第1章 张量分析(清华大学张量分析,你值得拥有)
张量分析基础
张量的性质
张量的定义
— 张量是与坐标系有联系的一组量,并满足一定的坐标变换规律。
张量的性质
— 任何两个张量相乘所得到的新张量的阶数等于原张量阶数之和; — 两个张量间的比例系数一般是一个张量,其阶数等于原张量阶 数之和; — 张量的变换规律与坐标乘积的变换规律相同; — 变换矩阵与二阶张量的区别
二阶对称张量
δ ij =
1 i = j 0 i ≠ j
[ ]
1 0 0 δ ij = 0 1 0 0 0 1
δ ij Pj = Pi δ ij Pi = Pj
δ ijT jl = Til δ ilT jl = T ji
i, j , k顺序轮换 i, j , k反序轮换 两个以上角标同
反对称三重积
ei × e j = ε ijk e j
傀标
Pi = Tij Q j
自由 下标
[A] + [B][C][D] = [E][F]
Aij + BikCkl Dlj = Eik Fkj
坐标变换
坐标轴变换
e1* a11 * e 2 = a 21 * e3 a 31 a12 a 22 a 32
*∧
X3’
X3
θ23
a13 e1 a 23 e 2 a 33 e3
x1* a11 * x 2 = a 21 * x 3 a 31
a12 a 22 a 32
a13 x1 a 23 x 2 a 33 x 3
Neuman原理
物质张量、场张量
— 物质张量是建立晶体在外场作用下的响应与外场之间关系的物理性 能,物质张量受到晶体对称性的制约,如弹性系数 — 场张量:外场张量及晶体对外场响应后所产生的新的物理量,不受 晶体对称性的制约,如应力、电场 — 晶体响应,受外场、物理性能和晶体对称性的共同影响,如应变
张量分析(Tensor Analysis)
ds 2 (dx1 ) 2 (dx 2 ) 2 (dx3 ) 2
利用克罗内克符号,上式可写成:
ds ij dx dx
2 i
j
克罗内克符号的一些常用性质:
i j xi x j
x j ij x i
i
j i k
j k
D) 置换符号
置换符号eijk=eijk定义为:
r i dr i dx x
空间一点P的位置矢量可用直角坐标表示为:
r z ji j
式中 ij 为沿坐标轴 zj 方向的单位矢量。
r r z j z j j i i ij i x z x x
r 上式表明, i 是单位矢量 ij 的线性组合,因此也是矢量。 x
基矢量(续)
r r i 变化时位置矢量r的变化,因此 i i 表征当 x i 的方向是沿坐标曲线 x x x r 的切线方向。矢量 i 可以取作曲线坐标系的基矢量(协变基矢量): x
r z j gi i i i j x x
注意:对于在曲线坐标系中的每一点,都有三个基 矢量。 基矢量一般不是单位矢量,彼此也不正交; 基矢量可以有量纲,但一点的三个基矢量的量纲可以不同;
1 张量的概念
在三维空间,一个矢量(例如力矢量、速度矢量等)在某参考坐标系中, 有三个分量;这三个分量的集合,规定了这个矢量;当坐标变换时,这些 分量按一定的变换法则变换。
在力学中还有一些更复杂的量。例如受力 物体内一点的应力状态,有9个应力分量, 如以直角坐标表示,用矩阵形式列出,则 有:
xx xy xz ij yx yy yz zx zy zz
克罗内克符号 i j 的定义是:
连续介质力学
该课程主要通过课堂讲授来进行教学,采用电子课件和板书相结合的方式。值得一提的是,本研究生课程完全独立地完成了大部分电子课件的建设,为进一步提高教学质量打下了基础。
4、教材方面:
本课程教材的选用经过了多次权衡和对比。一本为本系编著的油印教材《张量分析》,该书具有便于学生接受的特点;另外一本是国际著名学者J.N.Reddy主编的连续介质力学,是本领域的经典教材之一。
37
断裂力学、细观力学等
李振环
教授
固体力学
44
微纳米力学
黄敏生
副教授
固体力学
31
微纳米力学
课程负责教师教育经历及学术成就简介:
罗俊:博士、教授、湖北省力学学会理事、工程力学教研室主任。1997年和2000年于上海交通大学获工学学士和固体力学专业硕士学位,2004年获新加坡南洋理工大学博士学位。2003年到2005年在新加坡南洋理工大学从事博士后研究。目前主要从事断裂力学、细观力学、生物固体力学、电子产品冲击动力学等领域的研究工作。先后主持国家自然科学基金、教育部博士点新教师基金、留学回国人员基金、华中科技大学自主创新基金和人才引进基金等项目的研究工作,同时参与国家自然科学基金、教育部博士点基金、新加坡ASTAR基金等多项项目的研究。在国内外重要学术刊物上发表学术论文近30篇,其中SCI收录的有20余篇,发表的论文两次获湖北省自然科学优秀学术论文二等奖。目前是IJSS等9个国际主流期刊和1个国内权威期刊的审稿人。主讲张量分析与连续介质力学、材料力学、工程力学等本科和研究生课程。
5、其它:
在国际化课程建设项目的资助下,课程负责人邀请到了张量分析和连续介质力学领域的著名专家吴茂熙和匡震邦教授来校讲学。该项目的建设对本课程教学内容的编排和教学质量的提高起到了极大的推动作用。
张量分析
张量分析张量分析,又称张量微积分,是一门研究多维空间中的向量和张量的数学工具。
它在物理学、工程学、计算机科学等领域有着广泛的应用。
张量分析的核心思想是通过张量的计算和运算,来描述和解释多维空间中的现象和问题。
在数学中,张量是一种广义的向量概念。
它不仅可以表示标量和向量,还可以表示具有更高维度的物理量。
例如,二阶张量可以表示物体的形变和应力分布,三阶张量可以表示电磁场的分布,四阶张量可以表示弹性材料的性质等。
张量分析的基本概念包括张量的定义和表示、张量的变换规律以及张量的运算。
对于二阶张量,可以用一个矩阵来表示。
张量的变换规律与坐标系的选择有关,不同的坐标系下,同一个张量可以表示为不同的矩阵形式。
张量的运算包括加法、数乘、内积和外积等。
这些运算在物理和工程问题中具有重要的意义,可以帮助研究人员推导和解决实际问题。
在物理学中,张量分析被广泛应用于描述和分析物体的运动、形变、应力等问题。
例如,通过分析物体的应力张量,可以判断物体是否会发生破坏或变形。
在工程学中,张量分析可以用于解决弹性力学、流体力学、电磁学等问题。
在计算机科学中,张量分析可以用于图像处理、模式识别等领域。
张量分析的发展离不开数学家们的努力。
早在19世纪,克里斯托弗·亚当斯(Christopher Adams)就提出了张量的概念。
20世纪初,爱因斯坦在相对论的研究中也广泛应用了张量分析。
随着计算机的发展和计算能力的提高,张量分析在科学研究中的应用也越来越广泛。
虽然张量分析在各个领域中都有广泛的应用,但它的理论和方法并不容易掌握。
要学好张量分析,需要对线性代数、微积分和向量分析等数学知识有扎实的掌握。
此外,也需要具备一定的物理学和工程学的基础知识。
对于初学者来说,可以通过学习相关的教材和参考资料,同时结合实际问题进行练习和应用。
总之,张量分析是一门重要的数学工具,对于描述和解决多维空间中的问题具有重要的意义。
它在物理学、工程学、计算机科学等领域有着广泛的应用。
张量分析书籍附详尽易懂
n个
称为n维仿射空间。E n 中旳每一种元素称为点。
记:
o (0, ,0),
x (x1,, xn ) ,
(x1, , xn )
且分别称为放射空间旳原点、位置矢量和负矢量。
对于n维仿射空间,全部旳位置矢量构成一种集合:
V0 x (x1,, xn ) xi , xi F,1 i n
(1 t)(1,1) t(1,1) a t b
(1 2t,1 2t) a t b
当 t b 时:
(2t 1,2t 1) (1,1)
当 t a 时:
(2t 1,2t 1) (1,1)
由此可得 a 0 ,b 1 。显然 r1 等 r2 价。
r1 与 r5 : (取 s b5 b1 )
域上旳矢量空间。且仍记为V0 。
数域上旳矢量空间V0 具有如下性质:x, y, z V0 ,、 F
(1)
x yyx
(2)
(x y) z x ( y z)
(3)V0中存在称为有关加法旳单位元素o,使得:
xo x
x V0
(4)V0中每一种元素x都存在唯一旳(-x ),使得:
x (x) o
当t=b时:位置矢量标
定b点。即:
S
(4b 2,3 2b) (2,1)
由此拟定b=1 。
x2
当t=a时:位置矢量标
3
2
定a点。即:
1
(4a 2,3 2a) (1,1.5 )
由此拟定a=0.75 。
图中画出了计算成果 。
x2 3
2 u ab
1
2 (a)
u xy
x1
4
6
u xy u ab
1
2
。 Vx空间中旳矢量称为约束矢量。
第一章 张量分析基础知识
晶体物理性能南京大学物理系由于近代科学技术的发展,单晶体人工培养技术的成熟,单晶体的各方面物理性能(如力、声、热、电、磁、光)以及它们之间相互作用的物理效应,在各尖端科学技术领域里,都得到了某些应用.特别是石英一类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电子技术中,比较早地在工业规模上进行大批生产和广泛应用.激光问世的四十多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应用中,已成单晶体应用中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之一,目的就是希望对晶体特别是光电技术中使用的晶体(包括基质晶体与非线性光学晶体)的有关物理性能及其应用方面的基本知识,有一个了解.对今后从事光电晶体的生长、检测和应用的工作,在分析问题、解决问题方面有所帮助,同时要在今后工作中不断从实践和理论两个方面扩大知识领域,有一个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个方面作深入全面的介绍,也将侧重于激光晶体有关的一些性能及其应用.鉴于以上考虑,《晶体物理性能》讲义将以离子晶体为主要对象,以光电技术上应用为线索组织内容,共分为八章.着重于从宏观角度结合微观机制介绍晶体基本物理性能以及各种交互作用过程的物理效应和它们在光电技术中的某些应用,包括弹性与弹性波(第二章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第八章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、方便地描述这些物理性能必须使用张量来表示.因此,在第一章,我们介绍了关于张量分析基础知识方面的内容.由于水平有限,实践经验缺乏,时间仓促,因而内容安排不妥、取舍不当、错误之处一定很多,希望同学们提出宝贵意见,批评指正.第一章张量的基础知识§1.1标量、矢量和二阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5二阶张量的变换与张量的定义………………………………………………………§1.6张量的足符互换对称…………………………………………………………………§1.7张量的矩阵表示和矩阵的代数运算…………………………………………………§1.8二阶对称张量的几何表示和二阶张量的主轴………………………………………§1.9二阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第二章晶体的弹性与弹性波§2.1弹性性质与原子间力…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应力……………………………………………………………………………………§2.4推广的虎克定律、弹性系数…………………………………………………………§2.5立方晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因子的测量方法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3高频电场的介电极化(光的色散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离子晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的一般性质…………………………………………………………………§4.2常用铁电体的实验规律……………………………………………………………§4.3铁电体的相变热力学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电方程和机电耦合系数…………………………………………………………§4.7压电晶体的应用实例――石英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲面……………………………………………………………§5.4晶体表面上的折射…………………………………………………………………§5.5晶体偏光干涉及其应用……………………………………………………………第六章倍频与参量频率转换§6.1非线性极化…………………………………………………………………………§6.2非线性极化系数……………………………………………………………………§6.3非线性介质中电磁场耦合方程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7角度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放大…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐方法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13非线性材料的性能要求……………………………………………………………第七章电光效应及其应用§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的几个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第八章声光效应及其应用§8.1弹光效应……………………………………………………………………………§8.2声光交互作用产生的衍射现象……………………………………………………§8.3声光交互作用的理论………………………………………………………………§8.4声光效应在一些物理常数测量中的应用…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散角α的推导………………………………………………………E.双轴晶体中双折射面相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第一章 张量分析基础知识以前学的课程中,有关力学、热学、电学、光学等的性质都是以各向同性介质来表述的或以一维问题来说明问题,这对于突出某些物理现象的微观的物理原因方面是必要的,但晶体物理性能是讲晶体中的力学、电学、光学、声学、磁学、热学等物理性能,而晶体的各向异性却是一种很普遍的特性,特别是很多现象如热电、压电、电光、声光、非线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要方面。
张量分析提纲及部分习题答案
y
对静止的连续介质,有
ζ n fd 0 , ζd fd 0 ,
A
ζ f 0。
(21) 证明应力是一个张量; 记 ij :表示在给定基 g i 下,在面 g j 上,单位面积受力 F j 在 g i 方向上的分量为
对斜圆锥面上任一点 (图中黑点处) , 不难由相似三角形得到,
z z R cos C i R sin j zk ,进而可得, H H r Rz sin zR cos r R cos C R g i j, gz i sin j k , H H z H H r
dx g dx I g dx II 1 4 x I 2 dx I 6 x I x II 2 dx II Pdx I Q dx II 11 12 1 1 I 。 2 4 dxII g 21dx I g 22 dx II 6 x I x II dx I 9 x II dx II P2 dx I Q2 dx II
Pi Qi 时,坐标 xI , xII 才可能存在。即向量场 P, Q 无旋时,其在两点间 x II x I Pi Qi 的路径积分与路径无关,积出的值就是坐标。本例中, II I ,故相应的“协 x x
当 变坐标”不存在。 (正因为如此,坐标也没有逆变、协变之说。 ) (9) 有点类似曲面第一基本型(1.3.12) 。 (10) Lame 常数定义(1.3.13)在非正交系中也成立,但此时(1.3.12a)不成立。
1.9-1.13:略; 1.14: 注意,所谓斜圆锥是指, O 点沿 z 方向在大圆平面上的投影 M 在大圆的直径上。
张量分析课件
P = ∑αij Ej (i=1,2,3) i
j =1
3
Pi′ = ∑ α i′j′ E j′ (i'=1,2,3)
j ′ =1
3
代 入
将一阶张量Ej和Pi的变换规律
Pi′ = ∑ Ai′i Pi
3
代 入
E j′ = ∑ Aj ′j E j
j =1
i =1 3
∑A
i =1
3
i ′i i
P = ∑∑ α i′j′ Aj′j E j
证: 刚体定轴转动:
ω
(Z轴)转轴
刚 体
(
)
v τi A ni O′ ri
v
刚体定轴转动
r2 r r I 质点:ij = m(rij δ ij − ( r )i ( r ) j ) O
v Ri
= m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3)
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩. 证: 质点:I ij = m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3) 九个分量:
δij在坐标变换后,其各个分量的值不变. 即在任意坐 标系中按上式定义的二价对称δ符号是一个二阶张量.
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩.
(完整版)《张量分析》报告
一 爱因斯坦求和约定1.1指标变量的集合:n n y y y x x x ,...,,,...,,2121表示为:n j y n i x j i ...,3,2,1,,...,3,2,1,==写在字符右下角的 指标,例如xi 中的i 称为下标。
写在字符右上角的指标,例如yj 中的j 称为上标;使用上标或下标的涵义是不同的。
用作下标或上标的拉丁字母或希腊字母,除非作了说明,一般取从1到n 的所有整数,其中n 称为指标的范围。
1.2求和约定若在一项中,同一个指标字母在上标和下标中重复出现,则表示要对这个指标遍历其范围1,2,3,…n 求和。
这是一个约定,称为求和约定。
例如:333323213123232221211313212111bx A x A x A b x A x A x A bx A x A x A =++=++=++筒写为:ijijbx A =j——哑指标i——自由指标,在每一项中只出现一次,一个公式中必须相同遍历指标的范围求和的重复指标称为“哑标”或“伪标”。
不求和的指标称为自由指标。
1.3 Kronecker-δ符号(克罗内克符号)和置换符号Kronecker-δ符号定义j i ji ij ji ≠=⎩⎨⎧==当当01δδ置换符号ijkijk e e =定义为:⎪⎩⎪⎨⎧-==的任意二个指标任意k j,i,当021)(213,132,3的奇置换3,2,1是k j,i,当112)(123,231,3的偶置换3,2,1是k j,i,当1ijk ijke ei,j,k 的这些排列分别叫做循环排列、逆循环排列和非循环排列。
置换符号主要可用来展开三阶行列式:231231331221233211231231133221332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++==因此有:ijmjimii i i jijAA aa a a a ==++=δδδδδ332211kijjkiijkkjiikjjikijkee e e e e e ==-=-=-=同时有:ijjijij iiiijijijkj ikilkljkijjjiiijijijkjikiie e aa aa a a a aa δδδδδδδδδδδδδδδδδδδ=⋅=++=========++=332211332211331001010100131211232221333231321333222111321321321-=====δδδδδδδδδδδδδδδδδδδδδδδδδδδe e k j i k j i k j i k k k j j j i i i ijk333222111321321321r q p r q p r q p k k k j j j i i i pqr ijke e δδδδδδδδδδδδδδδδδδ⋅=ipp i p i p i p i δδδδδδδδδ==++11332211krkqkpjrjqjpiriqippqrijke e δδδδδδδδδ=jqirjriqjrjqiriqkqrijke e kp δδδδδδδδ-===321321322311332112312213322113312312332211333231232221131211k j i ijkkjiijkaa a e a a a e aa a a a a a a a a a a a a a a a a aaaa a aaa a A ==---++==Kronecker-δ和置换符号符号的关系为:itjsjtiskstkije e δδδδ-=二 张量代数2.1张量的加法(减法)两个同阶、同变异(结构) 的张量可以相加(或相减)。
张量分析第一章 习题答案
一阶张量 一阶张量 根据张量识别定理: δ ij 是1+1阶即二阶张量. (2) 对于任意二阶张量 b jk 缩并:
∑ε
j ,k
ijk
b jk
一阶张量
∑ε
j ,k
1 jk b jk = b23 − b32
∑ε
j ,k
2 jk
b jk = b31 − b13
∑ε
j ,k
3 jk
b jk = b12 − b21
∑
i1i2 ⋅⋅⋅iµ j1 j2 ⋅⋅⋅ jµ
得 Ai1′i 1 Ai2′i2 ⋅⋅⋅ Aiµ′iµ Aj1′ j1 Aj2′ j2 ⋅⋅⋅ Ajν ′ jν ai1i2 ⋅⋅⋅iµ j1 j2 ⋅⋅⋅ jν 命题得证! 命题得证!
ci1′i2′ ⋅⋅⋅iµ′ =
∑ ∑
i1i2 ⋅⋅⋅iν j1 j2 ⋅⋅⋅ jν
得
i1i2 ⋅⋅⋅iµ j1′ j2′ ⋅⋅⋅ jν ′ j1 j2 ⋅⋅⋅ jν
在新坐标系中: ci1′i2′ ⋅⋅⋅iµ′ = ∑ ai1′i2′ ⋅⋅⋅iµ′ j1′ j2′ ⋅⋅⋅ jν ′ b j1′ j2′ ⋅⋅⋅ jν ′
j1′ j2′ ⋅⋅⋅ jν ′
比较
ai1′i2′ ⋅⋅⋅iµ′ j1′ j2′ ⋅⋅⋅ jν ′ =
ai1′i2′ ⋅⋅⋅iµ′ =
∑
i1i2 ⋅⋅⋅iµ
得 Ai1′i 1 Ai2′i2 ⋅⋅⋅ Aiµ′iµ ai1i2 ⋅⋅⋅iµ
命题得证! 命题得证!
6. 根据张量识别定理证明:δ ij是二阶张量, ε ijk 为三阶张量. 证: (1) 对于任意一阶张量 对于任意 阶张量 a j ∑ δij a j = ai
张量分析-第1讲LJ
a2 F3 a3 F2 a c b1 a b c1 a3 F1 a1 F3 a c b2 a b c2 a1 F2 a2 F1 a c b3 a b c3
所以有: a b c a c b a b c
g1和g 2
g1和g 2 不是单位矢量,即它们有量纲的, 一般地说,
其长度也不为单位长度。此外它们也并不正交。 矢量F可以在 g1和g 2 上分解:
F F g1 F g 2
1 2
(平行四边形法则)
则有: F g 1 F 1g 1 g 1 F 2 g 2 g 1
F g 1 F 1g 1 g 1 F 2 g 2 g 1
e2 b2 c2
e3
e3 b3 b2 c3 b3 c2 e 1 b3 c1 b1c3 e 2 b1c2 b2 c1 e 3 c3
b3 a 2 F3 a3 F2 e 1 a3 F1 a1 F3 e 2 a1 F2 a 2 F1 e 3 F3
j 1
F2 ' e 2 ' e1 F1 e 2 ' e 2 F2 e 2 ' e 3 F3 2 ' j F j
j 1 3
3
F3' e 3' e1 F1 e 3' e 2 F2 e 3' e 3 F3 3' j F j
j 1
矢量场函数的散度: 矢量场函数的旋度:
i F x Fx j y Fy
Fx Fy Fz F z y x
k Fz Fy Fx Fz Fy Fx i k j y z y z z x x Fz
张量分析及其应用
Ux Uy Uz 0 x y z
1.4 指标记法的运算
1.4.5 例题 ——熟悉指标记法和普通记法的转换 不可压缩牛顿流体的Navier-Stokes方程:
( U tiU j U xji)b i x p ix U jx i j
写出其普通记法
{a 1 ,a2,a3 },{a 1,a2,a3}
即
a a ie i, a a ie i
aiaeiaieiei a i a e i a ie ie i a ie ie i
a a i
ii i(对 i’ 求和)
a a i
ii i(对 i 求和)
x 1 a 1x 1 1 a 1x 2 2 a 1x 3 3 x 2 a 2x 1 1 a 2x 2 2 a 2x 3 3 x 3 a 3x 1 a 3x 2 2 a 3x 3 3
ei Aijej i 为自由指标,j 为哑标
表示
e 1 A 1e 1 A 1e 2 2 A 1e 3 3 e 2 A 2e 1 A 2e 2 2 A 2e 3 3 e 3A 3e 1 A 3e 2 2 A 3e 3 3
ee121211
12 22
1233ee12
e3 31 31 33e3
ei iiei (对 i 求和,i’为自由指标)
从坐标变换的角度研究标量、矢量和张量
1.5.2 标量(纯量 Scalar)
可见:
e ijk e jk i e k ij e jik e ik j e k ji
e i j k 也称为三维空间的排列符号。
若 e1, e2, e3 是右手卡氏直角坐标系的单位基矢量
则
ei ej eijkek
常见的恒等式
张量分析
张量分析研一 熊焕君 2017.9.281.引论:我们对标量和矢量都非常熟悉。
标量是在空间中没有方向的量,其基本特征是只需要一个数就可以表示,且当坐标系发生转动时这个数保持不变,因此也称其为不变量。
而矢量是个有方向的量,三维空间中矢量需要一组三个数(分量)来表示,其基本特征是当坐标系发生转动时,这三个数按一定规律而变化。
然而在数学物理问题中,还常出现一些更为复杂的量,如描述连续体中一点的应力状态或一个微元体的变形特征等,仅用标量和矢量不足以刻画出他们的性质。
要描述这些量则有必要将标量和矢量的概念加以引申和扩充,即引入新的量——张量。
在概念上,张量和矢量有许多类同之处。
一方面张量也表示某一客观存在的几何量或物理量,显然张量作为一个整体是与描述它所选取的坐标系无关,可像矢量代数那样,用抽象法进行描述;另一方面也可像矢量一样采用坐标法进行描述,此时张量包含有若干个分量元素,各个分量的取值与具体的坐标系相关联。
张量的主要特征是,在坐标系发生变化时,其分量取值遵守着一定的转化定律。
张量方法的核心内容是研究一个复杂的量集坐标转换规律。
我们知道,一个物理定律如果是正确的,就必须不依赖于用来描述它的任何坐标系,张量方法就是既采用坐标系,而又摆脱具体坐标系的影响的不变方法。
于是我们可以在简单的直角坐标系中建立描述某一运动法则的支配方程,如果需要可以用张量方法将其转换到任意一个曲线坐标系中去。
例如对于很大一类边值问题,若选用恰当的曲线坐标系,其边界条件可以简化的表达,那么我们就可以将支配方程用张量方法转化到所采用的坐标系中来,从而使问题的求解容易处理。
2.记号与约定张量是包含有大量分量元素的复杂量集,必须使用适当的记号和约定,才能使其表达形式简化紧凑,从而使分析和讨论有序地进行。
从某种意义上讲,可以说张量是对记号的研究。
所以我们必须熟悉各种约定记号,才能对张量这个工具运用自如。
在张量方法中对一个量的标记采用字母标号法。
张量分析初学者必看
A 张量分析
x1 x1 cos x2 sin x2 x1 sin x2 cos
x1 x1 cos x2 sin x2 x1 sin x2 cos
坐标变换式
xi ii xi xi ii xi
ii cos(xi , xi ) ii cos(xi , xi )
Aijk xi y j zk
代表27项 的和式
二、自由指标
§ A-1 指标符号
A11 x1 A12 x2 A13 x3 b1 A21 x1 A22 x2 A23 x3 b2 A31 x1 A32 x2 A33 x3 b3
筒写为
Aij x j bi
j ——哑指标 i——自由指标,在每一项中只出现一次,一个公式 中必须相同
A 张量分析
张量的定义——在坐标系变换时,满足如下变
换关系的量称为张量
ijkl ii jjkk llijkl
张量的阶——自由指标的数目
不变性记法
ijkl ei e j ek el
§A-3 坐标变换与张量的定义
一、加(减)法
§A-4 张量的代数运算
四、两个张量的点积
A 张量分析
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 2
A B ( Aijk ei e j ek ) ( Brs t er es et ) Aijk Brs t ei e j kr es et Aijk Bkst ei e j es et S
§ A-1 指标符号 三、 Kronecker- 符号和置换符号 (Ricci符号) Kronecker-符号定义
学习张量必看_一个文档学会张量!!!!张量分析
张量函数及其微积分
Appendix A
引言
广义相对论(1915)、理论物理 连续介质力学(固体力学、流体力学) 现代力学的大部分文献都采用张量表示
主要参考书: W. Flugge, Tensor Analysis and Continuum
Mechanics, Springer, 1972. 黄克智等,张量分析,清华大学出版社,2003.
a13 x3 a23 x3
a1 j x j a2 j x j
x3
a31 x1
a32 x2
a33 x3
a3 j x j
利用爱因斯坦求和约定,写成:
xi aij x j
其中 j 是哑指标,i 是自由指标。
张量基本概念
★ 在表达式或方程中自由指标可以出现多次,但不得 在同项内出现两次,若在同项内出现两次则是哑指 标。例: 若i为自由指标
分量记法: ui
Appendix A.1
张量基本概念
指标符号用法
1. 三维空间中任意点 P 的坐标(x, y, z)可缩写成 xi , 其中x1=x, x2=y, x3=z。
2. 两个矢量 a 和 b 的分量的点积(或称数量积)为:
3
a b= a1b1 a2b2 a3b3 aibi i 1
ji, j fi 0
ji, j fii 0
张量基本概念
★ 自由指标表示:若轮流取该指标范围内的任何值, 关系式将始终成立。
例如:表达式 xi aij x j
在自由指标 i 取1,2,3时该式始终成立,即有
x1 x2
第1章 张量分析基础剖析
张量分析与连续介质力学教材:《The Mechanics and Thermodynamics of Continua》M.E. Gurtin, E. Fried, L. Anand. Cambridge University Press, 2010教学参考书:1、《An Introduction to Continuum Mechanics》, M.E. Gurtin, AcademicPress, 1981. (中译本:郭仲衡等译,连续介质力学引论,高等教育出版社,1992)2、《连续介质力学基础》,熊祝华等,湖南大学出版社,19973、《连续介质力学基础》,黄筑平,高等教育出版社,20034、《非线性连续介质力学》,匡正邦,上海交大出版社,2002x vy第一章张量分析基础第一节矢量和张量代数一、矢量代数本课程只在三维欧氏空间 内讨论连续介质力学的基础原理。
1、点——反应一定的空间位置,由x表示2、矢量——具有大小和方向且满足一定规则的空间实体,用v来表示。
(两点间的距离可由一矢量表示)(点x和矢量v之和是另一个点y)3、矢量的点积和叉积1)点积(θ为两个矢量间的夹角)u 表示矢量的大小,为一标量,有u u u ⋅=。
2)叉积w v u =⨯ (为一新的矢量)v u ⨯表示由u 和v 构成的平行四边形的面积。
θsin v u v u =⨯且u w ⊥,v w ⊥3)混合积()w v u ⨯⋅()w⋅表示由u,v和w三个矢量围成的体的体积。
vu⨯●如果该体的体积不为零,则称u,v和w线性无关。
●如果对于不为零的常数a,b,c,有:u cabv+w=+则称u,v和w线性相关。
不满足线性相关的矢量则是线性无关的。
4、矢量空间及其性质由欧氏空间ε中对应的点构成的矢量形成的空间称为矢量空间ν。
如果u,v和w是线性无关的,则{}wu,构成矢量空间ν的基,即ν中任一矢量v,都可以表示为:w v u γβα++=a1) 如果()0>⨯⋅w v u ,则基{}w v ,u,是正向的(右手法则)。
关于张量分析的数学原理和实际应用案例
关于张量分析的数学原理和实际应用案例引言张量分析是一门重要的数学分支,在科学和工程领域有着广泛的应用。
作为一种多维量、多方向、多变量的数据结构,张量在物理、力学、电磁学、地球物理学等领域的描述、建模与计算中起着不可或缺的作用。
本文将介绍张量分析的数学原理以及实际应用案例,旨在帮助读者更好地了解这门学科。
第一部分数学原理1.张量的定义按照一般的定义,张量是一个可用于表示多维量和多向量之间关系的数学对象。
它可以看做是一种多维矩阵,其中每个元素都有多个指标。
与标量和向量不同,张量的指标可以有多个,我们常常用字母来表示。
2.张量的运算在张量分析中,张量的运算包括加、减、乘等。
与标量和向量不同,张量的乘法并不等同于代数乘法,而是采用了一种特殊的“卷积运算”。
例如,两个二阶张量相乘的结果是一个四阶张量。
这种方法既能描述多维多向量之间的关系,又可以实现基本的数学运算。
3.张量的变换由于张量具有多个指标,所以张量的变换涉及到各个指标的变化。
例如,一个二阶张量在坐标系变换后,其各个分量会发生相应的变化。
我们可以通过矩阵变换来描述张量的变换规律。
这一点在物理领域的应用尤其常见。
第二部分实际应用案例1. 电磁场模拟电磁场模拟是利用计算机模拟电磁场分布的方法,是工程和科学研究中的一项重要任务。
在这个过程中,张量分析被广泛应用。
例如,可以用张量表示电场强度、磁场强度等物理量,通过各种运算描述它们之间的关系。
同时,也可以用张量来描述电磁波的传播规律,实现电磁场的精确计算。
这种方法被广泛应用于电子器件设计、通讯技术等领域。
2. 生物医学图像处理生物医学图像处理是生物医学领域研究的一个重要方向,包括了图像采集、处理、分析等各个环节。
其中,张量分析被广泛应用于图像处理中。
例如,可以用张量表示医学图像中的像素强度、颜色等信息,通过各种运算分析其空间分布与统计规律,实现对生物组织的诊断、治疗等应用。
这种方法在医学影像学、神经科学等领域有着广泛的应用。
1第一章 笛卡尔张量
序言张量分析对于现在的力学专业学生以及力学相关问题的解决,是应该掌握的重要数学工具。
事实上,如果没有张量的知识,就无法学习连续介质力学基本理论和阅读相关专业的文献资料。
无庸讳言,张量概念非常抽象,相对来说比较难于学习和把握。
但是,只要克服张量学习过程中的畏难情绪,抓住张量概念的关键点,梳理张量分析的基本数学规则,结合一定的力学实例的张量描述,从而建立张量分析的概念和基本分析方法,就能够为运用张量分析解决实际问题奠定坚实基础。
张量概念最早是由高斯(Gauss)、黎曼(Riemann)、克里斯托夫(Christoffel)等人在十九世纪发展微分几何过程中引入的,是从线性空间推广到非线性空间的纯粹数学的演绎,由于自然科学发展水平的限制,这种具有根本性变革的数学工具长期被自然科学领域所忽略。
直到1915年,爱因斯坦获得格罗斯曼的协助,借助张量分析这一数学工具创立了伟大的广义相对论,才凸显了张量分析在描述具有协变性质物理规律的关键作用。
这个事实再次有力地向我们传达了数学和自然科学之间彼此的依存关系,即数学的规则被赋予了自然规律的意义后才成为有生命力的学问,而借助数学工具建立起的自然规律才能呈现自然科学的奥秘。
此后,张量分析迅速渗透到理论物理、现代微分几何、连续介质力学等学科领域中。
就力学专业的学生而言,学习和掌握张量分析,可以更加深刻地领会连续介质力学的概念和一般力学规律,充分锻炼我们的理性思维能力,提高分析问题和解决问题的能力和水平。
用代数方法和解析方法描述空间问题时,必须引进坐标系或建立坐标基矢量。
坐标系的引入为建立各种物理或几何规律带来了可能和极大的方便,同时也往往使问题复杂化。
可以设想,客观规律应该独立于坐标系,但客观规律的表达形式却严重依赖于所用的具体坐标系,使得客观规律本身的内在性质与建立在坐标系上的数学表达形式完全融为一体。
这样,一方面可能会因其数学的形式外壳而不易揭示问题的内在本质,另一方面,甚至对很多客观规律根本无法进行数学表述。
张量分析答案完整版
= T J• T ii • 2
=
tr(T
•T
)
=T
•T
•G
•
T T = •m •a am
• •
JT 3
=T •T •T •G •
=T T T •m •p •a a mp
对于 S :
得证。
JT 1
=T jj
J• T
•2
= tr(T T
•TT) = TT
TT
•
•G
•
= T T J m •a • T •a m • 3
2δ
i j
[u
v
w
]
+
2δ
i j
[u
v
w]
[ = T⋅ii δ
i j
u
v
w ]=T⋅ii [u
v
w ]= φ1T [u
v
w ],命题得证。
(2)式左边
[ ] [ ] [ ] = T⋅ija jgi
T
a ⋅b
b
b
g
a
c cgc
+ adgd
T ⋅ijb jgi
T⋅ab cb g a + T⋅ija jgi
∂v m
'
∂x n '
−
∂vn' ∂x m'
∂xm = ∂xm'
∂x n ∂xn '
(
∂vm ∂xn
−
∂vn ∂x m
)
即T(m' .n' )
=
β m' m'
β n' n'
(
∂vm ∂xn
−
∂vn ∂x m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然基矢量概念:向一般曲线坐标系的推广
r r x1 , x 2 , x 3 r x i
r i i dr d x g d x i x i
立即得到:
r gi i x
重要启示:决定空间点的位置和矢径!
曲线坐标系:斜角直线坐标系的延伸
y
※平面极坐标系
( x, y) ( x , x )
第1章 矢量与张量
2015年4月18日
张量的两种表达形式
实体形式
几何形式 定义式
分量形式
代数形式 计算式
概念的内涵和外 延(定量)
怎样计算?
主要内容
矢量及其代数运算 斜角直线坐标系的基矢量与矢量分量 曲线坐标系及坐标转换关系 并矢与并矢式 张量的基本概念 张量的代数运算
曲线坐标系:斜角直线坐标系的延伸
自然基矢量概念:直角坐标的启示
z
r
k
r xi yj zk
j
i
dr dxi dyj dzk r r r dx dy dz x y z
y
立即得到:
x
r i x
r j y
r k z
曲线坐标系:斜角直线坐标系的延伸
平面内斜角直线坐标系的协变基矢量和逆变基矢量 P P g :哑指标
x
2
( x1, x2 )
Einstein求和约定
g2
r
g :协变基矢量
P
基于简化的思想,
g 引入逆变基矢量
g1
x
1
存在对偶关系:
费马坐标系
0 g g 1
斜角直线坐标系的基矢量与矢量分量
r gi i x g1 g2 g3 g1 g2 g3 g
g是正实数(右手系)
三维空间中的 斜角直线坐标系
斜角直线坐标系的基矢量与矢量分量
三维空间中的斜角直线坐标系和基矢量
j g 定义逆变基矢量 ,满足对偶条件:
g j gi i j (i, j = 1, 2,3) j g g 问题:已知 i ,如何求 ?
曲线坐标系:斜角直线坐标系的延伸
※三维球坐标系
( x, y, z ) ( x1 , x 2 , x3 )
(r, , ) ( x1, x2 , x3 )
2 3 i r x i x j x k x gi 1
x3
gr g g
r
x 2
x1
x1 r sin cos x1 sin x 2 cos x3 2 1 2 3 x r sin sin x sin x sin x 3 1 2 i i i x r cos x cos x x = x x
u v w v w u w u v u w v v u w w v u
斜角直线坐标系的基矢量与矢量分量
从直角直线坐标系到斜角直线坐标系(平面内)
x
2
(x , x )
1
2
x
2
( x1, x2 )jrix1
g2
r
P
g1
x
1
笛卡尔坐标系
费马坐标系
斜角直线坐标系的基矢量与矢量分量
矢量的乘法 矢量的内积
u
定义式(实体形式,几何表达): u v u v cos v cos u v v u (可交换性) 计算式(分量形式,代数表达): u cos
v
u ux i u y j uz k
v vx i vy j vz k
u v ux vx u y vy uz vz
gi g ij g j
gi gij g j
利用指标升降关系表示斜角直线坐标系中两个矢量的
点积: u v ui vi ui vi uiv j g ij uiv j gij
u u i ui gij u i u j g ij ui u j
2
u i vi uv cos(u v ) uv u j u j v k vk
协变基矢量在逆变基矢量下分解 逆变基矢量在协变基矢量下分解
斜角直线坐标系的基矢量与矢量分量
三维空间中的斜角直线坐标系和基矢量
写成矩阵形式,得到:
gij g
ij 1
可知
ij g g ij 与
均为对称矩阵,协变分量的行列式为:
2
det( gij ) g1 g2 g3 g
※ 根据几何图形直接确定 1 g3 由对偶条件可知, g 与 g2 、 均正交,因此正交于 g2与 g3所
确定的平面;其模的大小等于 1 1 g g1 cos
g1
g1
2 g2 2
g3
斜角直线坐标系的基矢量与矢量分量
三维空间中的斜角直线坐标系和基矢量
j g 问题:已知 i ,如何求 g ?
uy vy wy u z u x v x vz u y v y wz u z vz
u v w w u v w u v w群论的轮换次序不变性
v u
ux 2 u v w vx wx
wx u u u v u w wz v u v v v w wz w u w v w w
1
2
P1 g1
x1
斜角直线坐标系的基矢量与矢量分量
三维空间中的斜角直线坐标系和基矢量
x3
x3 g3
r x1 g1 x2 g2 x3 g3 xi gi
r
x2 g2
x2
r i i d r d x g d x 由 可定 i i x 义协变基矢量 gi 为
O
x1 g1
x1
g1 g11 g1 g12 g2 g13 g3 g1 j g j
进而可得到统一代数式:
g3
g 12 g2
g13 g3
g2
gi g ij g j
g ij 是什么?
转化为 矩阵乘法
将上式等号左右两端均点乘 gk ,得到:
ki gk gi g ij g j gk g ij g jk
平面内斜角直线坐标系下矢量的协变分量与逆变分量
P P g P g
P P g
称为矢量P的逆变分量
称为矢量P的协变分量
P 2 g2
2
P P g
x2
P2 g 2
P g2
2
2
x2
P
P
P2 g 2
2
P g1
1
1 P 1g
x1
2
2
P 1g
由对偶关系可知逆变分量的行列式为:
det( g ) g g g 1 g
ij 1 2
3 2
因此可得到:
1 2 3 1 = det( gi g j ) g1 g2 g3 g g g g 1
g
斜角直线坐标系的基矢量与矢量分量
三维空间中的斜角直线坐标系和基矢量
Pi P gi Pk gk gi Pk g ki
P 的逆变分量可利用度量张量的协变分量降指标
Pj P g j Pk gk g j Pk gkj
斜角直线坐标系的基矢量与矢量分量
三维空间中的斜角直线坐标系和基矢量
张量分析中的第一大基本关系:指标升降关系
基矢量 g 的协(逆)变分量可利用度量张量的逆(协) 变分量升(降)指标:
w uv i ux vx j uy vy k uz vz
u
物理意义: 计算面积
计算 v u 时换行。
矢量及其代数运算
矢量的乘法
w 之间的运算 三个矢量 u、v 、
如何计算 u (v w ) ?
观察右图,可知 v w正交于
vw u w v
u (v w )
v、w构成的平面,而 u (v w ) 正交于 v w,因此,u (v w ) w 构成的平面 一定在 v 、
※ 由协变基矢量求逆变基矢量
由于 g1正交于 g2与 g3,则 g1必定平行于 g2 g3 ,可 设 g g2 g3,利用下式:
1
g1
1 g1 g1 ( g2 g3 ) g1 g
1 g ( g2 g3 ) g
1
g1
2 g2 2
可计算出:
u (v w ) v w (u w )v (u v )w (u v ) w
数形结合
矢量及其代数运算
矢量的乘法 矢量的混合积
ux vx wx uy vy wy uz u x vx wx u vz u y v顺时针轮换 wz y w wz uzv vz wz
可交换性: 运算次序的无关性
u v u v
(许瓦兹不等式)
物理意义: 计算功(功率)
对称性 不变性
矢量及其代数运算
矢量的乘法 矢量的外积
w u v 定义式(实体形式,几何表达) : w u v u v u v sin v u v v u (反交换性)
计算式(分量形式,代数表达) :
u v u
uv
v
平行四边形法则
矢量及其代数运算