高中数学选修2-3知识点汇编 (2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学选修2-1知识点
第一章常用逻辑用语
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.
假命题:判断为假的语句.
2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.
3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p,则q”,它的逆命题为“若q,则p”.
4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.
若原命题为“若p,则q”,则它的否命题为“若p
⌝,则q
⌝”.
5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.
若原命题为“若p,则q”,则它的否命题为“若q
⌝,则p
⌝”.
6、四种命题的真假性:
四种命题的真假性之间的关系:
()1两个命题互为逆否命题,它们有相同的真假性;
()2两个命题为互逆命题或互否命题,它们的真假性没有关系.
7、若p q
⇒,则p是q的充分条件,q是p的必要条件.
若p q
⇔,则p是q的充要条件(充分必要条件).
8、用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作p q
∧.
当p、q都是真命题时,p q
∧是真命题;当p、q两个命题中有一个命题是假命题时,p q
∧是假命题.
用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作p q
∨.当p、q两个命题中有一个命题是真命题时,p q
∨是真命题;当p、q两个命题都是假命题时,p q
∨是假命题.
对一个命题p全盘否定,得到一个新命题,记作p
⌝.
若p是真命题,则p
⌝必是假命题;若p是假命题,则p
⌝必是真命题.
9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.
全称命题“对M中任意一个x,有()
p x成立”,记作“x
∀∈M,()
p x”.
短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.含有存在量词的命题称为特称命题.
特称命题“存在M中的一个x,使()
p x成立”,记作“x∃∈M,()
p x”.
10、全称命题p:x
∀∈M,()
p x,它的否定p
⌝:x∃∈M,()
p x
⌝.全称命题的否定是特称命题.
第二章圆锥曲线与方程
11、平面内与两个定点
1
F,
2
F的距离之和等于常数(大于
12
F F)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.
12、椭圆的几何性质:
焦点的位置焦点在x轴上焦点在y轴上图形
标准方程()
22
22
10
x y
a b
a b
+=>>()
22
22
10
y x
a b
a b
+=>>范围a x a
-≤≤且b y b
-≤≤b x b
-≤≤且a y a
-≤≤顶点
()
1
,0
a
A-、()
2
,0
a
A
()
1
0,b
B-、()
2
0,b
B
()
1
0,a
A-、()
2
0,a
A
()
1
,0
b
B-、()
2
,0
b
B
轴长短轴的长2b
=长轴的长2a
=
焦点()
1
,0
F c-、()
2
,0
F c()
1
0,
F c-、()
2
0,
F c
焦距()
222
12
2
F F c c a b
==-
对称性关于x轴、y轴、原点对称
原命题逆命题否命题逆否命题真真真真
真假假真
假真真真
假假假假
离心率 ()2
2101c b e e a a
==-<<
准线方程
2
a x c
=±
2
a y c
=±
13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则
121
2
F F e d d M M =
=.
14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦
距.
15、双曲线的几何性质:
焦点的位置 焦点在x 轴上
焦点在y 轴上 图形
标准方程 ()22
2210,0x y a b a b
-=>> ()22
2
210,0y x a b a b
-=>> 范围 x a ≤-或x a ≥,y R ∈
y a ≤-或y a ≥,x R ∈
顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =
焦点 ()1,0F c -、()2,0F c
()10,F c -、()20,F c
焦距 ()222122F F c c a b ==+
对称性 关于x 轴、y 轴对称,关于原点中心对称
离心率 ()2
211c b e e a a
==+>
准线方程 2
a x c =±
2
a y c =±
渐近线方程
b y x a
=±
a y x b
=±
16、实轴和虚轴等长的双曲线称为等轴双曲线.
17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则
1
2
12
F F e d d M M =
=.
18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.
19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:
若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p F x P =+
; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02p
F x P =-+;
若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p
F y P =+;
若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02
p
F y P =-+.
21、抛物线的几何性质:
标准方程
22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-
()0p >
图形
顶点
()0,0
对称轴
x 轴
y 轴
焦点
,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛
⎫ ⎪⎝⎭
0,2p F ⎛
⎫- ⎪⎝⎭
准线方程
2
p
x =-
2
p
x =
2
p y =-
2
p y =