《材料力学》第7章应力状态和强度理论习题解..pdf
应力状态分析与强度理论-习题与答案
(A)受力构件横截面上各点的应力情况
(B)受力构件各点横截面上的应力情况
(C)构件未受力之前,各质点之间的相互作用力状况
(D)受力构件内某一点在不同横截面上的应力情况
2、一实心均质钢球,当其外表面迅速均匀加热,则球心O点处的应力状态是()
(A)单向拉伸应力状态(B)平面应力状态
(A)铸铁为塑性材料
(B)铸铁在三向压应力状态下产生塑性变形
(C)铸铁在单向压应力作用下产生弹性变形
(D)材料剥脱
7、混凝土立方试块在作单向压缩试验时,若在其上、下表面上涂有润滑剂,则试块破坏时将沿纵向裂开,其主要原因是()
(A)最大压应力(B)最大剪应力
(C)最大伸长线应变(D)存在横向拉应力
8、一中空钢球,内径d=20cm,内压p=15Mpa,材料的许用应力 =160Mpa,则钢球壁厚t只少是()
(A)t=47㎜(B)t=2.34㎜
(C)t=4.68㎜(D)t=9.38㎜
9、将沸水注入厚玻璃杯中,有时玻璃杯会发生破裂,这是因为()
(A)热膨胀时,玻璃杯环向线应变达到极限应变,从内、外壁同时发生破裂
(B)玻璃材料抗拉能力弱,玻璃杯从外壁开始破裂
(C)玻璃材料抗拉能力弱,玻璃杯从内壁开始破裂
(D)水作用下,玻璃杯从杯底开始破裂
因圆柱与钢筒之间的空隙 ,而 > ,故圆柱受钢筒弹性约束。设柱与筒之间的作用力为p,则铝柱中各点处主应力为
钢筒中各点处主应力为
设铝柱和钢筒的径向应变分别为 ,变形协变条件为
即
于是
得
p=2.74Mpa
故钢筒周向应力为
即
得
所以则其相当应力为
由于 <0.5
材料力学第七章应力状态和强度理论
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
材料力学 第07章 应力状态分析与强度理论
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
工程力学c材料力学部分第七章 应力状态和强度理论
无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
材料力学第七章 应力状态
主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
《材料力学》第7章-应力状态和强度理论-习题解讲课教案
第七章 应力状态和强度理论 习题解[习题7-1] 试从图示各构件中A 点和B 点处取出单元体,并表明单元体各面上的应力。
[习题7-1(a )]解:A 点处于单向压应力状态。
224412d F d F F A N A ππσ-=-==[习题7-1(b )]解:A 点处于纯剪切应力状态。
3316161d T d T W T P A ππτ-===MPa mm mm N 618.798014.310816336=⨯⋅⨯⨯=[习题7-1(b )]解:A 点处于纯剪切应力状态。
0=∑AM04.028.02.1=⨯--⨯B R )(333.1kN R B =)(333.1kN R Q B A -=-=MPa mmN A Q A 417.01204013335.15.12-=⨯⨯-=⨯=τB 点处于平面应力状态MPamm mm mm N I y M zB B 083.21204012130103.0333.1436=⨯⨯⨯⋅⨯⨯==σMPa mm mm mmN b I QS z zB 312.0401204012145)3040(1333433*-=⨯⨯⨯⨯⨯⨯-==τ[习题7-1(d )]解:A 点处于平面应力状态MPa mm mm N W M zA A 064.502014.3321103.39333=⨯⨯⋅⨯==σMPa mm mm N W T PA 064.502014.3161106.78333=⨯⨯⋅⨯==τ [习题7-2] 有一拉伸试样,横截面为mm mm 540⨯的矩形。
在与轴线成045=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。
试求试样所受的轴向拉力F 。
解:AFx =σ;0=y σ;0=x τ 004590cos 90sin 20x yx τσστ+-=A F 2045=τ 出现滑移线,即进入屈服阶段,此时,1502045≤=AFτ kN N mm mm N A F 6060000540/30030022==⨯⨯==[习题7-3] 一拉杆由两段沿n m -面胶合而成。
材力第7章习题解
∴ = 0,
MPa,
MPa
MPa
2. = 248 MPa;
∴ = 0,
MPa,
MPa
MPa 3. = 290 MPa。
∴ = 0,
MPa,
MPa
MPa
7-13 铝合金制成的零件上某一点处的平面应力状态如图所示,其屈服应力 = 280MPa。试按最大切应 力准则确定。
1.屈服时的 的代数值; 2.安全因数为 1.2 时的 值。 1.解:
1.(a)
(b)
,
2.(a)
(b) 用形状改变比能,相当应力相同。
7-17 薄壁圆柱形锅炉容器的平均直径为 1250mm,最大内压强为 23 个大气压(1 个大气压 0.1MPa), 在高温下工作时材料的屈服应力 = 182.5MPa。若规定安全因数为 1.8,试按最大切应力准则设计容器的 壁厚。
解:
,
,
习题 7-17 解图
壁厚:
mm
7-18 平均直径 D = 1.8m、壁厚 = 14mm 的圆柱形容器,承受内压作用。若已知容器为钢制,其屈服应力 = 400MPa,要求安全因数 ns = 6.0。试分别应用以下准则确定此容器所能承受的最大内压力。
1.用最大切应力准则; 2.用形状改变比能准则。
①设:
习题 7-13 图
=0
得
= 230 MPa
②设: =0
得
MPa
∴
= 230 MPa 或
MPa
2.解:
, = 168 MPa
或
,
MPa
∴
= 168 MPa 或
MPa
7-16 两种应力状态分别如图 a 和 b 所示,若二者的 、 数值分别相等,且
《材料力学》第7章应力状态和强度理论习题解..pdf
应力圆( O.Mohr 圆)
主单元体图
[ 习题 7-9 ( c)] 解:坐标面应力: X( -20 , -10 ); Y( -50 , 10)。根据以上数据作出如图所示的应
力圆。图中比例尺为 1cm 代表 10MPa 。按比例尺量得斜面的应力为:
1 0MPa , 2 16.25MPa , 3 53.75MPa ; 0 16.10 。
1 d3
d3
16
6
16 8 10 N mm 3.14 803 mm3
79.618MPa
[ 习题 7-1 ( b)] 解: A 点处于纯剪切应力状态。
MA 0
RB 1.2 0.8 2 0.4 0
RB 1.333(kN )
1
A A
QA RB 1.333( kN)
Q A 1.5
A
1333N 1.5 40 120 mm2
单元体图
应力圆( O.Mohr 圆)
主单元体图
[ 习题 7-9 ( d)] 解:坐标面应力: X( 80, 30); Y( 160, -30 )。根据以上数据作出如图所示的应
力圆。图中比例尺为 1cm 代表 20MPa 。按比例尺量得斜面的应力为:
1 170MPa , 2 70MPa , 3 0MPa ; 0 71.60 。
第七章 应力状态和强度理论 习题解
[ 习题 7-1] 试从图示各构件中 A 点和 B 点处取出单元体,并表明单元体各面上的应力。
[ 习题 7-1 ( a)]
解: A 点处于单向压应力状态。
N F 2F 4F
A
A
1 d2
d2
4
[ 习题 7-1 ( b)] 解: A 点处于纯剪切应力状态。
材料力学第七章答案 景荣春
答
案
网
τ 22.5°
ww
b 解 σ 22.5° =
− 30 + 10 − 30 − 10 cos 45° − 20 sin 45° = −38.3 MPa + 2 2 − 30 − 10 = sin 45° + 20 cos 45° = 0 2
w.
103
kh
da
w.
co
τ 45°
30 + 10 30 − 10 + cos 90° − (− 20 )sin 90° = 40 MPa 2 2 30 − 10 = sin 90° + (− 20 )cos 90° = 10 MPa 2
即
3 , θ = 36.87° , α = 90° − θ = 53.13° 4 σ α = 0 , τ α = 0 , τ max = 35 MPa σ +σ y σ x −σ y σα = x + cos 2α − τ xy sin 2α = 0 2 2 σ −σ y τα = x sin 2α + τ xy cos 2α = 0 2
代入式(b)得
σ 60° =
后
σ x + 40 σ x − 40
a 解 σ 45° =
课
c 解 σ −60 =
τ −60°
后
10 − 20 10 − (− 20 ) + cos(− 120°) − 15 sin (− 120°) = 0.490 MPa 2 2 10 − (− 20 ) = sin (− 120°) + 15 cos(− 120°) = 20.5 MPa 2
即
w. da
⎛σ x −σ y ⎞ 2 ⎟ τ max = ⎜ ⎜ ⎟ + τ xy = 35 2 ⎝ ⎠ σ x +σ y σ x −σ y + × (− 0.28) − τ xy × 0.96 = 0 2 2 σ x −σ y × 0.96 + τ xy × (− 0.28) = 0 2 2 ⎛σ x −σ y ⎞ 2 ⎜ ⎟ + τ xy = 1 225 ⎜ ⎟ 2 ⎠ ⎝
材料力学第07章应力状态与应变状态分析
以上由单元体公式
应力圆(原变换)
下面寻求: 由应力圆
单元体公式(逆变换)
只有这样,应力圆才能与公式等价
换句话,单元体与应力圆是否有一一对应关系?
为什么说有这种对应关系?
DE R sin[180o ( 2 20 )] R sin( 2 20 )
( R cos 20 ) sin 2 ( R cos 20 )cos 2
2
cos2
xy
sin 2
同理:
x
y
2
sin 2
xy
cos2
n
Ox
图2
二、极值应力
令:d
d
0
x
y
sin202 xycos200
由此得两个驻点:
01、(
01
2
)和两个极值:
tg20
2 xy x
y
y
mm
ax in
x
y ±(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力 !
y
O
x
七、主单元体、主平面、主应力:
y
y
主单元体(Principal bidy):
x
各侧面上剪应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
剪应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
A
材料力学 第七章 应力状态和强度理论
y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
材料力学B试题7应力状态-强度理论
材料力学B试题7应力状态-强度理论LT应力状态 强度理论1. 图示单元体,试求(1) 指定斜截面上的应力;(2) 主应力大小及主平面位置,并将主平面标在单元体上。
解:(1)MPa6.762sin 2cos 22=--++=ατασσσσσαx yx yxMPa 7.322cos 2sin 2-=+-=ατασσταx yx(2)22min max )2(2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02=σ,98.1213-=σ35.3940200arctan 21)2arctan(210==--=yx xyσστα2.解:取合适坐标轴令25=x σ MPa ,9.129-=xτ由02cos 2sin 2120=+-=ατασστxy yx得125-=yσMPa所以22min max )2(2xy y x y x τσσσσσσ+-±+=20010015050)9.129(755022-=±-=-+±-= MPa1001=σMPa ,02=σ,2003-=σ MPa3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。
解:150=yσMPa ,120-=x τ MPaMPa由 ατασστ2cos 2sin 245xy yx +-=802150-=-=x σ得10-=x σ MPa所以22min max )2(2xyy x y x τσσσσσσ+-±+=22.7422.214-= MPa22.2141=σ MPa ,02=σ,22.743-=σ4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e MkN ·m 。
求靠圆筒内壁任一点处的主应力。
解:75.505.032)1.0104.0(π10192.0443=⨯-⨯=x τ MPa504==t pd x σ MPa1002==tpd y σ MPa35.497.100)2(222min max =+-±+=xy y x y xτσσσσσσ MPa7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa5. 受力体某点平面上的应力如图示,求其主应力大小。
材料力学第七章
若应力状态由主应力表示,并且在max 0 和 min 0 的情况下,则式(7-7) 成为
max min
max
min
2
1 3
2
进一步讨论,由式(7-4)和式(7-6)可知
tan
21
1 tan 20
上式表明1 与 0 之间有如下关系:
1
0
4
可见,切应力取得极值的平面与主平面之间的夹角为 45 。
若三个主应力中,只有一个主应力不等于零,这样的应力状态称为 单向应力状态。若三个主应力中有两个不等于零,称为二向应力状态或 平面应力状态。若三个主应力皆不为零,称为三向应力状态或空间应力 状态。
第二节 平面应力状态分析——解析法
一、斜截面上的应力
图 7-1 所示为平面应力状态的最一般情况。已知 x , y , xy 和 yx 。现 在研究图中虚线所示任一斜截面上的应力,设截面上外法向 n 与 x 轴的夹角 为 。
令 d /d 0 ,由式(7-1)可得
x
2
y
sin
2
xy
cos 2
0
解得
(7-3)
tan 20
2 xy x y
通过运算,可以得到斜截面上正应力的极值为
(7-4)
max min
x
y 2
x
2
y
2
2 xy
(7-5)
由式(7-4)可知, 取得极值的角0 有两个,二者相差 90 ,即最大正应 力 max 和最小正应力 min ,二者分别作用在两个相互垂直的截面上。当 0 , 取得极值时,该斜截面上的切应力 0 ,即正应力就是主应力。
(a)
(b) 图7-6
例 7-4 悬臂梁受力如图 7-7(a)所示。试求截面 n n 上 A 点处的主应力 大小和方向,并按主平面画出单元体。
家电公司研发部资料材料力学习题答案(七)
第七章 应力状态和强度理论7-1 围绕受力构件内某点处取出的微棱柱体的平面图如图所示,已知该点处于平面应力状态,AC 面上的正应力σ=-14MPa ,切应力为零,试从平衡方程确定σx 和τx 值。
答:σx =37.9MPa ,τx =74.2MPa 解:利用公式求解x x x x x cos 2sin 222sin 2cos 22yyyαασσσσσατασστατα+-=+--=+代入数据得x x x x x 9292140.3430.94229200.940.3432σστστ+--=+⨯-⨯-=⨯+⨯σx =37.9MPa ,τx =74.2MPa7-2 试绘出图示水坝内A 、B 、C 三小块各截面上的应力(只考虑平面内受力情况)。
A: B: C:7-3 已知平面应力状态如图所示,已知σx =100MPa ,σy =40MPa,以及该点处的最大主应力σ1=120MPa ,试用应力圆求该点处的τx 及另外两个主应力σ2,σ3和最大剪应力τmax。
答:MPa,60,0MPa,20max 32===τσσx τ=40 MPa 解:由应力圆分析可得A BC题 7 - 2 图题 7 - 1 图111(100,),(40,),(,0)x x c D D C ττσ'-x 121004070MPa221207050MPa 705020MPayc c c r r σσσσσσσ++====-=-=∴=-=-=是平面应力状态3=0σ∴222x x 13max (100)40MPa120060MPa 22c r σττσστ∴=-+⇒=--===7-4 已知平面应力状态一点处互相垂直平面上作用有拉应力90MPa 和压应力50MPa ,这些面上还有剪应力,如果最大主应力为拉应力100MPa ,试求:(1) 上述面上的切应力; (2) 此平面上另一主应力; (3) 最大切应力平面上的正应力; (4) 最大切应力。
材料力学第7章应力和应变强度理论.答案
y
xy
x
§7.3 二向应力状态分析—解析法-实例1 解:1) 斜面上的应力
x y x y cos 2 xy sin 2 2 2
9.02 MPa
60 40 60 40 cos( 60 ) 30 sin( 60 ) 2 2
Me A B D C Me y
Me wt
在圆轴表层取出单元体ABCD ,单元体各面上的应力为:
x
ABCD
x y 0, xy
§7.3 二向应力状态分析—解析法-实例2
2). 主应力大小及方向确定
max x y x y 2 xy min 2 2
§7.3 二向应力状态分析—解析法-实例1
3)主应力单元体:
y
3
xy
1
x
15 .5
§7.3 二向应力状态分析—解析法-实例2 例7.4: 分析圆轴扭转时的应力状态。
Me A B D
C
Me
§7.3 二向应力状态分析—解析法-实例2
解:1). 单元体的应力状态
圆轴扭转时,在横截面的边缘 处切应力最大,数值为:x y来自2y xy
min
x y 2 xy 2 2 48.3MPa
x y
2
x
1 68.3MP a, 2 0, 3 48.3MP a
§7.3 二向应力状态分析—解析法-实例1
确定主平面的方位:
y
1 ( x y ) sin 2 xy cos 2 2
§7.3 二向应力状态分析—解析法
确定正应力和切应力的极值及它们所在平面的位置
材料力学 第七章 应力状态与强度理论
取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2
cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2
x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2
【孙训方】材料力学第7章应力状态和强度理论.pdf
W 03D
03D
03D
D
03D
03D
$
V R V
D D
+ &
D
V V 03D
%
V[ D
VD
WD
% V\
$ V \
W
% VD WD
D
V
&
V [
D $
P
]
[
\
) N1
P
W$
$
V$
W
W $
R
&
D
V
V $ W $
V V 03D
03D
D V D 03D W D 03D V 03D V V 03D
V
W 03D
V
& D
R
V
V 03D
F V 03D V V 03D D $
G V 03D V 03D V D $
03D 03D
VD
)V $
FRV D
d >V @
)V
>V @$
FRV D
WD
)W $
VLQ D
d
>W @
>V @ )W
>V @$
VLQ D
D $
)V >V @$ )W f
D $ )V >V @$ )W >V @$
D $ )V >V @$ )W >V @$
) $
材料力学习题册答案-第7章 应力状态
第 七 章 应力状态 强度理论一、 判断题1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。
(√)2、单元体中正应力为最大值的截面上,剪应力必定为零。
(√)3、单元体中剪应力为最大值的截面上,正应力必定为零。
(×) 原因:正应力一般不为零。
4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。
(×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。
三向等拉或等压倒是为一个点。
5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。
(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上6、材料在静载作用下的失效形式主要有断裂和屈服两种。
(√)7、砖,石等脆性材料式样压缩时沿横截面断裂。
(×)8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。
(×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论9、纯剪应力状态的单元体既在体积改变,又有形状改变。
(×) 原因:只形状改变,体积不变10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。
(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 11.圆杆受扭时,杆内阁点处于纯剪切状态。
(√)12.受扭圆轴内最大拉应力的值和最大切应力的值相等。
(√)二、 选择题1、危险截面是( C )所在的截面。
A 最大面积B 最小面积C 最大应力D 最大内力2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。
A 单元体的形状可以是任意的B 单元体的形状不是任意的,只能是六面体微元C 不一定是六面体,五面体也可以,其他形状则不行D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B )A 单向应力状态B 二向应力状态C 三向应力状态D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
600 。根据以上数据作出如图所示的应
力圆。图中比例尺为 1cm 代表 10MPa 。按比例尺量得斜面的应力为:
1200
25MPa , 1200 26MPa ; 1 20MPa , 3
40MPa ; 0
00 。
3
1
单元体图
应力圆( O.Mohr 圆)
主单元体图
[ 习题 7-8 ( b)]
解:坐标面应力: X( 0, 30); Y( 0, -30 )
50
Fmax,N ( [ ] A ) 1.000
1.031
1.132
1.250
1.333 1.704 2.420
Fmax,T ( [ ] A ) 31.836
2.924
1.556
1.250
1.155 1.015 1.015
60 4.000 1.155
5.000 4.000 3.000 2.000 1.000 0.000
按比例尺量得斜面的应力为:
600 0.1625MPa
600 0.065MPa
按习题 7-5 得到的公式计算如下:
x
y
2
x
y
cos 2
2
5
60 0
0.05 0.2 2
0.05
0.2 cos(
120 0 )
2
0.1625 MPa
x
y
sin 2
2
60 0
0.05
0.2 sin(
120 0 )
2
0.065MPa
单元体图
应力圆( O.Mohr 圆)
主单元体图
9
[ 习题 7-10] 已知平面应力状态下某点处的两个截面的的应力如图所示。
点处的主应力值和主平面方位,并求出两截面间的夹角
值。
试利用应力圆求该
平面应力状态下的两斜面应力
应力圆
解:两斜面上的坐标面应力为: A( 38, 28), B( 114, -48 ) 由以上上两点作出的直线 AB 是应力圆上的一条弦, 如图所示。作 AB的垂直平分线交水平坐标轴于 C
主应力为:
1 x r 86 55.57 141.57MPa
2 x r 86 55.57 30.43MPa 30
(2)主方向角
2
x sin 2
FF
F 1 cos2
cos 2
[]
2 A 2A
A2
F 1 cos 2 []
A2
F cos2
[]
A
[ ]A F cos2
F max, N
[ ]A cos2
x
y
sin 2
2
x cos 2
F sin 2
2A
3 [] [ ]
4
1.5[ ] A F
sin 2
F max,T 1.5[ ] A sin 2
0
最大荷载随角度变化曲线 Fmax,N,Fmax,T
斜面倾角 ( 度)
10
20
30
40
50
60
Fmax,N
Fmax,T
由以上曲线可知,两曲线交点以左, 由正应力强度条件控制最大荷载; 交点以右, 由切
应力强度条件控制最大荷载。 由图中可以看出, 当
26.5650510 时,杆能承受最大荷载,
该荷载为: Fmax 1.25[ ] A 1.25 14N / mm2 1000mm2 17500N 17.5kN
则 值应取多大?若杆的横截面面积为 1000mm2 ,试确定其最大许可荷载。
解: 由上题计算得: F max,N
[ ]A cos2
x
y
sin 2
2
x cos 2
F sin 2
2A
[ ]A F
sin 2
F max,T
[ ]A sin 2
[ ] 0.5[ ]
( 0)
0.9
10
20
26.565051
30
40
10.55MPa
QS
* z
10 103 N (80 40) 60m m3
I zb
1 80 160 3 m m4 80m m
12
( 2)写出坐标面应力 X ( 10.55 , -0.88 ) Y( 0, 0.88 )
(3) 作应力圆求最大与最小主应力,
并求最大主应力与 x 轴的夹角
作应力圆如图所示。从图中按 比例尺量得:
4
[ 习题 7-5] 试根据相应的应力圆上的关系,写出图示单元体任一斜面
m n 上正应力及切
应力的计算公式。设截面 m n 的法线与 x 轴成 角如图所示(作图时可设 | y | | x | )。
解:坐标面应力: X( x , 0); Y( y , 0)
设 m n 斜面的应力为 M( , )。 X、Y 点
30 0 。根据以上数据作出如图所示的应力
圆。图中比例尺为 1cm 代表 10MPa 。按比例尺量得斜面的应力为: 600 26MPa , 600 15MPa ; 1 30MPa , 3 30MPa ; 0
450 。
单元体图
应力圆( O.Mohr 圆)
主单元体图
[ 习题 7-8 ( c)]
解:坐标面应力: X( -50 ,0); Y( -50 , 0)
0.417MPa
A
B 点处于平面应力状态
B
MBy Iz
1.333 0.3 10 6 N m m 30m m 1 40 120 3 m m4
2. 083 MPa
12
QS
* z
B
I zb
1333N (40 30) 45m m3 1 40 120 3m m4 40m m 12
[ 习题 7-1 ( d)] 解: A 点处于平面应力状态
第七章 应力状态和强度理论 习题解
[ 习题 7-1] 试从图示各构件中 A 点和 B 点处取出单元体,并表明单元体各面上的应力。
[ 习题 7-1 ( a)]
解: A 点处于单向压应力状态。
N F 2F 4F
A
A
1 d2
d2
4
[ 习题 7-1 ( b)] 解: A 点处于纯剪切应力状态。
T
T
16T
A
WP
0.312 MPa
MA
A
Wz
39.3 103 N m m 1 3.14 20 3 m m3
50 .064 MPa
32
T
78.6 103 N m m
A
WP
50.064MPa 1 3.14 203 m m3
16
B
B
A
A
[ 习题 7-2] 有一拉伸试样,横截面为 40mm 5mm 的矩形。在与轴线成
切应力 解: x
[ 习题 7-9 ( a)] 解:坐标面应力: X( 130, 70); Y( 0,-70 )。根据以上数据作出如图所示的应
力圆。图中比例尺为 1cm 代表 20MPa 。按比例尺量得斜面的应力为:
1 160.5MPa , 2 0MPa , 3 30.5MPa ; 0 23056' 。
单元体图
应力圆( O.Mohr 圆)
作图法(应力圆法)与解析法(公式法)的结果一致。
[ 习题 7-7] 试用应力圆的几何关系求图示悬臂梁距离自由端为
下 40mm 的一点处的最大及最小主应力,并求最大主应力与
0.72m 的截面上,在顶面以 x 轴之间的夹角。
解:( 1)求计算点的正应力与切应力
My Iz
12My bh3
12 10 0.72 106 N mm 40mm 80 1603 mm4
最大荷载随角度变化曲线 Fmax,N,Fmax,T
斜面倾角 ( 度)
0
10
20
30
40
50
60
Fmax,N
Fmax,T
3
由以上曲线可知,两曲线交点以左, 由正应力强度条件控制最大荷载; 交点以右, 由切应力
强度条件控制最大荷载。由图中可以看出,当
600 时,杆能承受最大荷载,该荷载为:
Fmax 1.732[ ] A [ 习题 7-4] 若上题中拉杆胶合缝的许用应力 [ ] 0.5[ ] ,而 [ ] 7MPa ,[ ] 14MPa ,
8
主单元体图
[ 习题 7-9 ( b)] 解:坐标面应力: X( -140 ,-80 ); Y( 0, 80)。根据以上数据作出如图所示的应
力圆。图中比例尺为 1cm 代表 40MPa 。按比例尺量得斜面的应力为:
1 36.0MPa , 2 0MPa , 3 176MPa ; 0 65.60 。
单元体图
应力圆( O.Mohr 圆)
主单元体图
[ 习题 7-9 ( c)] 解:坐标面应力: X( -20 , -10 ); Y( -50 , 10)。根据以上数据作出如图所示的应
力圆。图中比例尺为 1cm 代表 10MPa 。按比例尺量得斜面的应力为:
1 0MPa , 2 16.25MPa , 3 53.75MPa ; 0 16.10 。
范围内。作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与
相应的许用应力比较。现设胶合缝的许用切应力
[ ] 为许用拉应力 [ ] 的 3/ 4 ,且这一拉杆
2
的强度由胶合缝强度控制。为了使杆能承受最大的荷载
解: x
F
;y
A
0; x 0
F,试问 角的值应取多大?
x
y
2
x
y
cos 2
0 0 。根据以上数据作出如图所示的应力
圆。图中比例尺为 1cm 代表 20MPa 。按比例尺量得斜面的应力为: 450 40MPa , 450 10; 1 41MPa , 2 0MPa , 3 61MPa ; 0