最新圆的解析几何方程

合集下载

圆的解析几何方程

圆的解析几何方程

〖圆的解析几何方程〗圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

〖圆与直线的位置关系判断〗平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F=> 圆心坐标为(-D/2,-E/2)1.点与圆的位置关系设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:(1)d>r 点M在圆外;(2)d=r 点M在圆上;(3)d<r 点M在圆内.2.直线与圆的位置关系设圆C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,b)判别式为△,则有:(1)d<r 直线与圆相交;(2)d=r 直线与圆相切;(3)d<r 直线与圆相离,即几何特征;或(1)△>0 直线与圆相交;(2)△=0 直线与圆相切;(3)△<0 直线与圆相离,即代数特征,3.圆与圆的位置关系设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:(1)d=k+r 两圆外切;(2)d=k-r 两圆内切;(3)d>k+r 两圆外离;(4)d<k+r 两圆内含;(5)k-r<d<k+r 两圆相交.4.其他(1)过圆上一点的切线方程:①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).(2)相交两圆的公共弦所在直线方程:设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.(3)圆系方程:①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).1.求经过M(1,2)N(3,4),并且在Y轴上截得的弦长为1的圆的方程。

高中数学教师备课必备系列圆与方程专题八 圆系方程及其应用 含解析

高中数学教师备课必备系列圆与方程专题八 圆系方程及其应用 含解析

圆系方程及其应用一.常见的圆系方程有如下几种:222??0)?)(x?a)??(y?b(),b(a为圆心的同心圆系方程:.以12222?0??+Dx?Ey?F?0xEyx??yy+Dx?与圆同心的圆系方程为:220??F+DxC:x??yEy0?l:ax?by?c交点的圆系方程为:与圆2.过直线22??)R?)?0+((ax?byx??yc+Dx?Ey?FABClB,A为公共弦的一系列相交圆,其圆心在(1)当直线交于与圆两点时,圆系中的所有圆是以AB的垂直平分线上;公共弦??b??aED),?M(?ACl时,这时圆系的圆心与圆,切于点(2)当直线22?????bEaE?abD?D),b?(a?(?,?)?CM?OM?OC?(?,?)?(?,?)2222222?n?CM=CMn l)b(a,n?,∴,∴而直线∥的法向量2l?CM ACl的过点,且直线的切线.为圆因此,CMCACA?l与重合.又∵(过切点的半径与切线垂直),∴ACCl圆心都,直线外)与圆内切或外切于点是它们的公切线,由此可知,圆系中的所有圆(除圆CA在直线上.22220??FDx?Ey?F?0C:x?yC:x+?yE+Dx?y交点的圆系方程为:.过两圆与322112112????2222??1?0?Dx?Ey?y+Dx?Ey?F??xF?y?x+.221121??E??DED2211),?M(?,可知,圆心??)?)2(12(1?????(E?E)E?(D?DDDE?)ED1111211222)?(?,?)CM(??,?OM?OC?(??,?)11????)2(1??)?2(12(1)2(1?2)2???EDED2211)]?(OC?OC,?)?C[(??,C)?(??2112?????1122221?M,C,CCC M上.因此,点共线,即圆系的所有圆的圆心都在已知两圆的连心线2112CAB?CC AB C BA,为所有两点时,则,且弦(即连心线与公共弦垂直)(1)当圆与圆相交于2211圆的公共弦;CCCC AAM上,圆系的所有圆都与已(2)当圆与圆内切或外切于的连心线点时,则在过切点2121CC A处内切或外切.及圆知的圆在点21注意:22+Dx?EyxC:??yF?0; 1)此圆系不含圆(2222CC和两圆公共弦所在直线交点的圆,可等价转化为过圆(2)为了避免利用上述圆系方程时讨论圆2122?[(D?D)x?(E?E)y?Dx?Ey?F?(F?F)]?x?y0? :系方程211112211???1??*0F)?)y?(F??(D?D)x?(EE称为根轴方程.时,上述方程(3)特别地,当222111根轴的特点:位于已知两圆外的根轴上的任意一点向圆系的所有圆所作的切线的长都相等.CC ABBA,(*)所在直线的方程;与圆两点时,方程于表示公共弦①当两已知圆21C AA C(*)的公切线方程.②当圆点时,方程与圆内切或外切于表示过(内或外)公切点21A外,公切线上的所有点均具有根轴的性质.这时,除点二.圆系方程在解题中的应用2222?2x?yy?1??y?2?03x0x??y3?3x交点和坐标原点的圆的方程..求经过两圆和例122020?x?2y?x?y?4(2,0)3)BA(?1,?,且过点例2.求与圆切于点的圆的方程.222222?0?3)]?(y200x?y?4x?2y???[(x?1)?(x?1)?(y3)?3)A(??1,,构造圆系为点圆解一:视点422??7x?7y?4x?18y?20?0(2,0)B,∴所求的圆的方程为,可得代入点3A(?1,?3)3x?4y?15?0,与已知圆构造圆系解二:过点的已知圆的切线方程为22?(3x?4y??15)?x0?yy?4x?2?20822??7x?7y?4x?18y?20?0(2,0)B代入点,∴所求的圆的方程为,可得7220?1?y??2x4yxC:?0??2:x?y4l的交点且面积最小的圆的方程.求经过直线与圆C: 3.例??22?0?4?x?y2x?y?1+?2xy?4解一:设圆的方程为,即22???)?0?(1?x)?(4?4)xy?y+2(1+,则1584??2222???????()4144r??(41)?(?)?(?),5544.8222??r?26x?12y?5x37?5y?0. 最小,从而圆的面积最小,故所求圆的方程为:∴当时,5作业:222?x?y4)?B(?1,A(1,1) 1.求与圆的圆的方程.切于点,且过点22220x?y?x?4x?y?10x?3y?6?的交点,且与直线2.求过两圆和相切的圆的方程.221)??R,k?k?10)y10k?20?0(kx??y2?kx?(4中,任意两个圆的位置关系如何?3.圆系一.常见的圆系方程有如下几种:222??0)(???x?a)?(yb)()b(a, 1.以为圆心的同心圆系方程:2222?0??+Dx?EyxDxx?y+?Ey?F?0?y同心的圆系方程为:与圆220?c?axl:?by0?EyC:x?y+Dx??F交点的圆系方程为:与圆2.过直线22??)0?(R???x?y+Dx?EyF+(ax?byc)ABClB,A为公共弦的一系列相交圆,其圆心在两点时,圆系中的所有圆是以与圆交于)当直线(1AB公共弦的垂直平分线上;??b??aED,?M(?)ACl,2(时,这时圆系的圆心切于点)当直线与圆22.?????b?abDD?EaE,?)?((??,?)?(?,?)??(a,b)CM?OM?OC?2222222?n?CM=CMn l)bn?(a,,∴,∴而直线∥的法向量2CM?l ACl的切线.,且直线因此,的过点为圆CA?lCACM重合.与(过切点的半径与切线垂直)又∵,∴CCAl是它们的公切线,外)与圆内切或外切于点圆心都由此可知,圆系中的所有圆(除圆,直线CA上.在直线2222+Dx?Ey?F?0C:x?:xy?y+Dx?Ey?F?0C交点的圆系方程为:.过两圆与311222121????2222??10??Eyy?F??Fx??y?+Dxx?yD+x?E.211122??EE??DD2211,M(??),可知,圆心??)??)2(12(1????(E?E)(D?D?DDE?)EDE1111222211)?(?,?)CM(??,?OM?OC?(?,?)?11????)2(122(1??2(1?2(1)?))2???EDDE2211)]?(OC?OC)?)?(??,?[(?C,?C2121????12211??22M,C,CCC M上.共线,即圆系的所有圆的圆心因此,点都在已知两圆的连心线2211CAB?CCC ABB,A为所有(即连心线与公共弦垂直)相交于两点时,则(1)当圆,且弦与圆2211圆的公共弦;CCCC AAM上,圆系的所有圆都与已内切或外切于在过切点与圆点时,则)当圆(2的连心线2121CC A处内切或外切.及圆知的圆在点21注意:22+Dx?Ey?FC:x??y0;1)此圆系不含圆(2222CC和两圆公共弦所在直线交点的圆)为了避免利用上述圆系方程时讨论圆,可等价转化为过圆(22122?[(D?D)x?(E?E)y?Dx?EyF??(F?F)]?0x?y? :系方程221211111???1??*)F?0)E?Ey?(F?x?(DD)?(称为根轴方程.3()特别地,当时,上述方程211221根轴的特点:位于已知两圆外的根轴上的任意一点向圆系的所有圆所作的切线的长都相等.CC ABBA,(*)所在直线的方程;表示公共弦两点时,方程①当两已知圆与圆于21C AA C(*)的公切线方程.内切或外切于点时,方程表示过(内或外)公切点与圆②当圆21A外,公切线上的所有点均具有根轴的性质.这时,除点二、圆系方程在解题中的应用:2222?2x?y3y?1?3x?y?2?03xx0?y??交点和坐标原点的圆的方程.例1 和.求经过两圆22?4x?2y?20?x0?y A(?1,?3)B(2,0)的圆的方程.,且过点切于点例2.求与圆222222?]?3)0?(?20?y[(x?1)?(y?3)1)?0x??y?4x?2y(x?3)1,A(??视点解一:为点圆,构造圆系422??(2,0)B?4x?18yx??7y20?07,可得,∴所求的圆的方程为代入点3A(?1,?3)3x?4y?15?0,与已知圆构造圆系的已知圆的切线方程为解二:过点22?(3x?4y??20?15)?x0?y??4x2y822??7x?7y?4x?18y?20?0(2,0)B,可得代入点,∴所求的圆的方程为72201?y2?x?C:x4?y?0x4??y?l:2的交点且面积最小的圆的方程.与圆C:例3.求经过直线??22?02x?1+y?4??x?xy?2?4y,即解一:设圆的方程为22???)??40?4)yx??y(1+2(1+)x?(,则1584??2222???????4)r??()(41?)1?(?4)?4(,55448222??r5x?5y?26x?12y?37?0. 最小,从而圆的面积最小,故所求圆的方程为:∴当时,5练习:22?yx2?A(1,1)B(?1,?4)的圆的方程.,且过点切于点1.求与圆2222??2)?1)??y(x(x?1)0?(y?解:设所求的圆方程为29????+29=0154???1,yB(?1,?4)x?,,解得代入,得,将∵圆过点15822???15x?15y?447x??7y0将代回圆系方程,得所求的圆方程为522220?4yxx?y??1x?0?x?3y?6 2.求过两圆相切的圆的方程.和的交点,且与直线?14??222222?x??x?y?00x?y?1?x?y?4x?,即解:设所求的圆的方程为????1122?????1441?12?????4?r???(,0),半径圆心?????????1||1??21?1?????2?6||??|?|232??1?d?(,0)0?y?6x?3圆心的距离到直线??||1?2?13?12???8??3|41|2??rd?0?y?6x?3????相切,∴,即∵所求圆与直线??|?11|1?|1|28??2222220xx?y?yx??1??40?x?y?311?323x∴所求的圆的方程为,??222,0?2?d?r0x?4??xy0y3?6?x?的距离又圆的圆心到直线即11|2?6|3?1220x??xy?4∴圆也符合题意,22220??x??32y?3x3?x110y4x?.∴所求的圆的方程为或22?2kx?(4k?10)y?10k?20?0(k?R,xk?y??1)中,任意两个圆的位置关系如何?3.圆系22?10y?20?2k(x?4y?5)?x0?y解:圆系方程可化为:2x?4y?10?0x?2y?5?0??k?R,k??1∵,??2250,C?0?10?2l:x?4y?5)?x5?(y的半径,故直线∴,即??2222x?y?10y?20?0x?(y?5)?5??到直线易知圆心的距离恰等于圆22?5y?5)(x?02xl:?y??5相切,即上述方程组有且只有一个解,从而圆系方程所表示的与圆任意两个圆有且只有一个公共点,故它们的关系是外切或内切.。

圆的标准方程公式

圆的标准方程公式

圆的标准方程公式圆是平面几何中的重要图形之一,它具有许多特殊的性质和应用。

在代数表示中,圆的方程是描述圆的重要工具之一。

本文将介绍圆的标准方程公式,帮助读者更好地理解和运用圆的代数表示。

首先,我们来看一下圆的定义。

圆是平面上到定点距离相等的所有点的集合。

其中,定点称为圆心,到圆心距离称为半径。

圆的标准方程公式可以表示为:(x h)² + (y k)² = r²。

其中,(h, k)为圆心坐标,r为半径长度。

这个公式描述了平面上任意一点(x, y)到圆心的距离等于半径r的关系。

接下来,我们来看一些关于圆的标准方程公式的重要性质和应用。

首先,圆的标准方程公式可以用来确定圆的位置和大小。

通过比较给定圆的方程和标准方程的系数,我们可以得到圆心的坐标和半径的长度。

这对于几何问题和计算机图形学中的圆的绘制非常有用。

其次,圆的标准方程公式可以用来解决与圆相关的方程和不等式问题。

例如,我们可以利用圆的标准方程公式来求解与直线或其他圆的交点,或者求解圆内外的点的位置关系等问题。

此外,圆的标准方程公式还可以用来推导其他与圆相关的公式和结论。

例如,我们可以通过圆的标准方程公式推导出圆的切线方程、圆的面积和周长公式等内容。

最后,我们来总结一下圆的标准方程公式的重要性和应用。

圆的标准方程公式是描述圆的重要工具,它可以用来确定圆的位置和大小,解决与圆相关的方程和不等式问题,以及推导其他与圆相关的公式和结论。

因此,对于学习和应用圆的代数表示的读者来说,掌握圆的标准方程公式是非常重要的。

综上所述,圆的标准方程公式在数学和实际应用中具有重要的地位和作用。

通过本文的介绍,相信读者对圆的标准方程公式有了更深入的理解和认识。

希望本文能对读者有所帮助,谢谢!。

圆与方程公式总结

圆与方程公式总结

圆与方程公式总结圆在数学中可是个相当重要的角色,从小学到高中,它都时不时地出来“刷一波存在感”。

那咱今天就好好唠唠圆与方程的那些公式。

咱先从圆的标准方程说起。

圆的标准方程就像是圆的“身份证”,能一下子把圆的关键信息都给透露出来。

它是这样的:(x - a)² + (y - b)² = r²。

这里的 (a, b) 就是圆心的坐标,r 呢,就是圆的半径。

比如说,有个圆的圆心在 (3, 4) ,半径是 5 ,那它的标准方程就是 (x - 3)² + (y - 4)²= 25 。

再来说说圆的一般方程,它长这样:x² + y² + Dx + Ey + F = 0 。

不过这里得有个条件,就是 D² + E² - 4F > 0 ,不然可就不是圆啦。

我记得我上学那会,有一次数学考试,就考到了圆的方程。

当时有一道题,给了一个圆的一般方程 x² + y² - 4x + 6y - 12 = 0 ,让求出圆心和半径。

我一开始还有点懵,后来静下心来,先把方程配方,变成 (x - 2)² + (y + 3)² = 25 ,一下子就得出圆心是 (2, -3) ,半径是 5 。

那次考试因为这道题做对了,成绩还不错,可把我高兴坏了。

接下来咱们说说怎么从圆的一般方程求出圆心和半径。

圆心的坐标就是 (-D/2, -E/2) ,半径是√(D² + E² - 4F) / 2 。

这个可得记住喽,考试的时候经常会用到。

还有啊,圆与直线的位置关系也和这些方程有关系。

通过联立圆的方程和直线的方程,然后判断判别式的大小,就能知道圆和直线是相交、相切还是相离。

在做练习题的时候,经常会碰到那种让你求圆上某点到直线距离的最值问题。

这时候就得先求出圆心到直线的距离,然后再根据圆的半径来算最值。

总之,圆与方程的这些公式在数学学习中特别重要,不管是解题还是实际应用,都离不开它们。

圆的标准方程式

圆的标准方程式

圆的标准方程式圆是平面几何中的重要图形之一,其标准方程式是描述圆的一种数学表达方式。

通过圆的标准方程式,我们可以清晰地了解圆的性质和特点,进而在数学问题中灵活运用。

本文将详细介绍圆的标准方程式及其相关知识点。

首先,我们来看圆的定义,圆是平面上到定点距离等于定长的所有点的集合。

在平面直角坐标系中,圆可以由一个定点为圆心、一个正数为半径来描述。

根据这一定义,我们可以得出圆的标准方程式。

圆的标准方程式为,(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r为半径。

这个方程式的推导可以通过圆的定义和距离公式得出,具体推导过程略。

通过圆的标准方程式,我们可以得出一些重要结论:1. 圆的半径为正数,表示圆的大小;2. 圆心坐标(a, b)表示圆的位置;3. 圆心到圆上任意一点的距离都等于半径r。

在实际问题中,我们可以利用圆的标准方程式来解决一些几何和代数问题。

例如,给定圆心和半径,我们可以方便地求出圆上任意一点的坐标;或者给定圆上的某点,可以判断该点是否在圆内或者在圆上。

除了标准方程式外,圆还有其他几种常见的方程式,如一般方程式和参数方程式。

这些方程式在不同的问题中有着各自的优势和适用范围,需要根据具体情况进行选择和运用。

总之,圆的标准方程式是描述圆的重要数学工具,通过它我们可以清晰地了解圆的性质和特点,解决各种数学问题。

在学习和应用过程中,我们需要深入理解圆的定义和相关知识,灵活运用圆的标准方程式,不断提高数学素养和解决问题的能力。

希望本文对圆的标准方程式有所帮助,让我们共同努力,探索数学的奥秘,提高数学应用能力。

解析几何专题2圆的方程及应用

解析几何专题2圆的方程及应用

《高中数学专题题型分类大全》解析专题二圆的方程及应用『知识与方法梳理』?(一)圆的方程的两种形式方程形式方程相关参数意义标准式(x - a)1 2+ (y - b)2= r2圆心(a,b),半径:r一般式2 2x + y2+ Dx + Ey + F = 0 (D2+ E2-4F > 0 )圆心(--D,- E ),半径:r= 2/ D2+ E2- 4F(二)点与圆的位置关系的判定点P(x°, y o). 圆M 方程 (1) (x -a)2 + (y -b)2 = r2;(2) x2 + y2 + Dx + Ey + F = 0.(1) (X0 -a)2+ (y0 -b)2= r2;2 2(2) X0 + y0 + Dx。

+ Ey0 + F = 0.1.点p在圆上.(1) (X0 -a)2+ (y0 -b)2< r2;2 2(2) X。

+ y°+ Dx 0 + Ey 0 + F < 0.2.点P在圆内.(1)(X。

-a)2+ (y°-b)2> r2;2 2⑵ X0 + y°+ Dx0 + Ey°+ F > 03.点P在圆夕卜.圆方程点p(x0, y0)到圆上的切线长1. x2+y2=r2|PT| ^X02+ y02- r22 2 22. (x-a) 2+(y 七)2=r2|PT| 珂(x°- a)2+( y°- b)2- r22 23. x2+y2+Dx+Ey+F=0|PT| 珂X02+ y02+ Dx0 + Ey°+F圆方程切线方程1. x2+y2=r22X0X + y°y = r2 2 22. (x-a)2+(y-b)2=r22(X0 - a)(x - a) + (y0 - b)(y - b) = r2 23. x2+y2+Dx+Ey+F=0X0X + y°y + D号+ 誓+F = 01. 直线I:Ax+By+C=0,圆C: x2+y2+Dx+Ey+F=0 当直线l与圆C相交时,过两交点的圆的方程可设成(三)直线与圆的关系方法已知细d直M圆旳X FD 4 < +2 -2一二A卜+2X线:—直M圆2 22 C1: x +y +D1x+E1y+F1=0C2: x2+y2+D2X+E2y+F2=0(1 )当5与C2相交时,两圆公共弦所在直线方程为(D1 - D2)X + (E1 - E2)y + (F1 - F2) = 0(2)当C1与C2相交时,过两圆交点的圆的方程可设为_x2+y2+D1x+E1y+F1 + X (xhy2+D2x+E2y+F2) = 0_ 或—'"_ _x2+y2+D j x+E 1y+Fj_+ X [(D- D2)x+(E^ - E2)y+(F 1 - F2)] = 0相关运算离距N= ( d心凰=0那+F判M+CDX脚立BV2+尹耽用2x,Ax元{艄《必修2》解析专题、圆的方程及应用圆|G半径D,圆C2半径r2.圆C1与圆C?位置关系.(1)皿施心内含(2)也-呵=15。

高考数学解析几何知识点归纳

高考数学解析几何知识点归纳

高考数学解析几何知识点归纳解析几何是高考数学中的一个重要板块,它将代数与几何巧妙地结合在一起,具有较强的综合性和逻辑性。

以下是对高考数学中解析几何知识点的详细归纳。

一、直线1、直线的倾斜角与斜率倾斜角:直线与 x 轴正方向所成的角,范围是0, π)。

斜率:当倾斜角不是 90°时,斜率 k =tanα(α 为倾斜角)。

过两点 P(x₁, y₁),Q(x₂, y₂)的直线斜率 k =(y₂ y₁) /(x₂ x₁)(x₁≠ x₂)。

2、直线的方程点斜式:y y₁= k(x x₁),适用于已知斜率和一点的情况。

斜截式:y = kx + b,其中 k 为斜率,b 为截距。

两点式:(y y₁) /(y₂ y₁) =(x x₁) /(x₂ x₁),适用于已知两点的情况。

截距式:x / a + y / b = 1,其中 a、b 分别为 x 轴和 y 轴上的截距(a ≠ 0,b ≠ 0)。

一般式:Ax + By + C = 0(A、B 不同时为 0)。

3、两直线的位置关系平行:斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂(斜截式);A₁B₂ A₂B₁= 0 且 A₁C₂ A₂C₁ ≠ 0 (一般式)。

垂直:斜率之积为-1,即 k₁k₂=-1 (斜率都存在);A₁A₂+ B₁B₂= 0 (一般式)。

4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程标准方程:(x a)²+(y b)²= r²,圆心为(a, b),半径为 r。

一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心为(D/2, E/2),半径为 r =√(D²+ E² 4F) / 2 。

数学人教版必修二圆的方程知识点

数学人教版必修二圆的方程知识点

数学人教版必修二圆的方程知识点
数学人教版必修二中关于圆的方程的内容主要涉及以下几个知识点:
1. 圆的标准方程:圆的标准方程为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为圆的半径。

2. 圆的一般方程:圆的一般方程为:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

一般方程推导出标准方程的方法是完成平方并合并同类项。

3. 圆的参数方程:若圆的圆心为(a, b),半径为r,则圆的参数方程为x = a + rcosθ,y = b + rsinθ,其中θ为参数。

4. 圆的切线方程:过圆上的一点M(x₁, y₁)的切线方程为xx₁ + yy₁ = r²,其中r为圆的半径。

5. 过圆心的直线方程:过圆心的直线方程为x/a + y/b = 1,其中a和b分别为圆心的横纵坐标。

6. 圆与直线的位置关系:可以利用圆的一般方程和直线的方程,通过解方程组来判断
圆与直线的位置关系。

以上是数学人教版必修二中有关圆的方程的主要知识点。

希望对你有所帮助!。

新教材高中数学第2章平面解析几何圆的一般方程课件新人教B版选择性必修第一册

新教材高中数学第2章平面解析几何圆的一般方程课件新人教B版选择性必修第一册
示任何图形.
(2)由圆的一般方程判断点与圆的位置关系
已知点 M(x0,y0)和圆的方程 x2+y2+Dx+Ey+F=0(D2+E2-4F>0).则 其位置关系如下表:
位置关系
代数关系
点 M 在圆 06 _外__ 点 M 在圆 07 _上__ 点 M 在圆 08 _内__
x20+y20+Dx0+Ey0+F>0 x20+y20+Dx0+Ey0+F=0 x20+y20+Dx0+Ey0+F<0
89+8D+5E+F=0, 由题意知73+3D+8E+F=0,
9+3E+F=0,
D=-8, 解得E=-8,

(3)两边同除以 2,得
x2+y2+ax-ay=0,D=a,E=-a,F=0,
∴D2+E2-4F=2a2>0,
∴方程(3)表示圆,它的圆心为-a2,a2,
半径 r=12
D2+E2-4F=
2 2 |a|.

题型二 求圆的一般方程
例 2 已知 Rt△ABC 的顶点 A(8,5),直角顶点为 B(3,8),顶点 C 在 y 轴 上,求:
半径长.
[跟踪训练 1] 下列方程各表示什么图形?若表示圆,求出其圆心和半 径.
(1)x2+y2+x+1=0; (2)x2+y2+2ax+a2=0(a≠0);(3)2x2+2y2+2ax-2ay=0(a≠0).
解 (1)∵D=1,E=0,F=1, ∴D2+E2-4F=1-4=-3<0, ∴方程(1)不表示任何图形. (2)∵D=2a,E=0,F=a2, ∴D2+E2-4F=4a2-4a2=0, ∴方程(2)表示点(-a,0).
判断二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆要“两看”: 一看方程是否具备圆的一般方程的特征:①A=C≠0;②B=0; 二看它能否表示圆.此时判断 D2+E2-4AF 是否大于 0;或直接配方变 形,判断等号右边是否为大于零的常数.

高考数学一轮复习第八章解析几何2圆的方程课件新人教A版2

高考数学一轮复习第八章解析几何2圆的方程课件新人教A版2

考点2
解题心得求解与圆有关的最值问题的两大规律:
(1)借助几何性质求最值
-
①形如 u=- 的最值问题,可转化为定点(a,b)与圆上的动点(x,y)
的斜率的最值问题;
②形如t=ax+by的最值问题,可转化为动直线的截距的最值问题;
③形如u=(x-a)2+(y-b)2的最值问题,可转化为动点到定点的距离
|-|
2 +2
= √2,
即 2(a2+b2)=(ab)2≥4ab,所以 ab≥4,当且仅当 a=b 时取等号.

≥2√2,所以|AB|的最小值为 2√2,
√2


a=b=2,切线 l 的方程为 + =1,即 x+y-2=0.
2
2
又|AB|=√2 + 2 =
此时 a=b,即
-21考点1
(x-1)2+(y-1)2=13
.
解析 以AB为直径的圆的方程为(x+1)(x-3)+(y-4)(y+2)=0,整理得
(x-1)2+(y-1)2=13.
-8知识梳理
双基自测
1
2
3
4
5
5.若圆C与圆x2+y2+2x=0关于直线x+y-1=0对称,则圆心C的坐标
x2+y2-2x-4y+4=0
为 (1,2)
;圆C的一般方程是
.
解析 已知圆 x2+y2+2x=0 的圆心坐标是(-1,0),半径是 1.
设圆 C 的圆心为(a,b),则有

= 1,
+1
-1

+

平面解析几何(圆的方程)

平面解析几何(圆的方程)

平面解析几何——圆的方程圆的定义与方程【知识拓展】1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 2.点与圆的位置关系 点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x-x 2)+(y -y 1)(y -y 2)=0.( √ ) (3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ ) (4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.(教材改编)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0答案 C解析 圆心是(1,2),所以将圆心坐标代入检验选项C 满足.2.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4 答案 B解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m . 因为∠APB =90°,连接OP , 易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离. 因为|OC |=32+42=5, 所以|OP |max =|OC |+r =6, 即m 的最大值为6.3.(2015·北京)圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 答案 D解析 圆的半径r =12+12=2,∴圆的方程为(x -1)2+(y -1)2=2.4.(教材改编)圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为______________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |,即(a +1)2+1=(a -1)2+9, 解得a =2, ∴圆心为C (2,0),∴圆C 的方程为(x -2)2+y 2=10.5.(2016·浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.题型一 求圆的方程例1 (1)(2016·天津)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.(2)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 (1)(x -2)2+y 2=9 (2)⎝⎛⎭⎫x -322+y 2=254解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9.(2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为 y +1=-2(x -2),令y =0,解得x =32,圆心为⎝⎛⎭⎫32,0,半径为52. 思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.(2016·湖北八校联考)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成两段弧,弧长之比为1∶2,则圆C 的标准方程为________________. 答案 x 2+(y ±33)2=43解析 ∵圆C 关于y 轴对称,∴可设C (0,b ),设圆C 的半径为r ,则圆C 的标准方程为x 2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧12+(-b )2=r 2,|b |=12r ,解得⎩⎨⎧r 2=43,b =±33,于是圆C 的标准方程为x 2+(y ±33)2=43. 题型二 与圆有关的最值问题例2 已知点(x ,y )在圆(x -2)2+(y +3)2=1上.求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1,解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,yx 的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k=-2+233或k =-2-233.∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34, ∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)yx 的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设yx =k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径,即直线与圆相切时,斜率取得最大值、最小值. 由|2k -0|k 2+1=3,解得k 2=3,∴k max =3,k min =- 3. (2)设y -x =b ,则y =x +b ,当且仅当直线y =x +b 与圆切于第四象限时,在y 轴上的截距b 取最小值, 由点到直线的距离公式,得|2-0+b |2=3, 即b =-2±6, 故(y -x )min =-2- 6.(3)x 2+y 2是圆上的点与原点的距离的平方,故连接OC , 与圆交于B 点,并延长交圆于C ′,则 (x 2+y 2)max =|OC ′|2=(2+3)2=7+43, (x 2+y 2)min =|OB |2=(2-3)2=7-4 3. 题型三 与圆有关的轨迹问题例3 (2017·潍坊调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中, |PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·天津模拟)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4. 又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285(点P 在直线OM 上的情况).21.利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程. 思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规范解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0). 故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3, 所以圆C 的方程为(x -3)2+(y -1)2=9.1.(2016·南昌检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2, 解得r =5,可得圆的方程为x 2+y 2-10y =0.2.(2016·昆明一模)方程|x |-1=1-(y -1)2所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆 D .两个半圆答案 D解析 由题意得⎩⎪⎨⎪⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎪⎨⎪⎧ (x -1)2+(y -1)2=1,x ≥1,或⎩⎪⎨⎪⎧(x +1)2+(y -1)2=1,x ≤-1.故原方程表示两个半圆.3.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b 的最小值为( )A .1B .5C .4 2D .3+22 答案 D解析 由题意知圆心C (2,1)在直线ax +2by -2=0上,∴2a +2b -2=0,整理得a +b =1, ∴1a +2b =(1a +2b )(a +b )=3+b a +2ab≥3+2 b a ×2ab=3+22, 当且仅当b a =2ab ,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+2 2. 4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案 A解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+42y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2, 代入x 20+y 20=4中得(x -2)2+(y +1)2=1.5.(2016·绵阳诊断)圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的方程为( ) A .x 2+(y -1)2=1 B .x 2+(y -3)2=3 C .x 2+(y +1)2=1 D .x 2+(y +3)2=3答案 A解析 依题意得,题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C 的圆心坐标是(0,1)、半径是1,因此其方程是x 2+(y -1)2=1.6.(2016·九江模拟)已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线(A ,B 是切点),C 是圆心,那么四边形P ACB 的面积的最小值是( ) A. 2 B .2 2 C. 3 D .23 答案 C解析 圆的方程可化为(x -1)2+(y -1)2=1, 则C (1,1),当|PC |最小时,四边形P ACB 的面积最小, |PC |min =|3-4+11|32+42=2,此时|P A |=|PB |= 3.所以四边形P ACB 的面积S =2×12×3×1=3,故选C.7.(2016·南昌模拟)若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________. 答案 (x -2)2+(y +32)2=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |, 解之得m =-32.所以圆C 的方程为(x -2)2+(y +32)2=254.8.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________. 答案 x +y -2=0解析 当圆心与点P 的连线和过点P 的直线垂直时,符合条件.圆心O 与点P 连线的斜率k =1, 所求直线方程为y -1=-(x -1),即x +y -2=0.9.已知D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0,x +3y ≥0所确定的平面区域,则圆x 2+y 2=4在区域D 内的弧长为________.答案 π2解析 作出可行域D 及圆x 2+y 2=4,如图所示,图中阴影部分所在圆心角θ=α-β所对的弧长即为所求. 易知图中两直线的斜率分别为12、-13,得tan α=12,tan β=-13,tan θ=tan(α-β)=12+131-12×13=1,得θ=π4,得弧长l =θ·R =π4×2=π2(R 为圆的半径).10.(2016·岳阳模拟)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案7+1解析 设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆,又OA →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1.11.已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段的长为43,半径小于5. (1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B ,且以线段AB 为直径的圆经过坐标原点,求直线l 的方程. 解 (1)由题意知直线PQ 的方程为x +y -2=0. 设圆心C (a ,b ),半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32,即y =x -1,所以b =a -1.①由圆C 在y 轴上截得的线段的长为43, 知r 2=12+a 2,可得(a +1)2+(b -3)2=12+a 2,② 由①②得a =1,b =0或a =5,b =4. 当a =1,b =0时,r 2=13,满足题意, 当a =5,b =4时,r 2=37,不满足题意. 故圆C 的方程为(x -1)2+y 2=13. (2)设直线l 的方程为y =-x +m (m ≠2), A (x 1,m -x 1),B (x 2,m -x 2). 由题意可知OA ⊥OB ,即OA →·OB →=0, ∴x 1x 2+(m -x 1)(m -x 2)=0, 化简得2x 1x 2-m (x 1+x 2)+m 2=0.③由⎩⎪⎨⎪⎧y =-x +m ,(x -1)2+y 2=13得 2x 2-2(m +1)x +m 2-12=0, ∴x 1+x 2=m +1,x 1x 2=m 2-122,代入③,得m 2-12-m ·(1+m )+m 2=0, ∴m =4或m =-3,经检验都满足题意, ∴直线l 的方程为x +y -4=0或x +y +3=0.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3. (1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程.解 (1)设P (x ,y ),圆P 的半径为r . 则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴P 点的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3. ∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3. ∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3. *13.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=4 2. 所以|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22, 可得2-3≤k ≤2+3,n-3所以m+2的最大值为2+3,最小值为2- 3.。

最新高中数学圆的方程经典例题与解析

最新高中数学圆的方程经典例题与解析

高中数学圆的方程经典例题与解析例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(r a ra解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r . 故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴21422=++-k k 解得43=k 所以()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解. 例3、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB .例4 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.例5:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。

解析几何圆的公式

解析几何圆的公式

解析几何圆的公式圆的解析几何方程如下圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0(其中D^2+E^2-4F>0)。

其中和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2-r^2。

该圆圆心坐标为(-D/2,-E/2),半径r=0.5√D^2+E^2-4F。

圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x-a1)(x-a2)+(y-b1)(y-b2)=0圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆x^2+y^2=r^2上一点M(a0,b0)的切线方程为a0*x+b0*y=r^2在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0*x+b0*y=r^2 扩展资料:直线与圆的位置关系平面内直线与圆的位置关系有三种:(1)相离:无交点;(2)相切:仅有一个交点;(3)相交:有两个交点。

直线与圆的位置关系和圆心到直线的距离d与半径r的关系:(1)d>r:直线与圆相离;(2)d=r:直线与圆相切;(3)d<r:直线与圆相交。

初中数学圆的知识点总结1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一直线上的三点确定一个圆。

高中数学 第二章 解析几何初步 2.2.1 圆与圆的方程

高中数学 第二章 解析几何初步 2.2.1 圆与圆的方程
圆的参数方程
$left{ begin{array}{l} x = a + rcostheta y = b + rsintheta end{array} right.$,其中 $theta$ 为参数,表示圆上任意一点与 $x$ 轴正方向的夹角。
圆心、半径和直径
圆心
圆的中心,用坐标 $(a, b)$ 表示 。
相交等情况。
课后作业布置针对本节课知识点进行练习巩固
练习题1
已知圆的方程为$x^2 + y^2 = 16$,求圆心坐标和半径。
练习题3
已知直线$l: y = x + 1$和圆 $x^2 + y^2 = 4$,判断直线 $l$与圆的位置关系。
练习题2
已知点$P(3,4)$和圆$x^2 + y^2 = 9$,判断点$P$与圆的 位置关系。
练习题4
已知圆$C_1: x^2 + y^2 + 6x = 0$和圆$C_2: x^2 + y^2 8x + 10 = 0$,求两圆的公共
弦所在直线的方程。
THANKS
感谢观看
思路拓展:一题多解、多题一解
一题多解
对于例1,除了作差法外,还可以通过联立两圆方程求解。联立$begin{cases} x^2 + y^2 = 1 (x - 2)^2 + (y 3)^2 = 4 end{cases}$,消去$x^2$或$y^2$,整理得到公共弦方程。
多题一解
对于例2,除了上述解法外,还可以利用垂径定理求解。作圆心到直线的垂线,垂足为弦的中点,利用勾股定理 求出弦长的一半,再乘以2得到弦长。
抛物线中焦点弦问题
抛物线的焦点弦性质
过抛物线焦点的直线与抛物线交于两 点,这两点与抛物线顶点构成的线段 称为焦点弦。焦点弦的中点与抛物线 顶点连线的斜率与抛物线的准线平行 。

解析几何专题-圆的方程

解析几何专题-圆的方程

圆心坐标与半径求法
圆心坐标
对于标准方程,圆心坐标为$(a, b)$;对于一般方程,圆心坐标为$left( frac{D}{2}, -frac{E}{2} right)$。
半径求法
对于标准方程,半径$r = sqrt{(x - a)^{2} + (y - b)^{2}}$;对于一般方程,半 径$r = frac{1}{2}sqrt{D^{2} + E^{2} - 4F}$。
已知三点求圆方程
• 设三点为$A(x{1}, y{1}), B(x{2}, y{2}), C(x{3}, y{3})$,则 圆方程可表示为
已知三点求圆方程
$$ begin{vmatrix}
x^{2} + y^{2} & x & y & 1
已知三点求圆方程
x_{1}^{2}
+
y_{1}^{2} & xห้องสมุดไป่ตู้{1} &
圆与圆的位置关系
04
圆与圆外离和内含
圆与圆外离
两圆心之间的距离大于两圆半径之和, 即$d > R + r$。
VS
圆与圆内含
一个圆位于另一个圆的内部,即$R - r < d < R + r$,其中$d$为两圆心之间的距离, $R$和$r$分别为两圆的半径。
圆与圆外切和内切
圆与圆外切
两圆有且仅有一个公共点,且该点位于两圆的外部,即$d = R + r$。
圆的综合应用举例
06
涉及圆的证明题解法举例
利用圆的定义进行证明
01
通过证明某点到圆心的距离等于半径,从而证明该点在圆上。
利用圆的性质进行证明

圆系方程在解析几何中的应用(

圆系方程在解析几何中的应用(

圆系方程在解析几何中的应用通常已知圆C1: x2+y2+D1x+E1y+F1=0,圆C2: x2+y2+D2x+E2y+F2=0。

若两圆相交,则两圆的公共弦所在直线的方程为:D1−D2x+E1−E2y+(F1−F2)= 0而有些问题,已知圆的方程和公共弦的方程,求另一个圆的方程。

若已知圆C1: x2+y2+D1x+E1y+F1=0,公共弦所在的直线方程为:Ax+By+C=0则可设圆C2的方程为:: x2+y2+Am+D1x+Bm+E1y+Cm+F1=0 ,然后根据题目的其他条件求出其中的参数m即可。

例1、已知圆C:x2+y2+x−6y+m=0 和直线l:x + 2y – 3 = 0交于P、Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径。

解:由OP⊥OQ ,知:直线l是圆C和以PQ为直径的圆A的公共弦。

设所求圆A的方程是:x2+y2+1+k x+2k−6y+m−3k=0,圆心是A(−k+12 ,3−k),得:(−k+12)+2(3−k)-3=0又由圆A过原点,得:m=3k 解之得:k=1,m=3故所求圆C的圆心为(-12,3),半径为52例2、已知圆,是否存在斜率为的直线,使被圆截得的弦为直径的圆过原点,若存在求出直线的方程,若不存在说明理由。

解:设直线l的方程为:x-y+m=0,依题意,以AB为直径的圆Q的方程可设为:x2+y2+k−2x+4−k y+km−4=0,则圆心Q(2−K2 ,K−42)满足l的方程,得:k ·2−k2–k·k−42+km =0 (1)由圆Q过原点,得:km – 4 =0 (2)解之得:k=4,m=1 或k=-1 m=-4故所求的直线l的方程为:x – y + 1 = 0 或x – y – 4 = 0练习:已知圆O:x2+y2=4,过P(0,4)做直线l交圆O与A、B两点,若以AB为直径的圆M过Q(2,0),求l的方程及圆M的方程。

解:设直线l的方程为:x=0 或kx-y+4=0(1)当直线l的方程为:x=0 时,经检验,符合要求。

解析几何专题--圆的方程

解析几何专题--圆的方程

(2)法一:y-x 可看作是直线 y=x+b 在 y 轴上的截 距,当直线 y=x+b 与圆相切时,纵截距 b 取得最大值或 |2-0+b| 最小值,此时 = 3,解得 b=-2± 6. 2 所以 y-x 的最大值为-2+ 6,最小值为-2- 6.
法二:设圆的参数方程为 (0≤θ≤2π)
x=2+ 3cosθ y= 3sinθ
3.圆的一般方程
2 2 x2+y2+Dx+Ey+F=0 表示圆的充要条件是 D +E
-4F>0
D E - ,- 2 ,其中圆心为 2 ,半径为
D2+E2-4F r= . 2
4.点与圆的位置关系 设圆的标准方程(x-a)2+(y-b)2=r2,点 M(x0,y0) ①点在圆上:(x0-a)2+(y0-b)2 =r2; ②点在圆外:(x0-a)2+(y0-b)2 > r2; ③点在圆内:(x0-a)2+(y0-b)2 < r2.
2x-y-3=0 知, 圆心 P 应在 AB 中垂线 x=4 上, 则由 x=4,
得圆心 P(4,5), ∴半径 r=|PA|= 10. ∴圆的标准方程为(x-4)2+(y-5)2=10.
(2)设圆方程为(x-a)2+(y-b)2=25, 如图,∵|AB|=10-2=8,∴|AD|=4.
2 2
52+22+5D+2E+F=0, 32+22+3D+2E+F=0, ∴ D E 2×- 2 -- 2 -3=0.
D=-8, 解之,得E=-10, F=31.
∴圆的一般方程为 x2+y2-8x-10y+31=0.
法二:从形的角度,AB 为圆的弦,由平面几何知识
∵|AC|=5,∴|CD|=3.∴a=6,b=± 3. ∴所求圆的方程为 (x-6)2+(y-3)2=25 或(x-6)2+(y+3)2=25.

圆的解析式公式

圆的解析式公式

圆的解析式公式圆是我们在数学学习中经常会碰到的一个重要图形。

那咱们今天就来好好聊聊圆的解析式公式。

从小学开始,咱们就已经在接触圆啦。

那时候,我们会画圆,用圆规一转,一个漂亮的圆就出现在纸上。

还记得第一次用圆规画圆时的那种兴奋吗?我当时就觉得这小小的圆规可真神奇,能这么轻松地画出一个完美的圆。

到了初中,圆的知识逐渐深入。

我们开始了解圆的基本性质,比如半径、直径、圆心这些概念。

而高中阶段,圆的解析式公式就闪亮登场啦!圆的标准方程是:(x - a)² + (y - b)² = r²。

这里面,(a, b)就是圆心的坐标,r 是圆的半径。

比如说,有一个圆心在 (2, 3) ,半径为 5 的圆,那它的方程就是 (x - 2)² + (y - 3)² = 25 。

这就好像给圆办了一张“身份证”,通过这个方程,我们能清楚地知道这个圆在坐标系中的位置和大小。

咱们来想象一下,如果把这个圆放到一个实际的场景中。

比如一个圆形的花坛,圆心就是花坛的中心位置,半径就是从中心到边缘的距离。

那这个方程就能帮我们精确地描述这个花坛的范围。

再深入一点,假如我们要研究一个物体沿着圆周运动的轨迹。

通过圆的解析式公式,我们就能计算出在不同时刻,物体所处的位置。

这是不是很神奇?在解题的时候,圆的解析式公式可是大有用处。

有时候题目会给我们一些条件,让我们求出圆的方程。

这时候,咱们就得根据已知的信息,比如圆心和半径,或者圆上的几个点,来确定方程中的参数。

就像上次我给学生们讲这部分内容时,有个同学怎么都理解不了为什么要这样设方程。

我就给他举了个例子,假设我们要在地图上标记一个圆形的湖泊,只告诉了你湖泊中心的坐标和大概的大小,那怎么才能准确地在地图上把这个湖泊画出来呢?不就是通过圆的解析式公式嘛!这一下,那同学恍然大悟,后来做题也顺溜多了。

圆的解析式公式不仅在数学里重要,在实际生活中也有很多应用呢。

圆椭圆双曲线抛物线的标准方程

圆椭圆双曲线抛物线的标准方程

圆椭圆双曲线抛物线的标准方程第一篇嘿,亲爱的小伙伴们!今天咱们来聊聊圆、椭圆、双曲线和抛物线的标准方程,这可有趣啦!先来说说圆,圆的标准方程就像是一个甜蜜的小圈圈,它的样子是(x a)^2 + (y b)^2 = r^2。

这里的(a, b)呢,就是圆心的坐标,而r就是圆的半径啦。

想象一下,圆心就像是这个圈圈的“小心脏”,半径就是它的“胳膊腿儿”,决定了圈圈的大小。

再看看椭圆,椭圆的标准方程有两种形式哦,分别是\frac{(x h)^2}{a^2} + \frac{(y k)^2}{b^2} = 1和\frac{(y k)^2}{a^2} + \frac{(x h)^2}{b^2} = 1。

是不是有点复杂?别担心!其实椭圆就像是被拉长或者压扁的圆,a和b分别表示椭圆的长半轴和短半轴。

双曲线呢,它的标准方程是\frac{x^2}{a^2} \frac{y^2}{b^2} = 1或者\frac{y^2}{a^2} \frac{x^2}{b^2} = 1。

双曲线长得有点特别,像是两个弯弯的月牙儿。

最后是抛物线,抛物线的标准方程也有好几种,比如y^2 = 2px,y^2 = 2px,x^2 = 2py,x^2 = 2py。

抛物线就像是一个抛出去的物体的轨迹,特别神奇!怎么样,小伙伴们,是不是对这些标准方程有点感觉啦?多做做题目,多画画图,就能更熟悉它们啦!第二篇嗨呀,朋友们!今天咱们继续来聊聊圆椭圆双曲线抛物线的标准方程,准备好了吗?圆的标准方程(x a)^2 + (y b)^2 = r^2,是不是看起来挺简单可爱的?就像给圆画了一张专属的“身份证”,一下子就把它的所有信息都写清楚啦。

椭圆呢,有时候会让咱们有点头疼,不过别怕!想象一下,它就是一个被稍微挤压或者拉伸的圆,而且长轴和短轴的长度决定了它的形状。

当咱们看到标准方程的时候,就能知道它的大小和方向啦。

双曲线呀,那可是个调皮的家伙!它的标准方程看起来有点复杂,但只要记住特点,也不难搞定。

解析几何—圆的方程

解析几何—圆的方程
高二(18)班 11月5日周三
学习目标
一、圆的方程 1.确定圆的几何要素; 2.圆的标准方程和一般方程. 二、直线与圆的位置关系 1.直线与圆的几种位置关系; 2.能根据直线和圆的方程判断直线与圆的 位置关系. 三、圆与圆的位置关系 1. 圆与圆的几种位置关系; 2.根据两圆的方程判断两圆的位置关系.
一、圆的方程
• 何为圆 当一条线段绕着它的一个端点在平面内旋转一 周时,它的另一个端点的轨迹叫做圆。平面上到 定点的距离等于定长的所有点组成的图形叫做圆。 根据定义,通常用圆规来画圆。同圆内圆的半径 长度永远相同,圆有无数条半径和无数条直径 圆是一个平面几何图形 圆是一条闭合的曲线(将平面分成3部分) 圆的几何要素即圆的圆心和半径 圆中相关概念:切线、割线、弦、圆心角、圆周 角、弧(优弧、劣弧)
二、直线与圆的位置关系
• 直线与圆的位置关系有:相交、相切、相离 判断方法——几何法和代数法
2 2 几何法 — 比较圆心到直线的距离和圆的半径之间 判断圆 x y 2 x 4 y 3 0和 的关系
直线x y 1的位置关系
代数法—联立直线和圆的方程,消元后得到的一 元二次方程的根的情况即判别式△
二、圆与圆的位置关系
• 圆与圆的位置关系有:相离、外切、相交、 内切、内含 判断方法——几何法和代数法
几何法 代数法
相离 几何法—比较两圆圆心距离(圆心距)与两圆半 |O1O2|>r1+r2 无解 径之间的关系
练 习 : 判 断 两 圆 的 位关 置系 判 断 两 圆 的 位 置 关 系 |r1-r2|<|O1O2|<r1+r2 两解 相交 代数法—两圆方程联立组成方程组,消元后得到 2 2 2 2 C : x y 2 x 4 y 4 0 的一元二次方程的根的情况即判别式△ : x y 2 x 8 y 8 0 |O O |=|r -r | 1 内切 C 一解 1 1 2 1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

〖圆的解析几何方程〗圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

〖圆与直线的位置关系判断〗平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F=> 圆心坐标为(-D/2,-E/2)1.点与圆的位置关系设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有:(1)d>r 点M在圆外;(2)d=r 点M在圆上;(3)d<r 点M在圆内.2.直线与圆的位置关系设圆C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,b)判别式为△,则有:(1)d<r 直线与圆相交;(2)d=r 直线与圆相切;(3)d<r 直线与圆相离,即几何特征;或(1)△>0 直线与圆相交;(2)△=0 直线与圆相切;(3)△<0 直线与圆相离,即代数特征,3.圆与圆的位置关系设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:(1)d=k+r 两圆外切;(2)d=k-r 两圆内切;(3)d>k+r 两圆外离;(4)d<k+r 两圆内含;(5)k-r<d<k+r 两圆相交.4.其他(1)过圆上一点的切线方程:①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).(2)相交两圆的公共弦所在直线方程:设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.(3)圆系方程:①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).1.求经过M(1,2)N(3,4),并且在Y轴上截得的弦长为1的圆的方程。

解:设圆的方程为:x^2+y^2 +Dx+Ey+F=0 ,∴ 圆心为(- ,- ),半径r=由题意:圆心到y轴的距离为|- | , y轴上截得的弦长为1∴ r =( ) +( )∴ (D +E −4F)= + D∴ E −4F=1 (1)∵ 圆经过M(1,2),N(3,4)两点∴ D+2E+F=-5 (2)3D+4E+F=-25 (3)解(1)(2)(3)得:D=-3 , E=-7 , F=12 或D=-13 , E=3 , F=2∴ 所求圆的方程为:x +y -3x-7y+12=0或x +y -13x+3y+2=02.直线3x+y+m=与圆x²+y²+x-2y=0相交于P、Q。

O为坐标原点,若OP⊥OQ,求m解:由x2+y2+x-2y=0得(x+1/2)^2+(y-1)^2=5/4半径=(根号5)/2圆心:(-1/2,1)OP垂直OQ,OP=OQ(都是圆的半径)OPQ为等腰直角三角形圆心到直线的距离D=半径/(根号2)=(根号10)/4根据点到直线的距离公式解得m=3或m=-23.如果圆x^2+y^2+Dx+Ey+F=0与x轴相切于原点,那么:A、F=0,D≠0,E≠0B、E=0,F=0,D≠0C、D=0,F=0,E≠0D、D=0,E=0,F≠0答:C 过原点(x=0,y=0)得F=0 相切圆心在Y轴,得D=04. 已知P(a,b)是圆x^2+y^2-2x+4y-20=0上的点,则a^2+b^2的最小值是( )解:把方程化为(x-1)^+(y+2)^=25 而且所求为圆上的点到原点的距离!所以最小值就是半径减去圆心到原点的距离!5. 已知圆A:x²+y²+2x+2y-2=0,若圆B平分圆A的周长,且圆B的圆心在直线l:y=2x上,求满足上述条件的半径最小的圆B的方程解: 圆B平分A的周长则圆B与圆A的两交点的连线为圆A的直径设圆B的圆心为(x,2x)圆A方程为(x+1)^2+(y+1)^2=4,圆心(-1,-1),半径2圆B的半径、圆A的半径、以及两圆心之间的距离,构成直角三角形,满足勾股定理所以,圆B的半径:R^2=(x+1)^2+(2x+1)^2+4=5x^2+6x+6=5(x+3/5)^2+21/5即,当x=-3/5时,R^2有最小值=21/5此时圆B的圆心为(-3/5,-6/5)方程为:(x+3/5)^2+(y+6/5)^2=21/56. 已知圆O:x²+y²=5和点A(1,2)则过A且与圆O相切的直线与两坐标轴围成的三角形的面积?解: 根据A点和圆的圆心(0.0)可知A点与圆心连线的斜率为2,则可知直线的斜率为-1/2(根据斜率相乘为-1)。

然后设直线方程为Y=-1/2X+Z.把A(1.2)带入方程得Y=-1/2x+5/2,然后令Y=0,X=0.得X=5.,Y=5/2.再得(5/2+2X5)/2=6.257. 已知圆C过点P(1,1),且与圆M:(X+2)的平方+(Y+2)的平方=R的平方关于直线X+Y+2=0对称1.求圆C方程2.设Q为圆C上任意一点。

求PQ向量*MQ向量的最小值解:1.由圆C与圆M关于直线对称,得圆C的圆心坐标为(0,0)且圆C 过P点,所以圆C的方程为X^2+Y^2=22.由题可知M(-2,-2),P(1,1)设Q点坐标为(x,y),向量PQ为(x-1,y-1),向量MQ为(x+2,y+2)所以:向量PQ* 向量MQ=x^2+x+y^2+y-4 且x^2+y^2=2得向量PQ*向量MQ=x+y-2 且x^2+y^2=2由线性规划可知:向量PQ*向量MQ的最小值为-4(直线的斜率是-1,令z=x=y-2 得直线与圆相切于第三象限时z取最小值所以当切点为(-1,-1)时 z的最小值为-4)例2已知实数A、B、C满足A2+B2=2C2≠0,求证直线Ax+By+C=0与圆x2+y2=1交于不同的两点P、Q,并求弦PQ的长.分析:证明直线与圆相交既可以用代数方法列方程组、消元、证明△>0,又可以用几何方法证明圆心到直线的距离小于圆半径,由教师完成.证:设圆心O(0,0)到直线Ax+By+C=0的距离为d,则d=∴直线Ax+By+C=0与圆x2+y1=1相交于两个不同点P、Q.例3求以圆C1∶x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.解法一:相减得公共弦所在直线方程为4x+3y-2=0.∵所求圆以AB为直径,于是圆的方程为(x-2)2+(y+2)2=25.解法二:设所求圆的方程为:x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ为参数)∵圆心C应在公共弦AB所在直线上,∴所求圆的方程为x2+y2-4x+4y-17=0.小结:解法一体现了求圆的相交弦所在直线方程的方法;解法二采取了圆系方程求待定系数,解法比较简练.(三)巩固练习1.已知圆的方程是x2+y2=1,求:(1)斜率为1的切线方程;2.(1)圆(x-1)2+(y+2)2=4上的点到直线2x-y+1=0的最短距离是(2)两圆C1∶x2+y2-4x+2y+4=0与C2∶x2+y2+2x-6y-26=0的位置关系是______.(内切)3.求经过原点,且过圆x2+y2+8x-6y+21=0和直线x-y+5=0的两个交点的圆的方程.分析:若要先求出直线和圆的交点,根据圆的一般方程,由三点可求得圆的方程;若没过交点的圆系方程,由此圆系过原点可确定参数λ,从而求得圆的方程.由两个同学演板给出两种解法:解法一:设所求圆的方程为x2+y2+Dx+Ey+F=0.∵(0,0),(-2,3),(-4,1)三点在圆上,解法二:设过交点的圆系方程为:x2+y2+8x-6y+21+λ(x-y+5)=0.2.求证:两圆x2+y2-4x-6y+9=0和x2+y2+12x+6y-19=0相外切.3.求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.4.由圆外一点Q(a,b)向圆x2+y2=r2作割线交圆于A、B两点,向圆x2+y2=r2作切线QC、QD,求:(1)切线长;(2)AB中点P的轨迹方程.作业答案: 2.证明两圆连心线的长等于两圆半径之和 3.x2+y2-x+7y-32=0参考答案:1. B;2.C;3.A;4.B;5.D;6.D;7.C;8.C;9.C;10.C11.(x-2)2+(y-1)2=10;12.2225+; 13.x=-1或3x-4y+27=0;14.(x+1)2+(y-1)2=13;15.(1)x 2+y 2-4x=0;(2)x 2+y 2-16x=016.(x-3)2+(y-1)2=9或(x-101)2+(y-37)2=101217.(1)3π或32π;(2)x+y-1=0或x-y+3=0.定义:平面内到定点的距离等于定长的点的集合叫做圆,定点是圆心,定长是半径。

相关文档
最新文档