。13岁时入读巴塞尔大学,15岁大学 毕业,16岁获硕士学位。 欧拉是18世纪数学界最杰出的人物之一,他不但为数学界 作出贡献,更把数学推至几乎整个物理的领域。他是数学史上 最多产的数学家,平均每年写出八百多页的论文,还写了大量 的力学、分析学、几何学、变分法等的课本,《无穷小分析引 论》、《微分学原理》、《积分学原理》等都成为数学中的经 典著作。欧拉对数学的研究如此广泛,因此在许多数学的分支 中也可经常见到以他的名字命名的重要常数、公式和定理。
2. 速度:
x ( a,b,c,t ) t y( a,b,c,t ) v v ( a,b,c,t ) t z ( a,b,c,t ) w w ( a,b,c,t ) t u u( a,b,c,t )=
u(a,b,c,t ) 2 x (a,b,c,t ) a x a x ( a,b,c,t )= t t 2 2 3. 流体质点的加速度:a a (a,b,c,t ) v (a,b,c,t ) y(a,b,c,t ) y y t t 2 2 w (a,b,c,t ) z (a,b,c,t ) a y a y ( a,b,c,t ) t t 2

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程

第三章流体运动学与动力学基础主要内容z基本概念z欧拉运动微分方程z连续性方程——质量守恒*z伯努利方程——能量守恒** 重点z动量方程——动量守恒** 难点z方程的应用第一节研究流体运动的两种方法z流体质点:物理点。

是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。

z空间点:几何点,表示空间位置。

流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。

拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。

一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。

2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。

3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t)z = z(a,b,c,t)4、适用情况:流体的振动和波动问题。

5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。

缺点:不便于研究整个流场的特性。

二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。

2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。

3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。

位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标(a,b,c)
运动要素 为流体质点标志和时间的函数
拉氏法的运动描述
流体质点坐标: x x(a,b, c,t)
y
y(a,
b,
c,
t)
z z(a,b, c,t)
流体质点速度:
vx
ddxt ,vy
dy dt
,vz
dz dt
流体质点加速度: ax
d2 dt
x
2
,a
y
d2 dt
y
2
,az
d2z dt 2
2. 研究流体运动的两种方法
(2)欧拉法——站岗法
方法概要 考察空间每一点上的物理量及其变化,通过 综合流场中所有空间点上流体质点的运动变 化规律,来获得整个流场的运动特性的方法
研究对象
流场 (x,y,z)
运动要素 为流场空间位置和时间的函数
欧氏法的运动描述
流速场: 在某一瞬时,占据不同空间点的
特点:随空间和时间变化 彼此存在本质联系
➢ 流场:充满运动的连续流体的空间称为流场
2. 研究流体运动的两种方法
(1)拉格朗日法——跟踪法
方法概要 跟踪研究单个流体质点的运动规律,通过综 合所有质点的运动情况,进而获得整体运动 规律的方法
研究对象 (流体质点) 区分流体质点的标志: t0时刻质点的位置坐
考虑机械或仪器中气体 平衡处处相等,仪器压强 表可以安装在不同位置
第三章 流体动力学及其 工程应用
➢本章是本课程最重要的一章 ➢描述流体的运动学 ➢建立流体运动的基本方程
引论
▪ 静力学:相对静止流体,质点之间无运动,粘性没有
表现,涉及参数只是压强
▪ 自然界:大多数是运动流体——质点发生相对运动 ▪ 动力学:流体运动破坏了压力和质量力的平衡,出现
dz dt
a y
v y t
v y x
dx v y dt y
dy v y dt z
dz dt
a
z
vz t
vz x
dx vz dt y
dy vz dt z
dz dt
(3)两种方法的比较
拉格朗日法
分别描述有限质点的轨迹 表达式复杂
不能直接反映参数的空间分布 拉格朗日观点是重要的
欧拉法
流体质点都有一定的速度,由这 些速度矢量构成的矢量场
vx vx (x, y, z,t) vy vy (x, y, z,t) vz vz (x, y, z,t)
压强场: p p(x, y, z,t)
密度场: (x, y, z,t)
选定时间t : 物理 量在流场空间分 布情况 固定(x,y,z):关 心的是t时刻经过 此位置的流体质 点所具有的物理 性质,并不关心 到底是哪个流体 质点经过了这里
复习第一节 静止流体的应力特征
(2) 大小性
流体静压力与作用面在空间方位无关,仅是该点位置坐标的函数。
证明:取微小四面体O-ABC
表面力 Px Py Pz Pn
质量力 Fx Fy Fz F 0
Fx 0 Px Pn cos(n,x) Fx 0
px
1 dydz 2
pnABC cos(n,x)
质量力:
Fx Xdxdydz
F 0
P左 P右 Fx 0
复习第二节 流体的平衡微分方程
p 1 p dx dydz p 1 p dx dydz Xdxdydz 0
2 x
2 x
用dx、dy、dz除以上式,并化简得
X 1 p 0
x
(1)
同理
Y 1 p 0
y
(2)
dx 0 略去无穷小项
px py pz pn
pz
pn
fz
1 dz 3
0
p f (x, y, z) 与位置有关
静压强不是一个矢量,而是一个标量。 静压强全微分为:
dp
p dx p dy p dz x y z
复习第二节 流体的平衡微分方程
1.流体平衡微分方程
平衡流体中取一边长分别为dx、dy、dz的六面体微团, 中心点压强为p,对左右分别进行受力分析,
同时描述所有质点的瞬时参数 表达式简单
直接反映参数的空间分布 流体力学最常用的解析方法
(4)两种方法的关系
拉格朗日法到欧拉法
fx
1 dxdydz 6
0
1 dydz 2
复习第一节 静止流体的应力特征
(2) 大小性
流体静压力与作用面在空间方位无关,仅是该点位置坐标的函数。
px
1 2
dydz
pn
dAcos(n,x)
fx
ρ
1 6
dxdydz
0
px
pn
fx
1 dx 3
0
p
y
pn
fy
1 dy 3
0
px
pn
fx
1 dx 3
0
由泰勒展开,取前两项: f
(x)=f (x0 )+f '(x0) (x-x0)+
f
''
(x0 2
)
(x-x0
)2
+
f
n (x0 n!
)
(x-x0
)
n
M (x+ dx , y, z) : 2
P右
p
1 2
p dx dydz x
N (x- dx , y, z) : 2
P左 p 1 p dx dydz 2 x
其他物理量(N)场: N N(x, y, z,t)
欧氏法中物理量的时间变化率
加速度: vx (x, y, z,t) xt, yt, z t
ax
dvx dt
vx t
vx x
dx vx dt y
dy vx dt z
dz dt
a x
vx t
vx x
dx vx dt y
dy vx dt z
了和流速密切相关的惯性力和粘性力 流体有旋否、稳定否… 运动规律复杂
▪ 解决法:首先按理想处理(无粘性作用、内摩擦作
用),求运动规律,再通过实验进行修正,得到与实 际相符的规律
第一节 流体运动要素及 研究流体运动的方法
1.流体运动要素
——研究运动规律需要确定的物理量 ➢ 要素:速度、加速度、压强、密度和作用力等
复习第一节 流体静压强及其特征
1. 流体静压强定义(法向压应力):
作用在静止流体单位面积上的应力
P1
P2 P3

A
B

m
p lim P
A0 A
P4
P5
▪单位:Pa——压强特征
复习第一节 静止流体的应力特征▪ 2来自静压强特征(1) 方向性
流体静压力的方向总是沿着作用面的内法线方向; 反证法
原因:(1)静止流体没有承受剪力,即τ=0,故p垂直受压面; (2)因流体几乎不能承受拉力,故p指向受压面。
Z 1 p 0
z
(3)
f
1
p
0
——欧拉平衡微分方程
复习第二节 流体的平衡微分方程
▪ 适用范围:静止和相对静止的流体 压缩和不可压缩,有粘性和无粘性
质量力
Z 1 p
z
表面力
▪ 物理意义: 质量力和表面力的合力相互平衡结果
特例:如质量力为零 X Y Z 0
dp 0
流体中的静压强处处相等
相关文档
最新文档