七年级数学课件-科学计数法
合集下载
人教版七年级数学上册第一章科学计数法课件
此答案有 何问題?
此数不可大于 或等于10!
此数亦不 可小于1!
例1:将下列各数用科学记数法表示
230000 =2.3×100000 =2.3×105 =9.99×1000000000 =9.99×109
9990000000 15800……000 31个0
=1.58×10…….000 =1.58×1033 33个0
人教版七年级上册第一章 有理数
1.5.2科学计数法
请读出下面的数据来,说出表示数 据的感受
1 300 000 000 人 300 000 000 米/秒
696 000 000米
数太大,读写不方 便,怎么办?
有没有使得这些 大数易写,易读, 易于计算的一种 表示方法呢?
探究新知
☞
1.计算: 102=( 100 ),103=( 1000 ),
104=(10000),105=( 100000 ),……
2. 1000 000=( 106 ) 100 000 000 000=( 1011 )
2×104
得出结论:
指数为2,幂的最末有2个零,指数为3,幂 的最末有3个零,指数为4,幂的最末有4个零, 指数为5,幂的最末有5个零,一般地指数为n, 幂的最末有n个零,反之亦然。
解:
0.5×(1.3×109)
按一年为365天计算
6.5×108×365
=6500000000×365 =2.3725×1011
(kg)
=0.5×1300000000
=650000000 =6.5×108
(kg)
答:全国每天大约需要粮食6.5×108kg,一年大 约需要粮食2.3725×1011kg。
2 3 4 10 , 10 , 10 你知道 分别等于多少吗? 10n 的意义和规
7年级数学北师大版上册课件第2章《科学计数法》
1.2020年1月13日,中国汽车工业协会公布的数
据显示:2019年,中国汽车累计生产约25 700 000
辆.数据25 700 000用科学记数法表示为( C )
A.257×105
B.25.7×106
C.2.57×107
D.0.257×108
2.节约是一种美德,节约是一种智慧.据不完全统 计,全国每年浪费食物总量折合粮食可养活约3亿5 千万人.3亿5千万用科学记数法表示为( B )
课堂小结
1.用科学记数法表示绝对值较大的数:把一个大于10的数 表示成a×10n(1≤|a|<10,n是正整数)的形式.其中a 的整数位数为1,数的正负符号不变,n为原数的整数位 数减1. 说明:科学记数法只改变数的书写形式,不改变数的大小. 2.将用科学记数法表示的数还原的方法:把一个用科学记数 法表示的数还原为原数时,只需将小数点向右移动n位 (不足的数位用0补齐),并把10n去掉即可.
注意
1、a是整数位只有一位 的数(即1≤a<10). 2、n为正整数,比整数 位数小1.
(5)370000000000 =3.7×1011
6、如何把一个科学记数法表示的数写成一般形式?
下列用科学记数法记出的数,原来各是什么数?
(1) 1×107 =10 000 000 (2) -4×103 =-4000 (3) 8.5×106 =8500000 (4) 7.04×105 =704 000
新课导入
第六次全国人口普查 时,我国全国总人口 约为1370 000 000人
地球半径约为 6400 000m
光的速度约为 300000000m/s
若一年为365天,光的速度为每秒300000千米
1光年=365×24 × 60× 60 ×300000×1 =9 460 800 000 000(千米)
人教版中学数学七年级上册 科学记数法 课件PPT
查时,中国人口约
为1 370 000 000人.
想一想:上面这些数字比较大,读、写这样的数有一定
困难,有简单的表示方法吗?
6
知识讲解
你知道 102 ,103 ,104 分别等于多少吗?
10n的意义和规律是什么?
10 100
2
10 1 000
3
104 10 000
10的次幂有如下特点:
17
随堂训练
2.用科学记数法写出下列各数:
10 000, 800 000, 56 000 000, 7 400 000.
=7.4×106
=104
=8×105
=5.6×107
3.下列用科学记数法表示的数,原来分别是什
么数?
1×107 =10 000 000
4×103 =4 000
8.5×106 =8 500 000
知识讲解
用科学记数法表示引言部分的数据:
(1)月球与地球的距离约为380 000 000米.
(2)光速约300 000 000m/s.
(3)太阳半径约696 000km.
(4)上海世博会从5月1日到6月22日参观人数已经达到17 418 900人.
(5)第六次人口普查时,中国人口约为1 370 000 000人.
=1.5×1011m= 1.5×108km.
随堂训练
1.判断下列科学记数法的正误并改正.
(1)5 629 000=5.629×106 (
√
)
(Hale Waihona Puke )45 000 000=0.45×108 (
×)
(3)9 976 000=9.976×106 (
√
(4)10 000 000=10×106
为1 370 000 000人.
想一想:上面这些数字比较大,读、写这样的数有一定
困难,有简单的表示方法吗?
6
知识讲解
你知道 102 ,103 ,104 分别等于多少吗?
10n的意义和规律是什么?
10 100
2
10 1 000
3
104 10 000
10的次幂有如下特点:
17
随堂训练
2.用科学记数法写出下列各数:
10 000, 800 000, 56 000 000, 7 400 000.
=7.4×106
=104
=8×105
=5.6×107
3.下列用科学记数法表示的数,原来分别是什
么数?
1×107 =10 000 000
4×103 =4 000
8.5×106 =8 500 000
知识讲解
用科学记数法表示引言部分的数据:
(1)月球与地球的距离约为380 000 000米.
(2)光速约300 000 000m/s.
(3)太阳半径约696 000km.
(4)上海世博会从5月1日到6月22日参观人数已经达到17 418 900人.
(5)第六次人口普查时,中国人口约为1 370 000 000人.
=1.5×1011m= 1.5×108km.
随堂训练
1.判断下列科学记数法的正误并改正.
(1)5 629 000=5.629×106 (
√
)
(Hale Waihona Puke )45 000 000=0.45×108 (
×)
(3)9 976 000=9.976×106 (
√
(4)10 000 000=10×106
人教版初一上册数学1.5.2科学计数法.课件
解: 2×0.05×60×60×4 =1440 =1.44×103(毫升)
答:水龙头滴了1.44×103毫升水。
比 较 大 小
在以下的各数中,最大的数为( D) (A)7.2 ×105 (B)2.5×106
(C)9.9 ×105
(D)1× 107
在下列各数中最小的为(B)
(A)3.14 ×1010 (B)3.1×1010 (C)3.2×1010 (D)3.142×1010
观察探究 10的乘方有如下的特点:
102… 100 103 1000 104 10000
一般地,10的n次幂等于10…0(在1的后面 有n个0),所以就可以用10的乘方表示一些 大数。 例如:721000 = 7.21×100000 = 7.21× 105
读作:7.21乘以10的5次方(幂) 567000 000 = 5.67×100000000 = 5.76× 108
2、第五次人口普查知云南省人口总数约为 4596万人,用科学记数法表示是多少人?
解:4596万人=4.596×107人
学以致用
1、用科学记数法表示下列各数 10 000; 800 000; 5600 000;-7400 000;
2、下列用科学记数法写出的数,原数分别是什么 数?
110 7 ;4 10 3; 8.5 10 6 ;7.04105
1.23109 1230000000
合作探究
1、用科学记数法表示下列各数: 1000 000;57 000 000;-123 000 000 000
30900000
解:1000 000=107 57 000 000=5.7 107 -123 000 000 000= 1.231011 -30900 000= 3.09107
答:水龙头滴了1.44×103毫升水。
比 较 大 小
在以下的各数中,最大的数为( D) (A)7.2 ×105 (B)2.5×106
(C)9.9 ×105
(D)1× 107
在下列各数中最小的为(B)
(A)3.14 ×1010 (B)3.1×1010 (C)3.2×1010 (D)3.142×1010
观察探究 10的乘方有如下的特点:
102… 100 103 1000 104 10000
一般地,10的n次幂等于10…0(在1的后面 有n个0),所以就可以用10的乘方表示一些 大数。 例如:721000 = 7.21×100000 = 7.21× 105
读作:7.21乘以10的5次方(幂) 567000 000 = 5.67×100000000 = 5.76× 108
2、第五次人口普查知云南省人口总数约为 4596万人,用科学记数法表示是多少人?
解:4596万人=4.596×107人
学以致用
1、用科学记数法表示下列各数 10 000; 800 000; 5600 000;-7400 000;
2、下列用科学记数法写出的数,原数分别是什么 数?
110 7 ;4 10 3; 8.5 10 6 ;7.04105
1.23109 1230000000
合作探究
1、用科学记数法表示下列各数: 1000 000;57 000 000;-123 000 000 000
30900000
解:1000 000=107 57 000 000=5.7 107 -123 000 000 000= 1.231011 -30900 000= 3.09107
七年级数学上册教学课件《科学记数法》
A. 5.5×103 B. 55×103 C. 5.5×104
D. 6×104
方法点拨:用科学记数法表示大于10的数的“三步法”
1.定a:确定a,a必须满足1≤a<10;
2.定n:确定n,n的值比原数的整数位数少1;
3.写数:写成a×10n的形式.
巩固练习
2.10 科学记数法
变式训练
2018年11月6日上午,在上海召开的首届中国国际进口博览会 北京主题活动上,北京市交易团重点发布了2022北京冬奥会、 北京大兴国际机场等北京未来发展的重要规划及采购需求,
素养目标
2.10 科学记数法
2.感受科学记数法的作用,体会科学记数法表示大数的 优越性及必要性.
1.使学生了解科学记数法的意义,并会用科学记数法 表示比较大的数.
探究新知 知识点 1 科学记数法
问题241 回顾有理数的乘方运算,算一算:
2.10 科学记数法
102 = 100
104 = 10 000
2.10 科学记数法
一个正常人的平均心跳速率约为每分70次,一年大约跳几 次?用科学记数法表示这一结果.一个正常人一生心跳次数能达 到1亿次吗?请说明理由.
解:70×60×24 ×365 = 36792000 =3.6792 ×107(次)
100 000 000÷36 792 000 ≈2.7(年)
数学 七年级 上册
2.10 科学记数法
2.10 科学记数法
导入新知
2.10 科学记数法
第六次人口普查时,中国人口约为1370 000 000人.
导入新知
2.10 科学记数法
地球的半径约为6400 000 m.
导入新知
2.10 科学记数法
北师大版七年级上册数学第二章2.10 科学计数法课件
C、9976000=9.976×106 D、10000000=10×106 E、17070000=1.707×107
此数也不能大于 或等于10
第五次人口普查时,中国人口约为1300 000 000人。
用科学记数法表示 1 300 000 000人
怎样确定10
后面多少个的零指数?呢?
=1.3× 1000000000 人=1.3 ×109人哪里有数,哪里就有美 Nhomakorabea34
解: 2×0.05×60×60×4
=1440 =1.44×103(毫升) 答:水龙头滴了1.44×103毫升水。
比 较 大 小
在以下的各数中,最大的数为( D) (A)7.2 ×105 (B)2.5×106
(C)9.9 ×105
(D)1× 107
在下列各数中最小的为(B)
(A)3.14 ×1010 (B)3.1×1010 (C)3.2×1010 (D)3.142×1010
解:2.5×1013=25000000000000个
全球每年大约有5.77 ×1014米3的水从海洋和陆 地转化为大气中的水汽.
解:5.77×1014=577000000000000米3
我国是一个严重缺水的国家, 大家应倍加珍惜水资源,节约用 水。据测试,没拧紧的水龙头每 秒钟会滴下2滴水,每滴水约 0.05 毫升。小明同学在洗手后,没有 把水龙头拧紧,当小明离开4小时 后水龙头滴了多少毫升水. (结果用科学记数法表示)
由于光在真空中的速度是恒定不变的(速度是每秒约 300000000米),因此,光在一年的时间里走过的这段距离也恒 定不变。光年就是光在真空中一年时间走过的距离。天文学家就 用这样的一把尺子来测量恒星间的距离。比如,目前所知的离太 阳最近的恒星,距太阳约4.2光年。而最遥远的恒星离太阳要超过 100亿光年。
七年级数学上册第一章有理数1.5.2科学计数法(图文详解)
全国财政收入7 917.66亿元 阿根廷队球员的身价总和已经达到了3.9亿欧元 像这样较大的数据,书写和阅读都有一定困难,那么 有没有一种表示方法,使得这些大数易写,易读,易于计 算呢?
人=_1_0_0_, 103 =__1__0_0_0_, 104 =_1_0__0_0_0_,
【解析】选C.4.6×108 的原数应有8+1=9位整数,所
以4.6×108 =460 000 000.
人教版七年级数学上册第一章有理数
4.(成都中考)上海“世博会”吸引了来自全球众多国家数
以千万的人前来参观.据统计,2010年5月某日参观世博
园的人数约为256 000,这一人数用科学记数法表示为
人教版七年级数学上册第一章有理数
3.(丹东中考)在“2008北京”奥运会国家体育场的“鸟
巢”钢结构工程施工建设中,首次使用了我国科研人员 自主研制的强度为4.6×108 帕的钢材,那么它的原数为
()
(A)4 600 000
(B)46 000 000
(C)460 000 000
(D)4 600 000 000
(
)
(A)2.56×105
(B)25.6×105
(C)2.56×104
(D)25.6×104
【解析】选A.256 000的整数位数有6位,所以在用科学
记数法表示时应为10的6-1=5次方.所以256 000=2.56×
105,同时要注意1≤ a <10.
人教版七年级数学上册第一章有理数
5.(南安中考)温家宝总理在2010年3月5日的十一届
_____2_×__1_0_12___ 千瓦时.
人教版七年级数学上册第一章有理数
2.下面信息中的大数已经用科学记数法表示了,你知道原数 是谁吗? (1)一口痰大约含有细菌1.3×108个;___1_3_0__0_0_0__0_0_0_个 (2)温岭市去年总共缺水6.2×106吨; __6__2_0_0__0_0_0__吨 (3)据中国电监会统计,我国今年预计将缺电6×1010千瓦时; ___6_0__0_0_0__0_0_0__0_0_0___千瓦时 (4) -2.4×104=____-_2_4__0_0_0______.
人=_1_0_0_, 103 =__1__0_0_0_, 104 =_1_0__0_0_0_,
【解析】选C.4.6×108 的原数应有8+1=9位整数,所
以4.6×108 =460 000 000.
人教版七年级数学上册第一章有理数
4.(成都中考)上海“世博会”吸引了来自全球众多国家数
以千万的人前来参观.据统计,2010年5月某日参观世博
园的人数约为256 000,这一人数用科学记数法表示为
人教版七年级数学上册第一章有理数
3.(丹东中考)在“2008北京”奥运会国家体育场的“鸟
巢”钢结构工程施工建设中,首次使用了我国科研人员 自主研制的强度为4.6×108 帕的钢材,那么它的原数为
()
(A)4 600 000
(B)46 000 000
(C)460 000 000
(D)4 600 000 000
(
)
(A)2.56×105
(B)25.6×105
(C)2.56×104
(D)25.6×104
【解析】选A.256 000的整数位数有6位,所以在用科学
记数法表示时应为10的6-1=5次方.所以256 000=2.56×
105,同时要注意1≤ a <10.
人教版七年级数学上册第一章有理数
5.(南安中考)温家宝总理在2010年3月5日的十一届
_____2_×__1_0_12___ 千瓦时.
人教版七年级数学上册第一章有理数
2.下面信息中的大数已经用科学记数法表示了,你知道原数 是谁吗? (1)一口痰大约含有细菌1.3×108个;___1_3_0__0_0_0__0_0_0_个 (2)温岭市去年总共缺水6.2×106吨; __6__2_0_0__0_0_0__吨 (3)据中国电监会统计,我国今年预计将缺电6×1010千瓦时; ___6_0__0_0_0__0_0_0__0_0_0___千瓦时 (4) -2.4×104=____-_2_4__0_0_0______.
七年级数学科学记数法PPT课件
这又说明了什么?
小结
一般地,10的n次幂可以写成10…0(在1的后面 有n个0)。反过来10…0(在1的后面有n个0)这样子 的数可以写成10的n次幂。
课堂测试
下面这些大数应该怎样表示? (1)600 000(2)789 000000(3)686
(1)600 000=6×100 000=6×__1_0__5 ____. (2)789 000 000=7.89×100 000 000=7.89×___1_0__8 ___. (3)686=6.86×100=6.86×___1_0_2__.
这样的表示有什么优点呢?
➢ 书写简短 ➢ 便于读数
读作: 7.89乘10的8次方(幂)
科学记数法概念
像上面这样,把一个大于10的数可以表示成 a×10n 的形式( 1 a 10,n是正整数),这也可以类似表示。例如 -56700000=-5.67× 107
注意: a×10n 中10的指数总比整数的位数少1.
现实生活中,我们会遇到上面这样比较大的数, 读、写这样的数有一定困难。
思考
10
运算结果 10
指数
1
运算结果 1
中0的个数
运算结果 的位数
2
102
100 2 2
3
103 104 105
1000 10000 100000
3
4
5
3
4
5
4
5
6
你观察到什么规律?
思考
把下列各数写成10的幂的形式. (1)1 000 =103 (2)1 000 000 =106 (3)100 000 000 =108
七年级数学
第一章 有理数
有理数的乘方
科学记数法
小结
一般地,10的n次幂可以写成10…0(在1的后面 有n个0)。反过来10…0(在1的后面有n个0)这样子 的数可以写成10的n次幂。
课堂测试
下面这些大数应该怎样表示? (1)600 000(2)789 000000(3)686
(1)600 000=6×100 000=6×__1_0__5 ____. (2)789 000 000=7.89×100 000 000=7.89×___1_0__8 ___. (3)686=6.86×100=6.86×___1_0_2__.
这样的表示有什么优点呢?
➢ 书写简短 ➢ 便于读数
读作: 7.89乘10的8次方(幂)
科学记数法概念
像上面这样,把一个大于10的数可以表示成 a×10n 的形式( 1 a 10,n是正整数),这也可以类似表示。例如 -56700000=-5.67× 107
注意: a×10n 中10的指数总比整数的位数少1.
现实生活中,我们会遇到上面这样比较大的数, 读、写这样的数有一定困难。
思考
10
运算结果 10
指数
1
运算结果 1
中0的个数
运算结果 的位数
2
102
100 2 2
3
103 104 105
1000 10000 100000
3
4
5
3
4
5
4
5
6
你观察到什么规律?
思考
把下列各数写成10的幂的形式. (1)1 000 =103 (2)1 000 000 =106 (3)100 000 000 =108
七年级数学
第一章 有理数
有理数的乘方
科学记数法
科学计数法课件.ppt
惯上叫科学记数法。
科学记数法的形式为a×10n ,其中 n 为正整数。
例题讲解
例:用科学记数法表示下列各数: 1000 000, 57 000 000, 123 000 000 000。 解: 1 000 000=106, 57 000 000= 5.7 ×10 000 000 =5.7×107, 123 000 000 000= 1.23 ×100 000 000 000
数法表示出来 ①水星的半径为2.44 ×106米,木星的赤道半径约为 71 400 000米. ②我国的陆地面积约为9 597 000平方千米,俄罗斯的陆
地面积约为9.976 ×106平方千米.
课堂小结
1.学了这节课你有哪些收获? 2.今后我们还会知道,用科学记数法还 可以表示绝对值较小的数,并且易读、 易写、易算。
=1.23×1011.
观察与思考
下面的式子中,等号左边整数的位数与右边10 的指数有什么关系?
1 000 000=106, 57 000 000=5.7×107, 123 000 000 000=1.23×1011. 用科学记数法表示一个数时, 10的指数 比原数的整数位数少1。
如果一个数是6位整数,用科学记数法表示它 时,10的指数是多少?如果一个数有9位整数呢?
你知道吗?
月球离地球的距离约为380000000米
整个可见宇宙空间恒星大约有 70000000000000000000000颗
太阳的半径约为696000千米, 光的速度约为300000000米/秒, 目前世界人口约为6100000000人。
这些大数的读、写都有一定困难。那么 可以用怎样的方法来表示这些大数,使它易读、 易记、易判断大小还便于计算呢?
作业
科学记数法的形式为a×10n ,其中 n 为正整数。
例题讲解
例:用科学记数法表示下列各数: 1000 000, 57 000 000, 123 000 000 000。 解: 1 000 000=106, 57 000 000= 5.7 ×10 000 000 =5.7×107, 123 000 000 000= 1.23 ×100 000 000 000
数法表示出来 ①水星的半径为2.44 ×106米,木星的赤道半径约为 71 400 000米. ②我国的陆地面积约为9 597 000平方千米,俄罗斯的陆
地面积约为9.976 ×106平方千米.
课堂小结
1.学了这节课你有哪些收获? 2.今后我们还会知道,用科学记数法还 可以表示绝对值较小的数,并且易读、 易写、易算。
=1.23×1011.
观察与思考
下面的式子中,等号左边整数的位数与右边10 的指数有什么关系?
1 000 000=106, 57 000 000=5.7×107, 123 000 000 000=1.23×1011. 用科学记数法表示一个数时, 10的指数 比原数的整数位数少1。
如果一个数是6位整数,用科学记数法表示它 时,10的指数是多少?如果一个数有9位整数呢?
你知道吗?
月球离地球的距离约为380000000米
整个可见宇宙空间恒星大约有 70000000000000000000000颗
太阳的半径约为696000千米, 光的速度约为300000000米/秒, 目前世界人口约为6100000000人。
这些大数的读、写都有一定困难。那么 可以用怎样的方法来表示这些大数,使它易读、 易记、易判断大小还便于计算呢?
作业
七年级数学精品课件 科学计数法
解:5×3600×2×0.05=1800= 1.8×103(毫升) 答:这期间浪费了1.8×103毫升水.
(5)天安门广场的面积约4.4千万平方米,如果 我们在那里军训(每个人占地0.4㎡),估 计天安门广场最多可容纳多少名站成方阵军 训的学生吗?
解:4.40 000 000÷0.4=1.1×106(名) 答:天安门广场最多可容纳1.1×106名站 成方阵军训的学生.
技巧:先将单位改写成数,再 用科学记数法.
(3)国家投资建设的泰州长江大桥已经开工, 据泰州日报报道,大桥预算总造价是9 370 000 000元人民币,用科学记数法表示.
9 370 000 000=9.37×109.
(4)我国是一个严重缺水国家,大家应珍惜水 资源,节约用水。据测试,拧不紧的水龙 头 每秒钟会滴下2滴水,每滴水约0.05 毫升.小明在洗手后,没有把水龙头拧 紧,当他离开5小时后才被人发现并把水龙 头拧紧,你能算出这期间浪费了多少毫升 水吗?(结果用科学记数法表示)
下列用科学记数法表示的数,原来各 是什么数?
(2)2008年5月10日北京奥运会火炬接力传递活动 在美丽的海滨城市汕头举行,整个火炬传递 4米. 路线全长约 4.082 × 10 4.082×104=40 820
(6)一粒纽扣电池能够污染60升水,台州市每年 报废的电池有近10 000 000粒,如果废旧电池 不回收,一年报废的电池所污染的水约多少 升(用科学记数法表示 ) ?
解:60 × 10 000 000 = 600 000 000(升) = 6 ×108(升)
答:一年报废的电池所污染的水约6 ×108升.
1光年即约为九万 四千六百亿千米.
13 9.46 × 10 94 600 000 000 000=_______________.
【人教版】七年级上第一章 科学计数法PPT实用课件
1.5.2 科学计数法
新课导入
有一个故事,说的是一个财主的孩子不爱学习, 财主把他送到学堂,说学会计帐就行了,于是老师 只教他写数字,第一天教个“一”,第二天是 “二”,第三天是“三”。第四天这个孩子不上学 了,财主问他儿子怎么不去了,他儿子说他学会了。 于是财主叫他记帐,第一天就忙坏他了,因为两个 欠帐人的名字是“千百万”和“万百千”,于是那 个笨孩子就用梳子按着写。
2.下列用科学计数法表示的数,原来各是什么 数?
(1)北京故宫的占地面积约为7.2×105米2; (2)人体中约有2.5 ×1013个红细胞; (3)全球每年大约有5.77 ×1014米3的水从海 洋和陆地转化为大气中的水汽.
3、下列各数用科学记数法表示正确的是( C )
A 0.25105
B 25103
在下列各大数的表示方法中,不是科
学记数法的是( B D )
A、5629000=5.629×106 B、45000000=0.45×108
此数不能小 于1
C、9976000=9.976×106 D、10000000=10×106 E、17070000=1.707×107
此数也不能大 于或等于10
用科学记数法表示下列各数: 1 000 000,57 000 000,123 000 000 000 解: 1 000 000=106 57 000 000=5.7X107 123 000 000 000=1.23X1011
A 6.1104 B 6.1105
C 61104 D 6.0105
归纳总结:这一节课学习的主要内 容和注意点。
1、 a×10 n 形式中,a是整数位数只
有一位的数,即1≤a<10。 2、 用科学记数法表示一个数时,10的
新课导入
有一个故事,说的是一个财主的孩子不爱学习, 财主把他送到学堂,说学会计帐就行了,于是老师 只教他写数字,第一天教个“一”,第二天是 “二”,第三天是“三”。第四天这个孩子不上学 了,财主问他儿子怎么不去了,他儿子说他学会了。 于是财主叫他记帐,第一天就忙坏他了,因为两个 欠帐人的名字是“千百万”和“万百千”,于是那 个笨孩子就用梳子按着写。
2.下列用科学计数法表示的数,原来各是什么 数?
(1)北京故宫的占地面积约为7.2×105米2; (2)人体中约有2.5 ×1013个红细胞; (3)全球每年大约有5.77 ×1014米3的水从海 洋和陆地转化为大气中的水汽.
3、下列各数用科学记数法表示正确的是( C )
A 0.25105
B 25103
在下列各大数的表示方法中,不是科
学记数法的是( B D )
A、5629000=5.629×106 B、45000000=0.45×108
此数不能小 于1
C、9976000=9.976×106 D、10000000=10×106 E、17070000=1.707×107
此数也不能大 于或等于10
用科学记数法表示下列各数: 1 000 000,57 000 000,123 000 000 000 解: 1 000 000=106 57 000 000=5.7X107 123 000 000 000=1.23X1011
A 6.1104 B 6.1105
C 61104 D 6.0105
归纳总结:这一节课学习的主要内 容和注意点。
1、 a×10 n 形式中,a是整数位数只
有一位的数,即1≤a<10。 2、 用科学记数法表示一个数时,10的
科学记数法PPT课件
.
知识讲解
例1
用科学记数法表示下列各数:
1 000 000,57 000 000,-123 000 000 000.
解 : 1 000 000 = 106,
57 000 000 = 5.7×107,
-123 000 000 000 = -1.23×1011
思考:用科学记数法表示一个位整数,其中10
10 000 =104
8×10
800 000
=5
56 000 000 =5.6×107
7 400 000
= 6
7.4×10
3.下列用科学记数法表示的数,原来分别是什么数?
1×107 =10 000 000
8.5×106 = 8 500 000
4×1043 =
000
5 = 000
7.04×10704
随堂训练
第一章 有理数
1.11 科学计数法
部编版七年级数学上册
学习目标
1
了解科学记数法的意义。
2
会用科学记数法表示数。(重难点)
新课导入
月球与地球的距离
约为380 000 000米。
新课导入
太阳半径约696 000Km
新课导入
某某世博会从5月1
日到6月22日参观人数
已经达到17 418 900
人。
新课导入
( 5 ) 第 六 次 人 口 普 查 时 , 中 国 人 口 约 为 1 370 000 000人.
解 : ( 1 ) 380 000 000米 = 3.8×108 米.
( 2 ) 300 000 000m / s = 3.0 ×108 m/s.
( 3 ) 696 000k m = 6.96 ×105 km.
人教版七年级上册数学课件:科学记数法PPT完整版
•
6本课的突出特点是拟人手法的运用, 把植物 和种子 分别当 作“妈 妈”和 “孩子 ”来写 。“妈 妈孩子 ”这样 的关联 ,易触 动儿童 的情感 世界, 易激发 想象、 引发思 考,读 起来亲 切、有 趣,易 于调动 小读者 的阅读 兴趣。
•
7学习这篇课文,应该重点引导学生运 用探究 式的学 习方式 ,注意 激发学 生了解 植物知 识、探 究大自 然奥秘 的兴趣 ,把向 书本学 习和向 大自然 学习结 合起来 ,引导 学生养 成留心 身边的 事物、 认真观 察的好 习惯。
演讲完毕,谢谢观看!
人 教 版 七 年 级上册 数学课 件:1. 5.2科学 记数法
课堂作业
教科书47页,第4、5题.
人 教 版 七 年 级上册 数学课 件:1. 5.2科学 记数法
•
1.有感情地朗读课文,体会作者对海 底世界 的喜爱 之情, 激发学 生热爱 大自然 、探索 自然奥 秘的兴 趣。
•
2.引导学生凭借生动形象的语言文字 ,了解 海底是 个景色 奇异、 物产丰 富的世 界。
像这样较大的数据,书写和阅读都有一定困难,那么有 没有这样一种表示方法,使得这些大数易写,易读呢?
人 教 版 七 年 级上册 数学课 件:1. 5.2科学 记数法
人 教 版 七 年 级上册 数学课 件:1. 5.2科学 记数法
自学指导:
(3分钟)自学课本44—45页内容,思考:
1、说一说为什么要用科学记数法表示数字? 2、科学记数法格式是怎样的? 3、通过45页“例5”你能说一说科学记数 法中“10”的指数和原数数位有什么联系 吗?
人 教 版 七 年 级上册 数学课 件:1. 5.2科学 记数法
人 教 版 七 年 级上册 数学课 件:1. 5.2科学 记数法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.25107 =32 500 000
1 用科学记数法写出下列各数:
10 000, 800 000, 56 000 000, 7 400 000.
=104
=8×105 =5.6×107 =7.4×106
2 下列用科学记数法写出的数,原来分别是 什么数?
1×107 =10 000 000
4×103=4 000
感谢大家观看
最新学习可编辑资料
书写简短,便于读数.
像这样,把一个大于10的数表示成 a×10n (其中a大于或等于1且小于10, n为正整数),使 用的是科学记数法.
1. 用科学记数法表示下列各数:
①1 000 000= 106
②57 000 000= 5.7×107
③123 000 000 000=1.23×1011
思考:等号左边整数的位数与右边10的指数有 什么关系?用科学记数法表示一个n 位整数,其中
例如:567 000 000 = 5.67×100 000 000 =5.67× 108
读作:5.67乘10的8次方(幂)
22 600 000 000 = 2.26×10 000 000 000
= 2.26×1010
6 100 000 000= 6.1×1 000 000 000
= 6.1×109
8.5×106 =8 500 000 7.04×105=704 000
一个正常人的平均心跳速率约为每分70次, 一年大约跳多少次?用科学记数法表示这一结果, 一个正常人一生心跳次数能达到1亿次吗?请说 明理由.
解:因为1 年=365 天=365×24×60 分, 所以一年心跳次数约为: 365×24×60×70= 36 792 000
10的指数是 n-. 1
2.下列各数是否是用科学记数法表示的?
2 400 000 0.24107 不是 2 400 000 2.4106
3 100 000 31105 不是
3 100 000 3.1106
3.下列用科学记数法表示的数,原数是什么?
3.2104 =32 000 6103 =6 000
=3.679 2×107(次); 因为心跳达到1亿次需要的时间是:
108÷( 3.6792×107 ) ≈2.7(年),
所以一个正常人一生心跳次数能达到1亿次.
1.本节课你学习了什么?
2.本节课你有哪些收获?
3.通过学习,你想探究的问题是 什么?
人生的价值,并不是用时间,而 是用深度去衡量的。
——列夫·托尔斯泰
世界总人口数约为 7 000 000 000人.
你知道 102 ,103 ,104 分别等于多少吗?
10n的意义和规律是什么?源自10的乘方有如下的特点:102 100
103 1 000 104 10 000 …
一般地,10的n次幂等于10···0(在1的后 面有n个0),所以就可以用10的乘方表示一 些大数.
1 用科学记数法写出下列各数:
10 000, 800 000, 56 000 000, 7 400 000.
=104
=8×105 =5.6×107 =7.4×106
2 下列用科学记数法写出的数,原来分别是 什么数?
1×107 =10 000 000
4×103=4 000
感谢大家观看
最新学习可编辑资料
书写简短,便于读数.
像这样,把一个大于10的数表示成 a×10n (其中a大于或等于1且小于10, n为正整数),使 用的是科学记数法.
1. 用科学记数法表示下列各数:
①1 000 000= 106
②57 000 000= 5.7×107
③123 000 000 000=1.23×1011
思考:等号左边整数的位数与右边10的指数有 什么关系?用科学记数法表示一个n 位整数,其中
例如:567 000 000 = 5.67×100 000 000 =5.67× 108
读作:5.67乘10的8次方(幂)
22 600 000 000 = 2.26×10 000 000 000
= 2.26×1010
6 100 000 000= 6.1×1 000 000 000
= 6.1×109
8.5×106 =8 500 000 7.04×105=704 000
一个正常人的平均心跳速率约为每分70次, 一年大约跳多少次?用科学记数法表示这一结果, 一个正常人一生心跳次数能达到1亿次吗?请说 明理由.
解:因为1 年=365 天=365×24×60 分, 所以一年心跳次数约为: 365×24×60×70= 36 792 000
10的指数是 n-. 1
2.下列各数是否是用科学记数法表示的?
2 400 000 0.24107 不是 2 400 000 2.4106
3 100 000 31105 不是
3 100 000 3.1106
3.下列用科学记数法表示的数,原数是什么?
3.2104 =32 000 6103 =6 000
=3.679 2×107(次); 因为心跳达到1亿次需要的时间是:
108÷( 3.6792×107 ) ≈2.7(年),
所以一个正常人一生心跳次数能达到1亿次.
1.本节课你学习了什么?
2.本节课你有哪些收获?
3.通过学习,你想探究的问题是 什么?
人生的价值,并不是用时间,而 是用深度去衡量的。
——列夫·托尔斯泰
世界总人口数约为 7 000 000 000人.
你知道 102 ,103 ,104 分别等于多少吗?
10n的意义和规律是什么?源自10的乘方有如下的特点:102 100
103 1 000 104 10 000 …
一般地,10的n次幂等于10···0(在1的后 面有n个0),所以就可以用10的乘方表示一 些大数.