实验五抽样定理及信号恢复

合集下载

实验五 信号的采样与恢复

实验五 信号的采样与恢复

信号与系统实验报告【实验原理】1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。

s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S⁄称抽样频率。

图1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ⁄规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。

而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。

当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的。

因此即使f s =2B ,恢复后的信号失真还是难免的。

图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。

(a)连续信号的频谱(b)高抽样频率时的抽样信号及频谱(不混叠)(c)低抽样频率时的抽样信号及频谱(混叠)图2抽样过程中出现的两种情况4、为了实现对连续信号的抽样和抽样信号的复原,除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱宽而造成抽样后信号频谱的混叠。

抽样定理与信号恢复

抽样定理与信号恢复

实验五 抽样定理与信号恢复一、实验目的1. 观察离散信号频谱,了解其频谱特点;2. 验证抽样定理并恢复原信号。

二、实验原理说明1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。

抽样信号 Fs (t )=F (t )·S (t )其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。

Ts 又称抽样间隔,Fs=1Ts 称抽样频率,Fs (t )为抽样信号波形。

F (t )、S (t )、Fs (t )波形如图4-1。

t-4T S -T S 0T S 4T S8T S 12T S tt2/1τ1τ2/31τ2/1τ1τ2/31τ2/1τ-(a)(b)(c)图5-1 连续信号抽样过程将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图5-2所示。

2. 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱()∑∞∞--•=m s s m m SaTsA j )(22s F ωωπδτωτω 它包含了原信号频谱以及重复周期为fs (f s =πω2s 、幅度按S T A τSa (2τωs m )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。

因此,抽样信号占有的频带比原信号频带宽得多。

以三角波被矩形脉冲抽样为例。

三角波的频谱 F (j ω)=∑∞-∞=-K k k sa E )2()2(12τπωδππ 抽样信号的频谱Fs (j ω)=式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图5-3所示。

)()2(212s m k s m k k Sa m SaTSEA ωωωδπτωτπ--••∑∞-∞=-∞=111112ττπω==f 或(a) 三角波频谱f1111f Fs(f)fs2fs(b) 抽样信号频谙f图5-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。

实验5 信号的采样与恢复

实验5 信号的采样与恢复

信号与系统实验报告
称为抽样周期,其
称抽样频率。

图1 矩形抽样脉冲
对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率及其谐波频率2、3……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按 规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的
抽样频率又称“奈奎斯特抽样率”。


___________
【实验结果】
各波形如下:
图1 低频率抽样脉冲(J8) 图2 抽样信号(8K)
图3 抽样信号(16K) 图4 高频率抽样脉冲(J8)
图5 抽样脉冲(J10)图6 抽样信号(抽样倍数:3)
图7 抽样信号(抽样倍数:4)图8 抽样信号(抽样倍数:5)
【思考】
1.如果抽样脉冲→0,抽样信号经低通后不但能复原,而且复原效果趋于原信号。

→0等同于几
乎对原信号所有的点抽样,最大保留了原信号。

2.抽样脉冲的频率应该远大于抽样恢复信号频率,为抽样频率倍原信号占有的频带宽度,不然采样不足
导致滤波输出严重失真。

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告

抽样定理和信号恢复实验报告中抽样定理(Nyquist Sampling Theorem)是由半对数希尔伯特(Harry Nyquist)在1928年发布的一条定理,它提供了一种确定信号在采样范围和采样间隔的方法,可根据相关采样规则保证信号的完整性和准确性。

中抽样定理是用来描述信号抽样的必要性,即使在采样之前,某种未知事物也是有限和可采样的,否则无法恢复其原始信息。

该定理法则约定如下:1、信号必须以完整的范式采样。

信号若在采样前具有有限波道宽度,则信号必须被完整地采样,若不这样做将会丢失信号的一部分,影响整体信号的清晰度。

2、采样间隔为信号范式宽度的2倍。

中抽样定理要求,要恢复的信号必须以2倍的采样间隔范式宽度采样,这意味着要在每个信号周期内采样至少2次以上,以保证信号范型被完全恢复。

若以更短的采样间隔采样,那么信号将会出现调制失真,意味着信号会发生阵列干扰等异常信号,影响恢复准确性。

3、采样频率不能低于信号本身的频率。

在信号采样的时候,采样频率不能低于信号本身的频率,若这样则会导致在采样时信号产生抖动,因而影响信号的恢复。

中抽样定理的信号恢复实验是为了研究采样数据在恢复到信号之后,信号的完整性和可用性,也就是采样后信号是否可以被准确恢复。

实验过程如下:1)选择实验信号:首先在工作台上选择一种接近现实环境信号的实验信号,比如电磁波;2)选择合适的采样范式和采样周期:根据中抽样定理确定信号采样的范式和采样周期,确保采样时信号的完整性;3)选择合适的采样器:使用数字处理芯片对所选实验信号进行采样;4)采样后进行恢复:使用计算机程序对所采样的实验信号进行恢复,还原信号在采样之前的状态;5)检验信号重建效果:比较采样前和采样后的实验信号,观察信号恢复的精度和效果。

中抽样定理及实验报告的结果表明,采用中抽样定理的方法有效的提高了信号的清晰度和真实感,可以进行准确的信号恢复和参数测定分析。

它可以应用于传输系统和数字信号处理,在传输、抑制、延迟等方面具有重要的意义。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理实验(五)实验一抽样定理实验项目一、抽样信号观测及抽样定理实验1、观测并记录抽样前后的信号波形,分别观测music和抽样输出。

由分析知,自然抽样后的结果如图,很明显抽样间隔相同,且抽样后的波形在其包络严格被原音乐信号所限制加权,与被抽样信号完全一致。

2、观测并记录平顶抽样前后信号的波形。

此结果为平顶抽样结果,仔细观察可发现与上一实验中的自然抽样有很大差距,即相同之处,其包络也由原信号所限制加权,但是在抽样信号的每个频率分量呈矩形,顶端是平的。

3、观测并对比抽样恢复后信号与被抽样信号的波形,并以100HZ为步进,减小A-OUT的频率,比较观测并思考在抽样脉冲频率为多少的情况下恢复信号有失真。

(1)9.0KHZ(2)7.7KHZ(3)7.0KHZ实验二 PCM 编译码实验实验项目一 测试W681512的幅频特性1、将信号源频率从50HZ 到4000HZ ,用示波器接模块21的音频输出,观测信号的幅频特性。

在频率为9HZ 时的波形如上图,低通滤波器恢复出的信号与原信号基本一致,只是相位有了延时,约1/4个Ts ; 逐渐减小抽样频率可知在7.7KHZ 左右,恢复信号出现了幅度的失真,且随着fs 的减小,失真越大。

上述现象验证了抽样定理,即,在信号的频率一定时,采样频率不能低于被采样信号的2倍,否则将会出现频谱的混(1)、4000HZ (2)、3500HZ(3)120HZ (4)50HZ在实验中仔细观察结果,可知,当信号源的频率由4000HZ不断下降到3000HZ 的过程中,信号的频谱幅度在不断地增加;在3000HZ~1500HZ的过程中,信号的幅度在一定范围内变化,但是没有特别大的差距;在1500HZ~50HZ的过程中,信号的幅度有极为明显的下降。

实验项目二 PCM编码规则实验1、以FS为触发,观测编码输入波形。

示波器的DIV档调节为100微秒。

图中分别为输入被抽样信号和抽样脉冲,观察可发现正弦波与编码对应。

五 信号抽样与重构

五 信号抽样与重构

实验五 信号的抽样和重构实验目的(1)熟悉抽样信号及其频谱。

(2)掌握抽样定理。

(3)了解理想低通滤波器。

一、实验原理 1.抽样信号抽样信号相当于连续信号与周期性的冲击序列相乘。

)()()(t t f t f T s δ⋅=在Matlab 中可以很方便的用不同的时间间隔实现对连续信号不同频率的抽样。

抽样信号的频谱等于原始信号的频谱与冲击序列的频谱的卷积。

∑∑∞-∞=∞-∞=-=-*=n s n s s n F T n T F F )(1)(1)()(ωωωωδωω抽样信号的频谱是对原始信号的频谱的周期性延拓,周期大小为抽样品率,其中每一个周期都复制了原始信号的频谱。

2.抽样定理一个带宽为wm 的带限信号f(t),可唯一地由它的均匀取样信号fs(nTs)确定,其中,取样间隔Ts<π/wm 。

3.低通滤波器为了从抽样信号中恢复原始信号,可以让抽样信号通过一个低通滤波器,把一个周期的频谱取出来。

理想低通滤波器的频率响应H(jw),是一个自变量为w 的门函数。

让抽样信号的频谱Fs(jw)与滤波器的H(jw)相乘,可以得到抽样信号一个周期的频谱Fa(jw)。

对Fa(jw)求傅立叶逆变换,可以重构原始信号。

二、验证性实验1.绘制宽度为2的门信号G 2(t)=u(t+1)-u(t-1)的图形和频谱。

门信号并非严格意义上的有限带宽信号,但是,由于其频率f>1/τ的分量所具有的能量占有很少的比重,所以一般定义f m =1/τ为门信号的截止频率。

其中的τ为门信号在时域的宽度。

在本例中选取f m =0.5,临界采样频率为f s =2f m=1,过采样频率为f s >1(为了保证精度,可以将其值提高到该值的50倍),欠采样频率为f s <1。

MATLAB 程序:Ts=0.01;%采样周期=0.01,fs=100>>2fm=1 t=-4:Ts:4;f=rectpuls(t,2);% 宽度为2的门信号w1=2*pi*10; % 频谱范围[-20*pi 20*pi] N=1000; % 计算出2*1000+1个频率点 k=0:N;wk=k*w1/N;F=f*exp(-j*t'*wk)*Ts; % 计算Fourier 变换 F=abs(F); % 计算频谱的幅度 wk=[-fliplr(wk),wk(2:1001)];F=[fliplr(F),F(2:1001)]; % 补充对应负频率的频谱 subplot(2,1,1); plot(t,f); xlabel('t'); ylabel('f(t)'); title('f(t)=u(t+1)-u(t-1)'); subplot(2,1,2); plot(wk,F); xlabel('w'); ylabel('F(jw)'); title('f(t)的幅度谱');-4-3-2-10123400.51tf (t )f(t)=u(t+1)-u(t-1)-80-60-40-2002040608000.511.52wF (j w )f(t)的幅度谱由于抽样周期很小,抽样频率(100Hz )远远大于信号带宽,结果相当于连续信号。

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告广州大学学生实验报告开课学院及实验室:电子信息楼日期:2014年6月08日物理与电子学院年级、专业、班姓名学号工程学院实验课程信号与系统实验成绩名称实验项目指导信号的抽样与恢复名称老师一、实验目的(1)了解电信号的采样的方法与过程以及信号的恢复方法(2)验证抽样定理二、实验仪器(1)20MHz的双踪示波器一台(2)信号与系统的实验箱一套三、实验原理(1)离散时间信号可以从离散信号获得,也可以从连续时间信号抽样而得。

抽样信号fp(t)可以看成连续信号f(t)和一组开关函数s(t)的乘积。

p(t)是一组周期性窄脉冲,见图。

Ts为抽样周期,其倒数称为抽样频率。

(2)抽样信号在一定条件下可以恢复成原信号,只要用一截止频率等于原信号的频谱中最高频率fn的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号的频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

(3)还原信号得以恢复的条件是f>2fm,其中fs为抽样频率,fm为原信号的最高频率。

s(4)为了实现对连续信号的抽样和抽样信号的复原,选用足够高的抽样频率外,采用前置低通滤波器来防止信号的频谱宽而造成抽样信号频谱的混叠,选用的信号频带较窄,即可恢复原信号。

四、实验内容及步骤(1)先将函数信号的发生器产生的正弦波或三角波送入抽样器,即用跳线将函数信号发生器的输出端与本实验模块的输入端连接。

(被抽样的连续信号,最好选为三角波,并选择三角波的频率为80Hz,幅度为2V左右)(2)再将抽样频率分别选为1200Hz,1600Hz,2400Hz,5600Hz对三角波或正弦波抽样,观察经抽样后的正弦波或三角波信号以及复原后的信号,比较失真的情况(为便于观察,被抽样信号的频率一般选择50~400Hz的范围,而抽样频率纪委抽样脉冲的频率,抽样脉冲的频率则是通过电位器来调节的)(3)若使用外接信号源,应将外接信号源的地与本实验箱的地相连,并将信号源的输出端接入本实验模块的输入端。

实验五 抽样定理与信号恢复

实验五  抽样定理与信号恢复
实验五 抽样定理与信号恢复
一. 实验目的
1、掌握连续时间信号与抽样信号的关系。 2、掌握抽样信号频谱的特点。 3、验证抽样定理。
二. 实验原理
1 . 信号抽样的原理 2. 抽样信号频谱的特点
3. 抽样信号恢复原信号的条件
三. 实验仪器及材料
1、双踪示波器
1台
2、信号与系统实验箱
1台
3、函数信号发生器
a. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为2KHz时Fs(t)和F'(t)的波形;
b. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为4KHz时Fs(t)和F'(t)的波形;
五. 实验报告要求
1、画出抽样频率分别为3KHz、6KHz和12KHz 时抽样信号的波形。
1台
四. 实验内容和步骤
1. 抽样信号波形的观测 2. 验证抽样定理与信号恢复
1.抽样信号波形的观测
1. 调节信号源,使之输出f=1KHz,幅度A=3V的三角波; 2. 连接信号源输出端与抽样定理模块上点P41; 3. 拨码开关K401拨至左边; 4. 用示波器观察TP42处抽样信号的波形,调整电位器 W41改变抽样频率,使抽样频率分别为3K、6K和12K, 观察并记录这3种情况下抽样信号的波形。
2、整理信号恢复实验的结果,画出各种情况下 F(t)与F′(t)波形,比较后得出结论。
3、比较F(t)分别为正弦波和三角波,其 Fs(t)的频谱特点。
4、通过本实验你有何体会。
2. 调节信号源,使其输出f=1KHz,A=1V的三角波;连接 信号源输出端与P41,并把抽样信号Fs(t)的输出端P42 与低通滤波器输入端相连,示波器CH1接原始被抽样 信号输入点P41,CH2接恢复信号输出点TP45,对比观 察信号恢复情况:

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告实验报告:抽样定理与信号恢复摘要:抽样定理是数字信号处理中的重要概念,它为我们提供了从连续时间上放缩成为离散时间表示的方法。

在本实验中,我们利用数字信号处理软件进行了一系列实验,以了解抽样定理的工作原理和不同采样频率对信号恢复的影响。

通过实验结果分析,我们得出结论:1. 抽样频率应大于信号带宽两倍;2. 较低的采样频率可能导致丢失重要信息;3. 采样频率高于极限频率会增加不必要的计算开销。

因此,了解抽样定理对我们使用数字信号处理工具处理不同类型信号的时候带来极大的帮助。

实验过程:1. 选择一个连续时间信号z(t)并计算其频率响应和最大频率;2. 在Matlab中选择一个采样频率,对信号进行采样,并计算采样信号的傅里叶系数;3. 选择一个重建滤波器,用于从离散时间信号中重建连续时间信号;4. 绘制信号的原始函数和重构函数,并通过对比和信号恢复误差评价重建质量。

实验结果:我们采样一个频率为5Hz的正弦波,即sq(t) = sin(2 pi 5 t)。

我们选择了三个采样频率,分别是10Hz、8Hz和6Hz。

在Matlab中运行解析和比较函数,我们得出了信号的重构函数和重构误差。

当采样频率为10Hz时,与原始信号相比,重构过程中出现了一点振荡。

这是因为重构滤波器的阶数没有达到最优值。

当采样频率降低到8Hz时,出现了更明显的振荡。

这是因为采样频率在8Hz以下不能捕捉到5Hz正弦波的一个完整波形。

进一步降低采样频率到6Hz,我们观察到信号完全失真,根本无法恢复原始信号。

结论:本实验证明了抽样定理在数字信号处理中的重要性。

对于任何采样频率低于极限的情况,都可能导致信号发生失真。

因此,理解抽样定理可以帮助我们更好地从连续时间中得到数字表示的方法。

信号的采样和恢复

信号的采样和恢复

深圳大学实验报告课程名称:信号与系统实验实验项目名称:信号的采样和恢复学院:信息工程学院专业:通信工程指导教师:张坤华报告人:学号:班级:实验时间:实验报告提交时间:教务处制一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二、实验内容1、观察抽样脉冲、抽样信号、抽样恢复信号。

2、观察抽样过程中,发生混叠和非混叠时的波形。

三、实验仪器1、信号与系统实验箱一台(主板)。

2、系统时域与频域分析模块一块。

3、20M 双踪示波器一台。

四、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号()t f s 可以看成连续信号()t f 和一组开关函数()t s 的乘积。

()t s 是一组周期性窄脉冲,见图5-1,T S图 5-1矩形抽样脉冲对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率s f 及其谐波频率s f 2、s f 3……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按()x x sin 规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是B f s 2≥,其中s f 为抽样频率,B 为原信号占有的频带宽度。

而B f 2min =为最低抽样频率又称“奈奎斯特抽样率”。

当B f s 2<时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。

它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。

抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。

一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。

抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。

抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。

具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。

这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。

抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。

它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。

这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。

如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。

抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。

当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。

三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。

采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。

例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告抽样定理与信号恢复实验报告引言:信号恢复是数字信号处理中的一个重要问题,其目标是通过采样和重构技术来恢复原始信号。

在实际应用中,由于各种原因,我们往往无法直接获得完整的信号,而只能通过采样来获取信号的部分信息。

因此,如何有效地从有限的采样数据中恢复原始信号成为一个关键问题。

本实验旨在通过抽样定理来解决信号恢复问题,并通过实验验证其有效性。

实验原理:抽样定理是信号处理中的基本原理之一,它指出,如果一个连续时间信号的带宽有限,并且以一定的采样频率进行采样,那么通过这些采样数据可以完全恢复原始信号。

具体而言,抽样定理要求采样频率至少是信号带宽的两倍,即Nyquist采样定理。

实验步骤:1. 准备信号源:我们选择了一个正弦信号作为原始信号源,其频率为f0,幅度为A。

通过函数生成器产生该信号,并连接到示波器上。

2. 采样:根据抽样定理,我们选择了采样频率为2f0,即原始信号频率的两倍。

通过示波器的采样功能,将信号进行采样,并记录采样数据。

3. 信号恢复:根据采样数据,我们使用重构算法对信号进行恢复。

在本实验中,我们选择了最常用的插值法进行信号恢复。

通过对采样数据进行插值处理,可以得到连续时间的信号。

4. 重构信号验证:将恢复的信号与原始信号进行对比,验证重构的准确性。

通过示波器将原始信号和恢复信号进行叠加显示,观察它们的相似程度。

实验结果与分析:在本实验中,我们选择了一个频率为1kHz的正弦信号作为原始信号源,采样频率选择为2kHz。

通过示波器进行采样,并得到了采样数据。

接下来,我们使用插值法对采样数据进行信号恢复,并将恢复的信号与原始信号进行对比。

通过观察示波器显示的结果,我们可以明显看到恢复的信号与原始信号非常接近,几乎无法区分它们之间的差异。

这表明,通过抽样定理和插值法,我们成功地从有限的采样数据中恢复了原始信号。

结论:本实验通过采样定理与信号恢复技术,成功地实现了从有限采样数据中恢复原始信号的目标。

实验五1实验五 信号的抽样与恢复

实验五1实验五  信号的抽样与恢复

实验五1实验五信号的抽样与恢复————————————————————————————————作者:————————————————————————————————日期:实验五 信号的抽样与恢复一、实验目的(1) 验证抽样定理;(2) 熟悉信号的抽样与恢复过程;(3) 通过实验观察欠采样时信号频谱的混迭现象;(4) 掌握采样前后信号频谱的变化,加深对采样定理的理解; (5) 掌握采样频率的确定方法.二、 实验内容和原理信号的抽样与恢复示意图如图4.1所示。

图5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。

)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。

一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率.当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。

)(t f 的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF .如图4。

1所示。

观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。

信号抽样与恢复的原理框图如图4。

2所示。

图 5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t f 。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告一、实验目的1、掌握抽样定理的基本原理和抽样过程。

2、理解抽样频率对信号恢复的影响。

3、学会使用实验设备进行抽样和信号恢复的操作。

4、通过实验观察和数据分析,验证抽样定理的正确性。

二、实验原理1、抽样定理抽样定理指出,对于一个带宽有限的连续信号,如果抽样频率大于或等于信号最高频率的两倍,那么可以通过抽样值无失真地恢复出原始信号。

设连续信号为$f(t)$,其频谱为$F(ω)$,最高频率为$ω_m$。

以抽样间隔$T_s = 1/f_s$ 对$f(t)$进行抽样,得到抽样信号$f_s(t)$。

抽样信号的频谱$F_s(ω)$是原信号频谱$F(ω)$以抽样频率$ω_s =2πf_s$ 为周期进行周期延拓。

2、信号恢复从抽样信号恢复原始信号通常使用低通滤波器。

理想低通滤波器的频率响应为:\H(ω) =\begin{cases}1, &|ω| <ω_c \\0, &|ω| >ω_c\end{cases}\其中,$ω_c$ 为低通滤波器的截止频率,通常取$ω_c =ω_m$。

通过低通滤波器对抽样信号进行滤波,即可得到恢复后的信号。

三、实验设备1、信号发生器:用于产生连续信号。

2、抽样脉冲发生器:产生抽样脉冲。

3、示波器:用于观察信号的波形。

4、低通滤波器:实现信号的恢复。

四、实验内容及步骤1、产生连续信号使用信号发生器产生一个频率为$f_1$ 的正弦信号,调节信号的幅度和频率,使其在示波器上显示清晰稳定。

2、选择抽样频率设置不同的抽样频率$f_s$,分别为$2f_1$、$3f_1$ 和$5f_1$。

3、抽样过程将抽样脉冲与连续信号同时输入到示波器的两个通道,观察抽样信号的波形。

4、信号恢复将抽样信号通过低通滤波器,在示波器上观察恢复后的信号,并与原始信号进行比较。

5、记录数据记录不同抽样频率下抽样信号和恢复信号的波形、幅度和频率等数据。

五、实验数据及分析1、当抽样频率为$2f_1$ 时抽样信号的频谱发生了混叠,通过低通滤波器恢复的信号出现了明显的失真,幅度减小,频率也发生了变化。

信号与系统实验4:抽样定理与信号恢复

信号与系统实验4:抽样定理与信号恢复

(规格为A4纸或A3纸折叠)(2)在(1)基础上恢复正弦信号,比较那个采样间隔能较好的恢复原正弦信号。

改变几个不同的采样间隔,比较恢复信号。

代码:f0=50;n1=0:0.01:0.2;x1=sin(2*pi*f0*n1);n2=0:0.002:0.2;x2=sin(2*pi*f0*n2);n3=0:0.001:0.2;x3=sin(2*pi*f0*n3);subplot(3,3,1);stem(n1,x1);subplot(3,3,4);plot(n1,x1);subplot(3,3,2);stem(n2,x2);subplot(3,3,5);plot(n2,x2);subplot(3,3,3);stem(n3,x3);subplot(3,3,6);plot(n3,x3);2.抽样信号的恢复 设信号sin ()()tf t Sa t t==,在抽样间隔分别为 (1) 0.7s T π=(令1m ω=, 1.1c m ωω=) (2) 1.5s T π=(令1m ω=, 1.1c m ωω=)的两种情况下, 对信号()f t 进行采样, 试编写MATLAB 程序代码, 并绘制出抽样信号波形、由抽样信号得到的恢复信号波形。

代码: (1)wm=1;%信号带宽wc=1.1*wm;%滤波器截止频率 Ts=0.7*pi;%抽样间隔 ws=2*pi/Ts;%抽样角频率 n=-100:100;%时域抽样点数 nTs=n*Ts;%时域抽样点 f=sinc(nTs/pi); Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));%信号重构error=abs(fa-sinc(t/pi));t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('KTs');ylabel('f(KTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');(2)代码:wm=1;%信号带宽wc=1.1*wm;%滤波器截止频率Ts=1.5*pi;%抽样间隔ws=2*pi/Ts;%抽样角频率n=-100:100;%时域抽样点数nTs=n*Ts;%时域抽样点f=sinc(nTs/pi);Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));%信号重构error=abs(fa-sinc(t/pi));t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('KTs');ylabel('f(KTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');选取信号sin ()()tf t Sa t t==作为被抽样的信号,显然,信号的带宽1m ω=。

抽样定理实验五

抽样定理实验五

实验五:抽样定理1、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。

(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形; 程序清单: fm=1;Tm=1/fm;dt=0.1; t=-4:dt:4; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-4:Ts:4; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);end程序运行结果如下图:课程名称:数字信号处理 实验成绩: 指导教师: 实 验 报 告院系: 信息工程学院 班级: 学号: 姓名:日期: 2011. 11.11-4-3-2-10123400.51原连续信号和抽样信号-4-3-2-10123400.51-4-3-2-10123400.51-4-3-2-1123400.51(2)求解原连续信号和抽样信号的幅度谱;程序清单: dt=0.1;fm=1;Tm=1/fm; t=-4:dt:4; N=length(t); f=sinc(t);wm=2*pi*fm; k=0:N-1; w1=k*wm/N;F1=f*exp(-1i*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-4:Ts:4; N=length(n); f=sinc(n); wm=2*pi*fs;w=k*wm/N;F=f*exp(-1i*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F))]);end程序运行结果如下图:00.511.522.533.540.20.40.60.811.200.51 1.522.533.540.5100.51 1.52 2.53 3.540.20.40.60.8100.51 1.52 2.53 3.540.20.40.60.811.2(3)用时域卷积的方法(内插公式)重建信号。

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。

通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。

而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。

本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。

一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。

二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。

2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。

三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。

将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。

将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。

2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。

然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。

最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。

3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。

比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。

根据实验结果,验证信号抽样与恢复的有效性。

四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。

[资料]抽样定理与信号恢复

[资料]抽样定理与信号恢复

[资料]抽样定理与信号恢复本科实验报告实验名称: 抽样定理与信号恢复学员: 学号:年级: 2012 级专业: 电子工程所属学院: 指导教员:实验室: 实验日期:2014年4月25日一、实验目的和要求1. 验证抽样定理,进一步理解抽样过程。

2. 掌握对频谱混叠现象的分析。

3. 深入理解信号恢复的条件。

二、实验原理和内容1. 原理(1) 离散信号不仅可从离散信号源获得,也可从连续信号抽样获得。

抽样信号,其中为连续信号(例如三角波),是周期为xt()xtxtPt()()(),,Pt()sT的矩形窄脉冲。

T又称抽样间隔,称为抽样频率,为抽样信号波1/FT,xt()sssssxt()形。

、Pt()、xt()波形如图1。

sxt()t0T(a)Pt()At(b)xt()st0T(c)图1 连续信号抽样过程 (2) 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱,,mt,A,s (j)S()j,,,ω,,XXm,,,,,sas,,2Tm,,,m,,A,,ss它包含了原信号频谱以及重复周期为()、幅度按规律S()ff,sas2T2, 变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。

因此,抽样信号占有的频带比原信号频带宽得多。

以三角波被矩形脉冲抽样为例。

三角波的频谱:,,4E (),,,,,,,,,,,,Xj()()Akk,,k112,kkk,,,,,,抽样信号的频谱:,m,,A,1s,,,, XESkm(j)4()(),,,,,,1sas2Tk2,k,,,m,,,取三角波的有效带宽为,其抽样信号频谱如图2所示。

3,1X()fE22E2,2E2(3),,3f,ff3f01111X()fmω,A,s包络线按规律变化S()aT2ff03f5f7f12ffs111s(a)三角波频谱 (b)抽样信号频谱图2 抽样信号频谱图fB,2f(3) 抽样信号在一定条件下可以恢复出原信号,其条件是,其中为抽sfs B样频率,为原信号占有频带宽度。

信号与系统 实验五 连续信号的抽样和恢复

信号与系统 实验五 连续信号的抽样和恢复

实验五连续信号的抽样和恢复一、实验目的理解模拟信号的抽样与重构过程,理解信号时域抽样对频域的影响,理解抽样定理。

二、实验内容设信号f(t)=Sa(t)=sin(t)/t,在抽样间隔分别为(1) T s=0.7π(令ωm=1,ωc=1.1ωm)(2)T s=1.5π(令ωm=1,ωc=1.1ωm)的两种情况下,对信号f(t)进行采样,试编写MATLAB程序代码,并绘制出抽样信号波形、由抽样信号得到的恢复信号波形。

(提示:利用教材P174公式(5-10)和所附样例)(1)clear;wm=1; %信号带宽wc=1.1*wm; %滤波器截止频率Ts=0.7*pi; %抽样间隔ws=2*pi/Ts; %抽样角频率n=-100:100; %时域抽样点数nTs=n*Ts; %时域抽样点f=sinc(nTs/pi);Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构error=abs(fa-sinc(t/pi)); %求重构信号与原信号的误差t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');(2)clear;wm=1; %信号带宽wc=1.1*wm; %滤波器截止频率Ts=1.5*pi; %抽样间隔ws=2*pi/Ts; %抽样角频率n=-100:100; %时域抽样点数nTs=n*Ts; %时域抽样点f=sinc(nTs/pi);Dt=0.005;t=-15:Dt:15;fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %信号重构error=abs(fa-sinc(t/pi)); %求重构信号与原信号的误差t1=-15:0.5:15;f1=sinc(t1/pi);subplot(3,1,1);stem(t1,f1);xlabel('kTs');ylabel('f(kTs)');title('sa(t)=sinc(t/pi)临界抽样信号');subplot(3,1,2);plot(t,fa);xlabel('t');ylabel('fa(t)');title('由sa(t)=sinc(t/pi)的临界抽样信号重构sa(t)');grid;subplot(3,1,3);plot(t,error);xlabel('t');ylabel('error(t)');title('临界抽样信号与原信号的误差error(t)');样例:选取信号f (t)=Sa (t )=sin(t )/t 作为被抽样的信号,显然,信号的带宽ωm =1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 验证抽样定理与信号恢复
信号恢复实验方框图如图5-7:
F(t)
抽样器
FS(t)
S(t)
低通 滤波器
F’(t)
图5-7 信号恢复实验方框图
1. 分别设计两个有源低通滤波器,电路形式如图5-6所示。 (利用U43、R43、R44、C42与C41、C43来实现)分别 设fc1=2KHz,fc2=4KHz,R1=R2=5.1KΩ,试计算C1 和C2值(计算公式见5-1,5-2)。
2、整理信号恢复实验的结果,画出各种情况下 F(t)与F′(t)波形,比较后得出结论。
3、比较F(t)分别为正弦波和三角波,其 Fs(t)的频谱特点。
4、通过本实验你有何体会。
a. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为2KHz时Fs(t)和F'(t)的波形;
b. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为4KHz时Fs(t)和F'(t)的波形;
五. 实验报告要求
1、画出抽样频率分别为3KHz、6KHz和12KHz 时抽样信号的波形。
2. 调节信号源,使其输出f=1KHz,A=1V的三角波;连接 信号源输出端与P41,并把抽样信号Fs(t)的输出端P42 与低通滤波器输入端相连,示波器CH1接原始被抽样 信号输入点P41,CH2接恢复信号输出点TP45,对比观 察信号恢复情况:
3. 设1KHz的三角波信号的有效带宽为3KHz,Fs(t)信号分 别通过截止频率为fc1和fc2低通滤波器,观察其原信号 的恢复情况,并完成下列观察和记录任务:
1台
四. 实验内容和步骤1源自 抽样信号波形的观测 2. 验证抽样定理与信号恢复
1.抽样信号波形的观测
1. 调节信号源,使之输出f=1KHz,幅度A=3V的三角波; 2. 连接信号源输出端与抽样定理模块上点P41; 3. 拨码开关K401拨至左边; 4. 用示波器观察TP42处抽样信号的波形,调整电位器 5. W41改变抽样频率,使抽样频率分别为3K、6K和12K, 6. 观察并记录这3种情况下抽样信号的波形。
实验五 抽样定理与信号恢复
一. 实验目的
1、掌握连续时间信号与抽样信号的关系。 2、掌握抽样信号频谱的特点。 3、验证抽样定理。
二. 实验原理
1 . 信号抽样的原理
2. 抽样信号频谱的特点
3. 抽样信号恢复原信号的条件
三. 实验仪器及材料
1、双踪示波器
1台
2、信号与系统实验箱
1台
3、函数信号发生器
相关文档
最新文档