最新沪科版八年级数学二次根式经典试题及解答
沪科版数学八年级下册第16章《二次根式》测试题附答案
【解析】
【分析】
根据二次根式的运算法则逐项计算即可判断.
【详解】
解:A、 和 不是同类二次根式,不能合并,故错误;
B、 =2 ,故错误;
C、 = ,故错误;
D、 = =2 ,故正确.
故选D.
【点睛】
本题考查了二次根式的四则运算.
10.A
【解析】
分析:由m<0,利用二次根式的性质 及绝对值的性质计算即可.
解:原式 ,
,
,
故选:A.
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,先进行二次根式的乘除运算,然后合并同类二次根式.
8.D
【解析】
【分析】
先化简各二次根式,再计算乘法,最后合并同类二次根式可得.
【详解】
原式=8× ﹣ ×3 +4×
=4 ﹣ +
= ,
故选:D.
【点睛】
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.
故|b-3|= =0,
则b=3,a=5,
故ab-1=52=25.
【点睛】
考查了二次根式的性质和化简及非负数的性质,解题的关键是将所给的式子化为非负数的和为0的等式,然后利用非负性求出a、b的值,本题属于中等题型.
23.(1) ;(2)9
【解析】
【分析】
(1)先化简各二次根式,再合并同类二次根式即可得;
=b-a+2c
【点睛】
此题主要考查了二次根式以及绝对值的性质与化简,正确化简二次根式是解题关键.
26.(1)a=2 ,b=5,c=3 ;(2)能,5 +5.
【解析】
【分析】
(1)根据非负数的性质列式求解即可;
2023年沪科版八年级数学下册第十六章《二次根式》检测卷附答案解析
2023年八年级数学下册第十六章《二次根式》检测卷(满分100分)一、单选题(共30分)1.在函数5y x =-,自变量x 的取值范围是()A .1x ≥B .1x ≤C .1x ≤且5x ≠D .1x ≥且5x ≠2.下列二次根式中,是最简二次根式的是()A BC D 3.下列各式中,正确的是()A 3=-B .3=-C 3=±D 3=±4.下列各式计算正确的是()A B .1C .D 3=5.如图,数轴上有O ,A ,B ,C ,D2的点会落在()A .点O 和A 之间B .点A 和B 之间C .点B 和C 之间D .点C 和D 之间61+的值在()A .1到2之间B .2到3之间C .3到4之间D .4到5之间7.若0x <化简()A .B .-C .D .-8.已知2102x x -+=,则441x x +等于().A .114B .12116C .8916D .2749.下列命题中,真命题的是()①若2x =-,则2x <②两直线平行,同旁内角相等③若一组数据2,4,,1x -极差为7,则x 的值是6或3-.④已知点(),P m n 在一次函数23y x =-+的图象上,则212m n +-=A .①③B .②④C .①②D .③④10.实数a ,b )A .2b-B .2a -C .22b a -D .0二、填空题(共20分)11.一个正方形的面积变为原来的8倍,它的边长变为原来的__________倍.12=a ___________.13.实数a ,b 在数轴上的位置如图所示,化简1a +______________.14.实数a ,b 分别是623a b -的值是__________.15.若4y =+,则22xy +的平方根是________.三、解答题(共50分)16.(本题8分)计算:3(2)()()2013π-+-17.(本题6分)阅读下列材料,并回答问题:<<34<<,的整数部分为33.(1)(2)a,小数部分为b ,求()()a b a b +-的值.18.(本题6分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为218dm 和232dm 的正方形木板.(1)截出的两块正方形木料的边长分别为________dm ,________dm ;(2)求剩余木料的面积;(3)如果木工想从剩余的木料中截出长为1.5dm ,宽为1dm 的长方形木条,最多能截出几块这样的木条,并说明理由.19.(本题6分)已知31,31x y =+=-,求下列代数式的值.(1)22x xy y ++;(2)y x x y+20.(本题6分)实数a 、b 在数轴上对应的位置如图所示,化简()()2232321a a b b ++-+-21.(本题8分)如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是________;(2)求()()11m m +-的值;(3)在数轴上还有C ,D 两点分别表示实数c 和d ,且3c +5d -3c d +的平方根.22.(本题10分)小明在解决问题:已知123a =+2281a a -+的值.他是这样分析与解的:∵32323(23)(23)a ===++-,∴23a -=∴22(2)3,443a a a -=-+=,∴241a a -=-,∴()222812412(1)1a a a a -+=-+=⨯-=-.请你根据小明的分析过程,解决如下问题:(1)1111315375121119+++++L .(2)若121a =-①求2361a a -+的值.②直接写出代数式的值3231a a a ++-=_______;21252a a a-++=________.参考答案:1.D 【详解】解:∵1x y -=10,50x x -≥-≠,∴1x ≥且5x ≠;故选D .2.D【详解】解:A 150.255==0.2不是最简二次根式,不符合题意;B 1222=12不是最简二次根式,不符合题意;C 123=12不是最简二次根式,不符合题意;D 6故选:D .3.B【详解】A 2(3)3-,故A 错误;B .233-=-,故B 正确;C 2(3)3-,故C 错误;D 233=,故D 错误.故选:B .4.D【详解】解:23A 选项错误,不符合题意;B.43333=B 选项计算错误,不符合题意;C.23318,所以C 选项计算错误,不符合题意;D.2733=,计算正确,所以D 选项符合题意;故选:D .5.B 2122242=1624254245<<,∴22423<<,2122的点会落在点A 和B 之间,故选:B .6.B 1231-2331=31=∵134<<,∴132<,∴2313<<1231+的值应在2和3之间.故选:B .7.D【详解】解:0x <Q ,()22x y x y x y -=--=--D .8.C【详解】解:根据题意得:0x ≠,∵219102x x -+=,∴11902x x +-=,即1192x x +=,∴2222111922x x x x ⎛⎫⎛⎫+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭,∴221114x x +=,∴2242411121216x x x x ⎛⎫+=++= ⎪⎝⎭,∴4418916x x +=.故选:C 9.D【详解】解:①若()222x x -=-,则2x ≤,原命题是假命题,故①不符合题意;②两直线平行,同旁内角互补,原命题是假命题,故②不符合题意;③若一组数据2,4,,1x -极差为7,则x 的值是6或3-,原命题是真命题,故③符合题意;④已知点(),P m n 在一次函数23y x =-+的图象上,则23n m =-+,即212m n +-=,原命题是真命题,故④符合题意;综上分析可知,③④是真命题,故D 正确.故选:D .10.A【详解】解:由数轴可知:a <0,b >0,a -b <0()222a b a b -a b a b ---=-a -b +a -b =2b-故选A .11.22【详解】一个正方形的面积变为原来的8822=2212.427与最简二次根式51a -273=∴13a -=,解得:4a =.故答案为:413.22a +【详解】解:由数轴可得:10a -<<,12b <<,∴10a +>,10b ->,0a b +>,∴原式()11a b a b =+--++()11a b a b=+-+++22a =+,故答案为:22a +.14.655-或565-+【详解】解:∵2<53<,∴3<654<,∴3a =,65335b =-=∴23a b -(23335=--×(9145=--655=,故答案为:655.15.25±【详解】解:根据题意得,20x -≥且20x -≥,解得2x ≤且2x ≥,∴2x =,∴4y =,∴22222420x y +=+=,∵20的平方根是205±=±∴22x y +的平方根是25±故答案为:25±16.(1)52+2【详解】(1)解:原式23232=+52=+(2)解:原式1212=+-2=17.40的整数部分为6406-(2)455-【详解】(1)解: 364049<6407<,40的整数部分为6406;(2) 459<<,即253<,52a =,小数部分为52b -,()()54555a b a b ∴+-=-=-,即()()a b a b +-的值是455.18.(1)3242(2)26dm (3)2,理由见解析【详解】(11832dm =3242dm =,(2)矩形的长为)324272dm +=,宽为42dm ,∴剩余木料的面积(()2724218325618326dm =--=--=;(3)剩余木条的长为32dm ,宽为)42322dm -=,∵21.53231.5⨯<⨯21>,∴能截出212⨯=个木条.19.(1)10(2)4【详解】(1)∵31,31x y ==,∴23x y +=2xy =,∴22x xy y ++222x xy y xy=++-2()x y xy=+-2(23)2=-10=;(2)∵31,31x y ==,∴23x y +=2xy =,∴22x y +()22x y xy=+-(22322=-⨯=124-=8,∴y xx y +22y x xy+=82==4.20.1【详解】根据数轴可知,20a <<-,12b <<,则20a +>,10-<b ,()()2232321a a b b +-()2(1)a a b b =++--+-21a a b b =+--+-1=.21.(1)22(2)25(3)12的平方根为23±【详解】(1)∵一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,∴22m =-,故答案为:22;(2)()()()()11221122m m +-=++-()3221=-32322=-425=;(3)∵3c +5d -350c d ++-,∴30c +=,50d -=,∴3c =-,5d =,∴3c d+335=-+⨯12=;∴12的平方根为3±.22.(1)5(2)①4;②0,2【详解】(1)解:原式315375121119----=+⋯+1(315311119)2=⨯⋯+-1(111)2=-+5=;(2)解:①2121(21)(21211)a +-+=-==+ ,12a ∴-=2212a a ∴-+=,221a a ∴-=2363a a ∴-=23614a a ∴-+=;②3231a a a -++ 3222221(2)1a a a a a a a a a =--++=--++221a a -= ∴原式221(2)1110a a a a a =-++=--+=-+=; 22212125224a a a a a a a a ---++=--,221a a -= ∴原式202=-=.故答案为:0,2.。
八年级数学下册-专题. 二次根式的混合运算专项训练(沪科版)(解析版)
专题16.4二次根式的混合运算专项训练【沪科版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对二次根式混合运算的理解!1.(2023春·广西贺州·八年级统考期中)计算:12−3×8÷2【答案】1−2【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:12−3×8÷2=2−1−22÷2=1−2.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.2.(2023秋·辽宁沈阳·1−32−12−【答案】2+【分析】根据二次根式的混合计算法则求解即可.【详解】解:原式=9×12÷3−1−23+3−23=36−4+23−533=6−23−533=2+【点睛】本题主要考查了二次根式的混合计算,熟知相关计算法则是解题的关键.3.(2023秋·上海青浦·八年级校考期中)计算:75−3−12+【分析】先根据二次根式的性质,完全平方公式和分母有理化化简,再计算加减即可.【详解】解:原式=53−23−3−23+1+23−1=53−23−4+23+23−2=73−6【点睛】本题考查二次根式的混合运算,掌握分母有理化和二次根式混合运算的法则是解题的关键.4.(2023秋·辽宁丹东·−3+23−2【答案】6−32【分析】先计算二次根式的除法运算,乘法运算,化简二次根式,再合并即可.【详解】解:原式−6×3−232+1=5−32+1=6−32.【点睛】本题考查的是二次根式的混合运算,熟记混合运算的运算顺序是解本题的关键.5.(2023春·广东湛江·八年级统考期末)计算:12−6÷2+3+13−1【答案】3+2【分析】先化简,进行除法和平方差公式的计算,再合并同类二次根式即可得解.【详解】解:12−6÷2+3+13−1=23−3+3−1=3+2.【点睛】本题考查二次根式的混合运算.熟练掌握二次根式的性质,运算法则,正确的计算,是解题的关键.6.(2023秋·陕西西安·八年级校考期中)计算:52+5−2+55−2.【分析】根据二次根式的乘法和加减运算法则计算即可.【详解】52+5−2+55−2=5×2+52−52−22=10+5−5−4=10+5−1=10+4.【点睛】本题主要考查二次根式的乘法及加减运算,牢记二次根式的乘除及加减运算法则是解题的关键.7.(2023春·吉林松原·八年级统考期末)计算:23−22−327−8【答案】5−26【分析】先根据完全平方公式和二次根式的乘法法则展开,然后再合并同类二次根式即可解答.【详解】解:23−22−327−8,=12−46+2−9+26,=5−26.【点睛】本题主要考查了二次根式的四则混合运算、完全平方公式等知识点,灵活运用二次根式四则混合运算法则是解答本题的关键.8.(2023春·广西河池·八年级统考期末)计算:(5−3)2+(5+3)(5−3).【答案】10−215【分析】先根据完全平方公式和平方差公式计算乘法,再合并同类二次根式即可.【详解】解:原式=5−215+3+5−3=10−215【点睛】本题主要考查了二次根式的混合运算,熟练掌握平方差公式和完全平方公式及二次根式的性质是解题的关键.9.(2023春·上海·八年级校考期末)计算:12+−2+1【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.2+【详解】12+=23+(3+1)−2×=23+3+1−2+−1.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.10.(2023秋·上海闵行·=3,=13.【答案】2+2,【分析】首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【详解】解:原式==+++=2+2当=3,=13时,原式=23+=23=【点睛】本题考查了二次根式的化简求值,正确理解平方差公式和完全平方公式对分子进行变形是关键.11.(2023秋·四川成都·八年级成都外国语学校校考期中)已知:2a+b+5=4(2−2+−1),先化简再【分析】用完全平方公式将原方程配方,由平方的非负性求出a、b的值,化简要求的式子,将a、b的值代入化简后的式子计算出结果即可.【详解】原方程可化为2a+b+5﹣42−2﹣4−1=0,即(2a﹣2﹣42−2+4)+(b﹣1﹣4−1+4)=0,∴(2−2﹣2)2+(−1﹣2)2=0,∴2−2﹣2=0,−1﹣2=0,解得a=3,b=5,将a、b的值代入得:原式【点睛】本题主要考查完全平方公式、平方的非负性.12.(2023春·上海闵行·÷中=3+1,=3−1.【答案】3【分析】先把二次根式化为最简,再把字母的取值代入即可.【详解】解:B+)÷K =(p(−p B =(p(p ===B =B ++−B B =+B ∵=3+1,=3−1,∴+=3+1+3−1=23,B =(3+1)(3−1)=2,则r B ==3.【点睛】本题考查了二次根式的化简求值,解答本题的关键是明确分式化简求值的方法.13.(2023春·北京海淀·八年级人大附中校考期中)先化简,再求值:−中x =9,y =14.【答案】3+2;10【分析】先化简二次根式,然后合并同类二次根式,再将x 和y 值代入计算即可.【详解】解:−16+=6−2−3+4=3+2,将x =9,y =14代入,原式=39+2,故答案为:10.【点睛】此题考查了二次根式的化简求值,解题的关键是掌握运算法则.14.(2023春·广东肇庆·八年级肇庆市第四中学校考期中)先化简,再求值:+−36B),=23,=27【答案】−B,−32【分析】根据二次根式的性质、二次根式的加减混合运算法则把原式化简,把x、y的值代入计算即可.【详解】解:原式=6×+3××B−4×−6B=6B+3B−4B−6B=−B当=23时,原式=−=−18=−32【点睛】此题考查的是二次根式的化简求值,掌握二次根式的性质、二次根式的加减混合运算法则是解题的关键.15.(2023春·河南信阳·八年级统考期末)计算:(1)75÷3−0.5×12−24;(2)2−32+2−3×3.【答案】(1)5+6(2)2−6【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据二次根式的混合运算法则计算即可.【详解】(1)原式=25−6−26(2)原式=2−32−3+3=2−3⋅2=2−6【点睛】本题考查的是二次根式混合运算,熟知二次根式的运算法则是解答此题的关键.16.(2023春·山东济宁·八年级济宁学院附属中学校考期中)计算:39(2)30×23【答案】(1)5(2)32【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除混合运算顺序和运算法则进行计算即可.【详解】(1)解:原式=23×3+6×=2+3=5;(2)解:原式=30×32×÷=32÷=34×5=34×32=34×42【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(2023春·河南新乡·八年级统考期中)计算:(1)6×248÷3(2)−52+1+33−3−327【答案】(1)36−4(2)2+23【分析】(1)直接利用二次根式的乘除运算法则化简,进而得出答案.(2)直接利用二次根式的乘除运算法则、立方根的性质分别化简,进而得出答案.【详解】(1)解:原式=6×4,=36−4.(2)解:原式=5+3−3+33−3−3,=2+23.【点睛】此题主要考查了实数的运算,正确化简各数是解题的关键.18.(2023春·山东烟台·八年级统考期中)计算(1)2718÷2(2)42×(3+2)2+【答案】3(2)−7−3【分析】(1)先化简括号中各式,合并后进行二次根式除法运算即可;(2)分别进行二次根式乘法、完全平方公式和分母有理化将各部分化简,再进行合并即可.【详解】(1)原式=33+−32÷2=32÷2=−3;(2)原式=26−3+26+2−2+3=26−5−26−2−3=−7−3;【点睛】本题考查二次根式混合运算,掌握相关运算法则,分析运算顺序是解题关键.19.(2023春·云南昆明·八年级云大附中校考期末)计算:(1)240−10;(2)48÷3+30−22+32.【答案】2(2)−7−26【分析】(1)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(2)先计算二次根式的乘除法,再算加减,即可解答.【详解】(1)240−10=410−−10=2(2)48÷3+30−(22+3)2=16+26−8+46+3=4+26−8−46−3=−7−26.【点睛】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.20.(2023春·广西崇左·八年级统考期末)计算:(1)50−32+18(2)(3−2)(3+2)+(24−12)÷6【答案】(1)42(2)3−2【分析】(1)先根据二次根式的性质化简,然后再合并同类二次根式即可解答;(2)先用平方差公式和二次根式除法运算,然后再和合并同类二次根式即可解答.【详解】(1)解:50−32+18,=52−42+32,=42.(2)解:(3−2)(3+2)+(24−12)÷6=32−22+4−2,=3−2+2−2=3−2.【点睛】本题主要考查了二次根式的混合运算、二次根式的加减运算等知识点,灵活运用二次根式混合运算法则是解答本题的关键.21.(2023春·山东德州·八年级统考期末)(1)计算8+3×6−32;(2)已知=5−1,求代数式2+5−6的值.【答案】(1)43;(2)35−5【分析】(1)根据二次根式的混合计算法则求解即可;(2)把所求式子变形为+12+3−7,然后代值计算即可.【详解】解:(1)原式=48+18−32=43+32−32=43;(2)∵=5−1,∴2+5−6=2+2+1+3−7=+12+3−7=5−1+12+3×5−1−7=52+35−3−7=5+35−3−7=35−5.【点睛】本题主要考查了二次根式的混合计算,二次根式的化简求值,正确计算是解题的关键.22.(2023春·山东德州·八年级统考期中)(1)计算:18+12−32;(2)计算:3+223−22−54÷6;(3)24−−2+6;(4)3×12+−6×(−1)3−(−13)−2.【答案】(1)23−2;(2)−2;(3)−2;(4)−9【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用平方差公式和二次根式的除法法则运算,然后化简后进行有理数的减法运算;(3)先把各二次根式化为最简二次根式,然后合并即可;(4)先根据二次根式的乘法法则、绝对值、乘方的意义和负整数指数幂的意义计算,然后进行有理数的混合运算.【详解】解:(1)原式=32+23−42=23−2;(2)原式=9−8−54÷6=1−9=1−3=−2;(3)原式=26−26=−2;(4)原式=3×12+6×−1−9=6−6−9=−9.【点睛】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则、除法法则和负整数指数幂的意义是解决问题的关键.23.(2023秋·辽宁锦州·八年级统考期中)(1)计算:(2)计算:÷212+16−327(3)计算:2+33−2+3+20+23−4−3−12【答案】(1)0;(2)27;(3)8【分析】(1)根据二次根式的加减进行计算即可求解;(2)根据二次根式的加减计算括号内的,然后再根据二次根式的除法进行计算;(3)根据完全平方公式,平方差公式,零指数幂,以及化简绝对值,进行计算即可求解.【详解】(1)计算:−4+6=−13×32−14×43+6×36+2×22=−2−3+3+2=0(2)计算:2416327=−6×33÷2×23+4×34−3×33=−23÷−73=27(3)计算:2+33−2+3+20+23−4−3−12=9−2+1+4−23−3+23−1=8【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.24.(2023春·四川绵阳·八年级统考期末)计算:(1)(10+3)2(10−3)2;(2)(25−3)2−(25+3)2.【答案】(1)1(2)−245【分析】(1)利用平方差公式进行运算较简便;(2)利用平方差公式进行运算较简便.【详解】(1)解:(10+3)2(10−3)2=[10+3×10−3]2=(10−9)2=12=1;(2)解:(25−3)2−(25+3)2=25−3+25+3×25−3−25−3=45×−6=−245.【点睛】本题主要考查二次根式的混合运算,掌握相关的运算法则是解答的关键.25.(2023秋·江苏苏州·八年级苏州中学校考期中)计算:(1)12−27+(2)23−123+1−1+321−32【答案】(1)2)7【分析】(1)分别化简二次根式,再合并同类二次根式即可得到答案;(2)先将1+321−32变形为1+31−32,然后利用平方差公式计算求解.【详解】(1)12−27+=2333+33=−3(2)23−123+1−1+321−32=232−12−1+31−32=12−1−−22=7故答案为(1)−2)7.【点睛】本题考查的是二次根式的混合运算,积的乘方,平方差公式,合并同类二次根式,掌握以上知识是解题的关键.26.(2023春·新疆乌鲁木齐·八年级乌鲁木齐市第六十八中学校考期末)(1)计算:(48﹣﹣20.5)(2)化简:((3−+B)÷【答案】(1)33;(2)a2﹣+2+a【分析】根据二次根式的性质,先化简各二次根式为最简二次根式,然后合并同类二次根式即可.【详解】解:(1)(48﹣20.5)=43﹣2﹣3+2=33;(2)3B÷=a2﹣+2+a.【点睛】本题考查了二次根式的混合运算,解得关键是根据相关法则进行运算.27.(2023春·广东广州·八年级广州六中校考期中)先化简,再求值:2+32−3−3−2+3,其中=2−3.【答案】2+6,−7【分析】直接利用平方差公式以及二次根式的乘法将原式变形,进而合并同类项,进而把已知代入求出答案.【详解】解:原式=42−3−32+6+3=2+6,把=2−3代入,得,原式=2−32+62−3=2+9−62+62−18=−7.【点睛】此题主要考查了平方差公式,多项式乘单项式以及二次根式的化简求值,正确化简原式是解题关键.28.(2023秋·山东青岛·八年级校考期中)计算与化简(1)+3)×6(2)(3+2)2−(2−3)(2+3)3(1−3)0(4)218−32−【答案】(1)52(2)10+62(3)6【分析】(1)根据二次根式的乘法进行计算即可求解;(2)根据完全平方公式与平方差公式进行计算即可求解;(3)根据二次根式的除法以及零次幂进行计算即可求解;(4)根据二次根式的加减进行计算即可求解.【详解】(1)解:3)×6=3×6=22+32=52;(2)解:(3+2)2−(2−3)(2+3)=9+62+2−4−3=10+62;(3+(1−3)0=+1=4+1+1=6;(4)解:218−32−=32−32−22=【点睛】本题考查了二次根式的混合运算,零次幂,掌握二次根式的运算法则是解题的关键.29.(2023秋·上海普陀·八年级校考期中)化简二次根式:23B2−−【答案】52B3【分析】先将括号内各式化为最简二次根式,再根据二次根式的混合运算法则计算即可.【详解】解:原式=2×3−×当≥0时,原式=23−3−12×3=23+2×3=2=52B3,当<0时,原式=2−3−−143+12×3=2−3+143−123=−543×2=−52B3.【点睛】本题考查二次根式的化简以及二次根式的混合运算,解题的关键是熟练掌握二次根式的化简法则以及二次根式的混合运算法则.30.(2023秋·辽宁辽阳·八年级辽阳市第一中学校联考期中)计算下列各式:(1)212+348−(2)23−12−32+132−1.【答案】(1)133(2)−43−4【分析】(1)先化简各二次根式,再合并即可;(2)先计算二次根式的乘法运算,再合并即可.【详解】(1)解:212+348−=43+123−33=133;(2)23−12−32+132−1=12−43+1−18+1=−43−4.【点睛】本题考查的是二次根式的加减运算,二次根式的乘法运算,混合运算,熟记运算法则是解本题的关键.31.(2023春·四川凉山·八年级统考期末)计算:(1)−12019+327−1−2+8(2)已知=2+1,=2−1,求++2的值.【答案】(1)2+3(2)8【分析】(1)先利用有理数的乘方、立方根、绝对值和二次根式的性质化简,再进行计算即可;(2)将x和y的值代入,进行分母有理化,再计算即可.【详解】(1)解:原式=−1+3−2−1+22=−1+3−2+1+22=2+3;(2)解:∵=2+1,=2−1,∴++2=22++2−1+2=2−12+2+12+2=2−22+1+2+22+1+2=8.【点睛】本题考查了实数的混合运算,二次根式的混合运算,分式的加法运算,熟练掌握运算法则是解题的关键.32.(2023春·山东淄博·八年级淄博市博山区第一中学校考期中)(1)计算:3−22+12+(2)先化简,再求值:+2−−2,其中=3,=6.【答案】(1)7;(2)122【分析】(1)直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.(2)用完全平方公式展开、合并,然后代值化简计算.【详解】(1)3−2212+=3+4-43+23+6×3=3+4-43+23+23=7(2)+2−−2=(+2B+p−(−2B+p=4B当=3,=6时原式=4B=418=122.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键,在进行代数式的运算的时候,也要能够借助因式分解的知识简便计算.33.(2023秋·全国·八年级期末)化简(1)计算212−3+348(2)324+2−32−3+6−32【答案】(1)143(2)18−【分析】(1)根据二次根式的性质化简,然后根据二次根式的加减运算进行计算即可求解;(2)根据二次根式的混合运算进行计算即可求解.【详解】(1)解:212−+348=43−23+123=143;(2)解:324+2−32−3+6−32=3×26+62−6+3+6+9−66=18−【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.34.(2023秋·福建漳州·八年级统考期中)先化简,再求值:(−3)(+3)−o−4),其中:=3+1.【答案】4−3;43+1【分析】先算乘法,再合并同类项,最后代入求出答案即可.【详解】解:(−3)(+3)−o−4)=2−3−2+4=4−3,当=3+1时,原式=4×(3+1)−3=43+4−3=43+1.【点睛】本题考查了二次根式的化简求值,能正确根据二次根式的运算法则进行计算是解此题的关键.35.(2023秋·上海·八年级上海交大附中校考期中)先化简再求值:2−K6r2−=【答案】−3+1,1【分析】先将分子和分母分解因式,并根据二次根式的性质化简,再约分,最后代入计算即可.【详解】因为=2+=3)(2−3)=2−3,可知−1=2−3−1=1−3<0.原式=(K3)(r2)r2−=−3−1−oK1)=−3+1.所以原式=2−3−3+=−1−3+2+3=1.【点睛】本题主要考查了分式的化简求值,根据a的大小化简(−1)2=1−是解题的关键.36.(2023春·江苏·八年级期末)计算化简(1)12+27(2)5B•−43≥0,≥0(3)1−【答案】(2)−202;(3)1;(4)3.【分析】(1)先把各二次根式化成最简二次根式,再利用二次根式的加减法则进行计算即可;(2)先把各二次根式化成最简二次根式,再利用二次根式的乘法法则进行计算即可;(3)括号中两项通分并利用同分母分式的减法法则计算,再计算除法即可;(4)先利用完全平方公式计算,再利用二次根式的加减法则进行计算即可.【详解】(1)解:12−23−33+39(2)解:∵≥0,≥0,∴5B•−43=−20B•B=−202;(3)解:1÷K1=1−1−÷−1=−1−÷−1=−1×−1=1;(4+2=5+25+14+5−25+14=5+25+1+5−25+14=3.【点睛】此题主要考查了二次根式的混合运算以及分式的加减乘除混合运算,正确化简二次根式是解题关键.37.(2023春·山西阳泉·八年级统考期中)先化简,再求值:3+5−5−2−5+10,其中= 3−1.【答案】83−11【分析】先根据平方差公式,合并同类项进行整理,再将=3−1代入计算即可.【详解】3+5−5−2−5+10=32−15−22+10+10=2+10−5当=3−1时,原式=(3−1)2+10(3−1)−5=4−23+103−10−5=83−11.【点睛】本题考查了平方差公式,整式的加减,二次根式的混合运算,先化简式子,再代值,按照二次根式的计算法则计算即可.38.(2023春·全国·八年级期中)化简:(1)48÷3−×12+24(2)2+12−1+3−22【答案】(1)4+6(2)8−43【分析】(1)先算二次根式的乘除运算,同时利用二次根式的性质化简,然后合并同类二次根式;(2)利用平方差公式和完全平方公式进行计算即可.【详解】(1)解:原式=16−6+24=4−6+26=4+6;(2)解:原式=2−1+3−43+4=8−43.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.39.(2023秋·陕西咸阳·八年级统考期末)当a=4,b=3时,先化简+2B−【答案】(3−3)B;43【分析】先化简二次根式,再合并同类二次根式,再把a=4,b=3代入化简后的代数式,再计算即可.【详解】解:2B−=B+2B−=(3−3)B当a=4,b=3时,原式=(3−33)×3×4=2×23=43.【点睛】本题考查的是二次根式的化简,二次根式的加减运算,掌握“二次根式的化简”是解本题的关键.40.(2023春·山东烟台·八年级统考期中)化简计算:(1)(48+20)−(12−5)(2)(3+1)2−6(2−1)【答案】(1)23+35(2)4+6【分析】(1)原式分别化简二次根式后,再合并即可;(2)原式根据完全平方公式和单项式乘以多项式运算法则把括号展开,再合并即可得到答案.【详解】(1)(48+20)−(12−5)=48+20−12+5=43+25−23+5=23+35(2)(3+1)2−6(2−1)=(3)2+23+1−12+6=3+23+1−23+6=4+6【点睛】本题主要考查了二次混合运算,熟练掌握运算法则是解答本题的关键.。
沪科版数学八年级下《第16章二次根式》单元测试卷含答案
沪科版数学八年级下《第16章二次根式》单元测试卷含答案一、选择题(每题4分,共40分)1.在函数y=中,自变量x的取值范围是( )A.x>0B.x≥-4C.x≥-4且x≠0D.x>-4且x≠02.下列计算正确的是( )A.4-3=1B.+=C.2=D.3+2=53.与-是同类二次根式的是( )A. B. C. D.4.化简+(-1)的结果是( )A.2-1B.2-C.1-D.2+5.下列计算正确的是( )A.+=B.(-a2)2=-a4C.(a-2)2=a2-4D.÷=(a≥0,b>0)6.估计+1的值在( )A.2到3之间B. 3到4之间C.4到5之间D.5到6之间7.计算×+()0的结果为( )A.2+B.+1C.3D.58.已知m=1+,n=1-,则代数式的值为( )A.9B.±3C.3D. 59.若(m-1)2+=0,则m+n的值是( )A.-1B.0C.1D.210.若平行四边形的一边长为2,面积为6,则此边上的高介于( )A.3与4之间B.4与5之间C.5与6之间D.6与7之间二、填空题(每题5分,共20分)11.若二次根式有意义,则x的取值范围是_____________.12.计算:(+)2-=_____________.13.化简:+=_____________.14.化简:(-)--︱-3︱=_____________.三、解答题(15题12分,16题6分,其余每题7分,共60分)15.计算:(1)2-+; (2)×÷;(3)-+; (4)+-6.16.在交通事故的调查中,交通警察通常可根据刹车后车轮滑过的距离推算出车辆发生事故前行驶的速度,所用的经验公式为v=16·,其中v表示车速(单位:km/h),d表示刹车后车轮滑过的距离(单位:m),f表示摩擦系数.在某次交通事故调查中测得d=32 m,f=2,且该路段限速100 km/h,请你根据以上公式推算该肇事车辆是否超速行驶.17.实数a,b在数轴上的位置如图所示,化简:-+.18.先化简,再求值:÷,其中x=+,y=-.19.不用计算器,比较与+4的大小.20.如图,已知正方形ABEF的面积为10,以AB为直角边所作的等腰直角三角形ABC的斜边BC=,求BC边上的高AD的长度.21.计算:(+-1)(-+1).22.设等式+=-在实数范围内成立,其中a,x,y是两两不相等的实数,求的值.参考答案一、1.【答案】C 2.【答案】C 3.【答案】C4.【答案】A解:+(-1)=+-1=2-1,故选A.5.【答案】D6.【答案】B解:∵<<,∴2<<3,∴3<+1<4.故选B.7.【答案】B8.【答案】C解:m+n=2,mn=12-()2=1-2=-1,∴====3.9.【答案】A10.【答案】C解:设平行四边形长为2的边上的高为x.因为平行四边形的面积为6,所以2x=6,解得x=3=.因为5=<<=6,所以此边上的高介于5与6之间,故选B.二、11.【答案】x≥112.【答案】5 13.【答案】0 14.【答案】-2-2-3三、15.解:(1)原式=-×4+×2=-2+=-.(2)原式=5××=10.(3)原式=4-+=4-3+2+=1+.(4)原式=2-+3-2=2.16.解:v=16·=16××=128(km/h),因为128>100,所以该肇事车辆超速行驶.17.解:由数轴知,a<0,b>0.∴a-b<0.∴-+=-+=(-a)-b+(b-a)=-a-b+b-a=-2a .18.解:原式=÷=×(x2y-xy2)=×xy(x-y)=3xy.把x=+,y=-代入,得原式=3(+)(-)=3.19.解:∵==+3<+4.∴<+4.20.解:由正方形的面积为10可得AB=.所以Rt△ABC的面积为××=×·AD,所以AD=÷=.21.解:方法一:原式=[+(-1)][-(-1)]=()2-(-1)2=3-(2-2+1)=3-2+2-1=2.方法二:原式=()2-×+×1+×-()2+×1-1×+1×-1×1 =3-++-2+-+-1=2.22.解:由题意得①②解不等式组①,得a≥0;解不等式组②,得a≤0;所以a=0.所以+=-可化为-=0,因为x≥0,-y≥0,a,x,y是两两不相等的实数,所以x=-y≠0,故=-1.。
最新沪教版 (上海)八年级第一学期数学 二次根式 单元测试卷 (解析版)
八年级(上)数学二次根式单元测试卷一.选择题(共6小题)1.下列式子中,是二次根式的是A.B.C.D.2.若式子在实数范围内有意义,则的取值范围是A.B.C.D.3.下列二次根式中,是最简二次根式的是A.B.C.D.4.如果与的和等于,那么的值是A.0B.1C.2D.35.下列运算正确的是A.B.C.D.6.实数、在数轴上的位置如图所示,化简的结果是A.B.0C.D.二.填空题(共12小题)7.的相反数是.8.当时,二次根式的值为.9.计算:的结果是.10.计算的结果是.11.计算:.12.若最简二次根式与是同类二次根式,则的值为.13.化简:.14.若,化简的结果是.15.已知,则代数式的值为.16.已知,为实数,且,则的值为.17.如图,从一个矩形中截去面积分别为和的两个正方形,则剩下的两个小矩形的面积之和(图中阴影部分的面积)为.18.,,,观察下列各式:请你找出其中规律,并将第个等式写出来.三.解答题(共7小题)19.计算:.20.计算:.21.已知,求的值.22.等腰三角形的一边长为,周长为,求这个等腰三角形的腰长.23.已知:,.求:(1)代数式的值;(2)代数式的值.24.有这样一类题目:化简,如果你能找到两个数、,使,并且,那么将变成开方,从而将化简.例如:化简因为所以仿照上例化简下列各式:(1);(2).25.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:,,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;的有理化因式是;(2)化简:;(3)化简:.参考答案一.选择题(共6小题)1.下列式子中,是二次根式的是A.B.C.D.解:、是二次根式,符合题意;、是三次根式,不合题意;、当时,无意义,不合题意;、属于整式,不合题意;故选:.2.若式子在实数范围内有意义,则的取值范围是A.B.C.D.解:在实数范围内有意义,,解得:,的取值范围是:.故选:.3.下列二次根式中,是最简二次根式的是A.B.C.D.解:、,不是最简二次根式;、是最简二次根式;、,不是最简二次根式;、,不是最简二次根式;故选:.4.如果与的和等于,那么的值是A.0B.1C.2D.3解:与的和等于,,故,则.故选:.5.下列运算正确的是A.B.C.D.解:,所以选项错误;.,所以选项错误;,所以选项错误;..所以选项正确.故选:.6.实数、在数轴上的位置如图所示,化简的结果是A.B.0C.D.解:由数轴可知,,,,,故选:.二.填空题(共12小题)7.的相反数是.解:的相反数是:.故答案为:.8.当时,二次根式的值为2.解:将代入,得:,故答案为:2.9.计算:的结果是6.解:.故答案为:6.10.计算的结果是.解:原式.故答案为:.11.计算:.解:原式.故答案为:.12.若最简二次根式与是同类二次根式,则的值为3.解:最简二次根式与是同类二次根式,,解得:,,当时,无意义,所以舍去,故答案:3.13.化简:0.解:根据题意得,解得,所以原式.故答案为0.14.若,化简的结果是.解:,.故答案为:.15.已知,则代数式的值为11.解:,当时,原式,故答案为:11.16.已知,为实数,且,则的值为5.解:根据题意知,解得,则,,故答案为:5.17.如图,从一个矩形中截去面积分别为和的两个正方形,则剩下的两个小矩形的面积之和(图中阴影部分的面积)为2.解:面积为8的正方形的边长为,面积为2的正方形的边长,阴影部分组成的矩形的长为,阴影部分面积为:,故答案为:2.18.,,,观察下列各式:请你找出其中规律,并将第个等式写出来.解:由,,,得,故答案为:.三.解答题(共7小题)19.计算:.解:原式.20.计算:.解:.21.已知,求的值.解:,,,即的值为12.22.等腰三角形的一边长为,周长为,求这个等腰三角形的腰长.解:是腰长时,底边是,,此时不能组成三角形;是底边时,腰长为,能组成三角形,综上所述,这个等腰三角形的腰长.23.已知:,.求:(1)代数式的值;(2)代数式的值.解:(1),,;(2)原式.24.有这样一类题目:化简,如果你能找到两个数、,使,并且,那么将变成开方,从而将化简.例如:化简因为所以仿照上例化简下列各式:(1);(2).解:(1);(2).25.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:,,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;的有理化因式是;(2)化简:;(3)化简:.解:(1),,即的有理化因式是,故答案为:,;(2),故答案为:.(3)原式.。
沪科版数学八年级下册第16章《二次根式》测试题及答案
八年级下册数学《二次根式》单元测试卷一、单项选择题1()A.±4B.4C.-4D.±22.以下根式中不是最简二次根式的是〔〕A B C D3.以下运算正确的选项是()A B.1)2=3-1C D5-34() A.1个B.2个C.3个D.4个5.以下各数中,与〕A.2B.2C.D.36.√12−n是正整数,那么实数n的最大值为〔〕A.12 B.11 C.8 D.37.〕A.3B.-3C.2a-11D.11-2a8.如果2(2a =+a ,b 为有理数〕,那么a +b 等于〔 〕A .2B .3C .8D .109.设,那么a〕b〕c 之间的大小关系是( ) A .c〕b〕a B .a〕c〕bC .b〕a〕cD .a〕b〕c10.等腰三角形的两条边长分别为 〕A .B .C .D .二、填空题11x 的取值范围是________.12(x +y +1)2=0,那么(x +y)2021=________.13.在以下式子或结论中:a +2b ;〕假设a 2,b填序号). 14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,那么该三角形的面积为S现〕ABC 的三边长分别为2,3,4,那么〕ABC 的面积为________.15.先阅读,再答复以下问题.<1.=12<2.=23<3.=34……n为正整数〕的整数局部为________,试说明理由.三、解答题16.计算:3|;.17.实数a,b在数轴上的位置如下图,请化简:a18.x1,求式子x2-2x+3的值.19.a1,b1,分别求以下各式的值:(1)a2+b2;(2)b a a b +.20.x、y为实数,y=√x2−4+√4−x2+1x−2求3x+4y21.高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t〔单位:s〕和高度h〔单位:m〕近似满足公式〔1〕从50m 高空抛物到落地所需时间t1是多少s,从100m 高空抛物到落地所需时间t2是多少s;〔2〕t2是t1的多少倍?〔3〕经过,高空抛物下落的高度是多少?22.实数a,b满足|2021-a| a.(1)写出a的取值范围,化简:|2021-a|;(2)张敏同学求得a-20212的值为2021,你认为她的答案正确吗?为什么?23.观察以下各式:1+11-12=32;1+12-13=76;1+13-14=1312.(1)请你根据上面三个等式提供的信息,猜测:(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式,并验证;(3)参考答案1.B【解析】【分析】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕【详解】〕〕〕B〕【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕2.C【解析】【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或C3.C【解析】【分析】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕【详解】≠2-C.==4〕〕〕〕〕〕〕〕〕〕C.【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕4.B【解析】【分析】二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式,继而可得出答案.【详解】共2个,应选B.【点睛】此题考查了同类二次根式的知识,解题的关键是掌握同类二次根式是化为最简二次根式后被开方数相同的二次根式.5.D【解析】【分析】根据二次根式的乘法法那么以及有理数的定义判断即可.【详解】=,它是无理数,〕(26〕选项A不符合题意;=,它是无理数,〕(26〕选项B不符合题意;〕=3〕选项C不符合题意;=-,−6是有理数,〕(6〕选项D符合题意,应选:D.【点睛】考查二次根式的乘法,掌握乘法法那么是解题的关键.6.B【解析】【分析】根据二次根式的意义可知12-n≥0,解得n≤12,且12-n开方后是正整数,符合条件的12-n的值有1〕4〕9…,其中1最小,此时n的值最大.【详解】由二次根式的意义可知12-n≥0〕解得:n≤12〕所以,当√12−n等于最小的正整数1时,n取最大值,那么n=11〕应选B〕【点睛】此题考查了二次根式有意义的条件,二次根式的被开方数是非负数.7.A【解析】分析:直接利用二次根式的性质结合a的取值范围分别化简求出答案.详解:〕4<a<7,=a﹣4+7﹣a=3.应选A.点睛:此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.8.D【解析】因为222(2226=+⨯=+,且2(2a =+,所以a =6,b =4,a +b =10,应选D .9.D【解析】1〕〕b=1〕〕〕a〕b〕c〕应选:D〕10.B【解析】〕该图形为等腰三角形,〕有两边相等.假设腰长为〕不符合三角形的三边关系,故此情况不成立.假设腰长为〕满足三角形的三边关系,成立,〕三角形的周长为综上所述:这个三角形的周长为应选B.点睛:此题主要考查了实数的运算、三角形的三边关系及等腰三角形的性质,解决此题的关键是注意对等腰三角形的边进行讨论.11.x≤2【解析】【分析】〕〕〕〕〕〕〕〕〕〕0〕〕〕〕〕〕〕〕.【详解】〕〕〕〕〕-2x+4≥0〕〕〕x≤2〕〕〕〕〕〕x≤2〕【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕12.1【解析】【分析】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕.【详解】2〕0, 〕x+2=0,x+y+1=0, 〕x=-2,y=1, 〕(x〕y)2021=2018-+(21)=1.〕〕〕〕〕1.【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕x〕y〕〕〕〕〕〕〕〕〕13.〕〕【解析】【分析】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕【详解】〕【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕14【解析】【分析】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕ABC〕〕〕〕〕〕〕2〕3〕4〕〕〕〕〕〕〕〕〕〕〕〕〕【详解】〕〕ABC〕〕〕〕〕〕〕2〕3〕4〕〕〕〕ABC〕〕〕〕〕=〕〕〕〕〕〕〕4【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕15.n【解析】=n n+,又1n.16.(1)-6;(2) 6-【解析】【分析】(1)〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕(2)〕〕〕〕〕〕〕〕〕〕〕.【详解】〕〕6.22【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕17.a.【解析】【分析】〕〕〕〕〕〕a〕0〕b〕|a|〕|b|〕〕〕a-b〕0〕a+b〕0〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕【详解】〕〕〕〕〕a〕0〕b〕【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕18.4.【解析】【分析】〕x2-2x-3〕〕(x-1)2-4〕〕〕〕〕〕〕〕【详解】x2〕2x〕3〕(x〕1)222〕2〕4.【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕19.(1) 8;(2) 4.【解析】【分析】〕1〕〕〕〕〕〕〕〕〕〕〕〕〕2〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕【详解】2〕1〕3〕1〕2.(1)a2〕b2〕(a〕b)22〕2×2〕12〕4〕8.(2)22842b a a ba b ab++===.【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕20.-7【解析】试题分析:首先根据二次根式的性质以及分式的分母不为零求出x和y的值,然后进行计算.试题解析:〕x2-4≥0;4-x2≥0.〕x2=4,x=±2;又x-2≠0,x≠2.故x=-2.那么y=0+0+1−2−2=−14,〕3x+4y=3×〔-2〕+4×〔-14〕= -7. 考点:二次根式的性质.21.〔1〕t 1;t 2;〔2〕t 2 是 t 1〔3〕下落的高度是 11.25 米.【解析】【分析】〔1〕将h=50代入t 1h=100代入t 2= 〔2〕计算t 2与t 1的比值即可得出结论;〔3〕将代入公式【详解】〔1〕当 h=50 时,t 1〔秒〕; 当 h=100 时,t 2; 〔2〕〕21t t〕t 2 是 t 1〔3〕当 t=1.5 时,解得, 〕下落的高度是 11.25 米.此题主要考查了二次根式的应用,二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.22.〔1)a≥2021, a -2021;(2)她的答案不正确.理由见解析,a -20212=2021.【解析】【分析】(1) 〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕a〕〕〕〕〕;(2)〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕.【详解】〕1)a≥2021〕a〕2021〕(2)〕〕〕〕〕〕〕〕〕a〕2021〕20212〕〕a〕20212〕2021.【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕a〕〕〕〕〕〕〕〕〕〕〕〕23.(1)2120;(+1+1(1)n n n n =+);(3) 5756. 【解析】【分析】〕1〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕2〕〕〕〕〕〕〕〕〕〕〕〕3〕〕〕〕2〕〕〕〕〕〕〕〕〕〕(1) =112114520+-=〕(2)()(+1+11n n n n =+).〕〕〕〕〕〕〕〕=21(1)1(1)(1)n n n n n n n n ++++==++〕〕〕〕〕〕5756=. 【点睛】〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕〕。
沪教版八年级上册数学第十六章 二次根式 含答案
沪教版八年级上册数学第十六章二次根式含答案一、单选题(共15题,共计45分)1、下列运算中,正确的是()A. B.C. D.2、以下二次根式:①,②,③;④中,化简后与被开方数相同的是()A.①和②B.②和③C.①和④D.③和④3、下列计算正确的是()A. B. C. D.4、下列二次根式中,属于最简二次根式的是()A. B. C. D.5、以下二次根式:①;②;③;④中,与是同类二次根式的是()A.①和②B.②和③C.①和④D.③和④6、函数中自变量的取值范围是()A. B. C. D.7、下列各式属于最简二次根式的是()A. B. C. D.8、下列运算中错误的是()A. B. C. D.9、如果二次根式在实数范围内有意义,那么x的取值范围是()A. B. C. D.10、式子在实数范围内有意义,则的取值范围是()A. B. C. D.11、若代数式有意义,则实数x的取值范围是()A.x≥1B.x≥2C.x>1D.x>212、关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1B.m<1C.﹣3≤m≤1D.﹣3<m<113、下列计算正确的是().A.(x+y) 2=x 2+y 2B.(-xy 2)3=-x 3y 6C.x 6÷x 3=x2 D. =214、下列计算正确的是()A. B. C. D.15、下列运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、已知,若是整数,则=________.17、若式子有意义,则实数x的取值范围是________.18、计算:(+ )=________.19、计算=________,=________.20、若代数式有意义,则x的取值范围是________.21、若最简二次根式与是同类二次根式,则x=________.22、若在实数范围内有意义,则x的取值范围是________.23、已知a、b为两个连续整数,且a<<b,则a+b=________.24、若,则________.25、计算: = ________ .三、解答题(共5题,共计25分)26、若实数a、b、c在数轴上的对应点如图所示,试化简:.27、数学阅读是学生个体根据已有的知识经验,通过阅读数学材料建构数学意义和方法的学习活动,是学生主动获取信息,汲取知识,发展数学思维,学习数学语言的途径之一.请你先阅读下面的材料,然后再根据要求解答提出的问题:问题情境:设a,b是有理数,且满足,求的值.解:由题意得,∵a,b都是有理数,∴也是有理数,∵是无理数,∴,∴,∴解决问题:设x,y都是有理数,且满足,求的值.28、如果二次根式与能够合并,能否由此确定a=1?若能,请说明理由;不能,请举一个反例说明.29、已知a、b为实数,且满足a=++2,求•的值.30、一个三角形的三边长分别为、、.①求它的周长(要求结果化简);②请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值。
(核定版)沪教版八年级上册数学第十六章 二次根式含答案
沪教版八年级上册数学第十六章二次根式含答案一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x 且x≠1B.x 且x≠1C.x 且x≠1D.x且x≠12、下列根式是最简二次根式的是()A. B. C. D.3、把a根号外的因式移入根号内的结果是()A. B.- C. D.-4、下列计算结果正确的是()A. B. C. D.5、给出下列结论:① 在3和4之间;② 中的取值范围是;③ 的平方根是3;④ ;⑤ .其中正确的个数为()A.1个B.2个C.3个D.4个6、计算:的结果是()A. B. C. D.7、下列各式中,一定是二次根式的是()A. B. C. D.8、二次根式有意义,则的取值范围是()A.x>3B.x<3C.x≤3D.x≥39、二次根式中,x的取值范围是()A.x>1B.x<1C.x 1D.x 110、如果的化简结果为6﹣x,则x的值可能为()A.9B.7C.6.4D.﹣211、已知二次根式与是同类二次根式,则a的值可以是()A.8B.7C.5D.312、下列二次根式中,是最简二次根式的是()A. B. C. D.13、已知实数a在数轴上的位置如图所示,则化简的结果为()A.1B.-1C.1-2aD.2a-114、下列各式中计算正确的是()A. + =B. =C.D.(+ )2=3+2=515、下列各式计算正确的是()A.2+b=2bB. - =C.(2a 2)3=8a 5D.a 6÷a 4=a 2二、填空题(共10题,共计30分)16、是整数,则正整数n的最小值是________.17、计算﹣2的结果是________ .18、已知a,b,c为三角形三边,则=________.19、如果代数式有意义,那么实数x的取值范围是________.20、计算=________.21、二次根式有意义的条件是________.22、计算:× =________.23、若,则=________.24、计算:﹣2﹣1﹣=________.25、计算:= ________。
沪教版八年级上册数学第十六章 二次根式 含答案
沪教版八年级上册数学第十六章二次根式含答案一、单选题(共15题,共计45分)1、化简的结果是()A.3B.±3C.9D.±92、函数y=中自变量x的取值范围是()A. x≥2且x≠5B. x≥2C. x≤5D. x≤2且x≠53、下列计算正确的是()A. B. C. D.4、下列根式中,不是最简二次根式的是()A. B. C. D.5、下列各式中,正确的是()A. B. C. D..6、下列运算正确的是()A. B. C.D.7、下列计算正确的是()A. B. C. D.8、下列计算结果正确的是()A. +=B.3 -=3C. ×=D.=59、化简:=()A.2x﹣6B.0C.6﹣2xD.2x+610、下列等式中,成立的是()A. B. C. D.11、若二次根式有意义,则X的取值范围为()A.x≠1B.x≥1C.x<lD.全体实数12、下列各式是二次根式的有()1);(2);(3);(4);(5).A.4个B.3个C.2个D.1个13、把化成最简二次根式为()A. B. C. D.14、已知a= , b=﹣2,则有()A.a=bB.a=﹣bC.a=D.a=-15、下列计算正确的是()A.3 -=3B.2+ =2C. =-2D. =2二、填空题(共10题,共计30分)16、若代数式有意义,则x的取值范围是________.17、若式子在实数范围内有意义,则的取值范围是________.18、当时,化简________.19、若最简二次根式与可以合并,则m=________.20、函数中自变量x的取值范围为________.21、计算:()2=________;=________.22、如图,在长方形内,两个小正方形的面积分别为,,则图中阴影部分的面积等于________.23、计算:=________。
24、计算:________.25、若=-a,则a应满足的条件是________.三、解答题(共5题,共计25分)26、化简:27、已知:,,求代数式(a﹣3)(b﹣3)(a2+b2)的值.28、已知实数a,b在数轴上的对应点如图所示,化简:.29、习题集上有一道题为:“先化简,再求值:,其中a=,小刚的解法如下:= =2a-a+2=a+2,当a= 时,原式= +2,小刚的解法正确吗?若不正确,请写出正确的解法。