上海吴淞初级中学数学几何模型压轴题(培优篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海吴淞初级中学数学几何模型压轴题(培优篇)(Word 版 含解
析)
一、初三数学 旋转易错题压轴题(难)
1.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.
(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是
_________;
(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;
(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.
【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)
492
【解析】
【分析】
(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;
(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;
(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.
【详解】
(1)PM PN =,PM PN ⊥;
已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12
PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠
在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =
可得BD EC =,90DCE ADC ∠+∠=︒
即得PM PN =,PM PN ⊥
故答案为:PM PN =;PM PN ⊥.
(2)等腰直角三角形,理由如下:
由旋转可得BAD CAE ∠=∠,
又AB AC =,AD AE =
∴BAD CAE ∆∆≌
∴BD CE =,ABD ACE ∠=∠,
∵点M ,P 分别为DE ,DC 的中点
∴PM 是DCE ∆的中位线
∴12
PM CE =,且//PM CE , 同理可证12PN BD =
,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,
∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,
DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,
∴
90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,
即PMN ∆为等腰直角三角形.
(3)把ADE ∆绕点A 旋转的如图的位置,
此时1()72PN AD AB =+=,1()72
PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为
1497722⨯⨯=. 【点睛】
本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.
2.我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为.
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.
【答案】(1)①1
2
;②4;(2)AD=
1
2
BC,证明见解析;(3)存在,证明见解析,
39.【解析】【分析】
(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=1
2
AB′即可解决问题;
②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;
(2)结论:AD=1
2
BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证
明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;
(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;
【详解】
解:(1)①如图2中,