分子蒸馏技术和应用

合集下载

分子蒸馏技术

分子蒸馏技术

分子蒸馏技术X Y Zhou 化学工程110427001摘要分子蒸馏是一种新型的液-液分离技术,与传统的蒸馏技术相比:操作温度远低于液体沸点,蒸馏压力在极高真空度下,受热时间短,能最大限度地保证物系中的有效成分。

本文分析了分子蒸馏技术的原理、过程,介绍了目前分子蒸馏技术的特点、分子蒸馏设备及其特点,以及分子蒸馏技术在食品、医药、化工等行业的应用。

关键词分子蒸馏;分离技术;分子蒸馏器分子蒸馏技术[1]是一种特殊的液-液分离技术,是新型分离技术中的一个重要分支。

液体混合物的分离,一般是通过蒸馏或精馏来实现的。

在蒸馏或精馏过程中,存在着两股分子流向:一股是被蒸液体的气化,由液相流向气相的蒸气分子流;另一股是由蒸气返回至液相的分子流。

当气液两相达到平衡时,表观上蒸气分子不再从液面逸出。

若果利用某种措施,使蒸气分子不再返回(或减少返回)液相,就会大大提高分离效率。

分子蒸馏技术正是在蒸馏技术的不断改进发展中而产生的一种特殊的蒸馏分离技术。

1 分子蒸馏的原理、过程及其特点1.1 分子蒸馏的基本原理根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会成为气体分子而从液面逸出。

而随着液面上方气体分子的增加,有一部分气体分子就会返回液体,在外界温度保持恒定的情况下,最终达到分子运动的动态平衡,此外,不同种类的分子,由于其分子有效直径不同,故其平均自由度也不同,从统计学观点看,不同种类的分子逸出液面后不与其他分子碰撞的飞行距离是不同的[2]。

传统的液体混合物的分离,一般都是利用溶液组分间沸点的差异,通过蒸馏或精馏来实现的,其气液处于平衡状态。

而分子蒸馏技术却不同于常规蒸馏,它是利用不同物质分子运动平均自由程的差异,实现液体混合物的分离。

具体的分离过程是:经过预热处理的待分离料液从进料口沿加热板自上而下流入,受热的液体分子从加热板逸出,并向冷凝板运动。

轻分子由于平均自由程较大,能够到达冷凝板并不断在冷凝板凝集,最后进入轻组分接收罐;重分子因平均自由程较小,不能到达冷凝板,从而顺加热板流入重组分接收罐中,这样就实现了轻重组分的分离[3]。

分子蒸馏技术及在食品工业中的应用

分子蒸馏技术及在食品工业中的应用

分子蒸馏技术及在食品工业中的应用一、引言分子蒸馏技术是一种高效的分离纯化技术,它可以将混合物中的成分按照其沸点差异进行分离,得到高纯度的单一成分。

在食品工业中,分子蒸馏技术被广泛应用于提取天然香料、调味料和色素等。

二、分子蒸馏技术原理分子蒸馏技术是基于不同成分在不同温度下汽化和凝结的原理实现的。

混合物被加热至其沸点以上,产生气相和液相两个相态。

气相经过冷凝器冷却后变为液相,并通过收集器收集。

由于每种成分的沸点不同,因此在加热过程中会先汽化沸点低的成分,然后才汽化沸点高的成分。

通过这种方式就可以将混合物中各个组份进行有效地分离。

三、食品工业中的应用1. 天然香料提取天然香料是指从天然植物中提取出来具有特定香气和味道的物质。

采用传统提取方法往往需要大量有机溶剂,而且提取效率不高。

分子蒸馏技术可以在较低温度下,通过调整压力和温度,提取出具有特定香气和味道的物质,同时避免了有机溶剂的使用。

2. 调味料提取调味料是食品中常用的一种添加剂,它可以增加食品的口感和味道。

分子蒸馏技术可以有效地提取出调味料中所需的成分,并且可以得到高纯度的产品。

这种方法不仅能够提高产品质量,还能够减少生产成本。

3. 色素提取色素是食品中常用的一种添加剂,它可以改变食品颜色,增加食品吸引力。

传统的色素提取方法往往需要大量有机溶剂,并且存在着色素不稳定性等问题。

分子蒸馏技术可以在较低温度下进行操作,并且可以得到高纯度、稳定性好的色素产品。

4. 食品浓缩分子蒸馏技术还可以用于食品浓缩。

例如,在酿造啤酒过程中,需要将发酵液进行浓缩以达到一定浓度才能进行下一步操作。

传统的浓缩方法往往需要大量能源和时间,而且还会对食品中的营养成分造成一定的损失。

分子蒸馏技术可以在较短时间内将食品浓缩至所需浓度,同时保持食品中的营养成分。

四、优点和局限性1. 优点(1)高效:分子蒸馏技术可以在较短时间内得到高纯度的产品。

(2)环保:分子蒸馏技术不需要使用大量有机溶剂,对环境友好。

分子蒸馏原理及其实际应用

分子蒸馏原理及其实际应用

分子蒸馏原理及其实际应用分子蒸馏是一种通过控制物质的蒸发和凝结来实现分离的方法。

该方法广泛应用于化学、石油、化工、食品等领域,用于分离纯化混合物中的组分。

本文将详细介绍分子蒸馏的原理及其实际应用。

首先,我们来了解一下分子蒸馏的原理。

分子蒸馏是基于混合物中各组分的沸点差异而实现的。

沸点是物质在常压下从液态变为气态的温度。

不同组分的沸点存在差异,因此可以通过逐步加热混合物,并在不同温度下收集不同组分的气体,实现各组分的分离。

分子蒸馏的基本原理是根据组分的沸点差异,在一个装置中连续加热混合物,使其不同组分分别蒸发,然后通过冷凝使其凝结成液体,最终获得纯净的组分。

为了实现分子蒸馏,通常使用蒸馏塔。

蒸馏塔是一个高度分离的装置,通过在塔内逐级降低温度来实现分离不同组分。

蒸馏塔通常包括一个加热器、一个冷凝器和多个隔板。

混合物通过加热器加热,产生蒸汽,然后进入蒸馏塔。

在蒸馏塔内,蒸汽会被隔板分隔成几个部分。

每个部分都有一个不同的温度,较轻的组分稍早地冷凝出来,较重的组分稍晚地冷凝出来。

这样,通过在不同隔板上收集凝结物,我们可以逐渐分离各组分。

实际应用方面,分子蒸馏有很多重要的应用。

首先,分子蒸馏在化学领域中广泛应用于纯化有机化合物。

有机化合物通常是混合物,其中含有许多不同的组分。

通过分子蒸馏,可以将这些组分分离出来,得到高纯度的单一有机化合物。

这对于研究有机化学和制备高质量的化合物非常重要。

其次,分子蒸馏也在石油和化工行业中被广泛使用。

石油是一种混合物,含有不同碳链长度的烷烃。

通过分子蒸馏,可以将石油中的各种组分分离出来,以便进一步加工制造成汽油、柴油、润滑油等产品。

同样,在化工行业中,分子蒸馏可以用来分离有机溶剂、酸、碱等各种化学品。

此外,食品行业也使用了分子蒸馏。

例如,酒精就是通过分子蒸馏从发酵液中提取出来的。

此外,一些食品的香味来自于特定组分,通过分子蒸馏可以将这些组分分离出来,再加入其他食品中,以增添风味。

分子蒸馏的原理和应用

分子蒸馏的原理和应用

分子蒸馏的原理和应用一、分子蒸馏的原理分子蒸馏是一种重要的分离技术,其原理基于不同组分的挥发性差异。

通过控制温度和压力的变化,将混合物中的各个组分蒸发并再凝结收集,达到分离纯化的目的。

以下是分子蒸馏的原理要点:1.挥发性差异:混合物中的各个组分在蒸馏条件下有不同的挥发性,即蒸发速率不同。

这是分子蒸馏能够实现分离的基础。

2.沸点差异:挥发性差异主要是由组分间沸点差异引起的。

在分子蒸馏过程中,通过调节温度和压力,使得沸点较低的组分先蒸发,沸点较高的组分后蒸发,从而实现分离。

3.密封系统:分子蒸馏需要在密封系统中进行,以保持温度和压力的稳定性。

通常采用精密的实验设备,如分子蒸馏柱和蒸馏装置,来确保分离效果。

二、分子蒸馏的应用分子蒸馏广泛应用于化工、石油、制药等领域,用于纯化和分离各种混合物。

以下是分子蒸馏的常见应用:1.石油精制:在石油炼制过程中,通过分子蒸馏可以将原油中的不同沸点范围内的组分分离出来,从而得到高纯度的油品,如汽油、柴油等。

2.精细化工:在化学工业中,分子蒸馏被广泛应用于石油化工、有机合成等过程中,用于纯化和分离各种化合物。

3.制药工业:在制药工业中,分子蒸馏常用于药物纯化和分离。

通过分子蒸馏可以从复杂的药物混合物中提取出目标化合物,并去除杂质。

4.食品工业:分子蒸馏在食品加工中也有应用,常用于提取香精、食用油等。

通过分子蒸馏,可以将食品中的有害物质去除,提高食品的质量和安全性。

5.环境保护:分子蒸馏技术在环境保护中也得到了应用。

例如,通过分子蒸馏可以将废水中的有机物质分离出来,减少污染物的排放。

三、分子蒸馏的优势与传统的蒸馏技术相比,分子蒸馏具有以下优势:1.高效分离:分子蒸馏可以实现高效分离,适用于挥发性差异较小的高沸点混合物。

2.低温操作:由于分子蒸馏具有较高的分离效率,可以在相对较低的温度下进行操作,可以避免热敏性物质的分解。

3.保留挥发组分:相比传统蒸馏,分子蒸馏可以保留更多挥发性组分,提高产品的纯度和质量。

分子蒸馏技术原理

分子蒸馏技术原理

1、分子蒸馏技术的基本原理分子蒸馏不同于一般的蒸馏技术。

它是运用不同物质分子运动平均自由程的差别而实现物质的分离,因而能够实现在远离沸点下操作。

根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会从液面逸出而成为气相分子,随着液面上方气相分子的增加,有一部分气体就会返回液体,在外界条件保持恒定情况下,就会达到分子运动的动态平衡。

从宏观上看达到了平衡。

液体混合物为达到分离的目的,首先进行加热,能量足够的分子逸出液面,轻分子的平均自由程大,重分子平均自由程小,若在离液面小于轻分子的平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子不断被冷凝,从而破坏了轻分子的动平衡而使混合液中的轻分子不断逸出,而重分子因达不到冷凝面很快趋于动态平衡,不再从混合液中逸出,这样,液体混合物便达到了分离的目的。

2、分子蒸馏技术的特点由分子蒸馏的原理可以看出,分子蒸馏有许多常规蒸馏所不具备的特点。

2.1分子蒸馏的操作真空度高。

由于分子蒸馏的冷热面间的间距小于轻分子的平均自由程,轻分子几乎没有压力降就达到冷凝面,使蒸发面的实际操作真空度比传统真空蒸馏的操作真空度高出几个数量级。

分子蒸馏的操作残压一般约为0.1~1Pa数量级。

2.2分子蒸馏的操作温度低。

分子蒸馏依靠分子运动平均自由程的差别实现分离,并不需要到达物料的沸点,加之分子蒸馏的操作真空度更高,这又进一步降低了操作温度。

分子蒸馏在蒸发过程中,物料被强制形成很薄的液膜,并被定向推动,使得液体在分离器中停留时间很短。

特别是轻分子,一经逸出就马上冷凝,受热时间更短,一般为几秒或十几秒。

这样,使物料的热损伤很小,特别对热敏性物质的分离过程提供了传统蒸馏无法比拟的操作条件。

3.4分子蒸馏的分离程度更高。

,由分子蒸馏的相对挥发度可以看出:x式中:M1————轻分子分子量;M2————重分子分子量而常规蒸馏相对挥发度α=P1/P2 ,由于M2 >M1 ,所以ατ>α。

分子蒸馏简介及应用

分子蒸馏简介及应用

分子蒸馏技术1、分子蒸馏技术的原理分子蒸馏技术(Molecular distillation technology)是一种新型的液-液分离或精制技术,是利用混合物组分中不同分子运动的平均自由程的差异不同而进行分离的。

其特征是蒸发面与冷凝面之间的距离小于被分离物料分子的平均自由程,根据被分离物系各组分的分子量不同,分子平均自由程的差别进行分离。

分子蒸馏又叫短程蒸馏(Short-pathdistillation)。

根据分子平均自由程公式知,不同种类的分子,由于其分子有效直径不同,故其平均自由程也不同,即不同种类分子,从统计学观点看,其逸出液面后不与其它分子碰撞的飞行距离是不相同的。

分子蒸馏的分离作用就是利用液体分子受热会从液面逸出,而不同种类分子逸出后其平均自由程不同这一性质来实现的。

液体受热后,轻分子的平均自由程大,重分子的平均自由程小,在离液面小于轻分子的平均自由程而大于重分子平均自由程处设置一捕集器,使得轻分子不断被捕集,从而破坏了轻分子的动态平衡而使混合液中的轻分子不断逸出,而重分子因达不到捕集器很快趋于动态平衡,不再从混合液中逸出,这样,液体混合物便达到了分离的目的。

2、分子蒸馏技术的特点与常规的普通蒸馏技术相比,短程分子蒸馏技术具有明显特点[1-8]。

2.1操作温度低普通蒸馏是在沸点温度进行,而分子蒸馏是根据不同种类的分子逸出液面后的平均自由程不同的性质来实现的,因而分子蒸馏是在低于蒸馏物质沸点的温度下进行,被分离物质只要存在着温度差,就能达到分离目的。

2.2蒸馏真空度高分子蒸馏由于其特殊的结构,系统内真空度较高,压强只有0.5-1Pa,因而分子蒸馏分离可有效避免易氧化物质的氧化分解。

另外,对于混合液中的低分子物质(如有机溶剂、臭味物质等)的脱除,分子蒸馏较常规蒸馏有效得多。

2.3受热时间短分子蒸馏装置加热面与冷凝面的距离小于轻分子的平均自由程,液面逸出的轻分子几乎未经碰撞就达到冷凝面,所以受热时间很短。

分子蒸馏在维生素应用

分子蒸馏在维生素应用

3、分子蒸馏技术在维生素工业中的应用目前,在维生素工业中,有许多品种,不论是合成品还是天然品其生产过程都需要采用分子蒸馏技术。

例1、分子蒸馏技术在天然维生素E生产中的应用。

天然维生素E广泛存在于芦荟的绿色部分及禾本科种子胚芽里,尤其是在芦荟油中的含量丰富,一般在0.05—0.5%。

用来提取天然维生素E产品的经济价值不高,但在芦荟油脱胶、脱酸、脱色、脱臭等精炼过程中,天然维生素E在脱臭馏出物中得到浓缩,一般含有质量分数的1%--15%,因此,油脂脱臭馏分是提取天然维生素E的理想资源。

从精炼副产品中提取天然维生素E,既是天然资源的综合利用,又是获取天然维生素E的最佳方法,为天然维生素E的提取、维生素E制品及下游产品的研制及应用提供了良好条件。

天然维生素E的提取技术很多,如:化学溶剂萃取法、尿素沉淀法、减压蒸馏法、多级精馏法、分子蒸馏法、超临界CO2萃取法等。

但无论何种方法,要生产出品质优良的天然维生素E产品,最关键的问题就是提取与分离工艺是否先进,是否能够满足以下几个条件:1、最大程度地保护好产品的天然品质。

2、产品必须保证没有化学污染。

3、生产工艺必须具备工业经济价值。

要满足上述要求,单纯的溶剂萃取法不行,因为溶剂会残留在产品中,传统的减压与精馏法也不行,因为极高的操作温度会使VE 产品受损及产生新的杂质。

直接用超临界萃取法从工业角度看也不经济。

因此,既能符合产品的安全要求,又具备工业价值,优选的方法就是分子蒸馏法。

下面的“酯化法与分子蒸馏相结合”的VE生产方法为例,介绍天然维生素E的提取技术。

脱臭馏出物中一般含有3—10%的VE、6—10%的植物甾醇、40%左右的游离脂肪酸、20%左右的中性油,其它还有烃类、臭味物质及色素。

对于这种原料,生产工艺可简单表示为:甲酯(VE含量<0.2%)脱臭馏出物甲醇酯化冷析分子蒸馏色素VE(>70%)植物甾醇粗品精制甾醇精品(>98%)(50%左右)VE精品(>90%)甲醇酯化的目的是将原料中的脂肪酸及中性油转变为脂肪酸甲酯,酯化后的混合液经物理方法处理分离出甾醇及过量的甲醇,然后进入分子蒸馏工序。

分子蒸馏技术及其在食品方面的应用

分子蒸馏技术及其在食品方面的应用

【分子蒸馏技术及其在食品方面的应用】一、概述分子蒸馏技术是一种利用物质的沸点差异进行分离、提纯的方法,它在化工、医药等领域早已得到广泛应用。

然而,在食品领域,分子蒸馏技术也逐渐展现出其独特的优势和潜力。

本文将从分子蒸馏技术的原理、食品领域的具体应用以及对食品品质的提升等方面展开讨论,以期帮助读者更全面地了解这一技术及其在食品方面的应用。

二、分子蒸馏技术原理分子蒸馏技术是一种利用不同成分在相同温度下的沸点差异进行分离的技术。

在分子蒸馏过程中,液体混合物首先被加热至其沸点,然后将产生的蒸气冷凝回液体,从而实现对混合物中不同成分的分离。

这一过程主要依赖于不同成分之间的沸点差异,因此适用于需要对成分进行高效、精确分离的场合。

三、食品领域的应用1. 酒精提纯:在酿酒过程中,分子蒸馏技术可以用于提取纯净的酒精。

通过控制温度和流速,可以将水和酒精成功地分离,从而提高酒的纯度和口感。

2. 食用油脂提纯:在植物油中,可能会含有一些杂质和不良物质,而分子蒸馏技术可以有效地去除这些杂质,使食用油脂更加纯净、健康。

3. 食品香精提取:分子蒸馏技术可以帮助提取食品香精中的活性成分,从而保留食品的原味和营养成分,提高口感和风味。

四、食品品质的提升分子蒸馏技术在食品领域的应用,不仅可以帮助提高食品的纯度和香味,还能够提升食品的品质和保质期。

通过对原料的精确分离和提取,可以保留更多的营养成分和风味物质,从而使得食品更加美味和健康。

分子蒸馏技术还可以去除食品中的有害物质,提高食品的安全性和可持续性。

五、个人观点和理解分子蒸馏技术在食品领域的应用为食品加工提供了新的可能性和选择。

它不仅可以帮助提高食品的品质和口感,还能够满足人们对食品安全和健康的需求。

然而,需要注意的是,在应用分子蒸馏技术的过程中,合理控制温度和流速,严格遵守食品安全标准是至关重要的。

只有这样,才能确保食品的质量和安全,从而为用户提供更加放心的食品产品。

总结分子蒸馏技术作为一种高效、精确的分离技术,在食品领域展现出了其独特的优势和潜力。

分子蒸馏技术的原理和应用(精)

分子蒸馏技术的原理和应用(精)

分子蒸馏技术的原理和应用分子蒸馏技术简介分子蒸馏是一项较新的尚未广泛应用于产业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的题目。

分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操纵,它依据分子运动均匀自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。

由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离本钱,极好地保护了热敏性物质的特点品质,该项技术用于纯自然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯自然的特性,使保健产品的质量迈上一个新台阶。

分子蒸馏技术,作为一种对高沸点、热敏性物料进行有效的分离手段,自本世纪三十年代出现以来,得到了世界各国的重视。

到本世纪六十年代,为适应浓缩鱼肝油中维生素A的需要,分子蒸馏技术得到了规模化的产业应用。

在日、美、英、德、苏相继设计制造了多套分子蒸馏装置,用于浓缩维生素A,但当时由于各种原因,应用面太窄,发展速度很慢。

但是,在过往地三十多年中,人们一直在不断地重视着这项新的液-液分离技术的发展,对分离装置精益求精、完善,对应用领域不断探索、扩展,因而一直有新的专利和新的应用出现。

特别是从八十年代末以来,随着人们对自然物质的青睐,回回自然潮流的兴起,分子蒸馏技术得到了迅速的发展。

对分子蒸馏的设备,各国研制的形式多种多样。

发展至今,大部分已被淘汰,目前应用较广的为离心薄膜式和转子刮膜式。

这两种形式的分离装置,也一直在精益求精和完善,特别是针对不同的产品,其装置结构与配套设备要有不同的特点,因此,就分子蒸馏装置本身来说,其开发研究的内容尚十分丰富。

在应用领域方面,国外已在数种产品中进行产业化生产。

特别是近几年来在自然物质的提取方面应用较为突出,如:从鱼油中提取EPA与DHA、从植物油中提取自然维生素E等。

另外,在精细化工中间体方面的提取和分离,品种也越来越多。

分子蒸馏应用

分子蒸馏应用

分子蒸馏应用分子蒸馏是一种常用的分离纯化技术,广泛应用于化工、制药、食品等行业。

它基于不同组分的挥发性差异,通过控制温度和压力,使混合物中的组分按照其挥发性从液相转变为气相,然后再通过冷凝液相转变为纯净的液体。

在这个过程中,通过收集不同温度下的冷凝液,可以实现对混合物中不同组分的分离。

分子蒸馏的原理和工艺参数的选择非常重要。

首先,需要了解混合物的组成和性质,以确定适当的温度和压力条件。

温度的选择应该使得待分离的组分有足够的挥发性,但又不至于使其他组分产生分解或降解。

压力的选择要考虑到温度和混合物中组分的相对挥发性,以保证有效的蒸馏效果。

分子蒸馏的设备包括蒸馏塔、加热设备、冷凝器、收集器等。

蒸馏塔是分子蒸馏的核心部分,内部通常由填料或板式结构组成,用于增加物料与蒸汽的接触面积,提高分离效果。

加热设备提供蒸发所需的能量,常用的有加热炉和蒸汽加热器。

冷凝器通过冷却蒸汽使其转变为液体,常用的有管壳式冷凝器和板式冷凝器。

收集器用于收集不同温度下的冷凝液。

分子蒸馏有许多应用领域。

在石油化工行业,分子蒸馏用于原油的分离和石油产品的精制,可以提取出汽油、柴油、航空煤油等不同品位的燃料。

在化工行业,分子蒸馏用于有机物的分离和纯化,例如分离醇类、酮类和醚类化合物。

在制药行业,分子蒸馏用于药物的分离和纯化,可以得到高纯度的药物原料。

在食品行业,分子蒸馏用于食品的提取和香精的制备,可以提取出香料和食品添加剂的纯品。

分子蒸馏的优点是可以实现高效、连续和精细的分离,适用于不同的混合物体系。

然而,分子蒸馏也存在一些限制和挑战。

首先,分子蒸馏对于挥发性相近的组分分离效果较差,需要借助辅助技术如添加剂或采用多级蒸馏来提高分离效果。

其次,分子蒸馏对于高沸点物质的分离困难较大,需要采用真空蒸馏或气相色谱等技术来解决。

此外,分子蒸馏的设备和能耗成本较高,操作复杂,对操作人员的技术要求较高。

分子蒸馏是一种重要的分离纯化技术,具有广泛的应用前景。

分子蒸馏、短程蒸馏技术资料

分子蒸馏、短程蒸馏技术资料

分子蒸馏、短程蒸馏技术资料分子蒸馏、短程蒸馏介绍一、概述许多如石油重渣油、化学药品、药物及天然食品、保健品、脂肪酸等,常常是热敏性的、粘滞的及或具有高沸点的物料。

要把这些物料从它们的其他组成分离出来,而保持产物的质量,只能在低的沸腾温度甚至是不到沸腾温度下精馏,且只能在很短的时间里,把热分解作用或聚合作用减到最小,以消除对产品的破坏。

当操作真空度约为500Pa时,可以在刮膜蒸发器或降膜蒸发器中进行。

但是,如果蒸馏必须在高真空下操作(如压力在0.001-100Pa之间)就存在问题。

必须选用在产品蒸汽压不超过通过加热表面和冷凝表面之间压差的蒸发器,因而带有外置冷凝器的蒸发器被排除在高真空范围的蒸馏过程之外。

相比只下,SPE型短程蒸发器非常适合于这种应用场合,冷凝器被制造在蒸发器内,直接位于加热蒸馏发生的对面。

所以,短程蒸馏器(Thefishoilshortdistancedistils)短程蒸馏bolg是项较新的尚未广泛应用于工业化生产,能解决大量常规蒸馏技术所不能解决的新型分离技术。

二、工作原理在沸腾的薄膜和冷凝面之间的压差是蒸汽流向的驱动力,对于微小的压力降就会引起蒸汽的流动。

在1mbar下运行要求在沸腾面和冷凝面之间具有非常短的距离,基于这个原理制作的蒸馏器称为短程蒸馏器(Thefishoilshortdistancedistils)。

短程蒸馏器(Thefishoilshortdistancedistils)短程蒸馏bolg(分子蒸馏)有一个内置冷凝器在加热面的对面,并使操作压力降到0.001mbar以下。

它较低的沸腾温度,非常适合热敏性、高沸点物。

基本构成:带有外加热夹套的圆柱型筒体,转子和内置冷凝器;在转子的固定架上精确装有刮膜片和防飞溅装置。

内置冷凝器位于蒸发器的中心,转子在圆柱型筒体和冷凝器之间旋转。

蒸馏过程是:物料从蒸发器的顶部加入,经转子上的料液分布器将其连续均匀地布向加热面,随即刮膜片将料液刮成一层极薄、呈湍流状的液膜,并以螺旋状向下推进。

分子蒸馏技术的原理和应用

分子蒸馏技术的原理和应用

分子蒸馏技术的原理和应用1. 引言分子蒸馏技术是一种常用的物质分离和纯化方法,通过利用不同组分的汽化特性差异实现分离。

本文将介绍分子蒸馏技术的原理和应用。

2. 分子蒸馏的原理分子蒸馏是基于组分之间沸点差异的原理进行的。

在混合液中,不同成分的沸点有所不同,通过控制温度和压力条件,将目标成分汽化为气体,然后在特定的设备中进行分离和纯化。

下面是分子蒸馏的主要原理:•按照沸点差异分离:分子蒸馏利用组分之间的沸点差异实现分离。

通过对混合液体加热,使其中的目标成分汽化为气体,然后通过凝华使其重新变为液体形式,从而达到分离的目的。

•借助分馏柱实现分离:为了提高分离效果,通常使用分馏柱进行操作。

分馏柱内部通常填充有不同材料的填料,通过填料增加接触面积,提高分离效率。

•控制温度和压力:在分子蒸馏过程中,需要控制合适的温度和压力条件,以确保目标成分能够汽化,并且避免其他成分的汽化。

通过调整温度和压力,可以控制分馏柱内的温度梯度,实现不同组分的分离。

3. 分子蒸馏的应用由于分子蒸馏技术具有高效、可靠、适用范围广等优点,因此在许多领域得到了广泛的应用。

以下是分子蒸馏技术的主要应用场景:3.1 石油化工行业在石油化工行业中,分子蒸馏是一种常用的分离技术。

通过分子蒸馏,可以将原油中的不同沸点范围内的组分进行分离,获得高纯度的石油产品。

例如,通过石油分子蒸馏可以得到汽油、柴油、润滑油等不同级别的产品。

3.2 医药制造业在医药制造业中,分子蒸馏被广泛应用于药物的纯化和分离。

通过控制温度和压力,可以将原料药中的目标成分进行纯化,并去除其中的杂质。

分子蒸馏可以保证药物的质量和纯度,并确保成品药物符合药典标准。

3.3 食品饮料工业在食品饮料工业中,分子蒸馏被用于酒类和饮料的精制和提纯过程。

例如,在酿酒过程中,通过分子蒸馏可以将原始发酵液中的酒精提纯获得高纯度的酒精产品。

此外,分子蒸馏还可以用于提取植物精油、香料等食品添加剂。

3.4 环境保护分子蒸馏技术还被应用于环境保护领域。

分子蒸馏原理和其实际应用

分子蒸馏原理和其实际应用

分子蒸馏原理和其实际应用分子蒸馏是一种常见的分离技术,主要利用液体混合物的成分具有不同的沸点来实现精确的分离。

本文将详细介绍分子蒸馏的原理以及其实际应用。

分子蒸馏的原理:分子蒸馏的基本原理是根据液体混合物各组分的沸点差异,通过升华和凝结过程将馏出液中想要分离的物质单独收集。

分子蒸馏通常需要通过提高系统压力或降低操作温度来实现。

在分子蒸馏过程中,液体混合物首先被加热,使其达到沸点。

随着液体的升温,其中沸点较低的组分开始蒸发并形成蒸汽。

这些蒸汽通过冷凝器,降温并恢复为液体形式,形成馏出液。

由于液体混合物中各个组分的沸点不同,较高沸点的组分会在液体中留下。

这样,通过重复蒸发和凝结操作,可以分离出不同组分。

分子蒸馏的实际应用非常广泛,下面列举几个常见的应用。

1.原油分离:分子蒸馏是石油工业中最常用的分离技术之一、原油中包含了众多不同成分,通过分子蒸馏可以将这些成分按照沸点逐渐分离出来,从而生产出各种不同的石油产品,如汽油、柴油、润滑油等。

2.酒精制备:在酿酒过程中,通过对发酵产物进行分子蒸馏,可以将酒精与其他组分(如水、醛等)分离出来,从而得到纯净的酒精。

3.食品加工:在食品加工过程中,需要对各种原料进行分离和提纯。

分子蒸馏常被用于提取和分离食品中的香料、色素、味道等物质。

4.药物制备:分子蒸馏在制药工业中也有重要应用。

通过分子蒸馏,可以从草药中提取有效成分,制备高纯度的药物。

5.精细化工:分子蒸馏技术广泛应用于化工领域,用于分离提纯各种有机溶剂、液氨、稀硫酸等化工产品。

除了以上应用外,分子蒸馏还被广泛应用于环境保护和资源回收领域。

例如,在废水处理过程中,可以通过分子蒸馏将废水中的有害物质以及有用的溶质分离开来,达到净化水源的目的。

在资源回收中,分子蒸馏也可以用于提纯回收废物中的有用物质。

总的来说,分子蒸馏是一种重要的分离技术,其原理简单而有效。

在各个工业领域,分子蒸馏都有广泛的应用,用于提纯和分离各种物质。

分子蒸馏

分子蒸馏

1.简介分子蒸馏技术是一种新型的特殊的液一液分离技术,由于分子蒸馏在低氧惰性条件下蒸馏。

其蒸馏温度低。

物料受热时间短,操作压力低(真空度高),分离程度及产率高,产品质量高,其成分在蒸馏前后不会有太大变化.在分离后的产品可避免有机溶剂等优点EI-71。

特别适应于高沸点。

热敏性以及易氧化物料的分离纯化。

至目前为止,分子蒸馏技术已广泛应用于石油化工、精细化工、食品工业、医药保健等行业的物质分离和提纯,尤其是高分子量、高沸点、高粘度的物质及热稳定性的有机化合物的浓缩和纯化,由于世界各国的不断研究开发和应用,正在涉及国民经济的更多领域。

分子蒸馏技术在1920年开始于德国和英国,美国的K.C.C.Hick Mantm 和他的科研小组进行了进一步研究。

该技术与传统的蒸馏方法不同,是一种对高沸点,热敏性物料进行有效的分离纯化手段,1971年HoU6 J。

Kurucz E和Bor6di A⋯对分子蒸馏技术进行进一步研究。

提出只要蒸发面和冷凝面存在温差蒸发即可在任何温度下进行并将分子蒸馏技术成功的运用于浓缩鱼肝油中提炼维生素A的工业中。

1995年Juraj Lutisan和Jan Cvengros[12]运用理想气体动力学理论到处分子平均自由程提出分子蒸馏的分离作用是利用液体分子受热会从液面逸出.而且不同种类分子逸出后其平均自由程不同来实现的。

2 分子蒸馏技术的基本原理分子蒸馏不同于一般的蒸馏技术。

它是运用不同物质分子运动平均自由程的差别而实现物质的分离,因而能够实现在远离沸点下操作。

所谓分子运动平均自由程,是指在某一时间间隔内分子自由程的平均值;而分子运动自由程则是一个分子在相邻两次分子碰撞之间所经过的路程根据热力学原理,分子运动平均自由程可用下式表示:式中 K—一波尔兹曼常数;P——分子运动所处的空间压力;T——分子运动所处的空间温度;d——分子有效直径。

由式(1)可以看出,压力、温度及分子有效直径是影响分子运动平均自由程的三个主要因素根据分子运动理论,液体混合物的分子受热后运动会加剧,当接受到足够能量时,就会从液面逸出而成为气相分子,随着液面上方气相分子的增加,有一部分气体就会返回液体,在外界条件保持恒定情况下,就会达到分子运动的动态平衡。

分子蒸馏技术在石油化工中的应用

分子蒸馏技术在石油化工中的应用

分子蒸馏技术在石油化工中的应用213000常州海鸥化工设计研究院有限公司摘要:分子蒸馏技术具有加热温度低,过程温和,受热时间短等优点,适合于高沸点和热敏性物质的分离﹐特别适合应用于油脂的精深加工。

本文从分子蒸馏技术的基本原理,特点,操作过程,设备四方面阐述了分子蒸馏技术在处理石油化工产生的渣油.回收废润滑油、生产高粘度润滑油以及分离催化剂与产品等方面的应用。

关键词:分子蒸馏技术;石油化工;应用分子蒸馏(Molecular Distillation)是一项利用高真空条件下不同物质内部分子间的自由程差实现的新技术,其实质为“分子气化”。

由于具有高真空度,低蒸馏温度,短加热时间,高分离度,因此能够显著地减少高沸点材料的分离费用,更好地保障热敏材料的品质,特别适用于分离、萃取和提纯高沸点、高热敏性和易氧化物质,可以将许多传统的分离方法难以处理的问题都处理掉。

目前,如今,其在医药、食品、精细化工、石油化工、塑料等行业中得到了广泛的应用,具有很大的技术应用前景。

在我国日益枯竭的背景下,在日益增长的环境保护意识和持续高涨的原油价格背景下,如何有效地提高原油的使用率已成为国际社会关注的焦点。

分子蒸馏是一种新型的物理化学方法,具有绿色、洁净等优点,在石化行业具有广阔的发展前景。

一、分子蒸馏的基本原理1.1分子运动平均自由程范德华力和电荷力是两种不同性质的力量,液体的运动幅度比气体的要小,这是因为液体的力量和气体的力量都是一样的,如果两个液体的力量很大,那么两个分子就会慢慢的靠近,但是如果两个分子的距离很近,那么这两个分子之间的力量就会变成一种斥力,这种斥力的力量会随着距离的靠近而快速的增加,最终导致两个分子分离。

1.2分离原理分子蒸馏是基于组分间挥发性的差异,在较高的真空环境中进行的一种非平衡蒸馏。

在混合工质的沸点温度下,根据各工质分子的平均自由程差异,在高真空条件下对各工质进行分离。

在装置的凝结面和蒸发面之间存在温差的情况下,可以进行分离作业。

分子蒸馏原理及其实际应用

分子蒸馏原理及其实际应用
力,但当两分子接近到一定程度后,分子之间的作用力会改变为排斥力,并随其接近距离的 减小,排斥力迅速增加。当两分子接近到一定程度时,排斥力的作用使两分子分开。这种由 接近而至排斥分离的过程.就是分子的碰撞过程。
4
2020/12/13
第四页,共43页。
10.1 分子蒸馏原理
✓ 分子蒸馏基本概念
分子有效直径 分子在碰撞过程中,两分子质心的最短距离(即发生斥离的质心距离)称为分子有效直径。
分子蒸馏原理 根据分子运动理论,液体分子受热从液面逸出,不同种类的分子,其平均自由程不同;
液体混合物为达到分离的目的,首先进行加热,能量足够的分子逸出液面。 轻分子的平 均自由程大,重分子的平均自由程小,若在离液面小于轻分子平均自由程而大于重分子平均 自由程处设置一冷凝面,使得轻分子落在冷凝面上被冷凝,从而破坏了轻分子的动态平衡, 使得轻分子继续不断逸出。而重分子因达不到冷凝面,很快趋于动态平衡。这样就将混合物 分离了。
分子蒸馏系统流程及分子蒸馏设备
分子蒸馏的实际应用
2
2020/12/13
第二页,共43页。
✓ 分子蒸馏原理图
10.1 分子蒸馏原理
3
2020/12/13
第三页,共43页。
10.1 分子蒸馏原理
✓ 分子蒸馏基本概念
分子碰撞 分子与分子之间存在着相互作用力,当两分子离得较远时,分子之间的作用力表现为吸引
10.2 分子蒸馏系统流程及分子蒸馏设备
3333
2020/12/13
第三十三页,共43页。
✓ 分子蒸馏设备 分子蒸馏器的模式
(3)离心式蒸发器
液膜在旋转的转盘表面形成的液膜极薄且分布 均匀,蒸发速率和分离效率很高。
受热时间更短,料液热裂解的几率低。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子蒸馏技术及其应用摘要分子蒸馏又称短程蒸馏,是一种新型的液-液分离技术,与常规蒸馏相比具有许多优点,本文对分子蒸馏的基本原理、设备、特点以及在食品、医药、化工工业中的应用进行了阐述。

关键词:分子蒸馏、食品工业。

分子蒸馏是在高真空度下进行的非平衡蒸馏技术(真空度可达 0.01Pa),是以气体扩散为主要形式、利用不同物质分子运动自由程的差异来实现混合物的分离。

由于蒸发面和冷凝面的间距小于或等于被分离物料的蒸气分子的平均自由程,所以也称短程蒸馏。

由于分子蒸馏过程中。

待分离物质组分可以在远低于常压沸点的温度下挥发,并且各组分的受热过程很短,因此分子蒸馏已成为对高沸点和热敏性物质进行分离的有效手段。

目前已广泛应用于食品、医药、油脂加工、石油化工等领域,用于浓缩或纯化低挥发度、高分子量、高沸点、高黏度、热敏性、具有生物活性的物料。

一、分子蒸馏的概念原理和过程1.1分子蒸馏的基本概念分子有效直径:分子在碰撞过程中,两分子质心的最短距离,即发生斥离的质心距离。

分子运动自由程:指一个分子与其他气体分子相邻两次分子碰撞之间所走的路程。

分子运动平均自由程:在一定的外界条件下,不同物质中各个分子的自由程各不相同。

就某一种分子来说在某时间间隔自由程的平均值称为平均自由程。

1.2分子蒸馏的基本原理分子蒸馏的分离是建立在不同物质挥发度不同的基础上,其操作是在低于物质沸点下进行,当冷凝表面的温度与蒸发物质的表面温度有差别时就能进行分子蒸馏。

根据分子运动理论,液体混合物中各个分子受热后会从液面逸出,不同种类的分子,由于其有效直径不同,逸出液面后直线飞行距离是不相同的。

轻分子的平均自由程大,重分子的平均自由程小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子落在冷凝面上被冷凝,而重分子则因达不到冷凝面,返回原来液面这样就将混合物分离了,分子平均自由程是分子蒸馏基本理论的核心。

1.3分子蒸馏的基本过程根据分子蒸馏的基本理论,可将蒸馏过程分解为以下5个步骤:①物料在加热面上形成液膜;②分子在液膜表面上自由蒸发;③分子从加热面向冷凝面的运动;④轻分子在冷凝面上被捕获,重分子返回物料液膜;⑤馏出物和残留物的收集。

二、分子蒸馏的特点2.1设备组成一套完整的分子蒸馏设备主要由脱气系统、进料系统、分子蒸馏器、馏分收集系统、加热系统、冷却系统、真空系统和控制系统等部分组成,其工艺流程。

脱气的目的是排除物料中所溶解的挥发性组分,以免蒸馏过程中发生爆沸。

真空系统是保证分子蒸馏过程进行的前提,合适的真空设备和严格的密封性是分子蒸馏装置的一个技术关键,为保证所需要的真空度一般采用二级或二级以上的泵联用,并设液氮冷阱以保护真空泵。

根据形成蒸发液膜的不同,分子蒸馏器可分为:降膜式分子蒸馏器、刮膜式分子蒸馏器和离心式分子蒸馏器,由于降膜式的传热、传质效率差,已逐渐被淘汰,代之以刮膜式或离心式。

由于离心力能强化成膜,物料停留时间短,且液膜薄而均匀,降低了传质阻力,且加热和冷却大多为置式,因此,离心式分子蒸馏器的分离效率及生产能力较高,但其结构复杂、相对投资比较大,而转子刮膜式结构相对较为简单,操作参数容易控制,且价格相对低廉,因此,现在的试验室及工业生产中,大部分都采用该装置。

2.2蒸馏器设计原则分子蒸馏器是整套设备的核心,集中体现了分子蒸馏技术的关键。

其设计应当满足以下条件:①高真空度:残余气体的分压须很低,以保证蒸发分子在蒸发空间尽可能不与其他分子碰撞;②冷凝面与蒸发面的间距小于蒸发分子的平均自由程;③为防止返蒸现象(已冷凝分子重新蒸发),蒸发面与冷凝面的温度差至少在50~100℃之间;④被蒸馏物料在蒸发面应能形成厚度均匀的薄膜,以提高蒸发效率。

即尽可能均匀加热,因为局部过分加热导致的物料分解将会使真空度明显降低,致使蒸发暂停;⑤在分子蒸馏中,仅液体表面与蒸发相关,因此,在蒸发面要有不断出现的新液面。

2.3刮膜式分子蒸馏装置图是刮膜式分子蒸馏装置,其优点是:液膜厚度小,受热时间短,热分解的危险性较小,蒸馏过程可以连续进行,生产能力大。

缺点是:很难保证所有的蒸发表面都被液膜均匀覆盖;液体流动时常发生翻滚现象,所产生的雾沫也常溅到冷凝面上。

2.4分子蒸馏的特点与传统的普通蒸馏相比,分子蒸馏具有以下特点:(1)物料分离建立在物质挥发度不同的基础上,分离操作在低于物质沸点下进行,对于采用溶剂萃取后液体的脱溶非常有效;(2)普通蒸馏是蒸发与冷凝的可逆过程,液相和气相间可以形成动态平衡,而分子蒸馏过程中,从蒸发表面逸出的分子直接飞射到冷凝面上,中间不与其他分子发生碰撞,理论上没有返回蒸发面的可能性,所以分子蒸馏是不可逆的;(3)普通蒸馏虽然也可以进行减压蒸馏,但真空度不是很高,物料中溶解的气体会导致物料有鼓泡、沸腾等现象,而分子蒸馏是在很低压力下进行的液膜表面上的自由蒸发,是非沸腾下的蒸发过程;(4)分子蒸馏的操作真空度高。

分子蒸馏是高真空下的短程蒸馏,蒸发面与冷凝面的距离小于轻分子三、设备及其特点3.1 ①转子驱动马达②加热夹套③冷凝管④刮膜转子⑤冷凝水出口冷凝水入口⑥重组分收集瓶⑦进料器⑧冷阱⑩轻组分收集瓶⑪油扩散泵⑫真空泵。

(1)真空泵的平均自由程,蒸发的轻分子不与其他分子碰撞、几乎没有压力降就达到冷凝面,更有利于进行物料的分离;(2)蒸馏温度比普通蒸馏低。

常规蒸馏在沸点温度进行,而分子蒸馏在极高真空度下操作,可以对常规蒸馏不能分离的热稳定性差的物质进行蒸馏;(3)物料受热时间短。

在蒸发过程中,混合物料呈薄膜状,并被定向推动,液面与加热面的面积几乎相等,使得液体在分离器中停留时间很短(一般几秒至几十秒),避免了因受热时间长造成混合物某些组分分解或聚合的可能,更适宜对一些高沸点、热敏性及易氧化物料进行有效的分离;(4)分子蒸馏的分离程度更高。

两组分混合物进行分离时,以相对挥发度表示其分离能力。

常规蒸馏的相对挥发度α= P1/P2,分离能力只与组分的蒸气压之比有关,分子蒸馏的挥发度一般用下式表示:ατ=α×(M2/M1)1/2式中:ατ为分子蒸馏的相对挥发度;M1为轻分子相对分子质量,M2为重分子相对分子质量。

因此,分子蒸馏的分离能力与被分离混合物的蒸气压和相对分子量都有关。

两组分的蒸气压和分子量差别越大,其相对挥发度越大,越容易实现分离,由于 M2>M1,所以ατ>α,即对于两种方法均能分离的物质,分子蒸馏的分离度更高。

(5)分子蒸馏利用各分子平均自由程不同进行分离,分馏过程是物理过程,分离操作不使用有毒的有机溶剂,可得到纯净安全的产物。

四、影响分子蒸馏的因素4.1影响分子蒸馏速度的因素在理想的分子蒸馏过程中,从蒸发表面逸出的分子全部凝集在冷凝面上,此时蒸馏速度应等于蒸发速度,但实际上由于物料性质、设备形式及操作条件等多种因素的影响,分子蒸馏速度远小于理想值,介于普通蒸馏与分子蒸馏之间。

影响分子蒸馏速度的主要因素是温度和真空度,蒸馏速度随着温度和真空度的升高而上升,因此对热稳定性良好的物质,在真空温度一定时,升高温度可加速蒸馏过程,实际应用中预算蒸发处理量时,需引入校正系数。

4.2影响分子运动平均自由程的因素分子运动平均自由程公式:λm=Vm /f,其中λm是分子运动平均自由程,Vm是分子平均运动速度,f是分子碰撞频率。

由热力学原理,f= 2姨 Vmπd2P/KT,d是分子平均直径,是分子的环境压强,T是环境温度,K是玻尔兹曼常数,因此,λm= KT/( 2 姨πd2P),从公式可知:温度、压力及分子的有效直径是影响分子运动平均自由程的主要因素。

物质确定后,分子的有效直径一定,λm与环境温度成正比,而与分子的环境压力成反比,当温度升高,分子运动加剧,分子运动自由程增加,但操作温度不能过高,以免样品的热分解。

当温度恒定时,压力降低,单位体积的分子数减少,分子碰撞的频率降低,分子运动的平均自由程增加,因此,设备的真空度越高越有利于蒸发。

此外,由于分子蒸馏是利用液膜受热使分子扩散而不同于沸腾蒸发,因而液膜厚度不能太厚,一般在几十到几百微米,在分子蒸馏装置的结构设计中,必须考虑液面的传质效率及加热面与冷凝面的距离。

4.3影响分子蒸馏的其他因素①混合物中含有的挥发性物质:如低沸点组分、溶解的空气、湿气,在进蒸馏器之前应除去,否则会引起暴沸并影响产品质量。

②混合物的黏度:黏度是影响分子运动平均自由程的因素之一,又是影响液膜厚度和停留时间的因素之一。

③液膜厚度:液相中的扩散速度是控制分子蒸发速度的主要因素,因此液膜层厚度应尽量薄。

④蒸馏温度:应根据被分离物质的热稳定性来选择合理的蒸馏温度,同时蒸发器部冷热面要有足够的温度差,一般为 70~100℃。

⑤蒸馏系统的真空度:分子蒸馏必须在高真空度下进行以保证蒸发分子的平均运动自由程大于等于冷热两面的间距。

五、分子蒸馏技术的应用5.1分子蒸馏是一项应用广泛的高科技分离技术,早在20纪60年代国外一些工业比较发达的国家就已经开展分子蒸馏技术的研究与开发,我国20世纪90年代才开展刮膜式分子蒸馏装置和工艺的应用研究。

由于分子蒸馏真空度高,操作温度低和受热时间短,能极好地保证物料的天然品质,不仅能有效地去除液体中的有机溶剂和臭味剂等低分子物质,而且可以分离沸点相近而相对分子质量有差异的混合物,因此可被广泛应用于科学研究和工业化生产中。

5.2食品工业①提取天然色素,采用降膜和离心式分子蒸馏设备从棕搁油酯化物中提取高纯度类胡萝卜素。

利用分子蒸馏提纯辣椒红色素的工艺进行了优化。

②制备高纯度食品添加剂:采用分子蒸馏的手段可以制得纯度为90%~96%的单甘酯。

③分离纯化不饱和脂肪酸:采用分子蒸馏技术从尿素预处理的鱿鱼脏油乙酯中,得到了浓度分别为39.0%和65.6%的 EPA和DHA。

采用分子蒸馏技术从白芒花中得到色价1的不饱和脂肪酸。

④获取风味物质:分子蒸馏在较低的温度下进行,浓缩物还原性好,利用分子蒸馏技术提高了玫瑰精油的品质和得率。

⑤油脂脱酸、脱色:分子蒸馏技术在油脂加工中可用于降低毛油的高酸值,利用分子蒸馏将蚕蛹油的酸值由30(KOH)/(mg/g)降至2(KOH)/(mg /g)以下。

5.3医药工业①提取天然维生素:用分子蒸馏法可以从大豆油、小麦胚芽油等油脂及其脱臭物中提取高纯度维生素A、维生素 E,分别利用分子蒸馏技术对大豆脱臭馏出物进行分离,得到纯度为 65%74.55%的维生素E。

则利用分子蒸馏技术得到纯度在 93%以上的维生素 K1。

②分离中药提取液:葡萄籽油中不饱和脂肪酸、维生素E等活性物质含量很高,但很不稳定,在加工过程中很容易分解而失去其原有功能,采用分子蒸馏对葡萄籽油的精制进行了详细的研究。

采用分子蒸馏装置提高了经过超临界萃取的当归根油品质。

相关文档
最新文档