必修二解析几何测试题
解析几何习题(必修二)
直线和圆1.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN|≥23,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-34,0B.⎣⎢⎡⎦⎥⎤-33,33 C .[-3,3] D.⎣⎢⎡⎦⎥⎤-23,0 2.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是M(1,2),则直线PQ 的方程是( )3.圆心为原点且与直线x +y -2=0相切的圆的方程为________.4.圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为________.5.如果圆(x -a)2+(y -a)2=4上总存在两个点到原点的距离为1,则实数a 的取值范围是___________.6.若直线ax+by=1与圆x 2+y 2=1相交,则点P(a, b)与圆的位置关系是: ( )A 、在圆上B 、在圆外C 、在圆内D 、以上皆有可能7.与圆C :x 2+(y+5)2=3相切、且纵截距和横截距相等的直线共有: ( )A 、2条B 、3条C 、4条D 、6条8.在圆x 2+y 2=4上,与直线4x+3y -12=0的距离最小的点的坐标是: ( ) A 、(56,58) B 、()56,58- C 、(-56,58) D 、)56,58(--9.自点M (3,1)向圆x 2+y 2=1引切线,则切线方程是 ,切线长是10.与圆x 2+y 2=25内切于点(5,0),且与直线3x -4y+5=0也相切的圆方程是 。
11.已知圆心C (8,-3),且经过点M (5,1)的圆的方程 。
12.已知A(-4,-5)、B(6,-1),求以线段AB 为直径的圆的方程13.在轴上的截距为-1和9,且半径为13的圆的方程14.圆过点A(1,-2),B(-1,4), 圆心在直线2x -y -4=0上,求圆的方程。
15.圆16)4()7(22=++-y x 与圆16)6()5(22=-++y x 关于直线l 对称 ,则直线方程是 .16.一条光线从点)3,2(P 射出,经x 轴反射,与圆1)2()3(22=-++y x 相切,则反射光线所在直线的方程是 .17.已知点)15,2(),5,3(B A -,在直线0443:=+-y x l 上求一点P ,使PB PA +最小.18.已知圆6)2()1(:22=-++y x C ,直线01:=-+-m y mx l .(1)求证:不论m 取什么实数,直线l 与圆C 恒交于两点;(2)求直线l 被圆C 截得的弦长最小时l 的方程.19.若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则m 的取值集合是 .20.已知点)2,4(),6,2(),2,2(----C B A ,点P 在圆422=+y x 上运动,求222PC PB PA ++的最大值和最小值 ..21.已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 .22.已知点),(y x P 在圆1)1(22=-+y x 上运动.求21--x y 的最大值与最小值; 23.求满足下列各条件圆的方程:(1)以)9,4(A ,)3,6(B 为直径的圆; (2)与,x y 轴均相切且过点(1,8)的圆;(3)求经过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程;(4)经过两已知圆1C :22420x y x y +-+=和2C :22240x y y +--=的交点,且圆心在直线l :241x y +=上的圆的方程.(5)一个圆与y 轴相切,圆心在直线上,且在直线上截得的弦长为,求此圆的方程。
必修二解析几何测试题
第二章《解析几何初步》检测试题一、选择题( 本大题共12 小题,每小题 5 分,共60 分)1.过点( 1,0)且与直线x-2y-2=0 平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=02.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为A.4 和 3B.-4 和 3C.- 4 和-3D.4和-3 13,则 m,n 的值分别为()3.x轴上任一点到定点(0,2)、(1,1)距离之和最小值是()A. 2 B.2 2 C .10 D. 5 14.下列命题中为真命题的是()A.平行直线的倾斜角相等 B .平行直线的斜率相等C.互相垂直的两直线的倾斜角互补 D .互相垂直的两直线的斜率互为相反5.已知点A(1, 2) 、B (3,1) ,则线段AB 的垂直平分线l 的方程是()A.4x 2y 5 B .4x 2y 5 C .x 2y 5 D . x 2y 56.过直线3x y 1 0 与x 2y7 0的交点,且与第一条直线垂直的直线l 方程是()A. x 3y 7 0 B .x 3y 13 0 C . 2x y 7 0 D .3x y 5 07.直线x-y+1=0 与圆(x+1)2+y2=1 的位置关系是()A 相切B 直线过圆心C .直线不过圆心但与圆相交D .相离8.经过点P(2, 3) 作圆2 2(x1) y 25的弦 AB ,使点 P 为弦 AB 的中点,则弦AB所在直线方程为()A.x y 5 0 B. x y 5 0C.x y 5 0 D. x y 5 02 y 29.直线 x 2被圆(x a)4所截得的弦长等于 2 3 ,则a的值为()A、-1 或-3 B 、2或 2 C 、1 或 3 D 、 310.由直线y=x+1 上的一点向圆x2+y2-6x+8=0 引切线, 则切线长的最小值为( ) A.1 B .2 2 C .7 D .311.已知 2 y2 x y2 y x2O : x 4 6 0和O2 :x 6 0交于 A, B 两点,则AB 的垂直平分线的方程1是()A. x y 3 0 B. 2x y 5 0 C. 3x y 9 0 D. 4x 3y 7 04.空间直角坐标系中, 点 A( 3, 4,0) 和点 B (2, 1,6) 的距离是( ) A.243 B .221 C .9 D.86二填空题:(本大题共 4 小题,每小题 5 分,共20 分. )13.直线y 2x 关于x轴对称的直线方程为.14.已知点M ( a,b) 在直线 3x 4y 15 上,则2 b2a 的最小值为15.经过A( 2, 1) 和直线x y 1相切,且圆心在直线y 2x 上的圆的方程为______________________ __________ .11.过圆 x2+y2 -x+y-2=0 和 x2+y2=5 的交点,且圆心在直线3x+4y-1=0 上的圆的方程.三、解答题(本大题共 6 小题,共70 分,解答应写出文字说明,证明过程或演算步骤)12.求经过点 A (1,2) 且到原点的距离等于 1 的直线方程 .13.已知一曲线是与两个定点O(0,0) 、 A(3,0) 距离的比为12的点的轨迹,则求此曲线的方程.14.求垂直于直线3x 4y7 0 ,且与两坐标轴构成周长为10 的三角形的直线方程5.自点 A(-3 ,3) 发出的光线L 射到 x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y2-4x-4y+7=0 相切,求光线 L 所在直线的方程.6.已知圆C:2 2x 1 y9内有一点P(2,2),过点P 作直线 l 交圆 C于 A、B两点.(Ⅰ)当l 经过圆心C时,求直线l 的方程;(Ⅱ)当弦AB被点 P 平分时,写出直线l 的方程;(Ⅲ)当直线l 的倾斜角为45o 时,求弦AB的长.7.已知方程x2+y2-2x-4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0 相交于M、N两点,且OM⊥ON(O为坐标原点),求 m;(3)在(2)的条件下,求以MN为直径的圆的方程.。
中国人民大学附属中学必修二第二章《解析几何初步》测试题(含答案解析)
一、选择题1.设两条直线的方程分别为0x y a ++=,0x y b ++=,已知,a b 是方程20x x c ++=的两个实根,且108c ≤≤,则这两条直线之间的距离的最大值和最小值分别为( ) A3, B13, C.122, D.23, 2.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A.B.C.D.3.已知圆()()2295x a y a -+=>上存在点M ,使2OM MQ =(O 为原点)成立,()2,0Q ,则实数a 的取值范围是( )A .7a >B .57a <<C .1373a ≤≤ D .57a <≤4.已知直线:20()l kx y k R +-=∈是圆22:6260C x y x y +-++=的一条对称轴,若点(2,)A k ,B 为圆C 上任意的一点,则线段AB 长度的最小值为( ) A2B .2CD25.已知M 、N 分别是圆()()22:161C x y ++-=和圆()()22:261D x y -+-=上的两个动点,点P 在直线:l y x =上,则PM PN +的最小值是( ) A.2B .10C2D .126.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( ) A .4B .10C .5D7.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) ABC.15D.158.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,ABCS =品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π9.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,410.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π11.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π12.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .2二、填空题13.已知直线1:210l x my ++=与2:310l x y --=平行,则m 的值为__________. 14.已知直线l :230ax y a --+=与圆C :()()22124x y -+-=相交于P ,Q 两点,则PQ 的最小值为______.15.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.16.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,双曲线C 的离心率为______.17.若直线30ax by +-=与圆22410x y x ++-=相切于点()1,2P -,则a b +=________.18.将一张坐标纸折叠一次,使点(10,0)与点(6,8)-重合,则与点(4,2)-重合的点是______.19.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.20.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.21.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.22.如图,在正方体1111ABCD A B C D -中,E ,F ,G 分别是棱11A B ,1BB ,11B C 的中点,则下列结论中:①FG BD ⊥; ②1B D ⊥面EFG ;③面//EFG 面11ACC A ; ④//EF 面11CDD C . 正确结论的序号是________.23.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.24.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________.三、解答题25.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ; (2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .26.如图,在长方体1111ABCD A B C D -中,12AB BC AA ==,1O 是底面1111D C B A 的中心.(Ⅰ)求证:1//O B 平面1ACD ;(Ⅱ)求二面角1D AC D --的平面角的余弦值. 27.如图,在三棱锥A BCD -中,2,22,23,BCBD AB CD AC AB BD =====⊥(1)证明:平面ABC ⊥平面ABD .(2)在侧面ACD 内求作一点H ,使得BH ⊥平面ACD ,写出作法(无需证明),并求线段AH 的长.28.如图,四边形ABCD 为矩形,且4=AD ,22AB =,PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由韦达定理求出1,a b ab c +=-=,然后求出2||()4a b a b ab -=+-两平行线间的距离范围. 【详解】由已知得两条直线的距离是d =, 因为,a b 是方程20x x c ++=的两个根,所以1,a b ab c +=-=,则||a b -=, 因为108c ≤≤,所以12222,即1222d . 故选:C 【点睛】本题考查平行线间的距离公式,韦达定理和不等式,属于基础题.2.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C ,设(),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;3.D解析:D 【分析】根据2OM MQ =可得M 的轨迹方程.由点M 在圆()()2295x a y a -+=>上,可得M的轨迹方程与圆()()2295x a y a -+=>有公共点,即可由其位置关系求解. 【详解】 由题意,设(),M x y则由2OM MQ =,()2,0Q =化简变形可得2281639x y ⎛⎫-+= ⎪⎝⎭ 所以M 的轨迹为以8,03⎛⎫ ⎪⎝⎭为圆心,以43为半径的圆 由题意可知M 为2281639x y ⎛⎫-+= ⎪⎝⎭与()()2295x a y a -+=>的公共点即两个圆有公共点,由圆与圆的位置关系可知48433333a -≤-≤+ 解得1373a ≤≤ 又因为5a >所以57a <≤ 故选:D 【点睛】本题考查了点的轨迹方程求法,圆与圆位置关系式的应用,属于中档题.4.D解析:D 【分析】由直线l 是圆C 的一条对称轴,求得1k =,得到点(2,1)A ,再结合圆的性质,即可求解. 【详解】由题意,圆22:6260C x y x y +-++=,可得圆心(3,1)C -,半径为2r因为直线:20l kx y +-=是圆22:6260C x y x y +-++=的一条对称轴, 则(3,1)C -在直线l 上,即3120k --=,解得1k =,所以(2,1)A ,则AC ==所以线段AB 长度的最小值为min ||||2AB AC r =-=.2. 【点睛】本题主要考查了直线与圆的位置关系及其应用,其中解答中熟练应用直线与圆的位置关系求得k 的值,转化为点与圆的位置关系,结合圆的性质求解是解得关键,着重考查转化思想,以及计算能力.5.C解析:C 【分析】计算圆心()1,6-关于直线:l y x =的对称点为()16,1C -,计算1C D =. 【详解】圆()()22:161C x y ++-=的圆心为()1,6-,圆()()22:261D x y -+-=的圆心为()2,6,()1,6-关于直线:l y x =的对称点为()16,1C -,1C D ==故PM PN +的最小值是1122C D r r --=. 故选:C. 【点睛】本题考查了点关于直线对称,与圆相关的距离的最值,意在考查学生的计算能力和应用能力,转化能力.6.C解析:C 【分析】由题意结合直线位置关系的判断可得两直线互相垂直,由直线过定点可得定点A 与定点B ,进而可得22210PA PB AB +==,再利用基本不等式,即可得解.【详解】由题意直线0x my +=过定点(0,0)A ,直线30mx y m --+=可变为(1)30m x y --+=,所以该直线过定点()1,3B , 所以2221310AB =+=,又()110m m ⨯+⨯-=,所以直线0x my +=与直线30mx y m --+=互相垂直, 所以22210PA PB AB +==,所以22102PA PB PA PB =+≥⋅即5PA PB ⋅≤,当且仅当=PA PB , 所以PA PB ⋅的最大值为5. 故选:C. 【点睛】本题考查了直线位置关系的判断及直线过定点的应用,考查了基本不等式的应用,合理转化条件是解题关键,属于中档题.7.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C , 又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =, 又正方体中1111//,AC AC AC AC =, 所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角). 设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 215253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.8.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABABQMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =,求得6,23AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PABAB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,93ABCS =所以21sin 60932ABCSAB =⨯⨯=解得6,23AB AQ ==,所以3,23,3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..9.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE 中,利用三边关系求解即可. 【详解】由题意得BC x =,则21x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴AE =AD =,在ADE 中,由三边关系得:①122+>②122<+③0x >;由①②③可得0x <<.故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.10.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍, 所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-= 所以()(22232R R =+,解得3R =所以外接球的表面积为2100433S ππ==(2cm ).故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.11.C解析:C 【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积. 【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =,矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=. 故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD ,∴2BD ==所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴1,22BM AM ==.同理,在直角三角形CBD 中,1,22DN CN ==. ∴MN =BD -BM -DN =112122--=,∴2CM ===在直角三角形AMC 中,2AC === 故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.二、填空题13.【分析】解方程即得解【详解】由题得当时两直线不重合故答案为:【点睛】结论点睛:直线和直线平行则且两直线不重合解析:23-【分析】解方程230m ⨯⨯=(-1)-即得解. 【详解】由题得2230,3m m ⨯⨯=∴=-(-1)-. 当23m =-时,两直线不重合.故答案为:23-. 【点睛】结论点睛:直线1111:0l a x b y c ++=和直线2222:0l a x b y c ++=平行,则12210a b a b -=且两直线不重合.14.【分析】首先求出直线所过定点的坐标当时取得最小再根据弦长公式计算可得;【详解】解:因为所以令所以故直线恒过定点又因为故点在圆内当时取得最小因为所以故答案为:【点睛】本题考查直线和圆的位置关系弦长公式解析:【分析】首先求出直线所过定点M 的坐标,当PQ MC ⊥时,PQ 取得最小,再根据弦长公式计算可得; 【详解】解:因为230ax y a --+=,所以()()230x a y -+-=,令2030x y -=⎧⎨-=⎩,所以23x y =⎧⎨=⎩,故直线恒过定点()2,3M ,又因为()()22213224-+-=<,故点()2,3M 在圆内,当PQ MC ⊥时,PQ 取得最小,因为MC ==所以minPQ ===故答案为:【点睛】本题考查直线和圆的位置关系,弦长公式、两点间的距离公式的应用,关键是掌握直线与圆的位置关系以及应用,属于中档题.15.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程.解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.16.2【分析】求得双曲线的一条渐近线方程求得圆心和半径运用点到直线的距离公式和弦长公式可得ab 的关系即可得到所求离心率公式【详解】双曲线C :的一条渐近线方程设为圆的圆心为半径可得圆心到渐近线的距离为则化解析:2 【分析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a ,b 的关系,即可得到所求离心率公式. 【详解】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程设为0bx ay -=,圆22(2)4x y -+=的圆心为(2,0),半径2r ,可得圆心到渐近线的距离为d =则2=,化为22223a b c a ==-, 即224a c =,1ce a=>,解得2e =. 故答案为:2. 【点睛】本题考查圆与圆锥曲线的综合,解题关键是点到直线距离公式及弦长公式建立a ,b 的等量关系,即可求解a 、c 关系,属于中等题.17.3【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化与划归数【分析】根据题意,先由圆的方程求出圆心为()2,0-,根据直线和圆相切的性质列出方程组,求出,a b ,即得解.【详解】根据题意22410x y x ++-=的圆心为:()2,0-,若直线30ax by +-=与圆22410x y x ++-=相切于()1,2P -,则有2301,2302()1(2)(1)a b a b a b a b -+-=⎧⎪∴==∴+=-⎨⨯-=-⎪---⎩故答案为:3 【点睛】本题考查了直线和圆的位置关系,考查了学生转化与划归,数学运算的能力,属于中档题.18.【分析】先求得点的垂直平分线的方程然后根据点关于直线对称点的求法求得的对称点由此得出结论【详解】已知点点可得中点则∴线段AB 的垂直平分线为:化为设点关于直线的对称点为则解得∴与点重合的点是故答案为: 解析:()4,2-【分析】先求得点()()10,0,6,8-的垂直平分线的方程,然后根据点关于直线对称点的求法,求得()4,2-的对称点,由此得出结论.【详解】已知点(10,0)A ,点(6,8)B -,可得中点(2,4)M . 则816102AB k ==---.∴线段AB 的垂直平分线为:42(2)y x -=-, 化为20x y -=.设点()4,2-关于直线20x y -=的对称点为(,)P a b ,则2214422022baa b -⎧⨯=-⎪⎪--⎨-++⎪⨯-=⎪⎩,解得42a b =⎧⎨=-⎩. ∴与点()4,2-重合的点是()4,2-. 故答案为:()4,2-. 【点睛】本小题主要考查线段垂直平分线方程的求法,考查点关于直线对称点的坐标的求法,属于19.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=, 所以,球O 的半径为232x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.20.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为解析:224π 【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴2R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴22R r ==,故小球2O 的体积342324V r ππ==.故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.21.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,12633DM ⨯==, 6D M DM '==, 则222222666612cos 2232DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.22.②④【分析】由是正三角形可判断①;判断出平面平面平面可判断②;假设面面则可以推出可判断③;由平面平面平面可判断④【详解】连接分别是的中点对于①因方是正三角形所以与不垂直;对于②连接因为且所以平面平面解析:②④. 【分析】由1//FG BC ,1BDC 是正三角形,可判断①;判断出1DB ⊥平面11A C B ,平面11//AC B 平面EFG ,可判断②;假设面//EFG 面11ACC A ,则可以推出1//AA EF 可判断③;由平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,可判断④. 【详解】连接11A C ,1A B ,1BC ,BD ,1B D ,E ,F ,G 分别是1A B ,1BB ,11B C 的中点. 对于①,因方1//FG BC ,1BDC 是正三角形,所以FG 与BD 不垂直; 对于②,连接11D B ,因为1111111AC B D ,AC BB ⊥⊥,且1111B D BB B ⋂=,所以11A C ⊥平面11BDD B ,1DB ⊂平面11BDD B ,所以111AC DB ⊥,同理11BC DB ⊥,且1111A C BC C ,所以1DB ⊥平面11A C B ,因为1//A B EF ,11//AC EG ,且111A B AC A ⋂=,EF EG E =,所以平面11//AC B 平面EFG ,所以1B D ⊥平面EFG .正确;对于③,如果面//EFG 面11ACC A ,由平面EFG 平面11ABB A EF =,平面11CC A A平面111BB A A A A =,则1//AA EF ,显然不正确;对于④,因为平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,所以//EF 平面11CDD C ,正确故选:②④. 【点睛】方法点睛:本题主要考查了正方体中垂直与平行关系,考查了线线垂直、线面垂直的判定、线面平行的判断、面面平行的判断与性质,对于证明线线关系、线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明, 属于中档题.23.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.24.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可. 【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC 所以平面PAD ⊥平面ABC ,所以PAD ∠即为侧棱PA 与底面ABC 所成的角 由侧面PBC 和底面ABC 都是边长为2的正三角形得3AD PD ==3PA =所以PAD ∆为等边三角形,则=PAD ∠o 60 即侧棱PA 与底面ABC 所成的角为o 60 故答案为:o 60 【点睛】本题主要考查空间直线与平面所成角的计算,较简单.三、解答题25.(1)证明见解析;(2)证明见解析. 【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可. 【详解】(1)连接BD 交AC 于点O ,连结EO , 因为ABCD 为矩形,所以O 为BD 的中点, 又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力. 26.(Ⅰ)证明见解析;(Ⅱ)63. 【分析】(Ⅰ)连接BD 交AC 于点O ,连接1D O ,连接11B D ,可证11//O B D O ,即可得证; (Ⅱ)依题意可得1D OD ∠是二面角1D AC D --的平面角,再根据锐角三角函数计算可得; 【详解】(Ⅰ)证明:连接BD 交AC 于点O ,连接1D O ,连接11B D , 由长方体的性质知11BO O D =,且11//BO O D , 故四边形11BO D O 是平行四边形, 所以11//O B D O .又因为1D O ⊂平面1ACD ,1O B ⊄平面1ACD , 所以1//O B 平面1ACD .(Ⅱ)解:设122AB BC AA ===,由长方体底面ABCD 是正方形,得DO AC ⊥. 因为11D A D C =,O 是AC 的中点,所以1D O AC ⊥, 所以1D OD ∠是二面角1D AC D --的平面角.。
最新北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)(1)
一、选择题1.已知直线1l :10ax y -+=,2l :10x ay ++=,a R ∈,以下结论不正确的是( )A .不论a 为何值时,1l 与2l 都互相垂直B .当a 变化时,1l 与2l 分别经过定点()0,1A 和()1,0B -C .不论a 为何值时,1l 与2l 都关于直线0x y +=对称D .如果1l 与2l 交于点M ,则MO 的最大值是22.如图,棱长为2的正四面体ABCD 的三个顶点,,A B C 分别在空间直角坐标系的坐标轴,,Ox Oy Oz 上,则定点D 的坐标为( )A .()1,1,1B .2,2,2C .3,3,3D .()2,2,23.已知点P 是直线:3420l x y +-=上的一个动点,过点P 作圆()()222:23C x y r +++=的两条切线PM ,PN ,其中M ,N 为切点,若MPN ∠的最大值为120°,则r 的值为( ) A 3B .3C .4D .64.已知直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段相交,则实数k 的取值范围为( ) A .32k ≤B .12k ≥-C .1322k -≤≤ D .12k ≤-或32k ≥ 5.若直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6,则4b aab+的最小值为( ) A .32 B .322+C .5D .76.直线3y x m =+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( ) A .3,2)B .3,3)C .323⎝⎭D .23⎛ ⎝⎭7.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( ) ①在α内存在无数多条直线与直线AB 平行;②在α内存在无数多条直线与直线AB 垂直; ③在α内存在无数多条直线与直线AB 异面; ④一定存在过AB 且与α垂直的平面β. A .1个B .2个C .3个D .4个8.如图,四棱柱ABCD A B C D ''''-中,底面ABCD 为正方形,侧棱AA '⊥底面ABCD ,32AB =,6AA '=,以D 为圆心,DC '为半径在侧面BCC B ''上画弧,当半径的端点完整地划过C E '时,半径扫过的轨迹形成的曲面面积为( )A .964π B .934π C .962π D .93π 9.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .2610.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π11.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( )A .6π B .4π C .3πD .2π12.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B .24C .34D .12二、填空题13.已知圆2260x y x +-=,过点1,2的直线被圆所截得的弦的长度最小值为______. 14.在极坐标系中,过点22,4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是__________.15.若圆222(3)(5)r x y -++=上有且只有两个点到直线432x y -=的距离为1,则半径r 的取值范围是______.16.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.17.若直线()():1210l m x m y m -+--=与曲线()2:422C y x =--有公共点,则直线l 的斜率的最小值是_________.18.若直线1y kx =+与圆2240x y kx my +++-=交于M 、N 两点,且M 、N 两点关于直线0x y +=对称,则20182019k m -=______.19.已知直三棱柱111ABC A B C -,90CAB ∠=︒,1222AA AB AC ===,则直线1A B 与侧面11B C CB 所成角的正弦值是______.20.点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===,若四面体ABCD 体积的最大值为32,则这个球的表面积为______. 21.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.22.在正三棱锥S ABC -中,23AB =,4SA =,E 、F 分别为AC 、SB 的中点,过点A 的平面α//平面SBC ,α平面=ABC l ,则异面直线l 和EF 所成角的余弦值为_________.23.如下图所示,三棱锥P ABC -外接球的半径为1,且PA 过球心,PAB △围绕棱PA 旋转60︒后恰好与PAC △重合.若3PB =,则三棱锥P ABC -的体积为_____________.24.如图在长方形ABCD 中,AB 6=BC 2=E 为线段DC 上一动点,现将△AED 沿AE 折起.使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C .则K 所形成轨迹的长度为_____.三、解答题25.如图所示,在四棱锥P ABCD -中,//AD BC ,3AD =,4BC =,M 为线段AD 上点,且满足2AM MD =,N 为PC 的中点.(Ⅰ)证明://MN 平面PAB ;(Ⅱ)设三棱锥N BCM -的体积为1V ,四棱锥P ABCD -的体积为2V,求12V V . 26.正四棱台两底面边长分别为3和9,若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积.27.如图1,在梯形ABCD 中,//BC AD ,4=AD ,1BC =,45ADC ∠=︒,梯形的高为1,M 为AD 的中点,以BM 为折痕将ABM 折起,使点A 到达点N 的位置,且平面NBM ⊥平面BCDM ,连接NC ,ND ,如图2.(1)证明:平面NMC ⊥平面NCD ;(2)求图2中平面NBM 与平面NCD 所成锐二面角的余弦值.28.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用直线垂直,系数满足()110a a ⨯+-⨯=即可判断A ;根据直线过定点与系数无关即可判断B ; 在1l 上任取点(),1x ax +,关于直线0x y +=对称的点的坐标为()1,ax x ---,代入2:10l x ay ++=,左边可得不恒为0,从而可判断C ;将两直线联立求出交点,在利用两点间的距离公式即可求解. 【详解】对于A ,()110a a ⨯+-⨯=恒成立,1l 与2l 都互相垂直恒成立,故A 正确;对于B ,直线1:10l ax y -+=, 当a 变化时,0x =,1y =恒成立, 所以1l 恒过定点(0,1)A ;2:10l x ay ++=,当a 变化时,1x =-,0y =恒成立, 所以2l 恒过定点(1,0)B -,故B 正确. 对于C ,在1l 上任取点(),1x ax +,关于直线0x y +=对称的点的坐标为()1,ax x ---, 代入2:10l x ay ++=, 得20ax =,不满足不论a 为何值时,20ax =成立, 故C 不正确;对于D ,联立1010ax y x ay -+=⎧⎨++=⎩,解得221111a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩,即2211,11a a M a a ---+⎛⎫⎪++⎝⎭,所以MO ==≤, 所以MOD 正确. 故选:C. 【点睛】本题考查了直线垂直时系数之间的关系、直线过定点问题、直线关于直线对称问题、两直线的交点、两点间的距离公式,考查了考生的计算求解能力,综合性比较强,属于中档题.2.A解析:A 【解析】的正四面体ABCD 可以放到正方体中,已知D 点、O 点的连线是正方体的体对角线,故D 点坐标为()1,1,1,选A.3.B【分析】由切线得四边形PMCN 的性质,要使得MPN ∠最大,则PC 最小,PC 的最小值即为圆心C 到直线的距离,再由已知角的大小可求得r . 【详解】由题意,PM PN CM CN r ===,sin MC rCPM PC PC∠==,2MPN MPC ∠=∠,所以MPN ∠最大时,PC 最小. 由题意知min 223(2)4(3)2434PC ⨯-+⨯--==+,又120MPN ∠=︒,所以sin 604r=︒,23r =. 故选:B . 【点睛】关键点点睛:本题考查直线与圆相切问题,过圆外一点P 作圆的两条切线,PM PN (,M N 是两切点),C 是圆心,则PC 是四边形PMCN 的对称轴,90PMC PNC ∠=∠=︒,P 点对圆的张角MPN ∠取得最大值时,PC 最小. 4.D解析:D 【分析】直线10kx y k ---=过定点()1,1P -,分别求出PM k 和PN k ,结合图形,可求出答案. 【详解】由题意,直线10kx y k ---=可化为()110k x y ---=,令1x =,得1y =-,即该直线过定点()1,1P -,111312PM k +==---,213312PN k +==-,所以当12k ≤-或32k ≥时,直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段故选:D. 【点睛】本题考查了直线系方程的应用,以及过两点的直线的斜率的求法,考查了数形结合的解题思想方法,是中档题.5.B解析:B 【分析】由题意结合直线与圆的位置关系可得直线经过圆心即12ab +=,再由基本不等式即可得解. 【详解】由题得圆的方程可以化为22(2)(1)9x y -++=,所以圆心为(2,1)-,半径为3r =, 因为直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6, 所以直线经过圆心,所以2440a b +-=,即12ab +=,所以441433322b a a b a b ab a b a b +⎛⎫⎛⎫=++=++≥+=+ ⎪⎪⎝⎭⎝⎭当且仅当41a b =-=时取等号,所以4b aab +的最小值为3+ 故选:B. 【点睛】本题考查了直线与圆位置关系、基本不等式求最值的应用,考查了运算求解能力与转化化归思想,属于中档题.6.D解析:D 【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =1=,解得:m =或m =(舍去),则直线与圆在第一象限内有两个不同的交点时,m的范围为2313m<<.故选:D.【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.7.C解析:C【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断.【详解】对于A,若直线AB与平面α相交,则在α内不存在直线与直线AB平行,错误;对于B,若直线AB与平面α相交且不垂直,设AB Mα=,过平面α外直线AB上一点P作PCα⊥,垂足为C,则在平面α内过点C一定可以作一条直线CD,使得CD CM⊥,所以CD AB⊥,而在平面α内,与直线CD平行的直线有无数条,所以在α内存在无数多条直线与直线AB垂直,若直线AB与平面α垂直,显然在α内存在无数多条直线与直线AB垂直,当直线AB与平面α平行时,显然可知在α内存在无数多条直线与直线AB垂直,正确;对于C,若直线AB与平面α相交,设AB Mα=,根据异面直线的判定定理,在平面α内,不过点M的直线与直线AB异面,所以在α内存在无数多条直线与直线AB异面,当直线AB与平面α平行时,显然可知在α内存在无数多条直线与直线AB异面,正确;对于D,若直线AB与平面α相交且不垂直,设AB Mα=,过平面α外直线AB上一点P作PCα⊥,垂足为C,所以平面ABC与平面α垂直,若直线AB与平面α垂直,则过直线AB的所有平面都与平面α垂直,当直线AB与平面α平行时,在直线AB上取一点P作PCα⊥,垂足为C,所以平面ABC与平面α垂直,正确.故真命题的个数是3个.故选:C.【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.8.A解析:A【分析】先确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,利用圆锥的侧面积S rl π=即可得出结论. 【详解】由题意 6,32CE CC AA BC AB ''=====,所以22361832BE CE CB =-=-=,所以45BCE ∠=, 45ECC '∠=, 所以曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,所以圆锥的侧面积 636186S rl CC DC ππππ'==⨯⨯=⨯⨯=, 所以曲面面积为1961868ππ⨯=. 故选:A. 【点睛】方法点睛:本题考查曲面面积,考查圆锥的侧面积,确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18是关键,考查系数的空间想象力. 9.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12A C ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值,因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =, 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=,故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.10.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R = 所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.11.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.12.B解析:B 【分析】作出图形,设2CD =,AD l ⊥,2AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =CA 、CD 为邻边作平行四边形ACDE ,在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos 452AC CD ==,AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,2AB AD ==,ABD ∴为等边三角形,则2BD =,四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥, AB AD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则222BE BD DE =+=,在平行四边形ACDE 中,//AE CD 且2AE CD ==, 所以,异面直线AB 与CD 所成角为BAE ∠或其补角, 在ABE △中,2AB =2AE BE ==,由余弦定理可得2222cos 24AB AE BE BAE AB AE +-∠==⋅. 因此,异面直线AB 与CD 所成角的余弦值为24. 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.2【分析】由相交弦长和圆的半径及圆心到过的直线的距离之间的勾股关系求出弦长的最小值即圆心到直线的距离的最大时而当直线与垂直时最大求出的最大值进而求出弦长的最小值【详解】由圆的方程可得圆心坐标半径;设解析:2 【分析】由相交弦长||AB 和圆的半径r 及圆心C 到过(1,2)D 的直线的距离d 之间的勾股关系,求出弦长的最小值,即圆心到直线的距离的最大时,而当直线与CD 垂直时d 最大,求出d 的最大值,进而求出弦长的最小值. 【详解】由圆的方程可得圆心坐标(3,0)C ,半径3r =;设圆心到直线的距离为d ,则过(1,2)D 的直线与圆的相交弦长||AB = 当d 最大时弦长||AB 最小,当直线与CD 所在的直线垂直时d 最大,这时||d CD ==所以最小的弦长||2AB =, 故答案为:2 【点睛】关键点睛:解答本题的关键是通过分析得到当直线与CD 所在的直线垂直时d 最大,弦长||AB 最小. 与圆有关的弦长问题的最值一般利用数形结合分析解答.14.【解析】试题分析:点的直角坐标为将圆的方程化为直角坐标方程为化为标准式得圆心坐标为半径长为而点在圆上圆心与点之间连线平行于轴故所求的切线方程为其极坐标方程为考点:1极坐标与直角坐标之间的转化;2圆的解析:cos 2ρθ=. 【解析】试题分析:点4π⎛⎫⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点4π⎛⎫⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=.考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程15.【详解】∵圆心P(3−5)到直线4x−3y=2的距离等于由|5−r|<1解得:4<r<6则半径r 的范围为(46)故答案为:(46)当时满足题意考点:1直线和圆的位置关系;2点到直线的距离 解析:46r <<【详解】∵圆心P (3,−5)到直线4x −3y =2的距离等于,由|5−r |<1,解得:4<r <6, 则半径r 的范围为(4,6). 故答案为:(4,6),当46r <<时满足题意.考点:1、直线和圆的位置关系;2、点到直线的距离.16.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行,当直线过AB 的中点时,2(5)712k --==--, 直线方程为27(1)y x -=--,即790x y +-=,当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.17.【分析】将直线的方程化为可求出直线所过的定点坐标作出曲线的图象利用数形结合思想可得出当直线与曲线有公共点时直线的斜率的最小值【详解】将直线的方程化为由得则直线过定点将曲线的方程变形为曲线为圆的上半圆解析:15【分析】将直线l 的方程化为()()210m x y x y +--+=,可求出直线l 所过的定点坐标,作出曲线C 的图象,利用数形结合思想可得出当直线l 与曲线C 有公共点时,直线l 的斜率的最小值. 【详解】将直线l 的方程化为()()210m x y x y +--+=,由2100x y x y +-=⎧⎨+=⎩,得11x y =-⎧⎨=⎩. 则直线l 过定点()1,1P -,将曲线C 的方程变形为()()()222242x y y -+-=≥,曲线C 为圆()()22224x y -+-=的上半圆,如下图所示:由图象可知,当直线l 过点A 时,直线l 的斜率取最小值211415PA k -==+. 故答案为:15. 【点睛】本题考查利用直线与圆的位置关系求直线斜率的最值,考查数形结合思想的应用,属于中等题.18.2【分析】由圆的方程得出圆心坐标根据圆的对称性可知直线通过圆心得出再由直线与直线相互垂直得出代入求解即可【详解】方程一定表示圆则圆心坐标为根据圆的对称性可知直线通过圆心则MN 两点关于直线对称直线与直解析:2 【分析】由圆的方程得出圆心坐标,根据圆的对称性可知直线0x y +=通过圆心,得出k m =-,再由直线1y kx =+与直线0x y +=相互垂直,得出1k =,代入20182019k m -求解即可. 【详解】22160k m ++>∴方程2240x y kx my +++-=一定表示圆则圆心坐标为,22k m ⎛⎫-- ⎪⎝⎭ 根据圆的对称性可知,直线0x y +=通过圆心 则022k mk m --=⇒=- M 、N 两点关于直线0x y +=对称∴直线1y kx =+与直线0x y +=相互垂直(1)11k k ∴⨯-=-⇒=20182019201820191(1)112k m ∴-=--=+=故答案为:2 【点睛】本题主要考查了圆的对称性的应用以及由直线与圆的位置关系确定参数的范围,属于中档题.19.【分析】取中点连接证明平面可得为直线与侧面所成的角进而可得答案【详解】取中点连接直三棱柱中平面平面又又面平面在平面上的射影为故为直线与侧面所成的角中中中故答案为:【点睛】方法点睛:求直线与平面所成的解析:10【分析】取11B C 中点D ,连接1,A D BD ,证明1A D ⊥平面11B C CB ,可得1A BD ∠为直线1A B 与侧面11B C CB 所成的角,进而可得答案. 【详解】取11B C 中点D ,连接1,A D BD ,直三棱柱中,1BB ⊥平面111A B C ,1A D ⊂平面111A B C ,11BB A D ∴⊥,又11111A B A C ==,111A D B C ∴⊥, 又1111B C BB B =,111,B C BB ⊂面11BB C C ,1A D ∴⊥平面11B C CB ,1A B ∴在平面11B C CB 上的射影为DB ,故1A BD ∠为直线1A B 与侧面11B C CB 所成的角,11Rt A B B 中,22211121125BB A B A B =+=+= 111Rt B A C 中,1112212122B C A D ===,1Rt A BD ∴中,1112102sin 5A D A BD AB ∠===10【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.20.【分析】先由题意得到的面积以及外接圆的半径记的外接圆圆心为为使四面体体积最大只需与面垂直由此求出设球心为半径为根据为直角三角形由勾股定理列出等式求出球的半径即可得出结果【详解】根据题意知是一个等边三 解析:254π【分析】先由题意,得到ABC 的面积,以及ABC 外接圆的半径,记ABC 的外接圆圆心为Q ,为使四面体ABCD 体积最大,只需DQ 与面ABC 垂直,由此求出2DQ =,设球心为O ,半径为R ,根据AQO 为直角三角形,由勾股定理列出等式,求出球的半径,即可得出结果. 【详解】根据题意知,ABC 是一个等边三角形,其面积为()2213333322S ⎛⎫=-= ⎪ ⎪⎝⎭,ABC 外接圆的半径为131260r ==,记ABC 的外接圆圆心为Q ,则1AQ r ==;由于底面积ABCS不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ⋅=,2DQ ∴=, 设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即2221(2)R R =+-,54R ∴=, 则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭.故答案为:254π. 【点睛】 思路点睛:求解几何体与球外接问题时,一般需要先确定底面外接圆的圆心位置,求出底面外接圆的半径,根据球的性质,结合题中条件确定球心位置,求出球的半径,进而即可求解.21.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 82π取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积.【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A ,所以四边形1ADCO 为平行四边形,所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==,所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.22.【分析】取中点连结根据题意得故所以为异面直线和所成角再根据几何关系求得在中故进而得答案【详解】取中点连结依题意:所以所以为异面直线和所成角在正三棱锥中是中点所以又因为平面平面所以平面所以因为分别是的 21取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,根据题意得//l BC ,//DE BC ,故//l DE ,所以DEF ∠为异面直线l 和EF 所成角,再根据几何关系求得在Rt DEF ∆中,122DF SA ==,11322DE BC AB ===,227EF DE DF =+=,故321cos 77DE DEF EF ∠===,进而得答案. 【详解】取AB 、BC 中点D 、G ,连结DE 、DF 、GS 、GA ,依题意://l BC ,//DE BC ,所以//l DE ,所以DEF ∠为异面直线l 和EF 所成角.在正三棱锥S ABC -中,G 是BC 中点,所以SG BC ⊥,AG BC ⊥,又因为SG AG G ⋂=,SG ⊂平面SAG ,AG ⊂平面SAG ,所以BC ⊥平面SAG ,所以BC SA ⊥.因为F 、D 分别是SB 、AB 的中点,所以//DF SA .所以DE DF ⊥.Rt DEF ∆中,122DF SA ==,11322DE BC AB === 所以227EF DE DF +.所以321cos 7DE DEF EF ∠===.故异面直线l 和EF 所成角的余弦值为:217 故答案为:217 【点睛】 本题考查异面直线所成角的求解,考查空间思维能力与运算能力,是中档题. 23.【分析】作于可证得平面得得等边三角形利用是球的直径得然后计算出再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合∴作于连接则∴又过球心∴而∴同理由得平面∴故答案为:【点睛】易错点睛:本题考查 解析:38【分析】作BH PA ⊥于H ,可证得PA ⊥平面BCH ,得60BHC ∠=︒,得等边三角形BCH ,利用PA 是球的直径,得PB AB ⊥,然后计算出BH ,再应用棱锥体积公式计算体积.【详解】∵PAB △围绕棱PA 旋转60︒后恰好与PAC △重合,∴PAB PAC ≅△△,作BH PA ⊥于H ,连接CH ,则,CH PA CH BH ⊥=,60BHC ∠=︒,∴BC BH CH ==.又PA 过球心,∴PB AB ⊥,而2,3PA PB ==,∴1AB =,同理1AC =,313PB AB BH PA ⋅⨯===,223333344216BCH S BH ⎛⎫=⨯=⨯= ⎪ ⎪⎝⎭△, 由BH PA ⊥,CH PA ⊥,CHBH H =,得PA ⊥平面BCH , ∴11333233P ABC BCH V S PA -=⋅=⨯⨯=△. 故答案为:38.【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作BH PA ⊥于H ,利用旋转重合,得PA ⊥平面BCH ,这样只要计算出BCH 的面积,即可得体积,这样作图可以得出60BHC ∠=︒,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转60︒,即为60CAB ∠=︒.旋转60︒是旋转形成的二面角为60︒.应用作出二面角的平面角. 24.【分析】由题意分析可得可知K 所形成轨迹为一个圆弧求出圆心角再求弧长即可【详解】由题意D′K ⊥AE 所以K 的轨迹是以AD′为直径的一段圆弧D′K 设AD′的中点为O ∵长方形ABCD′中ABBC ∴∠D′AC 解析:23π 【分析】 由题意分析可得DK AE ⊥可知K 所形成轨迹为一个圆弧,求出圆心角再求弧长即可.【详解】由题意,D ′K ⊥AE ,所以K 的轨迹是以AD ′为直径的一段圆弧D ′K ,设AD ′的中点为O , ∵长方形ABCD ′中,AB 6=,BC 2=, ∴∠D ′AC =60°,∴∠D ′OK =120°23π=, ∴K 所形成轨迹的长度为222323ππ⨯=,2 【点睛】 本题主要考查了空间中的轨迹问题,主要是找到定量关系分析轨迹,属于中等题型.三、解答题25.(Ⅰ)证明见解析;(Ⅱ)1227V V =. 【分析】(Ⅰ)要证明线面平行,需证明线线平行,取BP 的中点T ,连接AT ,TN ,证明//MN AT ;(Ⅱ)利用锥体体积公式,分别求两个锥体底面积和高的比值,表示体积比值.【详解】(Ⅰ)如图,取BP 的中点T ,连接AT ,TN .因为N 为PC 的中点,所以TN //BC ,且122TN BC ==. 又因为223AM AD ==,且//AD BC , 所以TN //AM ,TN AM =,即四边形AMNT 为平行四边形,所以MN //AT ,因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(Ⅱ)设四棱锥P ABCD -的高为h ,AD 与BC 间的距离为d .则()21117343326ABCD V h S h d hd =⨯⨯=⨯+=梯形, 11114323223BCM h h hd V S d =⨯⨯=⨯⨯⨯=△ 因此1227V V =. 【点睛】方法点睛:本题考查了线面平行的判断定理,意在考查转化与化归和计算求解能力,不管是证明面面平行,还是证明线面平行,都需要证明线线平行,证明线线平行的几种常见形式,1.利用三角形中位线得到线线平行;2.构造平行四边形;3.构造面面平行.26.723S =侧.【分析】过1C 作1C E AC ⊥于E , 过E 作EF BC ⊥于F ,得到1C F 为正四棱台的斜高, 可得答案.【详解】如图,设1O 、O 分别为上、下底面的中心,则1O O ⊥平面ABCD ,过1C 作1C E AC ⊥于E ,所以11//C E O O ,所以1C E ⊥平面ABCD ,1C E BC ⊥,过E 作EF BC ⊥于F ,连接1C F ,且1C EEF E =,所以BC ⊥平面1EFC ,1C F BC ⊥,则1C F 为正四棱台的斜高,由题意知145C CO ∠=,()11293322CE CO EO CO C O =-=-=⨯-=, 又2sin 453232EF CE =⋅=⨯=, ∴高()22231132333C F C E EF =+=+=, ∴()1393347232S =⨯+⨯⨯=侧.【点睛】本题考查了正四棱台侧面积的求法,关键点是作出正四棱台的斜高,考查了学生的空间想象力和计算能力.27.(1)证明见解析;(2)33. 【分析】(1)用分析法:要证平面NMC ⊥平面NCD ,只需证明CD ⊥平面NMC ,只需CM CD ⊥和NM CD ⊥;(2)由(1)的证明,以M 为原点,MB ,MD ,MN 所在的直线分别为x ,y ,z 轴建立空间直角坐标系M xgz -,用向量法计算.【详解】解:(1)如图,梯形ABCD 中,过点C 作CH DM ⊥于点H ,连接CM ,。
北师大版高中数学必修二第二章《解析几何初步》测试题(含答案解析)
一、选择题1.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( )A .2B .4C .7D .92.已知点()()2,0,2,0M N -,若圆()2226900x y x r r +-+-=>上存在点P (不同于,M N ),使得PM PN ⊥,则实数r 的取值范围是( )A .()1,5B .[]1,5C .()1,3D .[]1,33.已知圆221:2410C x y x y ++-+=,圆222:(3)(1)1C x y -++=,则这两个圆的公切线条数为( ) A .1条B .2条C .3条D .4条4.直线1y kx =+与圆()()22214x y -+-=相交于P 、Q 两点.若PQ ≥k 的取值范围是( )A .3,04⎡⎤-⎢⎥⎣⎦B .[]1,1-C .⎡⎢⎣⎦D .⎡⎣5.在圆M :224410x y x y +---=中,过点N (1,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .B .C .24D .66.在平面直角坐标系xOy 中,过x 轴上的点P 分别向圆221(1)(4)7:C x y -++=和圆222:(2)(5)9C x y -+-=引切线,记切线长分别为12,d d .则12d d +的最小值为( )A .B .C .D .7.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π8.如图,在长方体1111ABCD A BC D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .269.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m10.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .1211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43B .83C .3D .412.已知直线a 、b 都不在平面α内,则下列命题错误的是( ) A .若//a b ,//a α,则//b α B .若//a b ,a α⊥,则b α⊥ C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α二、填空题13.已知点(),P x y 是直线()300kx y k +-=≠上一动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的最小面积是1,则k 的值为__________.14.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.15.经过两直线11370x y +-=和12190x y +-=的交点,且与()3,2A -,()1,6B -等距离的直线的方程是______.16.直线y x b =+与曲线21x y =-b 的取值范围是______.17.过点1,12⎛⎫-⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.18.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=相切于点M ,则PM 的最小值为__________.19.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.20.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________. ①直线AD 与直线1C M 始终是异面直线 ②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC21.四棱锥V ABCD -中,底面ABCD 是正方形,各条棱长均为2.则异面直线VC 与AB 所成角的大小为______.22.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.23.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.24.已知A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离是球半径的13,且22AB =AC BC ⊥,则球O 的表面积是______.三、解答题25.如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于A ,B 的一动点.(1)证明:BC ⊥面PAC ;(2)若PA =AC =1,AB =2,求直线PB 与平面PAC 所成角的正切值.26.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,底面ABC 是直角三角形,4PA AB BC ===,O 是棱AC 的中点,G 是AOB ∆的重心,D 是PA 的中点.(1)求证:BC ⊥平面PAB ; (2)求证:DG//平面PBC ;27.将棱长为2的正方体1111ABCD A BC D -沿平面11A BCD 截去一半(如图1所示)得到如图2所示的几何体,点E ,F 分别是BC ,DC 的中点.(Ⅰ)证明:EF ⊥平面1A AC ; (Ⅱ)求三棱锥1A D EF -的体积.28.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出P 点到两圆心的距离,圆1C :22(1)(1)1x y -++=的圆心(11)E -,,圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,由()PF R PE r +--为最大值.再求得E 关于x 轴的对应点E ',PF PE -=PF PE '-FE '≤,由此可得最大值.【详解】圆1C :22(1)(1)1x y -++=的圆心(11)E -,,半径为r =1, 圆2C :22(4)(5)9x y -+-=的圆心(45)F ,,半径是R =3, 要使||||PN PM -最大,需||PN 最大,且||PM 最小,||PN 最大值为3PF +,||PM 的最小值为1PE -,故||||PN PM -最大值是(3)(1)4PF PE PF PE +--=-+,(45)F ,关于x 轴的对称点(45)F '-,,22(41)(51)5PF PE PF PE EF -=-≤=-+-+'=',故4PF PE -+的最大值为549+=, 故选:D . 【点睛】结论点睛:设P 是圆C 外一点,圆C 半径为r ,则P 到圆上点的距离的最大值为PC r +,最小值为PC r -,直线PC 与圆的两个交点为最大值点和最小值点.2.A解析:A 【分析】由题意可得两圆相交,而以MN 为直径的圆的方程为x 2+y 2=4,圆心距为3,由两圆相交的性质可得|r ﹣2|<3<|r+2|,由此求得r 的范围. 【详解】根据直径对的圆周角为90°,结合题意可得以MN 为直径的圆和圆 (x ﹣3)2+y 2=r 2有交点,显然两圆相切时不满足条件,故两圆相交.而以AB 为直径的圆的方程为x 2+y 2=4,两个圆的圆心距为3, 故|r ﹣2|<3<|r+2|,求得1<r <5, 故选A . 【点睛】本题主要考查直线和圆的位置关系,两圆相交的性质,体现了转化的数学思想,属于中档题.3.D解析:D 【分析】根据题意,分析两圆的圆心与半径,进而分析两圆的位置关系,据此分析可得答案. 【详解】根据题意,圆221:2410C x y x y ++-+=,即22+1+24x y -=()()其圆心为12-(,),半径12r =, 圆222:(3)(1)1C x y -++=,其圆心为31-(,),半径21r =,则有12125C C r r ==>+,两圆外离,有4条公切线;故选D . 【点睛】本题考查圆与圆的位置关系以及两圆的公切线,关键是分析两圆的位置关系,属于基础题.4.B解析:B 【分析】由PQ ≥()2,1到直线1y kx =+的距离d ≤,利用点到直线距离公式,列不等式可得结果.【详解】若PQ ≥则圆心()2,1到直线1y kx =+的距离d ≤=≤解得[]1,1k ∈-,故选B. 【点睛】本题主要考查点到直线的距离公式、直线与圆的位置关系,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系(求弦长问题需要考虑点到直线距离、半径,弦长的一半之间的等量关系);二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.5.A解析:A 【分析】先求得圆的圆心和半径,易知最长弦为直径,最短弦为过点()1,1与AC (直径)垂直的弦,再求得BD 的长,可得面积. 【详解】由224410x y x y +---=可得:22(2)(2)9x y -+-=, 故圆心为(2,2),半径为3r =,由N ()1,1为圆内点可知,过N (1,1)最长弦为直径,即AC =6 而最短弦为过()1,1与AC 垂直的弦, 圆心(2,2)到()1,1的距离:d ==所以BD== 所以四边形ABCD的面积:12S AC BD =⋅= 故选:A 【点睛】本题考查了直线与圆,圆的方程,圆的几何性质,面积的求法,属于中档题.6.D解析:D 【分析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解. 【详解】221(1)(4)7:C x y -++=,圆心()1,4-,半径1r =222:(2)(5)9C x y -+-=,圆心()2,5,半径33r =设点P ()0,0x , 则()()()()2222120010472059d d x x +=-++-+-+--()()220019216x x =-++-+()()()()222200103204x x =-+++-+-,即()0,0x 到()1,3-与()2,4两点距离之和的最小值, 当()0,0x 、()1,3-、()2,4三点共线时,12d d +的和最小, 即12d d +的和最小值为()()2212345052-+--==.故选:D 【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.7.A解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.8.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12AC ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值, 因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.9.C解析:C 【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算. 【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V=三棱柱ABC A B C '''-V+四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.10.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.11.A解析:A 【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可. 【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC -,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A. 【点睛】方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.12.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b 与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行, 因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确;在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误; 在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.【分析】先求圆的半径四边形的最小面积是1转化为三角形的面积是求出切线长再求的距离也就是圆心到直线的距离可解的值【详解】解:圆的圆心半径是由圆的性质知:四边形的最小面积是1是切线长)圆心到直线的距离就 解析:±1【分析】先求圆的半径,四边形PACB 的最小面积是1,转化为三角形PBC 的面积是12,求出切线长,再求PC 的距离也就是圆心到直线的距离,可解k 的值. 【详解】解:圆22:20C x y y +-=的圆心(0,1),半径是1r =,由圆的性质知:2PBC PACB S S ∆=四边形,四边形PACB 的最小面积是1, ()min 1122PBC rd S ∆==∴(d 是切线长) min 1d ∴=圆心到直线的距离就是PC 的最小值,2222111k+==+1k ∴=±故答案为:±1【点睛】本题考查直线和圆的方程的应用,点到直线的距离公式等知识,属于中档题.14.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程. 【详解】解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.15.或【分析】直接求两直线的交点与等距离的直线一条过AB 的中点一条平行AB 【详解】两直线和的交点为的中点为因为所求直线过且与等距离故所求直线过的中点或与直线平行当直线过的中点时直线方程为即当直线与直线平解析:790x y +-=或210x y ++= 【分析】直接求两直线的交点,与(3,2),(1,6)A B --等距离的直线,一条过AB 的中点,一条平行AB . 【详解】两直线11370x y +-=和12190x y +-=的交点为(2,5)-,(3,2),(1,6)A B --的中点为(1,2),因为所求直线过(2,5)-且与()3,2A -,()1,6B -等距离, 故所求直线过AB 的中点或与直线AB 平行, 当直线过AB 的中点时,2(5)712k --==--, 直线方程为27(1)y x -=--,即790x y +-=, 当直线与直线AB 平行时,26823(1)4k ---===---,直线方程为52(2)y x +=--,即210x y ++=. 故答案为:790x y +-=或210x y ++= 【点睛】本题主要考查了直线交点,直线的平行,直线的斜率,直线方程,属于中档题.16.或【分析】把曲线方程整理后可知其图象为半圆进而画出图象来要使直线与曲线有且只有一个交点那么很容易从图上看出其三个极端情况分别是:直线在第四象限与曲线相切交曲线与和另一个点以及与曲线交于点分别求出则的解析:11b -<≤或2b =- 【分析】把曲线方程整理后可知其图象为半圆,进而画出图象来,要使直线与曲线有且只有一个交点,那么很容易从图上看出其三个极端情况,分别是:直线在第四象限与曲线相切,交曲线与()0,1-和另一个点,以及与曲线交于点()0,1,分别求出b ,则b 的范围可得. 【详解】解:由曲线21x y =-,可得()2210x y x +=≥,表示一个半圆.如下图可知,()0,1A ,()10B ,,()0,1C -, 当直线y x b =+经过点A 时,10b =+,求得1b =; 当直线y x b =+经过点B ,点C 时,01b =+,求得1b =-; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得12b =,求得2b =-或2b =(舍),故b 的取值范围为11b -<≤或2b =-.故答案为:11b -<≤或2b =-. 【点睛】本题主要考查了直线与圆相交的性质,点到直线的距离公式,体现了数形结合的思想方法,属于中档题.17.【分析】过作于连接可得直角三角形中从而得到当时原点到直线的距离最大利用垂直求出的斜率从而得到的方程【详解】设点过坐标系原点作于连接则为原点到直线的距离在直角三角形中为斜边所以有所以当时原点到直线的距 解析:2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程. 【详解】 设点1,12A ⎛⎫-⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA , 则OB 为原点O 到直线l 的距离, 在直角三角形AOB 中,OA 为斜边, 所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大, 而1212OA k -==-,所以12l k =, 所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭, 整理得:2450x y --=【点睛】本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.18.【分析】求出圆心坐标圆的半径结合题意利用圆的到直线的距离半径满足勾股定理求出就是最小值【详解】解:因为的圆心半径为则圆心到直线的距离为:点在直线上过点的直线与曲线只有一个公共点则的最小值:故答案为: 解析:27【分析】求出圆心坐标,圆的半径,结合题意,利用圆的到直线的距离,半径,||PM 满足勾股定理,求出||PM 就是最小值. 【详解】解:因为()22:54C x y -+=的圆心(5,0),半径为2,则圆心到直线1:30l x y ++=的=P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:54C x y -+=只有一个公共点M ,则||PM故答案为:【点睛】本题考查点到直线的距离公式,直线与圆的位置关系,勾股定理的应用,考查计算能力,转化思想的应用,属于基础题.19.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC AC 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC AC 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.20.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈, 所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确;对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确; 对于④:当12D M MB =时,442,,333M ⎛⎫ ⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n ,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④.【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.21.60°【分析】根据AB ∥CD 得到异面直线与所成角即为∠VCD 由△VCD 为等边三角形即可求解【详解】如图示因为是正方形所以AB ∥CD 所以异面直线与所成角即为∠VCD 又各条棱长均为2所以△VCD 为等边三解析:60°【分析】根据AB ∥CD ,得到异面直线VC 与AB 所成角即为∠VCD ,由△ VCD 为等边三角形,即可求解.【详解】如图示,因为ABCD 是正方形,所以AB ∥CD ,所以异面直线VC 与AB 所成角即为∠VCD.又各条棱长均为2,所以△ VCD 为等边三角形,所以∠VCD =60°,异面直线VC 与AB 所成角的大小为60°.故答案为:60°【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 22.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π 【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积.【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=, 所以,球O 的半径为232x =O 的表面积为2231643S ππ=⨯=⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解. 23.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值 解析:4747-+⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果.【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N ,可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 1117827477tan tan()1637117O HN O HO NHO ---∠=∠-∠====+, 11171827477tan tan()7117O HM O HO OHM ++++∠=∠+∠====-, 所以tan θ的取值范围是4747-+⎣⎦, 故答案为:4747-+⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下:(1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值;(3)结合图形求得相应角的正切值;(4)利用和差角正切公式求得结果.24.【分析】先在直角三角形中列关系求得再求球的表面积即可【详解】是直角三角形外接圆圆心为的中点因为三点都在球的表面上球心到平面的距离为是球半径的所以中即故解得所以球的表面积故答案为:【点睛】本题考查了球 解析:9π【分析】先在直角三角形中列关系,求得R ,再求球的表面积即可.【详解】 22AB =,AC BC ⊥,ABC ∆是直角三角形,外接圆圆心为AB 的中点M , 因为A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离为OM ,是球半径的13, 所以OMB ∆中()()222OA OM MA =+,即2221132R R AB ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 故222112232R R ⎛⎫⎛⎫=+⨯ ⎪ ⎪⎝⎭⎝⎭,解得29=4R ,所以球O 的表面积29=4494S R πππ=⋅=. 故答案为:9π.【点睛】本题考查了球的表面积,属于中档题.三、解答题25.(1)证明见解析;(2)62. 【分析】(1)证明AC ⊥BC 和PA ⊥BC ,BC ⊥面PAC 即得证;(2)先证明∠BPC 为PB 与平面PAC 所成的角,再通过解三角形求出,BC PC 即得解.【详解】证明:(1) AB 为圆O 直径 ∴∠ACB =90°即AC ⊥BCPA ⊥面ABC ,∴PA ⊥BCAC PA =A∴BC ⊥面PAC.(2)BC ⊥面PAC , ∴∠BPC 为PB 与平面PAC 所成的角,在直角三角形ABC 中,22213BC =-=, 在直角三角形PAC 中,22112PC =+=,在直角三角形PBC 中,tan ∠BPC =3622=. 故直线PB 与平面PAC 所成角的正切值为6. 【点睛】 方法点睛:求线面角常用几何法求解,其步骤为:找→作→证(定义)→指→求(解三角形).26.(1)证明见解析;(2)证明见解析.【分析】(1)由线面垂直推出PA BC ⊥,由直角三角形推出AB BC ⊥,即可证明线面垂直;(2)连结OG 并延长交AB 于点E ,连结DO ,DE ,通过证明//DE 平面PBC 、//DO 平面PBC 证明平面DOE //平面PBC ,从而推出线面平行.【详解】(1)证明:PA ⊥平面ABC ,且BC ⊂平面ABC ,∴PA BC ⊥,底面ABC 是直角三角形且AB BC =,AB BC ∴⊥, 又PA ⊂平面PAB ,AB 平面PAB ,PA AB A =,∴BC ⊥平面PAB .(2)证明:连结OG 并延长交AB 于点E ,连结DO ,DE ,G 是AOB ∆的重心,∴ OE 为AB 边上的中线, ∴E 为AB 边上的中点,又有D 为PA 边上的中点, ∴//DE PB ,PB ⊂平面PBC ,//DE ∴平面PBC ,同理可得//DO 平面PBC ,又DE ⊂平面DOE ,DO ⊂平面DOE ,DE DO D ⋂=,∴平面DOE //平面PBC ,又有DG ⊂平面DOE , DG //∴平面PBC27.(Ⅰ)证明见解析;(Ⅱ)1.【分析】(Ⅰ)由BD AC ⊥和1A A BD ⊥,利用线面垂直的判定定理证得BD ⊥平面1A AC ,然后再由//BD EF 证明.(Ⅱ)由1D D ⊥平面ABCD ,则1D D 是三棱锥1D AEF -在平面AEF 上的高,然后利用等体积法11A D EF D AEF V V --=求解.【详解】(Ⅰ)如图所示:连接BD ,易知BD AC ⊥,因为1A A ⊥平面ABCD ,BD ⊂平面ABCD ,所以1A A BD ⊥,又1A AAC A =, 所以BD ⊥平面1A AC .在CBD 中,点E ,F 分别是BC ,DC 的中点,所以//BD EF .所以EF ⊥平面1A AC .(Ⅱ)∵1D D ⊥平面ABCD ,∴1D D 是三棱锥1D AEF -在平面AEF 上的高,且12D D =.∵点E ,F 分别是BC ,DC 的中点,∴1DF CF CE BE ====. ∴2111322222AEF S AD DF CF CE AB BE =-⋅⋅-⋅⋅-⋅⋅=△. ∴11111321332A D EF D AEF AEF V V S D D --==⋅⋅=⨯⨯=△. 【点睛】 方法点睛:(1)证明直线和平面垂直的常用方法:①线面垂直的定义;②判定定理;③垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);④面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑤面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.28.(1)证明见解析;(223 【分析】。
新北师大版高中数学必修二第二章《解析几何初步》检测(有答案解析)
一、选择题1.在坐标平面内,与点()1,2A 距离为1,且与点()3,1B 距离为2的直线共有( ) A .1条B .2条C .3条D .4条2.已知圆()()2295x a y a -+=>上存在点M ,使2OM MQ =(O 为原点)成立,()2,0Q ,则实数a 的取值范围是( )A .7a >B .57a <<C .1373a ≤≤ D .57a <≤3.已知直线:20()l kx y k R +-=∈是圆22:6260C x y x y +-++=的一条对称轴,若点(2,)A k ,B 为圆C 上任意的一点,则线段AB 长度的最小值为( )A 2B .2C D 24.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( )A .4B .10C .5D5.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1 B .2 C .3D .46.ABC 中,(1,5)A ,高BE ,CF 所在的直线方程分别为20x y -=,5100++=x y ,则BC 所在直线的方程是( ).A .04=+y xB .528x y -=C .350x y +=D .5328x y -=7.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A .5B .2C .3D .28.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π9.如图,在三棱锥P ABC -中,AB AC ⊥,AB AP =,D 是棱BC 上一点(不含端点)且PD BD =,记DAB ∠为α,直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ,则( )A .,γβγα≤≤B .,βαβγ≤≤C .,βαγα≤≤D .,αβγβ≤≤10.如下图所示是一个正方体的平面展开图,在这个正方体中①//BM 平面ADE ;②D E BM ⊥;③平面//BDM 平面AFN ;④AM ⊥平面BDE .以上四个命题中,真命题的序号是( )A .①②③④B .①②③C .①②④D .②③④11.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α12.已知二面角l αβ--为60,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,45ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14B .24C 3D .12二、填空题13.已知圆2260x y x +-=,过点1,2的直线被圆所截得的弦的长度最小值为______. 14.在极坐标系中,过点22,4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是__________.15.点(2,0),(0,2)A B -,实数k 是常数,,M N 是圆220x y kx ++=上两个不同点,P 是圆220x y kx ++=上的动点,若,M N 关于直线10x y --=对称,则PAB △面积的最大值是___________. 16.直线y kx =与函数2143y x x -=-+-k 的最小值是______.17.已知圆22:1O x y +=,直线:30l mx y m -=与圆O 交于A 、B 两点,1AB =,分别过A 、B 两点作直线l 的垂线交x 轴于C 、D 两点,则CD =__________.18.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.19.如图,在矩形ABCD 中,2AB =,1AD =,点E 为CD 的中点,F 为线段CE (端点除外)上一动点.现将DAF △沿AF 折起,使得平面ABD ⊥平面ABC .设直线FD与平面ABCF 所成角为θ,θ的取值范围为__________.20.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 是正方形,1AA ⊥平面ABCD ,且2AB BC ==,13AA =,经过顶点A 作一个平面α,使得//α平面11CB D ,若α平面1ABCD l =,α平面112ABB A l =,则异面直线1l 与2l 所成的角的余弦值为___________.21.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.22.在棱长为2的正方体1111ABCD A BC D -中,P 是11AB 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.23.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______24.如图在长方形ABCD 中,AB 6=BC 2=E 为线段DC 上一动点,现将△AED 沿AE 折起.使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C .则K 所形成轨迹的长度为_____.三、解答题25.如图,三枝锥D ABC -中,90ABC ∠=︒,1AB =,2BC CD DB ===.(1)若平面BCD ⊥平面ABC .求证:AB CD ⊥; (2)若1AD =,求CD 与平面ABC 所成的角.26.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.27.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.28.在三棱锥P ABC -中,G 是底面ABC 的重心,D 是线段PC 上的点,且2PD DC =.(1)求证:DG//平面PAB ;(2)若PAB △是以PB 为斜边的等腰直角三角形,求异面直线DG 与PB 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】根据题意可知,所求直线斜率存在,可设直线方程为y =kx +b , 即kx -y +b =0, 所以1211d k ==+,2221d k ==+,解之得k =0或43k =-, 所以所求直线方程为y =3或4x +3y -5=0, 所以符合题意的直线有两条,选B.2.D解析:D 【分析】根据2OM MQ =可得M 的轨迹方程.由点M 在圆()()2295x a y a -+=>上,可得M 的轨迹方程与圆()()2295x a y a -+=>有公共点,即可由其位置关系求解.由题意,设(),M x y则由2OM MQ =,()2,0Q化简变形可得2281639x y ⎛⎫-+= ⎪⎝⎭ 所以M 的轨迹为以8,03⎛⎫ ⎪⎝⎭为圆心,以43为半径的圆 由题意可知M 为2281639x y ⎛⎫-+= ⎪⎝⎭与()()2295x a y a -+=>的公共点 即两个圆有公共点,由圆与圆的位置关系可知48433333a -≤-≤+解得1373a ≤≤ 又因为5a > 所以57a <≤ 故选:D 【点睛】本题考查了点的轨迹方程求法,圆与圆位置关系式的应用,属于中档题.3.D解析:D 【分析】由直线l 是圆C 的一条对称轴,求得1k =,得到点(2,1)A ,再结合圆的性质,即可求解. 【详解】由题意,圆22:6260C x y x y +-++=,可得圆心(3,1)C -,半径为2r因为直线:20l kx y +-=是圆22:6260C x y x y +-++=的一条对称轴, 则(3,1)C -在直线l 上,即3120k --=,解得1k =,所以(2,1)A ,则AC ==,所以线段AB 长度的最小值为min ||||2AB AC r =-=.2. 【点睛】本题主要考查了直线与圆的位置关系及其应用,其中解答中熟练应用直线与圆的位置关系求得k 的值,转化为点与圆的位置关系,结合圆的性质求解是解得关键,着重考查转化思想,以及计算能力.4.C解析:C由题意结合直线位置关系的判断可得两直线互相垂直,由直线过定点可得定点A 与定点B ,进而可得22210PA PB AB +==,再利用基本不等式,即可得解.【详解】由题意直线0x my +=过定点(0,0)A ,直线30mx y m --+=可变为(1)30m x y --+=,所以该直线过定点()1,3B ,所以2221310AB =+=,又()110m m ⨯+⨯-=,所以直线0x my +=与直线30mx y m --+=互相垂直, 所以22210PA PB AB +==,所以22102PA PB PA PB =+≥⋅即5PA PB ⋅≤,当且仅当=PA PB , 所以PA PB ⋅的最大值为5. 故选:C. 【点睛】本题考查了直线位置关系的判断及直线过定点的应用,考查了基本不等式的应用,合理转化条件是解题关键,属于中档题.5.B解析:B 【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论. 【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3, 设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP ==根据弦长公式得最小值为2==. 故选:B. 【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.6.C解析:C 【分析】由垂直关系可得AB 和AC 的斜率,进而可得AB 和AC 的方程,分别解方程组可得B ,C 的坐标,进而可得方程. 【详解】解:∵两边AB ,AC 上的高线方程分别为5100++=x y 与20x y -=, ∴它们的斜率分别为15-,12,故AB 和AC 的斜率分别为5,2-, ∴AB 和AC 的方程分别为()551y x -=-,()521y x -=--, 整理为一般式可得50x y -=,270x y +-=联立方程组5020x y x y -=⎧⎨-=⎩,解得00x y =⎧⎨=⎩,即()0,0B ,同理联立2705100x y x y +-=⎧⎨++=⎩,解得53x y =⎧⎨=-⎩,即()5,3C -,∴BC 所在直线的方程为3050y x --=-,即350x y +=. 故选:C. 【点睛】本题考查直线的一般式方程和垂直关系,涉及直线的点斜式方程和斜率公式以及方程组的解法,属中档题.7.B解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出AO OE ===133OE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知AB AC AD ===45AEC ∠=,设底面边长为2x ,则DE x =,则AE =则在等腰直角三角形AOE 中,AO OE ===O 是底面中心,则13OE CE ==,3=,解得x =则1AO =,底面边长为则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.8.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则223R =, 所以外接球的表面积为2412S R ππ== 故选:B多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.9.A解析:A 【分析】由AB AP =,PD BD =,可得ABD △≌APD △,从而得DAB DAP α∠=∠=,而直线PA 与平面ABC 所成角为γ,由最小角定理可得γα≤,再由P ABC B PAC V V --=,PACABCSS≤,进而可比较,βγ的大小【详解】解:因为AB AP =,PD BD =,所以ABD △≌APD △, 所以DAB DAP α∠=∠=,因为直线PA 与平面ABC 所成角为γ, 所以由最小角定理可得γα≤, 因为AB AC ⊥,所以12ABCS AB AC =⋅, 因为1sin 2PACS AC AP PAC =⋅∠,AB AP =, 所以PACABCSS≤,令点P 到平面ABC 的距离为1d ,点B 到平面PAC 的距离为2d , 因为P ABC B PAC V V --=,1211,33P ABC ABC B PACPACV S d V S d --=⋅=⋅所以12d d ≤,因为直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ, 所以21sin ,sin d d AB PAβγ== 因为AB AP =, 所以sin sin βγ≥ 因为,(0,]2πβγ∈所以βγ≥, 故选:A 【点睛】关键点点睛:此题考查直线与平面所成的角,考查推理能力,解题的关键是利用了等体积法转换,属于中档题10.A【分析】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,得出BM ∥平面ADNE ,判断①正确;由连接AN ,则AN ∥BM ,又ED AN ⊥,判断②正确;由BD ∥FN ,得出BD ∥平面AFN ,同理BM ∥平面AFN ,证明平面BDM ∥平面AFN ,判断③正确;由MC BD ⊥,ED ⊥AM ,根据线面垂直的判定,判断④正确.【详解】把正方体的平面展开图还原成正方体ABCA ﹣EFMN ,如图1所示; 对于①,平面BCMF ∥平面ADNE ,BM ⊂平面BCMF , ∴BM ∥平面ADNE ,①正确;对于②,如图2所示,连接AN ,则AN ∥BM ,又ED AN ⊥,所以D E BM ⊥,②正确; 对于③,如图2所示,BD ∥FN ,BD ⊄平面AFN ,FN ⊂平面AFN ,∴BD ∥平面AFN ;同理BM ∥平面AFN ,且BD ∩BM =B ,∴平面BDM ∥平面AFN ,③正确; 对于④,如图3所示,连接AC ,则BD AC ⊥,又MC ⊥平面ABCD ,BD ⊂平面ABCD ,所以MC BD ⊥,又AC MC C ,所以BD ⊥平面ACM ,所以BD ⊥AM ,同理得ED ⊥AM ,ED BD D =,所以AM ⊥平面BDE ,∴④正确.故选:A .【点睛】关键点点睛:解决本题的关键在于展开空间想象,将正方体的平面展开图还原,再由空间的线线,线面,面面关系及平行,垂直的判定定理去判断命题的正确性.11.D解析:D 【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交; 对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D. 【点睛】方法点睛:证明或判断两个平面平行的方法有: ①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明; ④借助“传递性”来完成.12.B解析:B 【分析】作出图形,设2CD =,AD l ⊥,2AB =,然后以CA 、CD 为邻边作平行四边形ACDE ,可知BAD ∠为二面角l αβ--的平面角,异面直线AB 与CD 所成角为BAE∠或其补角,计算出ABE △三边边长,利用余弦定理计算出cos BAE ∠,即可得解. 【详解】 如下图所示:设2CD =,AD l ⊥,2AB =,以CA 、CD 为邻边作平行四边形ACDE , 在平面β内,AD l ⊥,2CD =,45ACD ∠=,则sin 2AD CD ACD =∠=cos452AC CD ==AB l ⊥,AD l ⊥,AB α⊂,AD β⊂,所以,BAD ∠为二面角l αβ--的平面角,即60BAD ∠=,2AB AD ==ABD ∴为等边三角形,则2BD , 四边形ACDE 为平行四边形,//DE AC ∴,即//DE l ,AD l ⊥,AB l ⊥,DE AB ⊥∴,DE AD ⊥, ABAD A =,DE ∴⊥平面ABD ,BD ⊂平面ABD ,DE BD ∴⊥,则222BE BD DE =+=,在平行四边形ACDE 中,//AE CD 且2AE CD ==,所以,异面直线AB 与CD 所成角为BAE ∠或其补角,在ABE △中,AB =,2AE BE ==,由余弦定理可得222cos 24AB AE BE BAE AB AE +-∠==⋅.因此,异面直线AB 与CD 所成角的余弦值为4. 故选:B. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.2【分析】由相交弦长和圆的半径及圆心到过的直线的距离之间的勾股关系求出弦长的最小值即圆心到直线的距离的最大时而当直线与垂直时最大求出的最大值进而求出弦长的最小值【详解】由圆的方程可得圆心坐标半径;设解析:2 【分析】由相交弦长||AB 和圆的半径r 及圆心C 到过(1,2)D 的直线的距离d 之间的勾股关系,求出弦长的最小值,即圆心到直线的距离的最大时,而当直线与CD 垂直时d 最大,求出d 的最大值,进而求出弦长的最小值. 【详解】由圆的方程可得圆心坐标(3,0)C ,半径3r =;设圆心到直线的距离为d ,则过(1,2)D 的直线与圆的相交弦长||AB = 当d 最大时弦长||AB 最小,当直线与CD 所在的直线垂直时d 最大,这时||d CD =所以最小的弦长||2AB =, 故答案为:2 【点睛】关键点睛:解答本题的关键是通过分析得到当直线与CD 所在的直线垂直时d 最大,弦长||AB 最小. 与圆有关的弦长问题的最值一般利用数形结合分析解答.14.【解析】试题分析:点的直角坐标为将圆的方程化为直角坐标方程为化为标准式得圆心坐标为半径长为而点在圆上圆心与点之间连线平行于轴故所求的切线方程为其极坐标方程为考点:1极坐标与直角坐标之间的转化;2圆的解析:cos 2ρθ=. 【解析】试题分析:点4π⎛⎫⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点4π⎛⎫⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=.考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程15.【详解】圆的圆心为在直线上圆的圆心为半径为1直线AB 的方程为即圆心到直线AB 的距离为面积的最大值是【点睛】首先要明确一个基本常识圆上有两个点关于一条直线对称说明这条直线必过圆心根据这个结论可求出圆的解析:3+【详解】圆220x y kx ++=的圆心为(,0)2k -,在直线10x y --=上,10,22kk ∴--=∴=-,圆220x y kx ++=的圆心为(1,0),半径为1,(2,0),(0,2)A B -,直线AB 的方程为122x y +=-,即20x y -+=,圆心到直线AB 2=,PAB △面积的最大值是1(132⨯=. 【点睛】首先要明确一个基本常识,圆上有两个点关于一条直线对称说明这条直线必过圆心,根据这个结论可求出圆的方程中的参数k ,进而求出元新坐标和圆的半径长,根据A 、B 的坐标求出AB 的长,然后求出圆上一点到直线的距离的最大值,若何求圆上一点到直线的距离的最大值,只需求出圆心到直线的距离,这个距离加上半径就是圆上一点到直线的距离的最大值,这个距离减去半径就是圆上一点到直线的距离的最小值.16.【分析】利用函数图象考虑当直线与半圆仅有一个交点时的取值范围同时注意讨论直线与圆相切的情况由此求解出的范围并确定出最小值【详解】如图函数的图象是圆的上半部分结合图象可知当时即时直线与半圆只有一个交点解析:13【分析】利用函数图象,考虑当直线与半圆2143y x x -=-+-仅有一个交点时k 的取值范围,同时注意讨论直线与圆相切的情况,由此求解出k 的范围并确定出最小值.【详解】 如图函数2431y x x =-+-+的图象是圆()()22211x y -+-=的上半部分,结合图象可知,当10103010k --≤<--时,即113k ≤<时,直线与半圆只有一个交点; 当直线与半圆相切时也仅有一个交点,则22111k k -=+,解得43k =或0k =(舍), 综上可知:min 13k =. 故答案为:13.【点睛】本题考查根据直线与圆的交点个数求解参数值,着重考查了数形结合思想的运用,难度一般.解答此题时要注意函数2143y x x -=-+-.17.【分析】利用垂径定理可求得的值设则联立方程利用韦达定理可求【详解】由可得圆心半径设圆心到直线距离为则由垂径定理可得解得设联立直线与圆方程得∴∴∴故答案为:【点睛】本题考查利用垂径定理解决圆的弦长问题 3【分析】1AB =,利用垂径定理可求得m 的值,设()11A x y ,,()22B x y ,,则()21212124CD x x x x x x =-=+-CD .【详解】由22:1O x y +=,可得圆心O ()00,,半径1R =, 设圆心到直线:30l mx y m -=距离为d ,则()22223311m m d m m ==++-,由垂径定理可得2 222ABR d⎛⎫=+ ⎪⎝⎭,222112⎛⎫=+⎝⎪⎭,解得213m=,设()11A x y,,()22B x y,,联立直线l与圆O方程得221x yy mx⎧+=⎪⎨=⎪⎩,∴()22221310m x x m+++-=,∴12131113x xm-+===++,21221313131113mx xm⨯--===++,∴12CD x x=-===.【点睛】本题考查利用垂径定理解决圆的弦长问题,联立方程利用韦达定理求线段长度,考查运算求解能力,是中档题.18.【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结合思想以【分析】先确定D轨迹,再根据射线上点与圆的位置关系求最值,即得结果.【详解】2222222(1)1,111,yx c a a ca a=+∴=--=∴=-,所以D为以(1,0)F-为圆心,1a+为半径的圆及其内部,设射线()02x y x=≥-的端点为(2,2)A,所以PQ 的最小值为||(1),12,AF a a a a -+===【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.19.【分析】在矩形中作交于交于在翻折后的几何体中证得平面平面从而平面得是直线与平面所成的角设C 求得的范围后可得范围【详解】在矩形中作交于交于设由图易知∴即∴则在翻折后的几何体中又平面∴平面又平面∴平面平解析:(0,]6π【分析】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M ,在翻折后的几何体中,证得平面ODM ⊥平面ABCF ,从而DM ⊥平面ABCF ,得DFM ∠是直线FD 与平面ABCF 所成的角.设(01)CF x x =<<C ,求得sin θ的范围后可得θ范围.【详解】在矩形ABCD 中作DO AF ⊥,交AF 于O ,交AB 于M , 设(01)CF x x =<<,AM t =,由图易知DAM FDA △△,∴AM AD DA DF =,即112t x =-,∴12t x=-,01x <<,则112t <<. 在翻折后的几何体中,AF OD ⊥,AF OM ⊥,又ODOM O =,,OD OM ⊂平面ODM ,∴AF ⊥平面ODM ,又AF ⊂平面ABCF ,∴平面ODM ⊥平面ABCF ,又平面ABD ⊥平面ABC AB =.平面ODM平面ABD DM =,∴DM ⊥平面ABCF ,连接MF ,则DFM ∠是直线FD 与平面ABCF 所成的角.DFM θ∠=,而DM 12DF x t=-=,∴sin DM DF θ====, ∵112t <<,∴2114t <<,∴10sin 2θ<≤,即06πθ<≤.故答案为:(0,]6π.【点睛】方法点睛:本题考查求直线与平面所成的角,求线面角常用方法:(1)定义法:作出直线与平面所成的角并证明,然后在直角三角形中计算可得; (2)向量法:建立空间直角坐标系,由直线的方向向量与平面的法向量夹角的余弦的绝对值等于直线与平面所成角的正弦值计算.20.【分析】先利用线面平行的性质定理和平面扩展得到异面直线所成角即BD 与所成的角再结合长方体棱长的条件在中求其余弦值即可【详解】如图设平面平面平面平面因为平面所以故异面直线与所成的角即与所成的角延长AD 解析:2613【分析】先利用线面平行的性质定理和平面扩展,得到异面直线所成角即BD 与1A B 所成的角1A BD ∠,再结合长方体棱长的条件在1A BD 中求其余弦值即可.【详解】如图,设平面11CB D ⋂平面1ABCD l '=,平面11CB D ⋂平面112ABB A l '=,因为//α平面11CB D ,所以1122//,//l l l l '',故异面直线1l 与2l 所成的角,即1l '与2l '所成的角.延长AD 至E ,使AD DE =,连接CE ,则易见BD 与CE 平行且相等,又BD 与11B D 平行且相等,故BD 与11B D 平行且相等,即四边形11D B CE 是平行四边形,CE 就是交线1l '. 同理可知1B F 就是交线2l '.又知BD //CE ,11//B F A B ,故1l '与2l '所成的角,即BD 与1A B 所成的角1A BD ∠,依题意可知,2AB BC ==,13AA =,故1A BD 中,1113,22A B A D BD === 故1112262cos 13BDA BD AB ∠=== 26. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.21.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,33⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 11171827477tan tan()7117O HN O HO NHO ----∠=∠-∠====+ 11171827477tan tan()7117O HM O HO OHM ++++∠=∠+∠====-, 所以tan θ的取值范围是4747-+⎣⎦,故答案为:4747,⎡⎤-+⎢⎥⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.22.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:26【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可. 【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM , 因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC , 因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC , 所以1A N MC ,所以四边形1A MCN 是平行四边形, 因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1A MCN , 所以1//PC 平面1A MCN , 同理可证//PB 平面1A MCN , 因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1A MCN , 连接MN ,作1A H MN ⊥于点H ,由11AM A N ==,MN = 可得1AH ==所以111122A MNSMN A H =⨯⨯=⨯= 所以平行四边形1A MCN 的面积为12A MNS =故答案为:【点睛】关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.23.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC 中,由正弦定理得2sinBC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以1122sin 3442223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△. 因为11274233D ABC ABC V S AD AD -=⋅⋅=⨯⨯=△,所以14AD =.连接1OO ,又1//OO AD ,所以四边形1EAOO 为平行四边形, 11142EA OO AD ===,所以22221114324588R OO AO ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭.所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.24.【分析】由题意分析可得可知K 所形成轨迹为一个圆弧求出圆心角再求弧长即可【详解】由题意D ′K ⊥AE 所以K 的轨迹是以AD′为直径的一段圆弧D′K 设AD′的中点为O ∵长方形ABCD′中ABBC ∴∠D′AC 2 【分析】由题意分析可得DK AE ⊥可知K 所形成轨迹为一个圆弧,求出圆心角再求弧长即可. 【详解】由题意,D ′K ⊥AE ,所以K 的轨迹是以AD ′为直径的一段圆弧D ′K ,设AD ′的中点为O , ∵长方形ABCD ′中,AB 6=BC 2=∴∠D ′AC =60°, ∴∠D ′OK =120°23π=, ∴K 所形成轨迹的长度为222323π⨯=,2 【点睛】本题主要考查了空间中的轨迹问题,主要是找到定量关系分析轨迹,属于中等题型.三、解答题25.(1)证明见解析(2)30 【分析】(1)先由面面垂直证明AB ⊥平面BCD ,再由线面垂直的性质证明AB CD ⊥; (2)过点D 作AC 的垂线,垂足于点E ,连接BE ,先证明AC ⊥平面BDE ,进而得出D ABC V -,再由等体积法求出点D 到平面ABC 的距离,最后由直角三角形的边角关系得出线面角. 【详解】 (1)90ABC ∠=︒,AB BC ∴⊥又平面BCD ⊥平面ABC ,平面BCD平面ABC BC =,AB平面ABCAB ∴⊥平面BCD CD ⊂平面BCDAB CD ∴⊥(2)过点D 作AC 的垂线,垂足于点E ,连接BEABC ACD ≅△△,BE AC ∴⊥,且1263AB BC DE BE AC ⋅⋅====又BE DE E ⋂=,,BE DE ⊂平面BDEAC ∴⊥平面BDE22221333cos 42662333BED +--∠===-⨯⨯,120BED ︒∴∠=1661233sin1202332326BED S ︒∴=⨯=⨯⨯=△ 131336D ABC A BDE C BDE V V V ---∴=+==设点D 到平面ABC 的距离为h ,CD 与平面ABC 所成的角为θ。
数学必修二第二章解析几何初步试卷及答案
数学必修二第二章解析几何初步一、选择题:1.x 轴上任一点到定点(0;2)、(1;1)距离之和最小值是(C )A .2B .22+C .10D .15+2.点(4;0)关于直线5x+4y+21=0对称的点是(B )A .(-6;8)B .(-6;-8)C .(-8;-6)D .(6;8)3.直线 032=+-y x l :关于x y -=;对称的直线方程是(C ) A .032=+-y x B .032=-+x y C .032=--y x D .032=--y x4.过点P (2;1);且倾斜角是直线l :01=--y x 的倾斜角的两倍的直线方程为(B )A .012=--y xB .2=xC .)2(21-=-x yD .012=--y x5.以点A (-5;4)为圆心;且与x 轴相切的圆的方程是(C )A .25)4()5(22=-++y xB .16)4()5(22=++-y xC .16)4()5(22=-++y xD .25)4()5(22=++-y x 6.一条直线过点P (-3;23-);且圆2522=+y x 的圆心到该直线的距离为3;则该直线的方程为(C )A .3-=xB .233-=-=y x 或C .015433=++-=y x x 或D .01543=++y x7.过点A (1;-1);B (-1;1);且圆心在直线02=-+y x 上的圆的方程是(B )A .4)1()3(22=++-y xB .4)1()1(22=-+-y x C .4)1()3(22=-++y x D .4)1()1(22=+++y x8.已知圆C :4)2()(22=-+-y a x (0 a );有直线l :03=+-y x ;当直线l 被圆C 截得弦长为32时;a 等于(A )A .12-B .2-2C .2D .12+)(0)11()3()12(R k k y k x k ∈==--+--;所经过的定点是(B )A .(5;2)B .(2;3)C .(-21;3) D .(5;9)10.若直线12++=k kx y 与直线221+-=x y 的交点位于第一象限;则实数k 的取值范围是(C )A .26-- kB .061k -C .061 k -D .21k 0155,02,0321=--=-+=-ky x l y x l y x l :::构成一个三角形;则k 的范围是(C ) A .R k ∈B .R k ∈且0,1≠±≠k kC .R k ∈且10,5-≠±≠k kD .R k ∈且1,15≠±≠k k12.若点(2;k )到直线06125=+-y x 的距离是4;则k 的值是(D ) A .1 B .-3C .1或35D .-3或31713.已知点P (y x ,)在直线l :01043=-+y x 上;O 为原点;则当OP最小时;点P 的坐标是(A )A .⎪⎭⎫ ⎝⎛58,56B .)4,2(C .⎪⎭⎫ ⎝⎛-45,5 D .⎪⎭⎫⎝⎛-53,51 14.若点(2;k )到直线06125=+-y x 的距离是4;则k 的值是(A )A .-3或317B .-3C .1或35D .1二、填空题15.已知点A (2;5)、B (4;-1);若在y 轴上存在一点P ;使||||PB PA +最小;则点P 的坐标为__(0;3)___.16.直线0632=-+y x 关于点(1;-1)对称的直线方程为 2x+3y+8=0__. 17.若直线l 经过点(-1;3);且斜率为-2;则直线l 的方程为_2x+y-1=0_. 18.已知一条直线经过点P(1;2);且斜率与直线y= 2x +3的斜率相同;则该直线的方程是_2x-y=0 .19.在x 轴上的截距是5;倾斜角为43π的直线方程为 y=-x+5 。
必修2解析几何测试题
解析几何测试题1.直线083=-+y x 的倾斜角是( )A.6πB. 3π C. 32π D. 65π 2.原点到直线052=-+y x 的距离为 ( )A .1B .3C .2D .5 3.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 的值是( )A. 1或3B.1或5C.3或5D.1或24. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直,则a 的值为( )A .3-B .1C .0或23- D .1或3- 5. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x6. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程是( )A.053=--y xB. 073=-+y xC. 053=-+y xD. 053=+-y x7、两圆的位置关系是与04022222=-+=-+y x y y x ( )A 、相交B 、内切C 、外切D 、 内含8.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A 023=-+y x B.043=-+y x C 043=+-y x D .023=+-y x9.过点)1,2(且与两坐标轴都相切的圆的方程为( )A .1)1()1(22=-+-y xB .25)5()5(22=-++y xC .1)1()1(22=-+-y x 或25)5()5(22=-+-y xD .1)1()1(22=-+-y x 或25)5()5(22=-++y x10.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是( )A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=411.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( )A. 4)1()3(22=-++y xB. 4)3()1(22=-++y xC. 4)3()1(22=++-y xD. 4)1()3(22=++-y x12.若直线m x y += 与曲线21y x -= 只有一个公共点,则实数m 的取值范围 是( ) A.2±=m B.2≥m 或2-≤m C. 22<<-m D. 11≤<-m 或2-=m13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ;14.过点)5,2(-,且与圆012222=+-++y x y x 相切的直线方程为__________;15.已知直线06=+-y kx 被圆2522=+y x 截得的弦长为8,则k 的值为_____16.已知实数y x ,满足3)2(22=+-y x ,则xy 的取值范围是______________. 17 求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.18.已知一个圆C 和y 轴相切,圆心在直线03:1=-y x l 上,且在直线0:2=-y x l 上截得的弦长为72,求圆C 的方程.19.已知圆4)4()3(:22=-+-y x C 和直线034:=+--k y kx l(1)求证:不论k 取什么值,直线和圆总相交;(2)求k 取何值时,圆被直线截得的弦最短,并求最短弦的长.。
高中数学必修2解析几何初步测试题及答案详解
解析几何初步测试题及答案详解(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列叙述中不正确的是( )A .若直线的斜率存在,则必有倾斜角与之对应B .每一条直线都有唯一对应的倾斜角C .与坐标轴垂直的直线的倾斜角为0°或90°D .若直线的倾斜角为α,则直线的斜率为tan α2.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( )A .-3B .-6C .-32D .233.在同一直角坐标系中,表示直线y =ax 与直线y =x +a 的图象(如图所示)正确的是( )4.若三点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于( ) A .2 B .3 C .9 D .-95.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是( ) A .x +y +1=0 B .4x -3y =0 C .4x +3y =0D .4x +3y =0或x +y +1=0 6.已知点A (x,5)关于点(1,y )的对称点为(-2,-3),则点P (x ,y )到原点的距离是( ) A .4 B .13 C .15 D .177.已知直线l 1:ax +4y -2=0与直线l 2:2x -5y +b =0互相垂直,垂足为(1,c ),则a +b +c 的值为( )A .-4B .20C .0D .24 8.圆(x +2)2+y 2=5关于y 轴对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=59.以点P (2,-3)为圆心,并且与y 轴相切的圆的方程是( ) A .(x +2)2+(y -3)2=4 B .(x +2)2+(y -3)2=9 C .(x -2)2+(y +3)2=4 D .(x -2)2+(y +3)2=910.已知圆C :x 2+y 2-4x -5=0,则过点P (1,2)的最短弦所在直线l 的方程是( )A .3x +2y -7=0B .2x +y -4=0C .x -2y -3=0D .x -2y +3=011.若直线y =kx +1与圆x 2+y 2+kx -y -9=0的两个交点恰好关于y 轴对称,则k 等于( )A .0B .1C .2D .312.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为( )A .5B .10C .252D .254二、填空题(本大题共4小题,每小题5分,共20分)13.在空间直角坐标系Oxyz 中,点B 是点A (1,2,3)在坐标平面yOz 内的正射影,则|OB |=______.14.如果A (1,3)关于直线l 的对称点为B (-5,1),则直线l 的方程是________________. 15.已知直线l 与直线y =1,x -y -7=0分别相交于P 、Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________.16.若x ∈R ,y 有意义且满足x 2+y 2-4x +1=0,则yx的最大值为________.三、解答题(本大题共6小题,共70分)17.(10分)平行四边形的两邻边所在直线的方程为x +y +1=0及3x -4=0,其对角线的交点是D (3,3),求另两边所在的直线的方程.18.(12分)已知△ABC 的两条高线所在直线方程为2x -3y +1=0和x +y =0,顶点A (1,2). 求(1)BC 边所在的直线方程; (2)△ABC 的面积.19.(12分)已知一个圆和直线l :x +2y -3=0相切于点P (1,1),且半径为5,求这个圆的方程.20.(12分)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为22,求圆的方程.21.(12分) 如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?并说明理由.22.(12分)已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.(1)求点M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C,过点M(-2,3)的直线l被C所截得的线段的长为8,求直线l的方程.答案详解1.D[α=90°时,斜率不存在.∴选D.]2.B[当两直线平行时有关系a3=2-1≠2-2,可求得a=-6.]3.C4.D[由k AB=k AC得b=-9.]5.D [当截距均为0时,设方程为y =kx ,将点(3,-4)代入得k =-43;当截距不为0时,设方程为x a +ya=1,将(3,-4)代入得a =-1.]6.D7.A [垂足(1,c)是两直线的交点,且l 1⊥l 2,故-a 4×25=-1,∴a =10.l :10x +4y-2=0.将(1,c)代入,得c =-2;将(1,-2)代入l 2:得b =-12.则a +b +c =10+(-12)+(-2)=-4.]8.A [(x ,y)关于y 轴的对称点坐标(-x ,y),则得(-x +2)2+y 2=5.] 9.C [圆心为(2,-3),半径为2,故方程为(x -2)2+(y +3)2=4.]10.D [化成标准方程(x -2)2+y 2=9,过点P(1,2)的最短弦所在直线l 应与PC 垂直,故有k l ·k PC =-1,由k PC =-2得k l =12,进而得直线l 的方程为x -2y +3=0.]11.A [将两方程联立消去y 后得(k 2+1)x 2+2kx -9=0,由题意此方程两根之和为0,故k =0.]12.D [因为点A(1,2)在圆x 2+y 2=5上,故过点A 的圆的切线方程为x +2y =5,令x=0得y =52.令y =0得x =5,故S △=12×52×5=254.]13.13解析 易知点B 坐标为(0,2,3),故OB =13. 14.3x +y +4=015.-23解析 设P(x,1)则Q(2-x ,-3),将Q 坐标代入x -y -7=0得,2-x +3-7=0.∴x =-2,∴P(-2,1),∴k l =-23.16. 3解析 x 2+y 2-4x +1=0(y ≥0)表示的图形是位于x 轴上方的半圆,而yx 的最大值是半圆上的点和原点连线斜率的最大值,结合图形易求得最大值为3.17.解 由题意得⎩⎪⎨⎪⎧x +y +1=0,3x -y +4=0,解得⎩⎨⎧x =-54,y =14,即平行四边形给定两邻边的顶点为⎝⎛⎭⎫-54,14. 又对角线交点为D(3,3),则此对角线上另一顶点为⎝⎛⎭⎫294,234.∵另两边所在直线分别与直线x +y +1=0及3x -y +4=0平行,∴它们的斜率分别为-1及3,即它们的方程为y -234=-⎝⎛⎭⎫x -294 及y -234=3⎝⎛⎭⎫x -294, ∴另外两边所在直线方程分别为x +y -13=0和3x -y -16=0.18.解 (1)∵A 点不在两条高线上,由两条直线垂直的条件可设k AB =-32,k AC =1.∴AB 、AC 边所在的直线方程为3x +2y -7=0, x -y +1=0.由⎩⎪⎨⎪⎧ 3x +2y -7=0x +y =0得B(7,-7). 由⎩⎪⎨⎪⎧x -y +1=02x -3y +1=0得C(-2,-1). ∴BC 边所在的直线方程2x +3y +7=0. (2)∵|BC|=117, A 点到BC 边的距离d =1513, ∴S △ABC =12×d ×|BC|=12×1513×117=452. 19.解 设圆心坐标为C(a ,b), 则圆的方程为(x -a)2+(y -b)2=25. ∵点P(1,1)在圆上, ∴(1-a)2+(1-b)2=25. 又∵CP ⊥l ,∴b -1a -1=2,即b -1=2(a -1).解方程组⎩⎪⎨⎪⎧b -1=2(a -1),(a -1)2+(b -1)2=25,得⎩⎪⎨⎪⎧a =1+5,b =1+25,或⎩⎪⎨⎪⎧a =1-5,b =1-2 5.故所求圆的方程是(x -1-5)2+(y -1-25)2=25或(x -1+5)2+(y -1+25)2=25. 20.解 设圆的方程为(x -a)2+(y -b)2=r 2,∵圆上的点A(2,3)关于x +2y =0的对称点仍在圆上,∴圆心(a ,b)在直线x +2y =0上, 即a +2b =0. ① 圆被直线x -y +1=0截得的弦长为22, ∴⎝⎛⎭⎪⎫|a -b +1|22+(2)2=r 2. ② 由点A(2,3)在圆上得(2-a)2+(3-b)2=r 2. ③由①②③解得⎩⎪⎨⎪⎧ a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.∴圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.21.解如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P ,若P ′(异于P)在直线上, 则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B|.因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b),则AA ′的中点在l 上,且AA ′⊥l ,即⎩⎨⎧a +12+2×b +22-10=0,b -2a -1·⎝⎛⎭⎫-12=-1,解得⎩⎪⎨⎪⎧a =3,b =6,即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得⎩⎨⎧x =3811,y =3611,所以P 点的坐标为⎝⎛⎭⎫3811,3611. 故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 22.解 (1)由题意,得|M 1M||M 2M|=5.(x -26)2+(y -1)2(x -2)2+(y -1)2=5,化简,得x 2+y 2-2x -2y -23=0. 即(x -1)2+(y -1)2=25.∴点M 的轨迹方程是(x -1)2+(y -1)2=25, 轨迹是以(1,1)为圆心,以5为半径的圆. (2)当直线l 的斜率不存在时,l :x =-2, 此时所截得的线段的长为252-32=8,∴l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为 y -3=k(x +2),即kx -y +2k +3=0, 圆心到l 的距离d =|3k +2|k 2+1,由题意,得⎝⎛⎭⎪⎪⎫|3k +2|k 2+12+42=52, 解得k =512.∴直线l 的方程为512x -y +236=0.即5x -12y +46=0. 综上,直线l 的方程为x =-2,或5x -12y +46=0.。
(常考题)北师大版高中数学必修二第二章《解析几何初步》测试卷(含答案解析)(3)
一、选择题1.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A .2B .3C .22D .322.已知0a ≠,直线()240ax b y +++=与直线()230ax b y +--=互相垂直,则ab 的最大值为( ) A .0B .2C .4D .23.圆()()22211x y r -++=上有且仅有四个点到直线43110x y +-=的距离等于32,则半径r 的取值范围为( ) A .72r >B .72r <C .12r >D .1722r << 4.已知圆()()2295x a y a -+=>上存在点M ,使2OM MQ =(O 为原点)成立,()2,0Q ,则实数a 的取值范围是( )A .7a >B .57a <<C .1373a ≤≤ D .57a <≤5.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离等于22a a b ++,则该双曲线的离心率是( ) A .2B .3C .2D .56.如下图所示,在正方体1111ABCD A B C D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行 B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面7.在直角坐标平面内,过定点P 的直线:10l ax y +-=与过定点Q 的直线:30m x ay -+=相交于点M ,则22||||MP MQ +的值为( )A .102B .10C .5D .10 8.设m ,n 为两条不同的直线,α,β为两个不同的平面,给出下列命题:①若//m α,//m n ,则//n α; ②若m α⊥,//m β,则αβ⊥; ③若αβ⊥,n αβ=,m n ⊥,则m β⊥;④若//m n ,//αβ,则m 与α所成的角和n 与β所成的角相等.其中正确命题的序号是( )) A .①② B .①④C .②③D .②④9.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A .136B .3 C .336D .11610.如图,在三棱锥P ABC -中,AB AC ⊥,AB AP =,D 是棱BC 上一点(不含端点)且PD BD =,记DAB ∠为α,直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ,则( )A .,γβγα≤≤B .,βαβγ≤≤C .,βαγα≤≤D .,αβγβ≤≤11.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( ) A 2B .22C .12D .3212.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A 43B 23C .83D .43二、填空题13.已知直线1:220l x by ++=与直线2:210l x y -+=平行,则直线1l ,2l 之间的距离为__________.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________. 15.圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是________.16.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.17.经过两条直线2310x y ++=和340x y -+=的交点,并且平行于直线3470x y +-=的直线方程是________.18.已知m R ∈,动直线1:20l x my +-=过定点A ,动直线2230l mx y m --+=:过定点B ,若1l 与2l 交于点P (异于点A B ,),则PA PB +的最大值为_________. 19.在正三棱锥P ABC -中,E ,F 分别为棱PA ,AB 上的点,3PE EA =,3BF FA =,且CE EF ⊥.若23PB =,则三棱锥P ABC -的外接球的体积为_________.20.在如图棱长为2的正方体中,点M 、N 在棱AB 、BC 上,且1AM BN ==,P 在棱1AA 上,α为过M 、N 、P 三点的平面,则下列说法正确的是__________.①存在无数个点P ,使面α与正方体的截面为五边形; ②当11A P =时,面α与正方体的截面面积为33③只有一个点P ,使面α与正方体的截面为四边形;④当面α交棱1CC 于点H ,则PM 、HN 、1BB 三条直线交于一点.21.在直三棱柱111ABC A B C -中,90ABC ∠=︒,13AA O ,已知三棱锥O ABC -3O 表面积的最小值为______. 22.已知三棱锥A BCD -中,2AB CD ==3AC BC AD BD ====,则三棱锥A BCD -的体积是____________.23.三棱锥P ABC -的各顶点都在同一球面上,PC ⊥底面ABC ,若1PC AC ==,2AB =,且60BAC ∠=︒,给出如下命题:①ACB △是直角三角形;②此球的表面积等于11π; ③AC ⊥平面PBC ;④三棱锥A PBC -的体积为3. 其中正确命题的序号为______.(写出所有正确结论的序号)24.在正方体1111ABCD A B C D -中,P 为线段1AB 上的任意一点,有下面三个命题:①//PB 平面11CC D D ;②1BD AC ⊥;③1BD PC ⊥.上述命题中正确命题的序号为__________(写出所有正确命题的序号).三、解答题25.已知四棱锥P ABCD -的底面是菱形,60,BCD PD AD ∠=︒⊥,点E 是BC 边的中点.(Ⅰ)求证:AD ⊥平面PDE ;(Ⅱ)若二面角P AD C --的大小等于60︒,且834,AB PD ==①点P 到平面ABCD 的距离;②求直线PB 与平面ABCD 所成角的大小.26.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,32,3,PB PD PA AD ====点,E F 分别为线段,PD BC 的中点.(1)求证://EF 平面ABP ; (2)求证:平面AEF ⊥平面PCD ; (3)求三棱锥C AEF -的体积27.如图,在正三棱柱111ABC A B C -中,若12AB BB =,AD DC =,试证明:(1)1//AB 平面1BC D ; (2)11AB BC ⊥.28.已知圆锥的侧面展开图为半圆,母线长为23.(1)求圆锥的底面积;(2)在该圆锥内按如图所示放置一个圆柱,当圆柱的侧面积最大时,求圆柱的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为d =所以公共弦长为:l ==. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.2.B解析:B 【分析】根据两直线垂直,得到关于,a b 的等式224a b +=,再利用基本不等式即可求出ab 的最大值. 【详解】因为直线()240ax b y +++=与直线()230ax b y +--=互相垂直, 所以2(2)(2)0a b b ++-=,即224a b +=, 因为222a b ab +≥, 所以24ab ≤,即2ab ≤, 故选:B. 【点睛】本题将两直线位置关系与基本不等式相结合进行考查,难度不大.3.A解析:A 【分析】圆()()22211x y r -++=上有且仅有四个点到直线43110x y +-=的距离等于32,先求圆心到直线的距离,再根据题意求半径的范围即可. 【详解】由()()22211x y r -++=可知圆心为()1,1-,圆心到直线43110x y +-=的距离为2=,因为圆上有且仅有四个点到直线43110x y +-=的距离等于32,所以322->r ,解得72r >. 故选:A 【点睛】本题主要考查直线与圆的位置关系,属于中档题.4.D解析:D 【分析】根据2OM MQ =可得M 的轨迹方程.由点M 在圆()()2295x a y a -+=>上,可得M 的轨迹方程与圆()()2295x a y a -+=>有公共点,即可由其位置关系求解. 【详解】 由题意,设(),M x y则由2OM MQ =,()2,0Q=化简变形可得2281639x y ⎛⎫-+= ⎪⎝⎭ 所以M 的轨迹为以8,03⎛⎫ ⎪⎝⎭为圆心,以43为半径的圆 由题意可知M 为2281639x y ⎛⎫-+= ⎪⎝⎭与()()2295x a y a -+=>的公共点即两个圆有公共点,由圆与圆的位置关系可知48433333a -≤-≤+ 解得1373a ≤≤ 又因为5a >所以57a <≤ 故选:D 【点睛】本题考查了点的轨迹方程求法,圆与圆位置关系式的应用,属于中档题.5.A解析:A 【分析】依题意求得,,A B C 的坐标,求得直线,BD CD 的方程,联立,BD CD 的方程求得D 点坐标,根据D 到直线BC 的距离等于a . 【详解】依题意可知()22,0,,,,b b A a B c C c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,所以()()22,AB CD a c a b k k a c a b -==--,()()22,ACBD a c a b k k a c a b -=-=-,所以直线BD :()()22a c ab y xc a b--=-①,直线CD :()()22a c ab y xc a b-+=--②, ①-②并化简得()42D b x c a c a =+-.由于D 到直线BC 的距离等于a a c =+,直线BC 方程为x c =,所以()42D b x c a a c a =+=--,化简得22,a b a b ==,所以双曲线为等轴双曲线,离心率为.故选:A 【点睛】本小题主要考查直线和直线交点坐标的求法,考查直线方程点斜式,考查两条直线垂直斜率的关系,考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于中档题.6.D解析:D 【分析】设正方体1111ABCD A B C D -的棱长为2,利用正方体性质可求得MN =,EF =知12MN EF ≠,再利用三角形中位线性质知1//MN B C ,从而//MN ED ,又EF 与ED 相交,可知MN 与EF 异面,即可选出答案. 【详解】设正方体1111ABCD A B C D -的棱长为2,则MN ==作E 点在平面ABCD 的投影点G ,即EG ⊥平面ABCD ,连接,EG GF ,在直角EGF △中,1EG =,GF ==EF ===以12MN EF ≠,故排除A 、C 连接DE ,由E 是平面11ADD A 的中心,得112DE A D =又M N 、分别是11B C 、1CC 的中点,所以1//MN B C 又11//A D B C ,所以//MN ED , 又EF ED E ⋂=,所以MN 与EF 异面 故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.7.D解析:D 【分析】由已知得(0,1)P ,(3,0)Q -,过定点P 的直线10ax y +-=与过定点Q 的直线30x ay -+=垂直,M 位于以PQ 为直径的圆上,由此能求出22||||MP MQ +的值即可.【详解】在平面内,过定点P 的直线10ax y +-=与过定点Q 的直线30x ay -+=相交于点M ,(0,1)P ∴,(3,0)Q -,过定点P 的直线10ax y +-=与过定点Q 的直线30x ay -+=垂直,M ∴位于以PQ 为直径的圆上,||9110PQ =+=22||||10MP MQ ∴+=,故选:D . 【点睛】本题考查圆的轨迹方程求解,解题时要认真审题,注意两点间距离公式的合理运用.8.D解析:D 【分析】①根据//n α或n ⊂α判断;②利用面面垂直的判定定理判断;③根据m β⊂,或//m β,或m 与β相交判断;④利用线面角的定义判断.【详解】①若//m α,//m n ,则//n α或n ⊂α,因此不正确;②若//m β,则β内必存在一条直线//m m ',因为m α⊥,所以m α'⊥,又因为m β'⊂,所以αβ⊥,正确;③若αβ⊥,n αβ=,m n ⊥,则m β⊂,或//m β,或m 与β相交,因此不正确;④若//m n ,//αβ,则m 与α所成的角和n 与β所成的角相等,正确. 其中正确命题的序号是②④. 故选:D . 【点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.9.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,3DE DF ==, ∴在等腰三角形DEF 中,11324cos 632EF FED DE ∠===. 所以异面直线AB 与DE 所成角的余弦值为3. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.A解析:A 【分析】由AB AP =,PD BD =,可得ABD △≌APD △,从而得DAB DAP α∠=∠=,而直线PA 与平面ABC 所成角为γ,由最小角定理可得γα≤,再由P ABC B PAC V V --=,PACABCSS≤,进而可比较,βγ的大小【详解】解:因为AB AP =,PD BD =,所以ABD △≌APD △, 所以DAB DAP α∠=∠=,因为直线PA 与平面ABC 所成角为γ, 所以由最小角定理可得γα≤, 因为AB AC ⊥,所以12ABCS AB AC =⋅, 因为1sin 2PACS AC AP PAC =⋅∠,AB AP =, 所以PACABCSS≤,令点P 到平面ABC 的距离为1d ,点B 到平面PAC 的距离为2d , 因为P ABC B PAC V V --=,1211,33P ABC ABCB PAC PACV S d V Sd --=⋅=⋅所以12d d ≤,因为直线AB 与平面PAC 所成角为β,直线PA 与平面ABC 所成角为γ,所以21sin ,sin d d AB PAβγ== 因为AB AP =, 所以sin sin βγ≥因为,(0,]2πβγ∈所以βγ≥, 故选:A 【点睛】关键点点睛:此题考查直线与平面所成的角,考查推理能力,解题的关键是利用了等体积法转换,属于中档题11.B解析:B 【分析】 连接11A N B AB =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解. 【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为22111115142MB MC C B =+=+=2215142MA MC CA =+=+=, 所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线, ∴1⊥MN AB 且1MNA B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离, 又因为1111211222B N AB ==+=,所以点1B 到截面1A BM 的距离为22, 故选:B. 【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据AB n d n⋅=即可求解出点A 到平面α的距离.12.D解析:D 【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得3BCDS≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅, 所以163BC BD ⋅≤,当且仅当BC BD =时等号成立,1116sin1202232BCDSBC BD =⋅≤⨯⨯= 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==所以114333A BCD BCDV S h -=⋅≤=, 所以四面体ABCD 体积的最大值是43, 故选:D 【点睛】关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值.二、填空题13.【分析】利用直线平行与斜率之间的关系点到直线的距离公式即可得出【详解】解:因为直线与直线平行所以解得当时则故答案为:【点睛】熟练运用直线平行与斜率之间的关系点到直线的距离公式是解题关键【分析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出. 【详解】解:因为直线1:220l x by ++=与直线2:210l x y -+=平行,所以22(1)b =⨯-,解得1b =-,当1b =-时,1:220l x y -+=,2:210l x y -+=,则5d ==【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键.14.【详解】即整理化简得cos ∠AOB =-过点O 作AB 的垂线交AB 于D 则cos ∠AOB =2cos2∠AOD -1=-得cos2∠AOD =又圆心到直线的距离为OD =所以cos2∠AOD ===所以r2=10r =【详解】22225325539OC OA OB OA 2OA OB OB 44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos ∠AOB =-35,过点O 作AB 的垂线交AB 于D ,则cos ∠AOB =2cos 2∠AOD -1=-35,得cos 2∠AOD =15.又圆心到直线的距离为OD=,所以cos 2∠AOD =15=22OD r=22r ,所以r 2=10,r . 15.-4【分析】将圆的方程化为标准方程求出圆心坐标与半径利用点到直线的距离公式算出圆心到直线的距离再根据截得弦的长度为得到关于的方程解出即可【详解】由圆可得圆心为半径直线方程为圆心到直线的距离截得弦的长解析:-4 【分析】将圆的方程化为标准方程,求出圆心坐标与半径r ,利用点到直线的距离公式,算出圆心到直线l 的距离,再根据截得弦的长度为4,得到关于a 的方程,解出即可 【详解】由圆22220x y x y a ++-+=可得()()22112x y a ++-=-∴圆心为()11-,,半径)2r a =<直线方程为20x y ++=∴圆心到直线的距离d ==截得弦的长度为42222a ∴+=-,解得4a =-故答案为4- 【点睛】结合弦长的长度求出圆的标准方程,只需将圆化为标准方程,然后运用弦长公式的求法求出参量即可16.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程. 【详解】解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.17.【分析】先求出两相交直线的交点设出平行于直线的直线方程根据交点在直线上求出直线方程【详解】联立直线的方程得到两直线的交点坐标平行于直线的直线方程设为则所以直线的方程为:故答案为:【点睛】本题考查了直 解析:1934011x y ++= 【分析】先求出两相交直线的交点,设出平行于直线3470x y +-=的直线方程,根据交点在直线上,求出直线方程. 【详解】联立直线的方程23103470x y x y ++=⎧⎨+-=⎩,得到两直线的交点坐标135(,)1111-,平行于直线3470x y +-=的直线方程设为340x y c ++=, 则1353()4()+01111c ⋅-+⋅= 所以直线的方程为:1934011x y ++= 故答案为:1934011x y ++= 【点睛】本题考查了直线的交点,以及与已知直线平行的直线方程,考查了学生概念理解,转化与划归的能力,属于基础题.18.【分析】根据观察两条直线的位置关系结合不等式可得结果【详解】由题可知:动直线过定点动直线过定点且可知所以且所以即当且仅当时取=所以的最大值为故答案为:【点睛】本题考查直线过定点问题还考查了基本不等式解析:【分析】根据观察两条直线的位置关系,结合不等式,可得结果. 【详解】 由题可知:动直线1:20l x my +-=过定点()2,0A动直线2230l mx y m --+=:过定点()2,3B 且()110m m ⨯+⨯-=,可知12l l ⊥,所以PA PB ⊥,且2229PA PB AB +==所以2229222PA PB PA PB ⎛+⎫≤+= ⎪⎝⎭即PA PB +≤ 当且仅当PA PB =时取“=”所以PA PB +的最大值为故答案为:【点睛】本题考查直线过定点问题,还考查了基本不等式应用,属中档题.19.【分析】证明与垂直得线面垂直从而得正三棱锥的三条侧棱两两垂直结合正方体的性质得三条侧棱的平方和为外接球直径的平方求得球半径后可得球体积【详解】∵∴∴又∴取中点连接如图由于是正三棱锥∴而平面∴平面又平 解析:36π【分析】证明PB 与,CE AC 垂直得线面垂直,从而得正三棱锥的三条侧棱两两垂直,结合正方体的性质得三条侧棱的平方和为外接球直径的平方,求得球半径后可得球体积. 【详解】∵3PE EA =,3BF FA =,∴AE AFAP AB=,∴//EF PB ,又CE EF ⊥,∴PB CE ⊥,取AC 中点D ,连接,PD BD ,如图,由于P ABC -是正三棱锥,∴,PD AC BD AC ⊥⊥,而PD BD D ⋂=,,PD BD ⊂平面PBD ,∴AC ⊥平面PBD ,又PB ⊂平面PBD , ∴AC PB ⊥,∵ACCE C =,,AC CE ⊂平面PAC ,∴PB ⊥平面PAC ,而,PA PC ⊂平面PAC ,∴,PB PA PB PC ⊥⊥,同理正三棱锥中,PA PC ⊥.设三棱锥P ABC -外接球半径为R ,则22222(2)3(23)R PA PB PC =++=⨯,3R =,球的体积为343363V ππ=⨯=. 故答案为:36π.【点睛】结论点睛:三棱锥的外接球问题,解题关键是找到外接球的球心,三棱锥的外接球球心在过各面外心且与该面垂直的直线上.当从同一顶点出发的三条棱两两垂直时,可以把三棱锥补成一个长方体,而长方体的对角线就是三棱锥外接球的直径.20.①②④【分析】让从开始逐渐向运动变化观察所得的截面从而可得正确的选项【详解】由题设可得为所在棱的中点当时如图(1)直线分别交与连接并延长于连接交于则与正方体的截面为五边形故①正确当如图(2)此时与正解析:①②④ 【分析】让P 从A 开始逐渐向1A 运动变化,观察所得的截面,从而可得正确的选项.【详解】由题设可得,M N 为所在棱的中点. 当203AP <<时,如图(1),直线MN 分别交,AD DC 与,T S ,连接TP 并延长1DD 于G , 连接GS 交1CC 于H ,则α与正方体的截面为五边形,故①正确.当11A P =,如图(2),此时α2, 其面积为2362=33B 正确.当,A P 重合或1,A P 重合时,如图(3),α与正方体的截面均为四边形,故③错误.如图(4),在平面α内,设PM HN S ⋂=,则S PM ∈,而PM ⊂平面11A B BA , 故S ∈平面11A B BA ,同理S ∈平面11C B BC ,故S ∈平面11A B BA ⋂平面111C B BC BB =即PM 、HN 、1BB 三条直线交于一点. 故答案为:①②④. 【点睛】思路点睛:平面的性质有3个公理及其推理,注意各个公理的作用,其中公理2可用来证明三点共线或三线共点,公理3及其推理可用来证明点共面或线共面,作截面图时用利用公理2来处理.21.【分析】设球的半径为连接交于点取中点连接即为三棱柱外接球球心根据三棱锥体积可得间关系表示出根据基本不等式可求得的最小值从而得到球的表面积的最小值【详解】如图因为三棱柱是且设球的半径为连接交于点取中点 解析:27π【分析】设AB a ,BC b =,球的半径为r ,连接1AC ,1A C 交于点O ,取AC 中点D ,连接BD ,即O 为三棱柱外接球球心,根据三棱锥体积可得a b ,间关系,表示出r ,根据基本不等式可求得r 的最小值,从而得到球的表面积的最小值. 【详解】如图,因为三棱柱111ABC A B C -是 ,且90ABC ∠=︒,设AB a ,BC b =,球的半径为r ,连接1AC ,1A C 交于点O ,取AC 中点D ,连接BD ,则O 到三棱柱六个定点的距离相等,即O 为三棱柱外接球球心,11322OD AA ==, 又因为三棱锥O ABC -3 即1133322ab ⨯⨯=,即12ab =, 所以222222313332224a b r AD OD ab ⎛⎫⎛⎫+=+=+≥+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当a b =时等号成立,所以球O 的表面积最小值为2427S r ππ==, 故答案为:27π. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.22.【分析】取中点连接由条件可证明平面由此将三棱锥的体积表示为计算可得结果【详解】取中点连接如下图所示:因为所以平面平面所以平面又因为所以所以又因为故答案为:【点睛】关键点点睛:解答本题的关键是通过找的 解析:23【分析】取AB 中点O ,连接,CO DO ,由条件可证明AB ⊥平面CDO ,由此将三棱锥A BCD -的体积表示为13CDO AB S⨯⨯,计算可得结果.【详解】取AB 中点O ,连接,CO DO ,如下图所示:因为AC BC AD BD ===,所以,AB CO AB DO ⊥⊥,CO DO O =,CO ⊂平面CDO ,DO ⊂平面CDO ,所以AB ⊥平面CDO , 又因为3AC BC AD BD ====,2AB CD ==()22210322CO DO ⎛⎫==-= ⎪ ⎪⎝⎭, 所以22110221222CDO S ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又因为11221333A BCD CDO V AB S -=⨯⨯==, 故答案为:23. 【点睛】 关键点点睛:解答本题的关键是通过找AB 的中点,证明出线面垂直,从而将三棱锥的体积表示为13CDO AB S ⨯⨯,区别于常规的13⨯底面积⨯高的计算方法,本例实际可看成是两个三棱锥的体积之和.23.①③【分析】①先求出再得到最后判断①正确;②先判断三棱锥的外接球就是以为顶点以棱的长方体的外接球再求半径最后求出球的表面积判断②错误;③先证明最后证明平面判断③正确;④直接求出三棱锥的体积判断④错误解析:①③.【分析】①先求出BC =222AB BC AC =+,最后判断①正确;②先判断三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,再求半径r ,最后求出球的表面积,判断②错误;③先证明AC PC ⊥,AC BC ⊥,⋂=PC CB C ,最后证明AC ⊥平面PBC ,判断③正确;④直接求出三棱锥A PBC -的体积,判断④错误.【详解】解:①在ACB △,因为1AC =,2AB =,且60BAC ∠=︒,所以2222cos 3BC AB AC AB AC BAC =+-⋅⋅∠=,则BC =所以222AB BC AC =+,所以ACB △是直角三角形,故①正确;②由(1)可知AC BC ⊥,又因为PC ⊥底面ABC ,所以三棱锥P ABC -的外接球就是以C 为顶点,以CA ,CB ,CP 棱的长方体的外接球,则2r ==,则此球的表面积等于245S r ππ==,故②错误; ③因为PC ⊥底面ABC ,所以AC PC ⊥,由(1)可知AC BC ⊥,⋂=PC CB C , 所以AC ⊥平面PBC ,故③正确;④三棱锥A PBC -的体积11(1132V =⨯⨯⨯=,故④错误. 故答案为:①③.【点睛】本题考查判断三角形是直角三角形、求三棱锥的外接球的表面积、求三棱锥的体积、线面垂直的证明,是中档题. 24.①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错【详解】①如下图所示:因为平面平面平面所以平面故①正确;②连接如下图所示:因为平面所以又因为且所以平面又因为解析:①②③【分析】①证明线面平行可判断对错;②证明线面垂直可判断对错;③证明线面垂直可判断对错.【详解】①如下图所示:因为平面11//ABB A 平面11CC D D ,BP ⊂平面11ABB A ,所以//PB 平面11CC D D ,故①正确;②连接,AC BD ,如下图所示:因为1DD ⊥平面ABCD ,所以1DD AC ⊥,又因为AC BD ⊥且1DD BD D =,所以AC ⊥平面1DBD ,又因为1BD ⊂平面1DBD ,所以1BD AC ⊥,故②正确;③连接11,,,AC PC B C BC ,如下图所示:因为11D C ⊥平面11BCC B ,所以11D C ⊥1B C ,又因为11BC B C ⊥,且1111D C BC C ⋂=,所以1B C ⊥平面11BD C ,又1BD ⊂平面11BD C ,所以11B C BD ⊥,由②的证明可知1BD AC ⊥,且1AC B C C ⋂=,所以1BD ⊥平面1AB C ,又因为PC ⊂平面1AB C ,所以1BD PC ⊥,故③正确,故答案为:①②③.【点睛】本题考查空间线面平行、线线垂直关系的判断,涉及线面平行判定定理、线面垂直判定定理的运用,主要考查学生对空间中位置关系的逻辑推理能力,难度一般.三、解答题25.(Ⅰ)证明见解析;(Ⅱ)①4,②3π. 【分析】(Ⅰ)连接BD ,点E 是BC 边的中点,得出DE BC ⊥,DE AD ⊥再由DP AD ⊥,得出结果;(Ⅱ)DE AD ⊥,PD AD ⊥,PDE ∠为二面角P AD C --的平面角,60PDE ∠=︒,过P 在平面PDE 内做PK DE ⊥于K ,易证PK ⊥面ABCD ,PK 为点到面的距离,PBK ∠即为线面角.【详解】(Ⅰ)连接BD ,底面ABCD 是菱形,∠BDC =60°,∴△BCD 是正三角形.∵点E 是BC 边的中点,∴DE ⊥BC ,∵AD ∥BC ,∴DE ⊥AD .∵DP ⊥AD ,DP ∩AD =D ,∴AD ⊥平面PDE ;(Ⅱ)①∵DE ⊥AD ,PD ⊥AD ,∴PDE ∠为二面角P -AD -C 的平面角,∴60PDE ∠=︒,过P 在平面PDE 内做PK DE ⊥于K ,由(Ⅰ)易AD PK ⊥.∴PK ⊥面ABCD .∵833PD =,∴433DK =,4PK =, 即点P 到平面ABCD 的距离是4. ②AB =4,∴23DE =,∴23DK DE =,∴K 为BCD △重心. 连接BK ,∵BCD △为正三角形,所以BK 为BP 在面ABCD 内的射影.∴PB ⊥AB ,PBK ∠为直线PB 与平面ABCD 所成角,RT PKB △中,tan 3PK PK PKB KB DK ∠===,3PKB π∠=, 直线PB 与平面ABCD 所成角的大小为3π. 【点睛】求直线与平面所成的角的一般步骤: ①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解.26.(1)证明见解析;(2)证明见解析;(3)98. 【分析】(1)取PA 的中点G ,连接,BG EG ,证明四边形EFBG 为平行四边形,得出//EF BG ,再由线面平行的判定定理证明即可;(2)先证明PA ⊥平面ABCD ,从而得出PA CD ⊥,再由等腰三角形的性质得出AE PD ⊥,最后由面面垂直的判定定理证明即可;(3)以AFC △为底,12PA 为高,由棱锥的体积公式得出答案. 【详解】(1)如图,取PA 的中点G ,连接,BG EG .因为点,E G 分别为,PD PA 的中点,所以1//,2EG AD EG AD = 又因为F 是BC 的中点,四边形ABCD 是正方形,所以//BF EG 且BF EG = 故四边形EFBG 为平行四边形,所以//EF BG因为BG ⊂平面,ABP EF 不在平面ABP 内,所以//EF 平面ABP .(2)由条件知3PB PD PA AD AB =====,所以PAB △和PAD △都是等腰直角三角形,,PA AB PA AD ⊥⊥又因为,,AB AD A AB AD =⊂平面,ABCD 所以PA ⊥平面ABCD因为CD ⊂平面ABCD ,所以PA CD ⊥又因为,,AD CD PA AD A ⊥⋂=所以CD ⊥平面PAD ,所以CD AE ⊥因为E 是PD 的中点,所以AE PD ⊥又因为,,PD CD D PD CD ⋂=⊂平面PCD ,所以AE ⊥平面PCD因为AE ⊂平面,AEF 所以平面AEF ⊥平面PCD .(3)由图可知C AEF E ACF V V --=,1111319333232228E ACF ACF V S PA -=⨯=⨯⨯⨯⨯⨯=△, 即三棱锥C AEF -的体积为98【点睛】关键点睛:在证明线线平行时,关键是证明四边形EFBG 为平行四边形,从而得出//EF BG .27.(1)证明见解析;(2)证明见解析.【分析】(1)连接1B C 交1BC 于点E ,连接DE ,则E 为1B C 的中点,利用中位线的性质可得1//DE AB ,再利用线面平行的判定定理可证得结论成立;(2)取BC 中点F ,连接AF 、1B F ,证明出1BC ⊥平面1AB F ,进而可证得11AB BC ⊥.【详解】(1)连接1B C 交1BC 于点E ,连接DE ,在正三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,且11B CBC E =,则E 为1B C 的中点,又D 为AC 的中点,所以1//AB DE ,又1AB ⊄平面1BC D ,DE ⊂平面1BC D ,所以1//AB 平面1BC D ; (2)取BC 中点F ,连接AF 、1B F ,设11B FBC O =, 在正三棱柱111ABC A B C -中,1BB ⊥平面ABC ,AF ⊂平面ABC ,1AF BB ∴⊥, ABC 为正三角形,且F 为BC 的中点,AF BC ∴⊥,1BB BC B =,AF ∴⊥平面11BB C C ,。
最新必修2解析几何大题+答案
精品文档必修2解析几何大题:1.(本小题满分12分)直线I经过两条直线x 2y -^0和2x-y-7 = 0的交点,且满足下列条件,求直线I的方程。
(1)平行于直线x y ^0 (2)垂直于直线3x_y -2 = 02•已知圆C: (x -2)2(y -3)2-1,直线I 过点P(1,1)(1)若直线I经过圆心C,求I的方程(2)若直线I与圆C相切,求I的方程.3.17 (本题8分)2 2已知关于x, y的方程c : x y -2x-4y・m=0 .(I若方程C表示圆,求m的取值范围;(n)若圆C与圆x2 y2 -8x-12y • 36 =0外切,求m的值;(川)若圆C与直线I : x+2y —4=0相交于M ,N两点,且MN丄勺,求m的值.5精品文档对应练习:(本题满分14分)已知圆G:x2• y2 - 4x-2y-5 = 0 ,圆2 2C2:x y 2x-2y-14=0.(1)试判断两圆的位置关系;(2)直线l过点(6,3)与圆G相交于A,B两点,且|AB| = 2、.6,求直线I的方程。
精品文档F 列条件,求直线I 的方程。
即:x y -2 =0k 上二 31所以I 的方程为:y = -丄& -3)3即:x 3y = 02.已知圆 C : (x -2)2 • (y -3)2 =1,直线 I 过点 P (1,(1)若直线I 经过圆心C ,求I 的方程(2)若直线I 与圆C 相切,求I 的方程.3.17 (本题8分) 已知关于x,y 的方程C: x 2 y 2「2x 「4y • m = 0(1)当m 为何值时,方程C 表示圆。
(2)若圆C 与直线l:x+2y-4=0 相交于M,N 两点,且MN=;, 求m 的值。
…1分 显然 5-m • 0时,即m 5时方程C 表示圆。
(2)由(1)知,圆心C (1, 2),半径 r =乜5 —m则圆心C (1, 2)到直线l:x+2y-4=0 的距离为 d = H :2*2^4 1 2 2 2 1 2 MN : ——,则一 MN :——,有 r =d (—MN) V5 2 V5 21.(本小题满分12分)直线I 经过两条直线 x 2y -^0和2x-y-7=0的交点,且满足(1)平行于直线x y ^0 (1)平行于直线 x - y 5 = 0 (2)垂直于直线3x - y -2 = 0 3x -y 2 = 0(2)垂直于直线 解:由 x 2y ^=0 2x _ y _ 7 = 0 (1)依题意I 的斜率k x =3[y -—1, 所以I 的方程为:y ・1 = —(x -3)(2)依题意I 的斜率: 12。
最新北师大版高中数学必修二第二章《解析几何初步》测试卷(答案解析)
一、选择题1.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323B .643C .16D .322.动圆M 与定圆22:40C x y x ++=相外切,且与直线:2l x =相切,则动圆M 的圆心(),x y 满足的方程为( )A .212120y x -+=B .212120y x +-=C .280y x +=D .280y x -=3.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则线段MN 的长为 A .4B 355C 1255D 6554.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3C .22D .325.已知圆1C :221x y +=与圆2C :()()22124x y -++=交于A 、B 两点,则线段AB 的垂直平分线方程为( )A .210x y --=B .20x y -=C .20x y +=D .210x y -+=6.若直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6,则4b aab+的最小值为( ) A .32+B .322+C .5D .77.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面ABDA '是铅垂面,下宽3m AA '=,上宽4m BD =,深3m ,平面BDEC 是水平面,末端宽5m CE =,无深,长6m (直线CE 到BD 的距离),则该羡除的体积为( )A .324mB .330mC .336mD .342m8.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A .13 B .3 C .33 D .1169.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .210.设有直线m ,n ,l 和平面α,β,下列四个命题中,正确的是( ) A .若//,//m n αα,则//m n B .若//,//,//l m αβαβ,则//l m C .若,m αβα⊥⊂,则m β⊥D .若,,m m αββα⊥⊥⊄,则//m α11.正三棱柱111ABC A B C -各棱长均为1,M 为1CC 的中点,则点1B 到面1A BM 的距离为( ) A 2B .22C .12D 312.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .2二、填空题13.已知平面向量a ,b ,c ,满足1a =,2b =,3c =,01λ<<,若0b c ⋅=,则()1a b c λλ---所有取不到的值的集合为______.14.已知点(),P x y 是直线()300kx y k +-=≠上一动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的最小面积是1,则k 的值为__________.15.在平面直角坐标系xOy 中,过点(0,3)M -的直线l 与圆223x y +=交于A ,B 两点,且2MB MA =,则直线l 的方程为________.16.光线从点()0,5P -出发,经直线210x y -+=反射后到达点()2,0Q ,则光线从P 反射到Q 的总行程为______.17.函数2291041y x x x +-+_________.18.过点1,12⎛⎫-⎪⎝⎭的直线l 满足原点到它的距离最大,则直线l 的一般式方程为___________.19.如图,在三棱锥P ABC -中,点B 在以AC 为直径的圆上运动,PA ⊥平面,ABC AD PB ⊥,垂足为,D DE PC ⊥,垂足为E ,若23,2PA AC ==,则三棱锥P ADE -体积的最大值是_________.20.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家、地理学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五,已知正方体的外接球与内切球上各有一个动点A ,B ,若线段AB 的最小值为31-,利用张衡的结论可得该正方体的内切球的表面积为___________.21.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.22.三棱锥P ABC -三条侧棱两两垂直,正四面体D ABC -与三棱锥相接且棱长为2,P 与D 在面ABC 异侧,则所成多面体外接球的体积是_________.23.已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在同一球面上),圆锥的高是底面半径的3倍,圆锥的侧面积为910π,则球O 的表面积为________.24.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________.三、解答题25.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.26.如图,平行四边形ABCD 中,45DAB ∠=,PD ⊥平面ABCD ,PA BD ⊥,BD PD =,4AB =.(1)求证:平面PBC ⊥平面PBD ;(2)若点,M N 分别是,PA PC 的中点,求三棱锥P MBN -的体积.27.如图所示,在长方体1111ABCD A BC D -中,11,2AD AAAB ===,点E 是AB 的中点.(1)证明:1//BD 平面1A DE ; (2)证明:11D E A D ⊥;(3)求二面角1D EC D --的正切值.28.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE : (2)求四棱锥E ABCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是2113244323⨯⨯⨯=,选A. 2.B解析:B 【分析】设M 点坐标为(x ,y ),C (﹣2,0),动圆的半径为r ,则根据两圆相外切及直线与圆相切的性质可得,MC=2+r ,d=r ,从而|MC|﹣d=2,由此能求出动圆圆心轨迹方程. 【详解】设M 点坐标为(x ,y ),C (﹣2,0),动圆的半径为r , 则根据两圆相外切及直线与圆相切的性质可得,MC=2+r ,d=r ∴|MC|﹣d=22﹣x )=2, 化简得: y 2+12x -12=0.∴动圆圆心轨迹方程为y 2+12x -12=0. 故选B . 【点睛】本题考查动圆圆心轨迹方程的求法,考查直线方程、圆、两点间距离公式、两圆相外切、直线与圆相切等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.3.C解析:C 【分析】求出圆心和半径以及公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦的长. 【详解】∵两圆为x 2+y 2+4x ﹣4y=0①,x 2+y 2+2x ﹣8=0,② ①﹣②可得:x ﹣2y+4=0.∴两圆的公共弦所在直线的方程是x ﹣2y+4=0,∵x 2+y 2+4x ﹣4y=0的圆心坐标为(﹣2,2),半径为∴圆心到公共弦的距离为=∴公共弦长==故答案为:C 【点睛】本题主要考查圆与圆的位置关系,考查两圆的公共弦长的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.4.C解析:C 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为d =所以公共弦长为:l ==. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.5.C解析:C 【分析】先写出两圆的圆心的坐标,再求出两圆的连心线所在直线的方程即得解. 【详解】圆1C :221x y +=的圆心坐标为(0,0),圆2C :()()22124x y -++=的圆心为(1,2)-,由题得线段AB 的垂直平分线就是两圆的连心线, 所以02201AB k +==--, 所以线段AB 的垂直平分线为02(0),20y x x y -=--∴+=. 所以线段AB 的垂直平分线为20x y +=. 故选:C 【点睛】方法点睛:求直线的方程常用的方法是:待定系数法,先定式,后定量.要根据已知条件灵活选择方法求解.6.B解析:B 【分析】由题意结合直线与圆的位置关系可得直线经过圆心即12ab +=,再由基本不等式即可得解. 【详解】由题得圆的方程可以化为22(2)(1)9x y -++=,所以圆心为(2,1)-,半径为3r =, 因为直线440(0,0)ax by a b --=>>被圆224240x y x y +-+-=截得的弦长为6, 所以直线经过圆心,所以2440a b +-=,即12ab +=, 所以44144332322222b a a b a b a b ab a b a b a b +⎛⎫⎛⎫=++=++≥+⋅=+ ⎪⎪⎝⎭⎝⎭, 当且仅当422,21a b =-=-时取等号, 所以4b aab+的最小值为322+. 故选:B. 【点睛】本题考查了直线与圆位置关系、基本不等式求最值的应用,考查了运算求解能力与转化化归思想,属于中档题.7.C解析:C 【分析】在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算. 【详解】如图,在BD ,CF 上分别取点B ',C ',使得3m BB CC ''==,连接A B '',A C '',B C '',则三棱柱ABC A B C '''-是斜三棱柱,该羡除的体积V V=三棱柱ABC A B C '''-V+四棱锥A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故选:C .【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.8.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,32DE DF ==, ∴在等腰三角形DEF 中,11324cos 3EFFED DE ∠===.所以异面直线AB 与DE 所成角的余弦值为36.故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.9.C解析:C【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD 3∴222BD AB AD =+=所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴13,2BM AM ==同理,在直角三角形CBD 中,13,2DN CN ==. ∴MN =BD -BM -DN =112122--=, ∴222237()122CM CN MN =+=+= 在直角三角形AMC 中,22227310()22AC CM AM ⎛⎫=+=+ ⎪ ⎪⎝⎭故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.10.D解析:D 【分析】在A 中,m 与n 相交、平行或异面; 在B 中,l 与m 不一定平行,有可能相交; 在C 中,m ⊥β或m ∥β或m 与β相交;在D 中,由直线与平面垂直的性质与判定定理可得m ∥α.【详解】由直线m 、n ,和平面α、β,知: 对于A ,若m ∥α,n ∥α,则m 与n 相交、平行或异面,故A 错误;对于B ,若//,//,//l m αβαβ,l 与m 不一定平行,有可能相交,故B 错误; 对于C ,若α⊥β,m ⊂α,则m ⊥β或m ∥β或m 与β相交,故C 错误;对于D ,若α⊥β,m ⊥β,m ⊄α,则由直线与平面垂直的性质与判定定理得m ∥α,故D 正确.故选:D . 【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.11.B解析:B 【分析】 连接11A N B AB =,根据已知条件先证明11B A A B ⊥、1⊥MN AB ,再通过线面垂直的判定定理证明1AB ⊥平面1A BM ,由此确定出1B N 的长度即为点1B 到面1A BM 的距离,最后完成求解. 【详解】连接1B A 交1A B 于N ,连接11,,,,MB MN MB MA MA ,如图所示:因为11A ABB 为正方形,所以11B A A B ⊥, 又因为2211111514MB MC C B =+=+=221514MA MC CA =+=+, 所以1MB MA =且N 为1AB 中点,则MN 为等腰三角形1AMB 的中垂线, ∴1⊥MN AB 且1MNA B N =,∴1AB ⊥平面1A BM ,∴1B N 就是点1B 到截面1A BM 的距离, 又因为1111211222B N AB ==+=,所以点1B 到截面1A BM 的距离为22, 故选:B. 【点睛】方法点睛:求解平面外一点A 到平面α的距离的方法:(1)几何方法:通过线面垂直的证明,找到A 在平面α内的投影点A ',则AA '即为A 到平面α的距离;(2)向量方法:①建立合适空间直角坐标系,在平面α内取一点B ;②求解出AB 和平面α的法向量n ;③根据AB n d n⋅=即可求解出点A 到平面α的距离.12.C解析:C 【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果. 【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD △是等腰三角形,且底边和底边上的高线都是2; 且侧棱AD ⊥底面BCD ,1AD =, 所以112=221=323V ⨯⨯⨯⨯, 故选:C. 【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称; (2)根据三视图还原几何体; (3)利用椎体体积公式求解即可.二、填空题13.【分析】设由于则在线段上又在以为圆心1为半径的圆上问题转化为求线段上的点到圆上点的距离的最大值和最小值然后可得结论【详解】∵∴可取∵∴是单位圆上如图设由于则在线段上易得直线方程是即到线段的距离为斜边解析:613,1(4,)13⎛-∞-+∞ ⎝⎭【分析】()()11a b c a b c λλλλ⎡⎤---=-+-⎣⎦,设,,OA a OB b OC c ===,()1b c OP λλ+-=,由于01λ<<,则P 在线段BC 上,又A 在以O 为圆心,1为半径的圆O 上,问题转化为求线段BC 上的点P 到圆O 上点A 的距离的最大值和最小值,然后可得结论. 【详解】∵0b c ⋅=,2b =,3c =,∴可取(2,0)b OB ==,(0,3)c OC ==,a OA =,∵1a =,∴A 是单位圆O 上,如图,()()11a b c a b c λλλλ⎡⎤---=-+-⎣⎦,设()1b c OP λλ+-=,由于01λ<<,则P 在线段BC 上,()()11a b c a b c PA λλλλ⎡⎤---=-+-=⎣⎦,易得直线BC 方程是123x y+=即3260x y +-=,O 到线段BC 的距离为OBC 斜边BC 边上高,即236131323d ==+,∴min 61311PA d =-=-,又3OC =,∴min314PA=+=,∴PA 的取值范围是6131,413, ∴()1a b c λλ---所有取不到的值的集合为613,1(4,)⎛⎫-∞-+∞ ⎪ ⎪⎝⎭. 故答案为:613,1(4,)⎛⎫-∞-+∞ ⎪ ⎪⎝⎭.【点睛】本题考查求向量模的取值范围,解题关键是取(2,0)b OB ==,(0,3)c OC ==,把所有向量的起点都移到原点,由几何意义得出动点所成轨迹,从而由几何意义得出模的范围,最后求其在实数集上的补集即可.14.【分析】先求圆的半径四边形的最小面积是1转化为三角形的面积是求出切线长再求的距离也就是圆心到直线的距离可解的值【详解】解:圆的圆心半径是由圆的性质知:四边形的最小面积是1是切线长)圆心到直线的距离就 解析:±1【分析】先求圆的半径,四边形PACB 的最小面积是1,转化为三角形PBC 的面积是12,求出切线长,再求PC 的距离也就是圆心到直线的距离,可解k 的值. 【详解】解:圆22:20C x y y +-=的圆心(0,1),半径是1r =,由圆的性质知:2PBC PACB S S ∆=四边形,四边形PACB 的最小面积是1, ()min 1122PBC rd S ∆==∴(d 是切线长) min 1d ∴=圆心到直线的距离就是PC 的最小值,2222111k+==+1k ∴=±故答案为:±1【点睛】本题考查直线和圆的方程的应用,点到直线的距离公式等知识,属于中档题.15.【分析】根据题意知点为的中点设再由得利用韦达定理建立方程解得即可【详解】由题知点为的中点设直线设将直线带入圆的方程得则由得即所以解得故直线方程为:故答案为:【点睛】本题考查直线和圆的位置关系属于基础题 解析:33y x =±-【分析】根据题意知,点A 为MB 的中点,设()11,A x y ,()22,B x y ,再由2MB MA =得122x x =,利用韦达定理建立方程,解得即可.【详解】由题知,点A 为MB 的中点,设直线:3l y kx =-,设()11,A x y ,()22,B x y ,将直线带入圆的方程得()221660k x kx +-+=,则12261k x x k +=+,12261x x k ⋅=+,由2MB MA =,得122x x =,即2221k x k =+,1241kx k =+, 所以,21222246111k k x x k k k ⋅=⨯=+++,解得k =3y =-.故答案为:3y =-. 【点睛】本题考查直线和圆的位置关系,属于基础题.16.【分析】计算出点关于直线的对称点的坐标则光线的总行程为利用两点间的距离公式可得出结果【详解】设点关于直线的对称点为则解得即点因此光线从反射到的总行程为故答案为:【点睛】本题考查光线反射的问题一般要求【分析】计算出点P 关于直线210x y -+=的对称点P '的坐标,则光线的总行程为P Q ',利用两点间的距离公式可得出结果. 【详解】设点P 关于直线210x y -+=的对称点为(),P a b ',则5102512b a b a -⎧-+=⎪⎪⎨+⎪=-⎪⎩,解得245135a b ⎧=-⎪⎪⎨⎪=-⎪⎩,即点2413,55P ⎛⎫'-- ⎪⎝⎭, 因此,光线从P 反射到Q的总行程为P Q '==【点睛】本题考查光线反射的问题,一般要求出点关于直线的对称点,考查计算能力,属于中等题.17.【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】本题考查【分析】将yy =,设()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC =++-+=+即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值; 【详解】解:()22222291041354y x x x x x =++-+=++-+,设()0,3A ,()5,4B ,(),0C x ,则()2222354y x x AC BC =++-+=+,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,()22153474BA =+--=min 74y ∴=故答案为:74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题.18.【分析】过作于连接可得直角三角形中从而得到当时原点到直线的距离最大利用垂直求出的斜率从而得到的方程【详解】设点过坐标系原点作于连接则为原点到直线的距离在直角三角形中为斜边所以有所以当时原点到直线的距 解析:2450x y --=【分析】过O 作OB l ⊥于B ,连接OA ,可得直角三角形AOB 中OB OA <,从而得到当OA l ⊥时,原点O 到直线l 的距离最大,利用垂直,求出l 的斜率,从而得到l 的方程. 【详解】设点1,12A ⎛⎫-⎪⎝⎭,过坐标系原点O 作OB l ⊥于B ,连接OA , 则OB 为原点O 到直线l 的距离, 在直角三角形AOB 中,OA 为斜边, 所以有OB OA <,所以当OA l ⊥时,原点O 到直线l 的距离最大, 而1212OA k -==-,所以12l k =, 所以l 的直线方程为11122y x ⎛⎫+=- ⎪⎝⎭, 整理得:2450x y --=【点睛】本题考查根据点到直线的距离求斜率,点斜式写直线方程,属于简单题.19.【分析】由已知证明再由三角形相似列比例式可得证明利用基本不等式求得的最大值可得三棱锥体积的最大值【详解】由平面得又平面得又平面得而平面可得在中由得由得则由得又得即(当且仅当时等号成立)三棱锥体积的最解析:34【分析】由已知证明AE PC ⊥,再由三角形相似列比例式可得PE ,证明AD DE ⊥,利用基本不等式求得AD DE ⋅的最大值,可得三棱锥P ADE -体积的最大值. 【详解】由PA ⊥平面ABC ,得PA BC ⊥,又BC AB ⊥,PA AB A =,BC ∴⊥平面PAB ,得BC AD ⊥,又AD PB ⊥,PB BC B ⋂=, AD ∴⊥平面PBC ,得AD PC ⊥,而DE PC ⊥,AD DE D ⋂=,PC ∴⊥平面ADE ,可得AE PC ⊥.在Rt PAC △中,由2PA AC ==,得4PC =.由Rt PEA Rt PAC ∽,得PE PA PA PC =,则21234PA PE PC ===,由3PE =,PA =23AE =,又AD DE ⊥,2223AD DE AE ∴+==,得2232AD DE AD DE =+≥⋅, 即32AD DE⋅(当且仅当AD DE =时等号成立), ∴三棱锥P ADE -体积的最大值是1111333323224AD DE PE ⨯⨯⨯=⨯⨯⨯=.故答案为:34. 【点睛】方法点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.20.【分析】设正方体的棱长为正方体的内切球半径为正方体的外接球半径再由已知条件和球的表面积公式可得答案【详解】设正方体的棱长为正方体的内切球半径为正方体的外接球半径满足:则由题意知:则该正方体的内切球的解析:【分析】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径2R =,再由已知条件和球的表面积公式可得答案. 【详解】设正方体的棱长为a ,正方体的内切球半径为2a r =,正方体的外接球半径R 满足:22222a R a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,则R =.由题意知:12aR r -=-=,则2a =,R = 该正方体的内切球的表面积为4π,又因为圆周率的平方除以十六等于八分之五,即25168π=,所以π=所以内切球的表面积为故答案为:410 【点睛】关键点点睛:本题考查正方体的外接球和内切球问题,考查空间几何新定义,解决本题的关键点是利用正方体的外接球半径,内切球半径和正方体面对角线的一半组成勾股定理,得出正方体内切球半径,进而得出表面积,考查学生空间想象能力和计算能力,属于中档题.21.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,3x ∴=, 所以,球O 的半径为232x =O 的表面积为2231643S ππ=⨯=⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.22.【分析】根据几何体的几何关系可将几何体放在正方体中多面体的外接球和正方体的外接球是同一外接球由此可求外接球的体积【详解】如图所示并且两两互相垂直所以所以正四面体与三棱锥相接且棱长为所以如图所示将此多 解析:3π 【分析】 根据几何体的几何关系,可将几何体放在正方体中,多面体的外接球和正方体的外接球是同一外接球,由此可求外接球的体积.【详解】如图所示,AB AC BC ==,并且,,PA PB PC 两两互相垂直,所以222222PA PB PA PC PB PC +=+=+,所以PA PB PC ==,正四面体D ABC -与三棱锥相接且棱长为2,所以如图所示,将此多面体放在正方体中,多面体的外接球就是此正方体的外接球,并且棱长为1,正方体外接球的半径22221113R =++=,得3R =,则外接球的体积3433V R ππ==. 故答案为:3π2【点睛】关键点点睛:本题的关键点是根据多面体的几何关系可采用补体,转化为求正方体的外接球的体积,这样计算就容易了.23.【分析】设圆锥的底面半径为球的半径为根据勾股定理可得根据圆锥的侧面积公式可得再根据球的表面积公式可得结果【详解】设圆锥的底面半径为球的半径为则圆锥的高为则球心到圆锥的底面的距离为根据勾股定理可得化简 解析:100π【分析】设圆锥的底面半径为r ,球O 的半径为R ,根据勾股定理可得53R r =,根据圆锥的侧面积公式可得3,5r R ==,再根据球的表面积公式可得结果.【详解】设圆锥的底面半径为r ,球O 的半径为R ,则圆锥的高为3r ,则球心O 到圆锥的底面的距离为3r R -, 根据勾股定理可得()2223R r r R =+-,化简得53R r =, 因为圆锥的高为3r ,母线长为()22310r r r +=,所以圆锥的侧面积为21010r r r ππ⨯=,所以210910r ππ=,解得r =3,所以5353R =⨯=, 所以球O 的表面积为24425100R πππ=⨯=.故答案为:100π【点睛】关键点点睛:利用圆锥的侧面积公式和球的表面积公式求解是解题关键. 24.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平 解析:o 60.【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可.【详解】如图,作BC 的中点D ,连结AD 、PD因为侧面PBC 和底面ABC 都是边长为2的正三角形而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC所以平面PAD ⊥平面ABC ,所以PAD ∠即为侧棱PA 与底面ABC 所成的角由侧面PBC 和底面ABC 都是边长为2的正三角形得AD PD ==PA =所以PAD ∆为等边三角形,则=PAD ∠o 60即侧棱PA 与底面ABC 所成的角为o 60故答案为:o 60【点睛】本题主要考查空间直线与平面所成角的计算,较简单.三、解答题25.(1)证明见解析;(2)2. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCDBC ∴⊥面PAB ,又PA ⊂面PABPA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD 由11 33BCE E PBC P BCE PBC BCE PBCS POV V S h SPO h S --=⇒=⇒=,由已知可求得1PO =,1BCE S =,PBC S ,所以h =. 所以点E 到平面PBC .【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解.26.(1)证明见解析;(2)223. 【分析】(1)可由PD BD ⊥,PA BD ⊥证得BD ⊥平面PAD ,故BD AD ⊥,再由BD BC ⊥和PD BC ⊥可得BC ⊥平面PBD ,从而面PBC ⊥面PBD(2)可利用1144P MBN B PMN B PAC P ABC V V V V ----===,进行转化求体积. 【详解】解:(1)因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥.又PA BD ⊥,PA PD P =,平面PD ⊂平面PAD ,PA ⊂平面PAD ,所以BD ⊥平面PAD ,而AD ⊂平面PAD ,所以BD AD ⊥.在平行四边形ABCD 中,//AD BC ,所以BD BC ⊥.由PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,而BD PD D =,PD ⊂平面PBD ,BD ⊂平面PBD ,所以BC ⊥平面PBD . 又BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .(2)由(1)可知,BD AD ⊥,而45DAB ∠=,则ADB △为等腰直角三角形,又4AB =,所以22PD BD AD ===,连接AC ,由点,M N 分别是,PA PC 的中点,所以PMN PAC 且12MN AC =, 所以14PMN PAC S S =,则1144P MBN B PMN B PAC P ABC V V V V ----===, 在平行四边形ABCD 中,1222242ABC ABD S S ==⨯⨯=, PD 为三棱锥P ABC -的高,所以1182422333P ABC ABC V S PD -=⨯=⨯⨯=, 所以三棱锥P MBN -的体积为12243P MBN P ABC V V --==. 【点睛】 求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.27.(1)证明见解析;(2)证明见解析;(3)2. 【分析】(1)连接1AD 交1A D 于点O ,连接EO ,易得1//OE BD,再利用线面平行的判定定理证明.(2)由长方体的特征得到1AB AD ⊥,再由11A D AD ⊥,利用线面垂直的判定定理证得1A D ⊥平面1AD E 即可.(3)易得CE DE ⊥,再由1D D ⊥平面,ABCD CE ⊂平面ABCD ,得到1CE D D ⊥,可得CE ⊥平面1D DE ,由1D ED ∠是二面角1D EC D --的平面角求解.【详解】(1)如图所示:连接1AD 交1A D 于点O ,连接EO ,则O 为1AD 的中点.∵E 是AB 的中点,∴1//OE BD又OE ⊂平面1A DE ,1BD ⊄平面1A DE ,∴1//BD 平面1A DE .(2)由题意可知,四边形11ADD A 是正方形,∴11A D AD ⊥.∵AB ⊥平面11ADD A ,1A D ⊂平面11ADD A ,∴1AB AD ⊥.∵AB 平面1AD E ,1AD ⊂平面1AD E ,1AB AD A =,∴1A D ⊥平面1AD E .又1D E ⊂平面1AD E ,∴11A D D E ⊥,即11D E A D ⊥.(3)在CED 中,2CD =,DE ==,CE == ∴CE DE ⊥∵1D D ⊥平面,ABCD CE ⊂平面ABCD ,∴1CE D D ⊥.∵1D D ⊂平面1D DE ,DE ⊂平面1D DE ,1D D DE D ⋂=,∴CE ⊥平面1D DE .又∵1D E ⊂平面1D DE ,∴1CE D E ⊥.∴1D ED ∠是二面角1D EC D --的平面角.在A 1D ED 中,∵190D DE ∠=︒,11=D D ,DE =∴11tan D D D ED DE ∠===,∴二面角1D EC D --的正切值为2. 【点睛】 方法点睛:几何法求线线角、线面角、二面角的常用方法:(1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.(3)二面角的求法,二面角的大小用它的平面角来度量.平面角的作法常见的有①定义法;②垂面法.注意利用等腰、等边三角形的性质.28.(1)证明见解析;(2 【分析】(1)证明线面平行,用线面平行的判定定理,在面ACE 内找一条直线与PB 平行;。
必修二第二章《解析几何初步》测试(含答案解析)
一、选择题1.两圆22440x y x y ++-=和22280x y x ++-=相交于两点,M N ,则线段MN 的长为A .4B C D 2.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A .B .C .D .3.圆224x y +=被直线2y =+截得的劣弧所对的圆心角的大小为( ) A .30 B .60︒ C .90︒ D .120︒4.直线3y x m =-+与圆221x y += 在第一象限内有两个不同的交点,则m 的取值范围是( )A .B .C .⎝⎭D .⎛ ⎝⎭5.在平面直角坐标系xOy 中,若圆()()222x a y a -+-=与圆()2268x y +-=外切,则实数a 的值为( ) A .1B .2C .3D .46.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A .22(2)(2)1x y -++=B .22(2)(2)1x y ++-=C .22(2)(2)1x y -+-=D .22(2)(1)1x y -+-=7.已知m ,n 是两条直线,α,β是两个平面,则下列命题中错误的是( ) A .若m n ⊥,m α⊥,n β⊥,则αβ⊥ B .若m α⊂,//αβ,则//m βC .若m n ⊥,m α⊥,βn//,则αβ⊥D .若l αβ=,//m α,//m β,则//m l8.已知正方体1111ABCD A BC D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( ) A .394πB .414πC .12πD .434π9.在三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ,且12AC BC =,则直线11B C 与平面1ABC 所成的角的大小为( )A .30°B .45°C .60°D .90°10.已知点A ,B ,C 在半径为5的球面上,且214AB AC ==,27BC =,P 为球面上的动点,则三棱锥P ABC -体积的最大值为( ) A .5673B .5273C .4973D .14711.如图,网格纸上小正方形的边长为1,粗实线画的是某几何体的三视图,则该几何体的体积为( )A .16B .13C .1D .212.已知三棱锥D ABC -,记二面角C AB D --的平面角是θ,直线DA 与平面ABC 所成的角是1θ,直线DA 与BC 所成的角是2θ,则( ) A .1θθ≥B .1θθ≤C .2θθ≥D .2θθ≤二、填空题13.在极坐标系中,过点22,4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是__________.14.已知圆22 : 4O x y +=,直线l 与圆O 交于P Q ,两点,()2,2A ,若2240AP AQ +=,则弦PQ 的长度的最大值为___________.15.圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是________.16.在平面直角坐标系xOy 中,过点(0,3)M -的直线l 与圆223x y +=交于A ,B 两点,且2MB MA =,则直线l 的方程为________.17.已知(3,1)P 为圆224x y +=上的一点,,E F 为y 轴上的两点,PEF 是以P 为顶点的等腰三角形,直线,PE PF 分别交圆于点,D C ,直线CD 交y 轴于点A ,则CAO ∠=_______.18.已知A 是直角坐标平面内一定点,点(0,0)O ,若圆22()(–12)3x y -+=上任意一点M 到定点A 与点(0,0)O 的距离之比是一个定值λ,则这个定值λ的大小是________. 19.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.20.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 21.表面积为16π的球与一个正三棱柱各个面都相切,则这个正三棱柱的体积为___________.22.已知扇形的面积为56π,圆心角为6π,则由该扇形围成的圆锥的外接球的表面积为_________.23.有一个半径为4的球是用橡皮泥制作的,现要将该球所用的橡皮泥重新制作成一个圆柱和一个圆锥,使得圆柱和圆锥有相等的底面半径和相等的高,若它们的高为8,则它们的底面圆的半径是___________.24.如图,已知正四面体P ABC -的棱长为2,动点M 在四面体侧面PAC 上运动,并且总保持MB PA ⊥,则动点M 的轨迹的长度为__________.三、解答题25.在如图所示几何体中,平面PAC ⊥平面ABC ,//PM BC ,PA PC =,1AC =,22BC PM ==,5AB =34.(1)画出该几何体的主视图(正视图)并求其面积S ; (2)求出多面体PMABC 的体积V .26.如图(1)在ABC 中,AC BC =,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD △沿CD 翻折,使得平面ACD ⊥平面BCD .如图(2)(1)求证://AB 平面DEF ; (2)求证:BD AC ⊥.27.如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.28.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒=∠=,1cos,3BAP AP BC∠=-⊥.(1)若23BM MC=,求证:PM BC⊥;(2)当3AP=,且N为BC中点时,求AN与平面PBC所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出圆心和半径以及公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦的长.【详解】∵两圆为x2+y2+4x﹣4y=0①,x2+y2+2x﹣8=0,②①﹣②可得:x﹣2y+4=0.∴两圆的公共弦所在直线的方程是x﹣2y+4=0,∵x2+y2+4x﹣4y=0的圆心坐标为(﹣2,2),半径为2∴圆心到公共弦的距离为2224425512--+=+∴公共弦长=()222122225555⎛⎫-=⎪⎝⎭故答案为:C【点睛】本题主要考查圆与圆的位置关系,考查两圆的公共弦长的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.2.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C (),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=的几何意义可知,m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;3.D解析:D 【分析】根据题意,设直线2y =+与圆224x y +=的的交点为A 、B ,AB 的中点为点M ,分析圆的圆心与半径,求出圆心到直线的距离,即可得AOM ∠的大小,进而分析可得答案. 【详解】解:根据题意,设直线2y =+与圆224x y +=的的交点为A 、B ,AB 的中点为点M ,圆224x y +=的圆心为(0,0),半径2r ,圆心到直线2y =+的距离1d ==,又由60AOM ∠=︒,则120AOB ∠=︒;故圆224x y +=被直线2y +截得的劣弧所对的圆心角的大小为120︒; 故选:D . 【点睛】本题考查直线与圆的位置关系,注意利用圆心到直线的距离分析,属于基础题.4.D解析:D 【分析】求出直线过(0,1)时m 的值,以及直线与圆相切时m 的值,即可确定出满足题意m 的范围. 【详解】 解:如图所示:当直线过(0,1)时,将(0,1)代入直线方程得:1m =;当直线与圆相切时,圆心到切线的距离d r =,即21313=⎛⎫+ ⎪ ⎪⎝⎭,解得:233m =或233m =-(舍去), 则直线与圆在第一象限内有两个不同的交点时,m 的范围为231m <<. 故选:D .【点睛】本题考查了直线与圆相交的性质,利用了数形结合的思想,熟练掌握数形结合法是解本题的关键,属于中档题.5.C解析:C 【分析】根据题意,求出两个圆的圆心以及半径,由圆与圆的位置关系可得222(6)(222)a a +-=,解可得a 的值,即可得答案.【详解】根据题意,圆22()()2x a y a -+-=的圆心为(,)a a ,半径12r 22(6)8x y +-=的圆心为(0,6),半径222r =若圆22()()2x a y a -+-=与圆22(6)8x y +-=相外切, 则有222(6)(222)a a +-=, 解可得:3a =;故选:C. 【点睛】本题考查圆与圆的位置关系,注意圆与圆外切的判断条件,属于基础题.6.A解析:A 【分析】设圆2C 的圆心为2(,)C a b ,解方程组111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩得22a b =⎧⎨=-⎩,即得解.【详解】圆1C 的圆心为1(1,1)C -,设圆2C 的圆心为2(,)C a b ,依题意得111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩,解得22a b =⎧⎨=-⎩,又圆2C 的半径与圆1C 的半径相等, 所以圆2C 的方程为22(2)(2)1x y -++=. 故选:A. 【点睛】本题主要考查圆的方程的求法,考查点线点对称,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【分析】利用直二面角可判断A 的正误,利用面面平行或线面平行性质定理即判断定理可判断BD 的正误,从而可得正确的选项,利用反例可判断C 是错误的. 【详解】 对于A ,如图,设l αβ=,空间中取一点O (O 不在平面,αβ内,也不在直线,m n上),过O 作直线,a b ,使得,////a m b n ,且,a A b B αβ⋂=⋂=,故a b ⊥. 因为m α⊥,故a α⊥,而l α⊂,故a l ⊥,同理b l ⊥, 因为a b O ⋂=,故l ⊥平面OAB . 设平面OAB 交l 与C ,连接,AC BC ,因为,AC BC ⊂平面OAB ,故,,l AC l BC ⊥⊥所以ACB ∠为l αβ--的平面角. 因为a α⊥,AC α⊂,故OA AC ⊥,同理OB BC ⊥,而OA OB ⊥, 故在四边形OACB 中,90ACB ∠=︒即αβ⊥,故A 正确.对于B ,由面面平行的性质可得若m α⊂,//αβ,则//m β,故B 正确. 对于D ,如图,过m 作平面γ,使得a γα=,过m 作平面η,使得b ηβ⋂=,因为//m α,m γ⊂,故//a m ,同理//b m ,故//a b , 而a β⊄,b β⊂,故//a β,而a α⊂,l αβ=,故//a l ,所以//m l ,故D 正确.对于C ,在如图所示的正方体中,//AD 平面11A D CB ,1AA ⊥平面ABCD ,1AD AA ⊥,但是平面11A D CB 与平面ABCD 不垂直,故C 错误.故选:C. 【点睛】思路点睛:对于立体几何中与位置有关的命题的真假判断,一般根据性质定理和判定定理来处理,反例一般可得正方体中寻找.8.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =, 平面1CD E ⋂平面111D DCC DC =,故1//EF DC , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDOO 中,111,OG DD O D DD ⊥⊥,故1//OG O D ,故四边形1GDOO 为平行四边形,故1//OO GD ,1OOGD =, 所以四面体1CDFD 的外接球的半径为25411164+=, 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B.【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定. 9.A解析:A【分析】证明CBA ∠就是BC 与平面1ABC 所成的角,求出此角后,利用11//B C BC 可得结论,【详解】∵90BAC ∠=︒,12AC BC =,∴30CBA ∠=︒, ∵1BC AC ,AB AC ⊥,1BC AB B ,1,BC AB ⊂平面1ABC ,∴AC ⊥平面1ABC ,∴CBA ∠就是BC 与平面1ABC 所成的角,即BC 与平面1ABC 所成的角是30, ∵棱柱中11//B C BC ,∴11B C 与平面1ABC 所成的角的大小为30,故选:A .【点睛】思路点睛:本题考查求直线与平面所成的角,解题方法是定义法,即过直线一点作平面的垂直,得直线在平面上的射影,由直线与其射影的夹角得直线与平面所成的角,然后在直角三角形中求出此角.解题过程涉及三个步骤:一作出图形,二证明所作角是直线与平面所成的角,三是计算.10.A解析:A【分析】求出球心到平面ABC 的距离,由这个距离加上球半径得P 到平面ABC 距离的最大值,再由体积公式可得P ABC -体积的最大值.【详解】如图,M 是ABC 的外心,O 是球心,OM ⊥平面ABC ,当P 是MO 的延长线与球面交点时,P 到平面ABC 距离最大, 由214AB AC ==,27BC =,得72cos 4214ACB ∠==,则14sin ACB ∠=, 21428sin 14AB AM CB ===∠,4AM =, 2222543OM OA AM =-=-=,358PM =+=,又1114sin 214277722ABC S AC BC ACB =⋅⋅∠=⨯⨯⨯=△, 所以最大的15677783P ABC V -=⨯⨯=. 故选:A .【点睛】本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时P 点在球面上的位置,根据球的性质易得结论.当底面ABC 固定,M 是ABC 外心,当PM ⊥平面ABC ,且球心O 在线段PM 上时,P 到平面ABC 距离最大.11.B解析:B【分析】根据三视图得到直观图,根据棱锥的体积公式可得结果.【详解】由三视图可知,该几何体是长、宽、高分别为1,2,1的长方体中的三棱锥D ABC -,如图所以:所以该几何体的体积为111121323V =⨯⨯⨯⨯=. 故选:B【点睛】 关键点点睛:根据三视图还原出直观图是本题解题关键.12.A解析:A【分析】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN ,过D 作DO CE ⊥,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,排除B ,C .当二面角C AB D --是直二面角时,2θθ≥,排除D .由此能求出结果.【详解】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN ,过D 作DO ⊥CE ,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,413DE CE ==-2DC =, ∴1cos 3233θ==⨯⨯,22333AO CO CE ===, ∴12333cos 3AO AD θ===, 取BC 中点F ,连结DF 、AF ,则DF BC ⊥,AF BC ⊥,又DF AF F ⋂=,∴BC ⊥平面AFD ,∴BC AD ⊥,∴290θ=︒, ∴21θθθ≥≥,排除B ,C ,当二面角C AB D --是直二面角时,2θθ≥,排除D ,故选:A .【点睛】关键点点睛:将三棱锥看成特殊的正四面体,采用排除法,充分理解线线角、线面角以及面面的概念是解题的关键.二、填空题13.【解析】试题分析:点的直角坐标为将圆的方程化为直角坐标方程为化为标准式得圆心坐标为半径长为而点在圆上圆心与点之间连线平行于轴故所求的切线方程为其极坐标方程为考点:1极坐标与直角坐标之间的转化;2圆的 解析:cos 2ρθ=.【解析】试题分析:点4π⎛⎫ ⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点4π⎛⎫ ⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=. 考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程14.【分析】取的中点为M 由可得可得M 在上当最小时弦的长才最大【详解】设为的中点即即设则得所以故答案为:【点睛】本题考查直线与圆的位置关系的综合应用考查学生的逻辑推理数形结合的思想是一道有一定难度的题解析:【分析】取PQ 的中点为M ,由2240AP AQ +=可得2216AM OM -=,可得M 在20x y ++=上,当OM 最小时,弦PQ 的长才最大.【详解】设M 为PQ 的中点,()22222(2)AP AQ AM PQ +=+,即222222AP AQ AM MQ +=+,即()2224022AM OQ OM =+-,22204AM OM =+-,2216AM OM -=.设(),M x y ,则()2222(2)(2)16x y x y -+--+=,得20x y ++=.所以min 22OM ==,max 22PQ =.故答案为:22【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.15.-4【分析】将圆的方程化为标准方程求出圆心坐标与半径利用点到直线的距离公式算出圆心到直线的距离再根据截得弦的长度为得到关于的方程解出即可【详解】由圆可得圆心为半径直线方程为圆心到直线的距离截得弦的长 解析:-4【分析】将圆的方程化为标准方程,求出圆心坐标与半径r ,利用点到直线的距离公式,算出圆心到直线l 的距离,再根据截得弦的长度为4,得到关于a 的方程,解出即可【详解】由圆22220x y x y a ++-+=可得()()22112x y a ++-=- ∴圆心为()11-,,半径)2?2r a a =-<直线方程为20x y ++=∴圆心到直线的距离22112211d -++==+截得弦的长度为4 22222a ∴+=-,解得4a =-故答案为4-【点睛】结合弦长的长度求出圆的标准方程,只需将圆化为标准方程,然后运用弦长公式的求法求出参量即可16.【分析】根据题意知点为的中点设再由得利用韦达定理建立方程解得即可【详解】由题知点为的中点设直线设将直线带入圆的方程得则由得即所以解得故直线方程为:故答案为:【点睛】本题考查直线和圆的位置关系属于基础题 解析:33y x =±-【分析】根据题意知,点A 为MB 的中点,设()11,A x y ,()22,B x y ,再由2MB MA =得122x x =,利用韦达定理建立方程,解得即可.【详解】由题知,点A 为MB 的中点,设直线:3l y kx =-,设()11,A x y ,()22,B x y ,将直线带入圆的方程得()221660k x kx +-+=,则12261k x x k +=+,12261x x k ⋅=+, 由2MB MA =,得122x x =,即2221k x k =+,1241k x k =+, 所以,21222246111k k x x k k k ⋅=⨯=+++, 解得3k =±,故直线方程为:33y x =±-.故答案为:33y x =±-.【点睛】本题考查直线和圆的位置关系,属于基础题.17.或【分析】根据题意作出图形过点作x 轴的平行线交圆于点是的角平分线所以为弧的中点再根据中垂线结合平面几何知识求解【详解】过点作x 轴的平行线交圆于点是的角平分线所以为弧的中点所以所以如图1:所以如图2: 解析:30︒或150︒【分析】根据题意,作出图形,过点(3,1)P 作x 轴的平行线,交圆于点()3,1G - PG 是DPC ∠的角平分线,所以G 为弧 CD 的中点,再根据中垂线 OG CD ⊥,结合平面几何知识求解.【详解】过点P 作x轴的平行线,交圆于点()G PG 是DPC ∠的角平分线,所以G 为弧 CD 的中点,所以 OG CD ⊥,tan GOE ∠=60GOE ∠= ,如图1:090GOA CA ∠+∠= , 所以030CA ∠=,如图2:0150CA ∠=故答案为:30︒或150︒【点睛】本题主要考查直线与圆的位置关系以及平面几何的知识,还考查了数形结合的思想和推理论证的能力,属于中档题.18.【分析】设按距离之比为定值求出点的轨迹方程它就是方程比较后可得【详解】设则整理得:易知方程化为已知圆的一般式方程为所以解得故答案为:【点睛】本题考查平面轨迹方程解题时由点到两点距离之比为常数求出的轨【分析】设(,)A m n ,(,)M x y ,按距离之比为定值求出M 点的轨迹方程,它就是方程22()(–12)3x y -+=,比较后可得λ.【详解】设(,)A m n ,(,)M x y,则MA MO λ==,整理得:222222(1)(1)220x y mx ny m n λλ-+---++=,易知210λ-≠,方程化为2222222220111m n m n x y x y λλλ++--+=---, 已知圆22()(–12)3x y -+=的一般式方程为222420x y x y +--+=, 所以2222222124121m n m n λλλ⎧=⎪-⎪⎪=⎨-⎪⎪+=⎪-⎩,解得2545m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.【点睛】本题考查平面轨迹方程,解题时由M 点到,A O 两点距离之比为常数λ,求出M 的轨迹方程,它就是已知圆,比较系数可得结论.19.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最 解析:42 【分析】 把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.20.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 26【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值.【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++= 26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.21.【分析】求出正三棱柱的高底面三角形的边长和高即可求出正三棱柱的体积【详解】设球的半径为r 由得则球的半径为2正三棱柱的高为正三棱柱底面正三角形的内切圆的半径是2所以正三角形的边长是高是6正三棱柱的体积 解析:483【分析】求出正三棱柱的高、底面三角形的边长和高,即可求出正三棱柱的体积.【详解】设球的半径为r ,由2416r π=π,得2r ,则球的半径为2,正三棱柱的高为24r =, 正三棱柱底面正三角形的内切圆的半径是2,所以正三角形的边长是436, 正三棱柱的体积为136432⨯⨯= 故答案为:483【点睛】本题考查正三棱柱的内切球、正三棱柱的体积,考查空间想象能力与计算能力. 22.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积.【详解】设扇形的长为l ,半径为R ,则22111222S lR R α====,解得R =l 为锥底面周长2r π,∴底面的半径r =∴5=.设外接球的半径为1R ,∴()222115R R =-+,解得13R =, ∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题. 23.【详解】设它们的底面圆的半径为()依题意得化简得所以故答案为:解析:【详解】设它们的底面圆的半径为r (0r >). 依题意得3443V π=⨯球V V =+圆柱圆锥221(+)83r r ππ=⨯,化简得28r =,所以r =故答案为:24.【分析】取PA 的中点E 连接EBEC 推出PA ⊥平面BCE 故点M 的轨迹为线段CE 解出即可【详解】取PA 的中点E 连接EBEC 因为几何体是正四面体P ﹣ABC 所以BE ⊥PAEC ⊥PAEB∩EC =E ∴PA ⊥平面【分析】取PA 的中点E ,连接EB ,EC ,推出PA ⊥平面BCE ,故点M 的轨迹为线段CE ,解出即可.【详解】取PA 的中点E ,连接EB ,EC ,因为几何体是正四面体P ﹣ABC ,所以BE ⊥PA ,EC ⊥PA ,EB ∩EC =E ,∴PA ⊥平面BCE ,且动点M 在正四面体侧面PAC 上运动,总保持MB PA ⊥,∴点M 的轨迹为线段CE ,正四面体P ﹣ABC 的棱长为2,在等边三角形PAC 中求得CE 2=【点睛】本题考查了正四面体的性质和线面垂直与线线垂直的判定,判断轨迹是解题的关键,属于中档题.三、解答题25.(1)主视图(正视图)见解析,334S =;(2)34V =. 【分析】 (1)根据侧视图计算出PAC △的边AC 上的高,进而可作出几何体PMABC 的主视图,利用梯形的面积公式可求得几何体的主视图的面积;(2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,推导出AN ⊥平面BCPM ,计算出AN 和梯形BCPM 的面积,利用锥体的体积公式可求得多面体PMABC 的体积V .【详解】(1)在几何体PMABC 中,平面PAC ⊥平面ABC ,设PAC △的边AC 上的高为h ,则该几何体的侧视图的面积为1324AC h ⋅=,得3h =, 又因为22BC PM ==,所以,该几何体的主视图(正视图)如下图所示:由图可知,该几何体的主视图为直角梯形,其面积为()12333224S +==⨯; (2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,如下图所示:PA PC =,O 为AC 的中点,所以,PO AC ⊥,由(1)可知,3PO h ==,1122AO CO AC ===, 由勾股定理可得221PC PA AO PO ==+=,所以,PAC △为等边三角形, N 为PC 的中点,AN PC ∴⊥,且3sin 60AN AC ==. 1AC =,2BC =,5AB =222AC BC AB ∴+=,BC AC ∴⊥,平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,BC ⊂平面ABC , BC ∴⊥平面PAC ,AN 、PC ⊂平面PAC ,BC AN ∴⊥,BC PC ⊥,PC BC C =,AN ∴⊥平面BCPM ,//PM BC ,PM PC ∴⊥,所以,梯形BCPM 的面积为()322BCPM BC PM PC S +⋅==梯形, 因此,11333332BCPM V S AN =⋅=⨯=梯形. 【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.26.(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线的性质,得到//EF AB ,利用线面平行的判定定理证得结果; (2)根据面面垂直的性质定理,得到BD ⊥平面ACD ,进而证得BD AC ⊥. 【详解】证明:(1)如图(2):在ABC 中,E 、F 分别是AC 、BC 中点,得//EF AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,//AB ∴平面DEF .(2)∵平面ACD ⊥平面BCD 且交线为CD ,BD CD ⊥,且BD ⊂平面BCD , ∴BD ⊥平面ACD ,又AC ⊂平面ACD∴BD AC ⊥.【点睛】方法点睛:该题考查的是有关空间关系的证明问题,解题方法如下:(1)熟练掌握线面平行的判定定理,在解题过程中,一定不要忘记线在面内、线在面外的条件;(2)根据面面垂直的条件,结合线线垂直,利用面面垂直的性质定理,得到线面垂直,进而证得线线垂直.27.(1)见详解;(2)见详解;(3)107【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP ⊥平面PBC ,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC .(3)等积转换,由D BCM M DBC V V --=,可求得体积.【详解】证明:因为M 为AB 的中点,D 为PB 的中点,所以MD 是ABP △的中位线,MDAP . 又MD平面APC ,AP ⊂平面APC , 所以MD平面APC . (2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥. 又MD AP ,所以AP PB ⊥.又因为AP PC ⊥,PBPC P =,所以AP ⊥平面PBC . 因为BC ⊂平面PBC ,所以⊥AP BC .又因为BC AC ⊥,AC AP A ⋂=,所以BC ⊥平面APC .(3)因为AP ⊥平面PBC ,MD AP ,所以MD ⊥平面PBC ,即MD 是三棱锥M DBC -的高.因为20AB =,M 为AB 的中点,PMB △为正三角形,所以310,532PB MB MD MB ==== 由BC ⊥平面APC ,可得BC PC ⊥, 在直角三角形PCB 中,由104PB BC =,=,可得221PC =于是1114222BCD BCP S S ⨯⨯⨯=△△== 1133D BCM M DBC BCD V V S MD --⨯=△===【点睛】关键点睛:三棱锥的体积直接求不便时,常采用等积转换的方法,选择易求的底面积和高来求体积.28.(1)证明见解析;(2)7 【分析】(1)利用正余弦定理解三角形,求出222AM BM AB +=得AM BC ⊥,即可结合⊥AP BC 得出BC ⊥平面AMP ,证出PM BC ⊥;(2)过A 作AG PM ⊥,ANG ∠即AN 与平面PBC 所成角,利用余弦定理求出各边长度,即可求出.【详解】(1)1,135AB AC BAC ︒==∠=,由余弦定理可得22212152BC ⎛=+-⨯-= ⎝⎭,BC ∴=由正弦定理sin sin BC AC BAC ABC =∠∠,则可得sin 5ABC ∠=cos 5ABC ∠=23BM MC =,则可得,55BM MC ==,在ABM 中,利用余弦定理可得22211215AM =+-⨯=⎝⎭,即AM = 则满足222AM BM AB +=,AM BC ∴⊥,AP BC ⊥,AP AM A ⋂=,BC ∴⊥平面AMP ,PM ⊂平面AMP ,PM BC ∴⊥;(2)过A 作AG PM ⊥,由(1)BC ⊥平面AMP 可得平面AMP ⊥平面PBC , 且平面AMP平面PBC PM =,AG ∴⊥平面PBC ,则ANG ∠即AN 与平面PBC 所成角,1,3,cos 13AB A A P P B ∠==-=, 则由余弦定理可得222113213123PB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,即23PB = BC PM ⊥,22270PM PB BM ∴=-=, 则2225cos 2PA AM PM PAM PA PM +-∠==⋅,即2sin 3PAM ∠=, 15sin 2PAM S PA AM PAM ∴=⋅⋅∠=,则152PM AG ⨯⨯=, 1414AG ∴=, 222552512cos 1214254AN AB BN AB BN ABC =+-⨯⨯⨯∠=+-⨯⨯=, 12AN ∴=, 14sin 7AG ANG AN ∴∠==. 【点睛】 关键点睛:本题考查利用线面垂直证明线线垂直,考查线面角的求解,解题的关键是正确求出图中各线段长度,会应用余弦定理求解,考查计算能力.。
最新北师大版高中数学必修二第二章《解析几何初步》测试(包含答案解析)
一、选择题1.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .62.设两条直线的方程分别为0x y a ++=,0x y b ++=,已知,a b 是方程20x x c ++=的两个实根,且108c ≤≤,则这两条直线之间的距离的最大值和最小值分别为( )A .33, B .133, C .122, D .23, 3.圆心在x +y =0上,且与x 轴交于点A (-3,0)和B (1,0)的圆的方程为( )A .22(1)(1)5x y ++-=B .22(1)(1)x y -++=C .22(1)(1)5x y -++=D .22(1)(1)x y ++-=4.已知圆22:(2)(2)10+++=C x y ,若直线:2l y kx =-与圆交于,P Q 两点,则弦长PQ 的最小值是( )A B .4C .D .5.已知M 、N 分别是圆()()22:161C x y ++-=和圆()()22:261D x y -+-=上的两个动点,点P 在直线:l y x =上,则PM PN +的最小值是( )A .2B .10C 2D .126.已知圆221:(1)(1)1C x y ++-=,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A .22(2)(2)1x y -++=B .22(2)(2)1x y ++-=C .22(2)(2)1x y -+-=D .22(2)(1)1x y -+-=7.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤B .12sin sin 1θθ+≥C .122πθθ+≤D .122πθθ+≥8.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( ) ①在α内存在无数多条直线与直线AB 平行; ②在α内存在无数多条直线与直线AB 垂直; ③在α内存在无数多条直线与直线AB 异面; ④一定存在过AB 且与α垂直的平面β. A .1个 B .2个C .3个D .4个9.某几何体的三视图如图所示,其中网格纸的小正方形的边长是1,则该几何体外接球的体积为( )A .323πB .48πC .32327π D .643π 10.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .2B .255C .3 D .27711.在下面四个正方体ABCD A B C D ''''-中,点M 、N 、P 均为所在棱的中点,过M 、N 、P 作正方体截面,则下列图形中,平面MNP 不与直线A C '垂直的是( )A .B .C .D .12.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .2二、填空题13.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________. 14.经过圆C :2220x y x ++=的圆心,且与直线320x y +-=垂直的直线方程是______. 15.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转角02παα⎛⎫<< ⎪⎝⎭,所得直线方程是20x y --=,若将它继续旋转2πα-角,所得直线方程是210x y +-=,则直线l 的方程是______.16.已知圆()2221x y +-=上一动点A ,定点()6,1B ,x 轴上一点W ,则AW BW+的最小值等于______.17.设0m >,点(4,)A m 为抛物线22(0)y px p =>上一点,F 为焦点,以A 为圆心||AF 为半径的圆C 被y 轴截得的弦长为6,则圆C 的标准方程为__________.18.函数2291041y x x x =+-+_________.19.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.20.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中AC B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.21.如图,平面四边形ABCD 中,1AB AD ==,2,3,BD CD BD CD ==⊥将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,则四面体A BCD '-的外接球的球心到平面ACD '的距离等于__________.22.已知三棱锥P ABC -的外接球O 的表面积为12π,PA ⊥平面ABC ,BA AC ⊥,2PA =,则ABC 面积的最大值为__________.23.如图,正方形BCDE 的边长为a ,已知3AB BC =,将ABE △沿边BE 折起,折起后A 点在平面BCDE 上的射影为D 点,则翻折后的几何体中有如下描述:①AB 与DE 所成角的正切值是2;②//AB CE ;③B ACE V -体积是316a ;④平面ABC ⊥平面ADC .其中正确的有______.(填写你认为正确的序号)24.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.三、解答题25.一副标准的三角板(如图1),ABC ∠为直角,60A ∠=︒,DEF ∠为直角,DE EF =,BC DF =,把BC 与DF 重合,拼成一个三棱锥(如图2),设M 是线段AC的中点,N 是线段BC 的中点.(1)求证:平面ABC ⊥平面EMN ; (2)设平面ABE平面MNE l =,求证://l AB .26.如图,长方体ABCD A B C D ''''-由,12AB =,10BC =,6AA '=,过A D ''作长方体的截面A D EF ''使它成为正方形.(1)求三棱柱AA F DD E ''-的外接球的表面积; (2)求 B A D EF V ''-.27.在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ; (2)证明:BE CD ⊥.28.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒==∠=,1cos ,3BAP AP BC ∠=-⊥.(1)若23BM MC =,求证:PM BC ⊥; (2)当3AP =,且N 为BC 中点时,求AN 与平面PBC 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式.2.C解析:C 【分析】由韦达定理求出1,a b ab c +=-=,然后求出2||()4a b a b ab -=+-两平行线间的距离范围. 【详解】由已知得两条直线的距离是2d =,因为,a b 是方程20x x c ++=的两个根,所以1,a b ab c +=-=, 则2||()4=14a b a b ab c -=+--,因为108c ≤≤,所以1222,即122d . 故选:C 【点睛】本题考查平行线间的距离公式,韦达定理和不等式,属于基础题.3.A解析:A 【分析】由题意得:圆心在直线x=-1上,又圆心在直线x+y=0上,故圆心M 的坐标为(-1,1),再由点点距得到半径. 【详解】由题意得:圆心在直线x=-1上, 又圆心在直线x+y=0上, ∴圆心M 的坐标为(-1,1),又A (-3,0),半径则圆的方程为(x+1)2+(y-1)2=5. 故选A . 【点睛】这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.4.D解析:D 【分析】由题意,求解圆的圆心坐标和半径,再利用圆的弦长公式,即可求解. 【详解】由题意,直线2y kx =-过定点(0,2)A -,又由圆22:(2)(2)10+++=C x y 的圆心坐标(2,2)--,半径r =,则A 点到圆心的距离可得2d ==,由圆的弦长公式,可得l ===即弦长PQ 的最小值为 D. 【点睛】本题主要考查了圆的弦长公式,圆的标准方程的应用,其中解答中求得圆的圆心坐标和半径,再利用圆的弦长公式求解是解答的关键,着重考查了推理与计算能力,属于基础题.5.C解析:C 【分析】计算圆心()1,6-关于直线:l y x =的对称点为()16,1C -,计算1C D =.【详解】圆()()22:161C x y ++-=的圆心为()1,6-,圆()()22:261D x y -+-=的圆心为()2,6,()1,6-关于直线:l y x =的对称点为()16,1C -,1C D ==,故PM PN +的最小值是1122C D r r --=.故选:C. 【点睛】本题考查了点关于直线对称,与圆相关的距离的最值,意在考查学生的计算能力和应用能力,转化能力.6.A解析:A 【分析】设圆2C 的圆心为2(,)C a b ,解方程组111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩得22a b =⎧⎨=-⎩,即得解.【详解】圆1C 的圆心为1(1,1)C -,设圆2C 的圆心为2(,)C a b ,依题意得111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩,解得22a b =⎧⎨=-⎩,又圆2C 的半径与圆1C 的半径相等, 所以圆2C 的方程为22(2)(2)1x y -++=. 故选:A. 【点睛】本题主要考查圆的方程的求法,考查点线点对称,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤- ⎪⎝⎭,利用三角函数的单调性判断选项. 【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C 【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 8.C解析:C 【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断. 【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误; 对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确. 故真命题的个数是3个. 故选:C . 【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.9.A解析:A【分析】由三视图可知,该几何体是四棱锥,其中四棱锥底面是边长为4的正方形,将四棱锥补成棱长为4的正方体,则该几何体的外接球就是正方体的外接球,进而可得答案.【详解】由三视图可知,该几何体是如图所示的四棱锥P ABCD -,其中四棱锥底面是边长为4的正方形,四棱锥的一条侧棱与底面垂直,四棱锥的高为4,将四棱锥补成棱长为4的正方体,则该几何体的外接球就是正方体的外接球,外接球的直径2R 等于正方体的对角线长, 即24323R R =⇒=,所以该几何体外接球的体积为()34233π⨯=323π,故选:A.【点睛】方法点睛:三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状. 10.D解析:D【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值.【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE AC , 1//EF BC ,且OEEF E =,故平面11//A BC 平面OGFE , 又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角,sin OA OPA OP∴∠=, OA 为定值, ∴当OP 最小时,正弦值最大, 而22OP OA AP +所以当AP 最小时,sin OPA ∠最大,故当AP FG ⊥时,sin OPA ∠最大,设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒, 32AP ∴=, 又1212OA =⨯=, 222sin 773()12OA OPA OP ∴∠===+故选:D【点睛】关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.11.A解析:A【分析】利用线面垂直的判定定理可判断BCD 选项,利用假设法推出矛盾,可判断A 选项.【详解】对于A 选项,连接B C ',假设A C '⊥平面MNP ,在正方体ABCD A B C D ''''-中,A B ''⊥平面BB C C '',B C '⊂平面BB C C '',A B B C '''∴⊥,所以,A B C ''为直角三角形,且A CB ''∠为锐角,因为M 、N 分别为BB '、BC 的中点,则//MN B C ',所以,MN 与A C '不垂直, 这与A C '⊥平面MNP 矛盾,故假设不成立,即A C '与平面MNP 不垂直;对于B 选项,连接B D ''、A C '',如下图所示:因为四边形A B C D ''''为正方形,则A C B D ''''⊥,CC '⊥平面A B C D '''',B D ''⊂平面A B C D '''',CC B D '''∴⊥,A C CC C ''''=,B D ''∴⊥平面A CC '',A C '⊂平面A CC '',ACB D '''∴⊥, M 、P 分别为A B ''、A D ''的中点,则//MN B D '',可得MP AC '⊥,同理可证A C MN '⊥,MP MN M ⋂=,A C '∴⊥平面MNP ;对于C 选项,连接C D '、A N '、CN 、A P '、PC ,取A B ''的中点E ,连接C E '、PE ,因为四边形CC D D ''为正方形,则CD C D ''⊥,A D ''⊥平面CC D D '',C D '⊂平面CC D D '',C D A D '''∴⊥,CD A D D ''''=,C D '∴⊥平面A CD '',A C '⊂平面A CD '',A C C D ''∴⊥, M 、N 分别为DD '、C D ''的中点,//MN C D '∴,A C MN '∴⊥,在正方形A B C D ''''中,E 、N 分别为A B ''、C D ''的中点,//A E C N ''∴且A E C N ''=, 所以,四边形A EC N ''为平行四边形,所以,//A N C E ''且A N C E ''=,同理可证四边形CC EP '为平行四边形,//C E CP '∴且C E CP '=,所以,//A N CP '且A N CP '=,所以,四边形A PCN '为平行四边形,易得A N CN '=,所以,四边形A PCN '为菱形,所以,A C PN '⊥,MN PN N =,A C '∴⊥平面MNP ;对于D 选项,连接AC 、BD ,因为四边形ABCD 为正方形,则AC BD ⊥,AA '⊥平面ABCD ,BD ⊂平面ABCD ,AA BD '∴⊥,AC AA A '⋂=,BD ∴⊥平面AAC', A C '⊂平面AAC',A C BD '∴⊥, M 、N 分别为CD 、BC 的中点,则//MN BD ,A C MN '∴⊥,同理可证A C MP '⊥,MN MP M ⋂=,A C '∴⊥平面MNP .故选:A.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.12.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112=221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.二、填空题13.【详解】即整理化简得cos∠AOB=-过点O作AB的垂线交AB于D则cos∠AOB=2cos2∠AOD-1=-得cos2∠AOD=又圆心到直线的距离为OD=所以cos2∠AOD ===所以r2=10r =【详解】22225325539OC OA OB OA 2OA OB OB 44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭ 即222225159r r r cos AOB r 16816=+∠+,整理化简得cos ∠AOB =-35,过点O 作AB 的垂线交AB 于D ,则cos ∠AOB =2cos 2∠AOD -1=-35,得cos 2∠AOD =15.又圆心到直线的距离为OD=,所以cos 2∠AOD =15=22OD r =22r ,所以r 2=10,r . 14.【分析】求出圆心坐标所求直线与垂直则点斜式写出直线方程【详解】因为所求直线与垂直则又圆心坐标所以直线方程为:即故答案为:【点睛】(1)在求直线方程时应选择适当的形式并注意各种形式的适用条件(2)对于 解析:1133y x =+ 【分析】求出圆心坐标(1,0)C -,所求直线与320x y +-=垂直,则13k =,点斜式写出直线方程. 【详解】因为所求直线与320x y +-=垂直,则13k =,又圆心坐标(1,0)C - 所以直线方程为:10(1)3y x -=+ 即1133y x =+ 故答案为:1133y x =+ 【点睛】(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零). 15.【分析】求出点坐标由于直线与直线垂直得出直线的斜率为再由点斜式写出直线的方程【详解】由于直线可看成直线先绕点逆时针方向旋转角再继续旋转角得到则直线与直线垂直即直线的斜率为所以直线的方程为即故答案为: 解析:230x y --=【分析】求出点P 坐标,由于直线210x y +-=与直线l 垂直,得出直线l 的斜率为12,再由点斜式写出直线l 的方程.【详解】()1,120210x x y P y -⎧⇒-⎨--=+⎩= 由于直线210x y +-=可看成直线l 先绕点P 逆时针方向旋转角α,再继续旋转2πα-角得到,则直线210x y +-=与直线l 垂直,即直线l 的斜率为12 所以直线l 的方程为11(1)2y x +=-,即230x y --= 故答案为:230x y --=【点睛】 本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题. 16.【分析】根据题意画出示意图进而数形结合求解;【详解】根据题意画出圆以及点B (61)的图象如图作B 关于x 轴的对称点连接圆心与则与圆的交点A 即为的最小值为点(02)到点(6-1)的距离减圆的半径即故答案 解析:351-【分析】根据题意画出示意图,进而数形结合求解;【详解】根据题意画出圆()2221x y +-=,以及点B (6,1)的图象如图,作B 关于x 轴的对称点B ',连接圆心与B ',则与圆的交点A ,AB 即为AW BW +的最小值,AB 为点(0,2)到点B '(6,-1)的距离减圆的半径,即22(60)(12)1351AB =-+--=,故答案为:351.【点睛】考查“将军饮马”知识,数形结合的思想,画出图形,做出B 点的对称点是解决本题的突破点;17.【分析】结合已知利用垂径定理和勾股定理可求出的值进而求出的值;把代入抛物线方程求出的值可得圆心坐标和半径从而得到所求的圆的标准方程【详解】由题意可得点到轴的距离为又已知圆被轴截得的弦长为6得则所以因 解析:22(4)(4)25x y -+-=【分析】结合已知,利用垂径定理和勾股定理可求出||AF 的值,进而求出p 的值;把(4,)A m 代入抛物线方程,求出m 的值,可得圆心坐标和半径,从而得到所求的圆的标准方程.【详解】由题意可得点(4,)A m 到y 轴的距离为4,又已知圆C 被y 轴截得的弦长为6,得5AF ==, 则452p +=, 所以2p =,因为点(4,)A m 为抛物线22(0)y px p =>上一点,且0m >,所以4m ==,故圆C 的标准方程为:22(4)(4)25x y -+-=.故答案为:22(4)(4)25x y -+-=.【点睛】本题是一道关于圆和抛物线的题目,求出圆心坐标和半径是关键,考查逻辑思维能力和计算能力,属于常考题.18.【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】本题考查【分析】将y y =,设()0,3A ,()5,4B ,(),0C x ,则y AC BC ==+即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值;【详解】解:y ==()0,3A ,()5,4B ,(),0C x ,则y AC BC =+,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,()22153474BA =+--=min 74y ∴= 故答案为:74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题. 19.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC AC 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积.【详解】4,42AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC AC 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则412OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆, 其面积为224S ππ=⨯=.故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上. 20.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可.【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABC S BC AO =⋅=⨯⨯= 故答案为:82【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.21.【分析】取的中点为可证明为四面体外接球的球心利用等体积可得答案【详解】取的中点为连接因为平面平面平面平面平面故平面因为平面故因为故故又故平面因为平面故而为的中点故又所以故为四面体外接球的球心设球心到 解析:12【分析】取BC 的中点为M ,可证明M 为四面体A BCD '-外接球的球心,利用等体积可得答案.【详解】取BC 的中点为M ,连接,A M DM ',因为平面A BD '⊥平面BCD ,BD CD ⊥,平面A BD '平面BCD BD =, CD ⊂平面BCD ,故CD ⊥平面A BD ',因为BA '⊂平面A BD ',故CD BA '⊥,因为1A B A D ''==,2BD =,故222BD A B A D ''=+,故''⊥BA A D ,又A D DC D '⋂=,故'⊥BA 平面ACD ',因为A C '⊂平面ACD ',故A D A C ''⊥,而M 为BC 的中点,故MA MB MC '==,又BD DC ⊥,所以MD MB =,故M 为四面体A BCD '-外接球的球心.设球心M 到平面ACD '的距离为h ,因为2B A CD M A CD V V ''--=,所以11233A CD A CD S A B S h '''=⨯,即12h =. 故答案为:12. 【点睛】 本题考查四面体的外接球,此类问题一般是先确定球心的位置,再把球的半径放置在可解的平面图形中处理,如果球心的位置不易确定,则可以通过补体的方法来处理. 22.2【分析】由球的表面积可求出半径取的中点可得设由基本不等式可得即可求出面积的最大值【详解】因为球的表面积为所以球的半径取的中点则为的外接圆圆心平面设由得因为所以当且仅当时取等因为的面积为所以面积的最 解析:2【分析】由球的表面积可求出半径3R =,取BC 的中点D ,可得1OD =,设AB x =,AC y =,由基本不等式可得4xy ≤,即可求出ABC 面积的最大值.【详解】因为球O 的表面积为12π,所以球O 的半径3R =.取BC 的中点D ,则D 为ABC 的外接圆圆心,PA ⊥平面ABC ,112OD PA ∴==, 设AB x =,AC y =,由2222134+==+=+=x y R OC CD OD ,得228x y +=. 因为222x y xy +≥,所以4xy ≤,当且仅当2x y ==时取等.因为ABC 的面积为1122⋅=AB AC xy ,所以ABC 面积的最大值为2. 故答案为:2.【点睛】本题考查几何体的外接球问题,解题的关键是是建立勾股关系,利用基本不等式求出4xy ≤.23.①③④【分析】作出折叠后的几何体的直观图由题中条件得到是异面直线与所成的角求出其正切可判断①正确;根据线面垂直的的判定定理先证明平面可判断②错;根据等体积法由体积公式求出可判断③正确;根据面面垂直的解析:①③④【分析】作出折叠后的几何体的直观图,由题中条件,得到ABC ∠是异面直线AB 与DE 所成的角,求出其正切,可判断①正确;根据线面垂直的的判定定理,先证明CE ⊥平面ABD ,可判断②错;根据等体积法,由体积公式求出B ACE V -,可判断③正确;根据面面垂直的判定定理,可判断④正确.【详解】作出折叠后的几何体直观图如图所示:由题意,3AB a =,BE a =,∴2AE a =; ∴22AD AE DE a =-=,222AC CD AD a ∴+,∵//BC DE ,∴ABC ∠是异面直线AB 与DE 所成的角, 在Rt ABC 中, tan 2AC ABC BC ∠==①正确; 连结BD ,CE ,则CE BD ⊥,又AD ⊥平面BCDE ,CE ⊂平面BCDE ,∴CE AD ⊥,又BD AD D ,BD ⊂平面ABD ,AD ⊂平面ABD ,∴CE ⊥平面ABD ,又AB平面ABD , ∴CE AB ⊥.故②错误.三棱锥B ACE -的体积2311113326B ACE A BCE BCE V V S AD a a a --===⨯⨯=⋅⨯. 故③正确. ∵AD ⊥平面BCDE ,BC ⊂平面BCDE ,∴BC AD ⊥,又BC CD ⊥,CDAD D =,CD ⊂平面ADC ,AD ⊂平面ADC , ∴BC ⊥平面ADC ,∵BC ⊂平面ABC ,∴ABC ⊥平面ADC .故④正确.故答案为:①③④.思路点睛:判断空间中线线、线面、面面位置关系时,一般根据相关概念,结合线面平行、垂直的判定定理及性质,以及面面平行、垂直的判定定理及性质,根据题中条件,进行判断或证明. 24.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:82π 【分析】取AB 中点1O ,连接11,OC O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积.【详解】取AB 中点1O ,连接11,OC O D ,则1//CD O A ,所以四边形1ADCO 为平行四边形,所以1=1CO ,同理1=1O D ,所以1111=O A O B OC O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==,所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,2AB SA ==,所以122OA SB == 所以3482(2)3V ππ=⨯=, 82π.解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.三、解答题25.(1)证明见解析(2)证明见解析【分析】(1)只要证明MN BC ⊥,EN BC ⊥,即得;(2)由(1)知MN ∥AB ,可得//AB 平面MNE ,又平面ABE ∩平面MNE =l ,利用线面平行推导出线线平行即可.【详解】证明:(1)设BC 的中点为N ,连结MN ,EN ,如图,因为M 是AC 的中点,N 是BC 的中点,所以MN ∥AB ,因为AB ⊥BC ,所以MN ⊥BC ,因为BE ⊥EC ,BE =EC ,N 是BC 的中点,所以EN ⊥BC ,又MN ⊥BC ,MN ∩EN =N ,MN ⊂平面EMN ,EN ⊂平面EMN ,所以BC ⊥平面EMN ,又因为BC ⊂平面ABC ,所以平面ABC ⊥平面EMN证明:(2)由(1)知MN ∥AB ,AB ⊄平面EMN , MN ⊂平面EMN ,所以//AB 平面MNE ,又AB 平面ABE ,且平面ABE ∩平面MNE =l ,所以l ∥AB.【点睛】关键点点睛:利用线线平行可判定线面平行,根据线面平行的性质定理可得线线平行,注意图中没有平面ABE ∩平面MNE =l ,但利用性质定理即可证明.26.(1)200π(2)80【分析】(1)根据直三棱柱底面为为直角三角形可得外接球球心的位置,利用勾股定理求半径,即可求解;(2)根据等体积法及几何体的割补法可转化为求三棱锥A BEF V '-即可.【详解】(1)因为截面A D EF ''为正方形,所以10A F BC A D '==='',在Rt A AF '△中,222AA AF A F ''+=,即222610AF +=,解得8AF =,在直三棱柱AA F DD E ''-中,底面Rt A AF '△的外接圆半径为1110522A F '=⨯=, 直三棱柱AA F DD E ''-的外接球球心到面A AF '的距离为11052⨯=, 设三棱柱的外接球半径为R ,则R == 24200S R ππ∴==(2)因为22B A EF A B B A D EF EF V V V ''-'--'==,在长方体中AA '⊥平面BEF ,所以三棱锥A BEF '-的高为6AA '=,所以B A D EF V ''-111226332BEF S A A EF BF ⎛⎫'=⨯⨯⨯=⨯⨯⨯⨯⨯ ⎪⎝⎭△ 11210468032=⨯⨯⨯⨯⨯=. 【点睛】关键点点睛:根据直三棱柱外接球的的性质可知球心到底面的距离为高的一半,求出底面外接圆的半径即可利用勾股定理求解即可,利用分割法可把四棱锥转化为三棱锥求体积即可.27.(1)证明见解析;(2)证明见解析.【分析】(1)利用中位线的性质可得出//EF AC ,再利用线面平行的判定定理可证得结论成立; (2)利用面面垂直的性质定理可得出BE⊥平面ACD ,进而可证得BE CD ⊥.【详解】(1)在ADC 中,E 、F 分别是AD 、DC 的中点,//EF AC ∴. EF ⊄平面ABC ,AC ⊂平面ABC ,//EF ∴平面ABC ;(2)在ABD △中,BA BD =,E 为AD 的中点,BE AD ∴⊥, 又平面ABD ⊥平面ADC ,平面ABD ⋂平面ADC AD =,BE ⊂平面ABD , BE ∴⊥平面ADC .CD ⊂平面ADC ,BE CD ∴⊥.。
必修二第二章《解析几何初步》测试卷(含答案解析)
一、选择题1.过平面区域20{2020x y y x y -+≥+≥++≤内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α的值为( )A .9510B .1920C .910D.122.若直线y x b =+与曲线24y x =-有公共点,则b 的取值范围为( )A .[]22-,B .2,22⎡⎤-⎣⎦C .22,22-⎡⎤⎣⎦D .()2,22-3.已知圆1C :221x y +=与圆2C :()()22124x y -++=交于A 、B 两点,则线段AB 的垂直平分线方程为( )A .210x y --=B .20x y -=C .20x y +=D .210x y -+=4.已知直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段相交,则实数k 的取值范围为( ) A .32k ≤B .12k ≥-C .1322k -≤≤ D .12k ≤-或32k ≥ 5.苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是( )米.(注意:10取3.162)A .6.48B .4.48C .2.48D .以上都不对6.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线.在平面直角坐标系中作ABC ,在ABC 中,4AB AC ==,点(1,3)B -,点(4,2)C -,且其“欧拉线”与圆222(3)x y r -+=相切,则该圆的半径r 为( ) A .1B .2C .2D .227.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π8.正方体1111ABCD A BC D -的棱长为2,E 是1CC 的中点,则点1C 到平面EBD 的距离为( ) A .34B .63C .5 D .223 9.在三棱柱111ABC A B C -中,90BAC ∠=︒,1BC AC ,且12AC BC =,则直线11B C 与平面1ABC 所成的角的大小为( )A .30°B .45°C .60°D .90°10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.在正方体1111ABCD A BC D -中,三棱锥11A B CD -的表面积为43球的体积为( )A .43πB .6πC .323πD .86π12.空间四边形PABC 的各边及对角线长度都相等,D 、E 、F 外别是AB 、BC 、CA 的中点,下列四个结论中不成立的是( ) A .//BC 平面PDF B .DF ⊥平面PAE C .平面PDE ⊥平面ABCD .平面PAE ⊥平面ABC二、填空题13.已知点()2,2A --,()4,2,点P 在圆224x y +=上运动,则22PA PB +的最小值是______.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________. 15.若三条直线20x y -=,30x y +-=,50mx ny ++=相交于同一点,则点(,)m n 到原点的距离的最小值为________.16.已知直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴,过点()1,P a -的直线m 与圆C 交于,A B 两点,且AB 4=,则直线m 的斜率为____.17.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,双曲线C 的离心率为______.18.若直线()220,0ax by a b +-=>始终平分圆22420x y x y +--=的周长,则12a b+的最小值为______.19.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________.20.如图,已知一个八面体的各条棱长均为2,四边形ABCD 为正方形,给出下列说法:①该八面体的体积为83;②该八面体的外接球的表面积为8π; ③E 到平面ADF 的距离为3;④EC 与BF 所成角为60°. 其中正确的说法为__________.(填序号)21.已知A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离是球半径的13,且22AB =,AC BC ⊥,则球O 的表面积是______.22.如下图所示,三棱锥P ABC -外接球的半径为1,且PA 过球心,PAB △围绕棱PA 旋转60︒后恰好与PAC △重合.若3PB =,则三棱锥P ABC -的体积为_____________.23.如图,在三棱锥A BCD -,,AB AD BC ⊥⊥平面ABD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF AD ⊥.则下列结论中:正确结论的序号是______.①//EF 平面ABC ;②AD AC ⊥;③//EF CD24.正四棱台的上、下两底面边长分别是方程x 2-9x +18=0的两根,其侧面积等于两底面面积之和,则其侧面梯形的高为________.三、解答题25.如图,在正四棱柱1111ABCD A BC D -中,11,2AB AA ==,点E 为1CC 中点,点F 为1BD 中点.(1)求异面直线1BD 与1CC 的距离;(2)求直线1BD 与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.26.在如图所示的几何体中,四边形BCED 为直角梯形,//DE CB ,BC EC ⊥,90AED ∠=︒.(1)证明:平面ABC ⊥平面ACE .(2)若P ,Q 分别是AE ,CD 的中点,证明://PQ 平面ABC .27.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 28.如图所示,在四棱锥P ABCD -中,底面ABCD 是60DAB ∠=且边长为a 的菱形,侧面PAD 为正三角形,其所在平面垂直于底面ABCD ,若G 为AD 的中点,E 为BC 的中点.(1)求证://BG 平面PDE ;(2)在棱PC 上是否存在一点F ,使平面DEF ⊥平面ABCD ,若存在,确定点F 的位置;若不存在,说明理出.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:因为OP AP ⊥,所以在Rt AOP ∆中1sin2r OP OPα==,222cos 12sin 1OP αα=-=-,因为0,2πα⎛⎫∈ ⎪⎝⎭,而函数cos y α=在0,2π⎛⎫ ⎪⎝⎭上是减函数,所以当α最小时221OP -最大,因为221OP -为增函数则此时OP 最大.根据不等式表示的可行域可知当()4,2P -时()()22max 4225OP =-+-=.综上可得α最小时()max 2219(cos )11101025α=-=-=.故C 正确.考点:1二倍角公式;2直线与圆相切;3函数的单调性.2.B解析:B 【分析】直线y x b =+与曲线24y x =-y x b =+与半圆()224,0x y y +=≥有交点,分析几何图形得出有交点的临界情况.【详解】 由24y x =-可得()224,0x y y +=≥,表示圆心 (0,0),2r =的半圆,当y x b =+经过(2,0)时,此时2b =-; 当y x b =+与此半圆相切时,222221(1)r b ==⇒=+-,作出半圆与直线的图象如下,由图象可知,要使直线y x b =+与曲线24y x =-则2,22b ⎡⎤∈-⎣⎦.故选:B 【点睛】 关键点点睛:由24y x =-y x b =+与其有公共点的临界情况,是解决问题的关键.3.C解析:C 【分析】先写出两圆的圆心的坐标,再求出两圆的连心线所在直线的方程即得解. 【详解】圆1C :221x y +=的圆心坐标为(0,0),圆2C :()()22124x y -++=的圆心为(1,2)-,由题得线段AB 的垂直平分线就是两圆的连心线, 所以02201AB k +==--, 所以线段AB 的垂直平分线为02(0),20y x x y -=--∴+=. 所以线段AB 的垂直平分线为20x y +=.故选:C 【点睛】方法点睛:求直线的方程常用的方法是:待定系数法,先定式,后定量.要根据已知条件灵活选择方法求解.4.D解析:D 【分析】直线10kx y k ---=过定点()1,1P -,分别求出PM k 和PN k ,结合图形,可求出答案. 【详解】由题意,直线10kx y k ---=可化为()110k x y ---=,令1x =,得1y =-,即该直线过定点()1,1P -,111312PM k +==---,213312PN k +==-,所以当12k ≤-或32k ≥时,直线10kx y k ---=和以()3,1M -,()3,2N 为端点的线段相交. 故选:D. 【点睛】本题考查了直线系方程的应用,以及过两点的直线的斜率的求法,考查了数形结合的解题思想方法,是中档题.5.A解析:A 【分析】以点P 为坐标原点,OP 所在直线为y 轴、过点P 且平行于AB 的直线为x 轴建立平面直角坐标系,求得点A 的坐标,设所求圆的半径为r ,由勾股定理可列等式求得r 的值,进而可求得圆的方程,然后将30x =-代入圆的方程,求出点N 的纵坐标,可计算出MN 的长,即可得出结论. 【详解】以点P 为坐标原点,OP 所在直线为y 轴、过点P 且平行于AB 的直线为x 轴建立平面直角坐标系,由题意可知,点A 的坐标为()50,10--,设圆拱桥弧所在圆的半径为r ,10OP =,由勾股定理可得()222r OP OA r -+=,即()2221050r r -+=,解得130r =,所以,圆心坐标为()0,130-,则圆的方程为()222130130x y ++=,将30x =-代入圆的方程得()()2221301303016000y +=--=,10y >-,解得4010130y =,()()4010130104010120 6.48MN ∴=--=≈(米).故选:A. 【点睛】本题考查圆的方程的应用,求得圆的方程是解题的关键,考查计算能力,属于中等题.6.B解析:B 【分析】由等腰三角形的性质可得BC 边上的高线、垂直平分线和中线合一,其“欧拉线”为ABC 边BC 的垂直平分线,运用中点坐标公式和两直线垂直的条件,求得BC 边上的垂直平分线方程,再由直线和圆相切的条件:d r =,可得所求值. 【详解】解:在ABC 中,4AB AC ==,点(1,3)B -,点(4,2)C -, 可得BC 边上的高线、垂直平分线和中线合一, 则其“欧拉线”为ABC 边BC 的垂直平分线,可得BC 的中点为3(2,1)2,直线BC 的斜率为32114+=---, 则BC 的垂直平分线的斜率为1, 可得BC 的垂直平分线方程为1322y x -=-,即为10x y --=, 其“欧拉线”与圆222(3)x y r -+=相切, 可得圆心(3,0)到“欧拉线”的距离为22d == 即有半径2r =故选:B . 【点睛】本题考查直线方程、三角形的“欧拉线”的定义,以及直线和圆相切的条件,考查推理能力与计算能力.7.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则223R =, 所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.8.B解析:B 【分析】利用等体积法11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,利用三棱锥的体积公式代入面积即求得d . 【详解】如图,利用等体积法,11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,正方体1111ABCD A BC D -的棱长为2,故22,5BD BE ED ===,如图,2215232h ED BD ⎛⎫=-=- ⎪⎝⎭11223622EBDSBD h =⨯⨯=⨯= 又点D 到平面1C EB 的距离,即D 到平面11C CBB 的距离,为CD =2,111212EBC S=⨯⨯=, 由11C EBD D C EB V V --=得,1161233d =⨯⨯,故636d ==. 故选:B. 【点睛】 方法点睛:空间中求点到平面的距离的常见方法: (1)定义法:直接作垂线,求垂线段长;(2)等体积法:利用三棱锥换底求体积,结合两个面积和另一个高求未知高,即得距离; (3)向量法:过点的一个斜线段对应的向量a ,平面法向量n ,则a n d n⋅=.9.A解析:A 【分析】证明CBA ∠就是BC 与平面1ABC 所成的角,求出此角后,利用11//B C BC 可得结论, 【详解】∵90BAC ∠=︒,12AC BC =,∴30CBA ∠=︒,∵1BC AC ,AB AC ⊥,1BC ABB ,1,BC AB ⊂平面1ABC ,∴AC ⊥平面1ABC ,∴CBA ∠就是BC 与平面1ABC 所成的角,即BC 与平面1ABC 所成的角是30, ∵棱柱中11//B C BC ,∴11B C 与平面1ABC 所成的角的大小为30, 故选:A .【点睛】思路点睛:本题考查求直线与平面所成的角,解题方法是定义法,即过直线一点作平面的垂直,得直线在平面上的射影,由直线与其射影的夹角得直线与平面所成的角,然后在直角三角形中求出此角.解题过程涉及三个步骤:一作出图形,二证明所作角是直线与平面所成的角,三是计算.10.C解析:C 【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果. 【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD △是等腰三角形,且底边和底边上的高线都是2;且侧棱AD ⊥底面BCD ,1AD =, 所以112=221=323V ⨯⨯⨯⨯, 故选:C. 【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称; (2)根据三视图还原几何体; (3)利用椎体体积公式求解即可.11.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43, 所以()1213344224AB CS S a==⨯⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B .【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.12.C解析:C 【分析】由线面平行的判定定理可判断A ;由线面垂直的判定定理可判断B ;反证法可说明C ;由面面垂直的判定定理可判断D. 【详解】 对于A ,D ,F 外别是AB ,CA 的中点,//BC DF ∴,DF ⊂平面PDF ,∴//BC 平面PDF ,故A 正确,不符合题意;对于B ,各棱长相等,E 为BC 中点,,BC AE BC PE ∴⊥⊥,PEAE E =,BC ∴⊥平面PAE ,//BC DF ,∴DF ⊥平面PAE ,故B 正确,不符合题意;对于C ,假设平面PDE ⊥平面ABC ,设DE BF O ⋂=,连接PO ,则O 是DE 中点,PO DE ∴⊥,平面PDE 平面ABC DE =,PO ∴⊥平面ABC ,BF ⊂平面ABC ,PO BF ∴⊥,则PB PF =,与PB PF ≠矛盾,故C 错误,符合题意;对于D ,由B 选项DF ⊥平面PAE , DF ⊂平面ABC ,∴平面PAE ⊥平面ABC ,故D 正确,不符合题意. 故选:C. 【点睛】本题考查线面关系和面面关系的判定,解题的关键是正确理解判断定理,正确理解垂直平行关系.二、填空题13.28【分析】设则由表示圆上的点与点间的距离的平方可得答案【详解】设则表示圆上的点与点间的距离的平方所以所以所以故的最小值是28故答案为:28【点睛】关键点睛:本题考查圆中的相关距离的最值问题解答本题解析:28 【分析】设(),P x y ,则22PA PB +()222113x y ⎡⎤=-++⎣⎦,由()221x y -+表示圆224x y +=上的点(),P x y 与点()10B ,间的距离的平方,可得答案. 【详解】设(),P x y ,则()()()()2222222242x y x y PA PB =++++--++2222428x y x =+-+()222214x y x =+-+()222113x y ⎡⎤=-++⎣⎦()221x y -+表示圆224x y +=上的点(),P x y 与点()10B ,间的距离的平方. 所以211PB R OB ≥-=-=,所以()2211x y -+≥所以()()22211321+1328x y ⎡⎤-++≥⨯=⎣⎦故22PA PB +的最小值是28 故答案为:28 【点睛】关键点睛:本题考查圆中的相关距离的最值问题,解答本题的关键是22PA PB +()222113x y ⎡⎤=-++⎣⎦,又()221x y -+表示圆224x y +=上的点(),P x y 与点()10B ,间的距离的平方,根据211PB R OB ≥-=-=,可求解,属于中档题. 14.【详解】即整理化简得cos ∠AOB =-过点O 作AB 的垂线交AB 于D 则cos ∠AOB =2cos2∠AOD -1=-得cos2∠AOD =又圆心到直线的距离为OD =所以cos2∠AOD ===所以r2=10r =22225325539OC OA OB OA 2OA OB OB 44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos ∠AOB =-35,过点O 作AB 的垂线交AB 于D ,则cos ∠AOB =2cos 2∠AOD -1=-35,得cos 2∠AOD =15.又圆心到直线的距离为OD=,所以cos 2∠AOD =15=22OD r=22r ,所以r 2=10,r . 15.【分析】联立解得交点代入可得:再利用两点之间的距离公式二次函数的性质即可得出【详解】解:联立解得把代入可得:点到原点的距离当时取等号点到原点的距离的最小值为故答案为:【点睛】本题考查了两条直线的交点【分析】联立23y xx y =⎧⎨+=⎩,解得交点(1,2),代入50mx ny ++=可得:250m n ++=.再利用两点之间的距离公式、二次函数的性质即可得出. 【详解】解:联立23y xx y =⎧⎨+=⎩,解得1x =,2y =.把(1,2)代入50mx ny ++=可得:250m n ++=.52m n ∴=--.∴点(,)m n 到原点的距离5d ,当2n =-,1m =-时,取等号.∴点(,)m n【点睛】本题考查了两条直线的交点、两点之间的距离公式、二次函数的性质,考查了推理能力和计算能力,属于中档题.16.1【分析】由直线是圆的一条对称轴得到直线过圆心求得得到再根据得到点的直线必过圆心利用斜率公式即可求解【详解】由题意圆的圆心坐标半径为因为直线是圆的一条对称轴则直线过圆心即解得此时点又由直线与圆交于两解析:1 【分析】由直线l 是圆C 的一条对称轴,得到直线l 过圆心,求得2a =-,得到(1,2)P --,再根据4AB =,得到点P 的直线必过圆心(2,1)C ,利用斜率公式,即可求解.由题意,圆22:4210C x y x y +--+=的圆心坐标(2,1)C ,半径为2r,因为直线():0l x ay a R +=∈是圆22:4210C x y x y +--+=的一条对称轴, 则直线l 过圆心(2,1)C ,即210a +⨯=,解得2a =-,此时点(1,2)P --, 又由直线m 与圆C 交于,A B 两点,且4AB =,可得过点P 的直线必过圆心(2,1)C , 所以直线m 的斜率为1(2)12(1)k --==--.故答案为:1. 【点睛】本题主要考查了直线与圆的位置关系,其中解答中熟记直线与圆的位置关系,合理转化是解答的关键,着重考查了推理与运算能力.17.2【分析】求得双曲线的一条渐近线方程求得圆心和半径运用点到直线的距离公式和弦长公式可得ab 的关系即可得到所求离心率公式【详解】双曲线C :的一条渐近线方程设为圆的圆心为半径可得圆心到渐近线的距离为则化解析:2 【分析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a ,b 的关系,即可得到所求离心率公式. 【详解】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程设为0bx ay -=,圆22(2)4x y -+=的圆心为(2,0),半径2r ,可得圆心到渐近线的距离为d =则2=,化为22223a b c a ==-, 即224a c =,1ce a=>,解得2e =. 故答案为:2. 【点睛】本题考查圆与圆锥曲线的综合,解题关键是点到直线距离公式及弦长公式建立a ,b 的等量关系,即可求解a 、c 关系,属于中等题.18.【分析】若直线始终平分圆的周长即直线过圆心再利用均值定理求解即可【详解】由题整理圆的方程为标准方程可得因为直线始终平分圆的周长所以圆心在直线上则即所以当且仅当即时等号成立所以的最小值为故答案为:【点解析:3+若直线()220,0ax by a b +-=>始终平分圆的周长,即直线过圆心,再利用均值定理求解即可 【详解】由题,整理圆的方程为标准方程,可得()()22215x y -+-=, 因为直线()220,0ax by a b +-=>始终平分圆的周长, 所以圆心()2,1在直线上,则2220a b +-=,即1a b +=, 所以()1212221232322b a b a a b a b a b a b a b⎛⎫+=++=+++≥+⋅=+ ⎪⎝⎭, 当且仅当2b aa b=,即21,22a b =-=-时,等号成立, 所以12a b+的最小值为322+, 故答案为:322+ 【点睛】本题考查圆的对称性的应用,考查利用“1”的代换处理最值问题19.【分析】取的中点连接可得所以或其补角即为异面直线与所成角在中求即可求解【详解】取的中点连接因为所以且所以或其补角即为异面直线与所成角设则所以因为是等边三角形所以因为平面平面所以所以在中因为异面直线所 解析:31020【分析】取11AC 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解. 【详解】取11AC 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC ,因为112AE A A =,所以11//EO AC 且111=2EO AC , 所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角, 设1AB =,则12AA =,所以111=22EO AC ==,BE == 因为111A B C △是等边三角形,112AE A A =,所以11B O == 因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O ,所以1BO === 在1BEO中,22211115192cos 2BE EO BO BEO BE EO +-+-∠===⨯, 因为异面直线所成的角为锐角或直角,所以异面直线1AC 与BE,故答案为:20【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.20.②④【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点即可得出半径求出表面积;③取AD 的中点G 连接EGFGEF 过E 作求出即可;④可得为所成角【详解】①八面体的体积为;②八面体解析:②④ 【分析】①求出该八面体的体积即可判断;②可得球心为正方形ABCD 对角线交点,即可得出半径求出表面积;③取AD 的中点G ,连接EG ,FG ,EF ,过E 作EH FG ⊥,求出EH 即可;④可得DEC ∠为所成角. 【详解】①八面体的体积为21822(22)3⨯⨯⨯=; ②八面体的外接球球心为正方形ABCD 对角线交点,易得外接球半径为2,表面积为8π;③取AD 的中点G ,连接EG ,FG ,EF ,易得3EG FG ==AD ⊥平面EGF , 过E 作EH FG ⊥,交FG 的延长线于H ,又EH AD ⊥,AD FG G ⋂=,故EH ⊥平面ADF , 解得263EH =,所以E 到平面ADF 的距离为63; ④因为//ED BF ,所以EC 与BF 所成角为60︒. 故答案为:②④. 【点睛】解本题的关键是正确理解正八面体的性质,根据线面垂直关系得到点到平面的垂线段.21.【分析】先在直角三角形中列关系求得再求球的表面积即可【详解】是直角三角形外接圆圆心为的中点因为三点都在球的表面上球心到平面的距离为是球半径的所以中即故解得所以球的表面积故答案为:【点睛】本题考查了球 解析:9π【分析】先在直角三角形中列关系,求得R ,再求球的表面积即可. 【详解】22AB =AC BC ⊥,ABC ∆是直角三角形,外接圆圆心为AB 的中点M ,因为A ,B ,C 三点都在球O 的表面上,球心O 到平面ABC 的距离为OM ,是球半径的13,所以OMB ∆中()()222OA OM MA =+,即2221132R R AB ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ 故222112232R R ⎛⎫⎛⎫=+⨯ ⎪ ⎪⎝⎭⎝⎭,解得29=4R ,所以球O 的表面积29=4494S R πππ=⋅=. 故答案为:9π.【点睛】本题考查了球的表面积,属于中档题. 22.【分析】作于可证得平面得得等边三角形利用是球的直径得然后计算出再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合∴作于连接则∴又过球心∴而∴同理由得平面∴故答案为:【点睛】易错点睛:本题考查 解析:3 【分析】作BH PA ⊥于H ,可证得PA ⊥平面BCH ,得60BHC ∠=︒,得等边三角形BCH ,利用PA 是球的直径,得PB AB ⊥,然后计算出BH ,再应用棱锥体积公式计算体积.【详解】∵PAB △围绕棱PA 旋转60︒后恰好与PAC △重合,∴PAB PAC ≅△△,作BH PA ⊥于H ,连接CH ,则,CH PA CH BH ⊥=,60BHC ∠=︒,∴BC BH CH ==.又PA 过球心,∴PB AB ⊥,而2,3PA PB ==,∴1AB =,同理1AC =, 31322PB AB BH PA ⋅⨯===,2233333BCH S BH ⎛⎫=⨯=⨯= ⎪ ⎪⎝⎭△, 由BH PA ⊥,CH PA ⊥,CHBH H =,得PA ⊥平面BCH , ∴11333233P ABC BCH V S PA -=⋅=⨯⨯=△. 故答案为:3.【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作BH PA ⊥于H ,利用旋转重合,得PA ⊥平面BCH ,这样只要计算出BCH 的面积,即可得体积,这样作图可以得出60BHC ∠=︒,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转60︒,即为60CAB ∠=︒.旋转60︒是旋转形成的二面角为60︒.应用作出二面角的平面角. 23.①②【分析】采用逐一验证法根据线面平行线面垂直的判定定理以及线面距离判断可得结果【详解】由共面所以因为平面平面所以平面;故①正确;平面平面所以又因为平面平面所以故②正确;若则平面或EF 在平面ACD 内 解析:①②【分析】采用逐一验证法,根据线面平行,线面垂直的判定定理,以及线面距离,判断可得结果.【详解】由AB AD ⊥,,,EF AD AD EF AB ⊥,共面 ,所以//EF AB ,因为EF ⊄平面ABC ,AB 平面ABC ,所以//EF 平面ABC ;故①正确; BC ⊥平面ABD ,AD ⊂平面ABD ,所以BC AD ⊥,又因为AB AD ⊥,AB BC B ⋂=,AD ⊥平面ABC ,AC ⊂平面ABC ,所以AD AC ⊥,故②正确;若//EF CD ,则//EF 平面ACD ,或EF 在平面ACD 内,如图EF 与平面ACD 相交于点E ,显然不成立,故③不正确,故答案为:①②【点睛】本题主要考查了线线、线面之间的位置关系,考查了线面平行的判断以及由线面垂直证明线线垂直,属于中档题.24.【分析】】解方程得出棱台的上下底面边长根据面积关系和比例关系求出棱台的高和小棱锥的高【详解】解方程x2-9x +18=0得x=3或x=6∴棱台的上下底面边长分别为36设棱台的斜高为h 则∴h=即答案为【 解析:52【分析】】解方程得出棱台的上下底面边长,根据面积关系和比例关系求出棱台的高和小棱锥的高.【详解】解方程x 2-9x +18=0得x=3或x=6,∴棱台的上下底面边长分别为3,6.设棱台的斜高为h ,, 则22143636452h ⨯⨯+=+=() , ∴h=52.即答案为52. 【点睛】 本题考查了棱台的结构特征,画出草图帮助观察各线段的关系比较重要.三、解答题25.(1)2;(2)3;(3)3. 【分析】(1)取BD 中点G ,连接GC ,FG ,根据线面垂直的判定定理及性质,先证明EF 为1BD 与1CC 的公垂线,再由题中数据,计算出EF 的长,即可得出结果;(2)连接1ED ,由(1)得到EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d ,根据等体积法,由11E DBD D DBE V V --=求出d ,记直线1BD 与平面BDE 所成角为θ,由1sin d BD θ=即可得出结果; (3)由(2)得到1D 到平面BDE 的距离d ,根据题中条件,得到F 到平面BDE 的距离为2d ,即可得出结果. 【详解】 (1)在正四棱柱1111ABCD A BC D -中,取BD 中点G ,连接GC ,FG ,∵F ,G 分别为1,BD BD 的中点,∴1//FG D D 且112FG D D =, 又1//CE D D ,112CE D D =,所以//FG CE 且FG CE =,则四边形EFGC 为平行四边形,又CE ⊥平面ABCD ,CG ⊂平面ABCD ,∴CE CG ⊥,∴四边形EFGC 为矩形,∴1EF CC ⊥,∵11//D D C C ,∴1EF DD ⊥,又CG BD ⊥,//EF CG ,BD ⊂平面1BDD ,1D D ⊂平面1BDD ,1BD D D D ⋂=, ∴EF ⊥平面1BDD ,又1BD ⊂平面1BDD ,∴1EF BD ⊥,∴EF 为1BD 与1CC 的公垂线,且1E CC ⊂,1F BD ⊂,∴异面直线1BD 与1CC 的距离为||EF = (2)在正四棱柱1111ABCD A BC D -中,连接1ED ,则11E DBD D DBE V V --=,由(1)知EF ⊥平面1BDD ,设1D 到平面BDE 的距离为d ,∵12AA=,1AB=,∴2BD BE ED===,2EF=,16BD=,∴112222DBDS=⨯⨯=,2133(2)222DBES=⨯⨯=,从而1DBE DBDS d S EF⨯=⨯,∴2223233d⨯==,记直线1BD与平面BDE所成角为θ,则12323sin36dBDθ===,∴直线1BD与平面BDE所成角的正弦值为23.(3)由(2)知,1D到平面BDE的距离23d=,∵F是1BD的中点,且B∈平面BDE,∴F到平面BDE的距离为32d=.【点睛】方法点睛:立体几何体中空间角的求法:(1)定义法:根据空间角(异面直线所成角、线面角、二面角)的定义,通过作辅助线,在几何体中作出空间角,再解对应三角形,即可得出结果;(2)空间向量的方法:建立适当的空间直角坐标系,求出直线的方向向量,平面的法向量,通过计算向量夹角(两直线的方法向量夹角、直线的方向向量与平面的法向量夹角、两平面的法向量夹角)的余弦值,来求空间角即可.26.(1)证明见解析;(2)证明见解析.【分析】(1)由DE EC ⊥,AE DE ⊥,利用线面垂直的判定定理可得DE ⊥平面ACE ,再由//DE CB ,利用面面垂直的判定定理证明.(2)取CE 的中点O ,连接OP ,OQ ,由三角形中位线可得.//OQ DE ,//OP AC ,再利用线面平行和面面平行的判定定理证明.【详解】(1)在直角梯形BCED 中,BC EC ⊥,//DE CB ,则DE EC ⊥.因为90AED ∠=︒,所以AE DE ⊥.因为AE EC E ⋂=,所以DE ⊥平面ACE ,所以BC ⊥平面ACE .因为BC ⊂平面ABC ,所以平面ABC ⊥平面ACE .(2)取CE 的中点O ,连接OP ,OQ .因为O ,P 分别为CE ,AE 的中点,所以//OP AC ,又OP ⊄平面ABC ,AC ⊂平面ABC ,//OP 平面ABC ,同理//OQ 平面ABC ,因为OP OQ O ⋂=,所以平面//OPQ 平面ABC ,又PQ ⊂平面OPQ ,所以//PQ 平面ABC .【点睛】方法点睛:证线面平行的方法:①利用判定定理,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.②若要借助于面面平行来证明线面平行,则先要确定一个平面经过该直线且与已知平面平行,此目标平面的寻找方法是经过线段的端点作该平面的平行线.27.(1)证明见解析;(2 【分析】 (1)根据题中条件,由线面垂直的判定定理,证明AF ⊥平面DEB ;即可推出AF DB ⊥;(2)先由题意,得到AEB △是等腰直角三角形时,三棱锥D ABE -体积最大,设点C 到平面EBD 的距离为h ,由C DBE E CBD V V --=,根据等体积法,即可求出结果.【详解】(1) EB ⊂平面AEB ,DA EB ∴⊥, AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,AE ⊂平面DAE ,DA ⊂平面DAE ,BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,EB ⊂平面DEB ,DE ⊂平面DEB ,AF ∴⊥平面DEB ,DB ⊂平面DEB , AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =,当D AEB V -最大时,即12AEBEA EB S =⋅最大, 因为211222AEB EA EB B S EA E ⎛⎫+=⋅≤ ⎪⎝⎭,当且仅当EA EB =相等时,等号成立; 即AEB △是等腰直角三角形时,AEB △的面积最大;3DA =,2AB =,BE ∴=DE == 点E 到平面ABCD 的距离112AB =, 设点C 到平面EBD 的距离为h ,则C DBE E CBD V V --=,即11113213232h ⨯=⨯⨯⨯⨯,解得:h =【点睛】方法点睛:求解空间中点P 到面α的距离的常用方法:(1)等体积法:先设所求点到面的距离,根据几何体中的垂直关系,由同一几何体的不同的侧面(或底面)当作底,利用体积公式列出方程,即可求解; (2)空间向量法:先建立适当的空间直角坐标系,求出平面α的一个法向量m ,以及平。
新北师大版高中数学必修二第二章《解析几何初步》测试卷(含答案解析)(2)
一、选择题1.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .62.若关于x 的方程24320x kx k ---+=有且只有两个不同的实数根,则实数k 的取值范围是( )A .5,12⎡⎫+∞⎪⎢⎣⎭B .5,112⎛⎤⎥⎝⎦C .50,12⎛⎤⎥⎝⎦D .53,1243.已知点(3,2)P ,点M 是圆221:(1)1C x y -+=上的动点,点N 是222:(2)1C x y +-=上的动点,则||||PN PM -的最大值是( )A .522-B .522+C .222-D .322-4.已知圆()()()222:0C x a y a a a -++=>和直线:20l x y ++=,则2a =是圆C 和直线l 相交的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.已知动直线:20(0,0)l ax by c a c ++-=>>恒过点(1,)P m 且(4,0)Q 到动直线l 的最大距离为3,则122a c+的最小值为( ) A .92 B .94C .1D .96.直线l 经过()2,1A ,()2(,)1B m m R ∈两点,那么直线l 的倾斜角的取值范围为( )A .0,B .30,,44πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C .0,4⎡⎤⎢⎥⎣⎦πD .0,,42πππ⎡⎤⎛⎫ ⎪⎢⎥⎣⎦⎝⎭7.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,2⎛⎤⎥⎝⎦C .3,23D .(]2,4 8.如图,在长方体1111ABCD A BC D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .269.已知正方体1111ABCD A BC D -的棱长为2,E 为棱1AA 的中点,截面1CD E 交棱AB 于点F ,则四面体1CDFD 的外接球表面积为( ) A .394πB .414πC .12πD .434π10.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π211.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π12.平行六面体1111ABCD A BC D -的六个面都是菱形,那么点1A 在面11AB D 上的射影一定是11AB D 的________心,点1A 在面1BC D 上的射影一定是1BC D 的________心( )A .外心、重心B .内心、垂心C .外心、垂心D .内心、重心二、填空题13.某中学为了了解学生年龄与身高的关系,采用分层抽样的方法分别从高一400名,高二300名,高三250名学生中共抽取19名学生进行调查,从高一、高二、高三抽取的学生人数分别为,,a b c ,若圆222:()()A x a y b c -+-=与圆223:()254B x m y m ⎛⎫-+-= ⎪⎝⎭外切,则实数m 的值为______________.14.直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,则11a b+的最小值为__________ 15.直线y kx =与函数2143y x x -=-+-k 的最小值是______.16.在平面直角坐标系xOy 中,设直线12y x b =+与圆22640x y x +-+=相交于,A B 两点,若圆上存在一点C ,使ABC ∆为等边三角形,则所有满足题设的实数b 之和为_________.17.在平面直角坐标xOy 系中,设将椭圆()2222110y x a a a +=>-绕它的左焦点旋转一周所覆盖的区域为D ,P 为区域D 内的任一点,射线()02x y x =≥-上的点为Q ,若PQ 的最小值为a ,则实数a 的取值为_____.18.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点AB 、间的距离为2,动点P 满足3PA PB=,当,,P A B 不共线时,三角形PAB 面积的最大值是_______________.19.圆锥底面半径为1,母线长为4,轴截面为PAB ,如图,从A 点拉一绳子绕圆锥侧面一周回到A 点,则最短绳长为_________.20.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin 36按35计算,则棱长为6的正二十面体的外接球半径等于___________.21.如图,圆柱的体积为16π,正方形ABCD 为该圆柱的轴截面,F 为AB 的中点,E 为母线BC 的中点,则异面直线AC ,EF 所成的角的余弦值为______.22.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.23.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________.24.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题25.在所有棱长均为2的直棱柱1111ABCD A BC D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ; (Ⅱ)求二面角1D AC D --的余弦值.26.如图,在直四棱柱1111ABCD A BC D -中,底面ABCD 是梯形,,//AB CD AB AD ⊥,22CD AB AD ==.(1)求证:BD ⊥平面1BCC ;(2)在线段11C D 上是否存在一点E ,使//AE 面1BC D .若存在,确定点E 的位置并证明;若不存在,请说明理由.27.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.28.如图,在三棱锥P ABC -中,⊥PA AB ,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:平面BDE ⊥平面PAC ;(2)当//PA 面BDE 时,求三棱锥E BCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式.2.D解析:D【分析】先将方程根的情况转化为一个半圆与一条直线交点的情况,再用数形结合,先求出相切时的斜率,再得到有两个交点的情况. 【详解】将方程24320x kx k ---+=转化为:半圆24y x =-,与直线32y kx k =+-有两个不同交点.当直线与半圆相切时,221k =+,512k =,∴半圆24y x =-32y kx k =+-有两个不同交点时.直线32(2)3y kx k k x =+-=-+,一定过(2,3), 由图象知直线过(2,0)-时直线的斜率k 取最大值为34, 53,124k ⎛⎤∴∈ ⎥⎝⎦.故选:D. 【点睛】本题主要考查用解析几何法来解决方程根的情况,关键是能够转化为一些特定的曲线才能用数形结合求解.3.A解析:A 【分析】由圆外的点和圆上的点的连线长度的最值关系,转化为求max minPN PM -.【详解】由条件可知||||PN PM -的最大值是max minPN PM-,()()222max 1302214PN PC =+=-+-=, ()()221min131201221PMPC =-=-+-=,所以||||PN PM -的最大值是()415-=- 故选:A 【点睛】结论点睛:本题第二问考查与圆的几何性质有关的最值,具体结论如下: (1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r +;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -.4.A解析:A 【分析】由圆C 和直线l 相交,解出a 的范围,结合选项判断即可. 【详解】圆C 和直线l 相交,即圆心(),a a -到:20l x y ++=的距离小于半径,()0a a <>,解得a >则2a =是圆C 和直线l 相交的充分不必要条件故选:A 【点睛】本题考查充分必要条件的判断,考查直线与圆的位置关系,属于中档题.5.B解析:B 【分析】由题意可得:可得20a bm c ++-=.又(4,0)Q 到动直线l 的最大距离为3,可得3=,解得0m =,从而得到2a c +=.再利用“乘1法”与基本不等式的性质即可得出. 【详解】动直线:20(0,0)l ax by c a c ++-=>>恒过点(1,)P m ,20a bm c ∴++-=. 又(4,0)Q 到动直线l 的最大距离为3,∴3=,解得0m =.2a c ∴+=.则12112152159()()()()222222224c a a c a c a c a c a c +=++=+++=,当且仅当423c a ==时取等号.故选:B.【点睛】本题考查直线方程、点到直线的距离公式、两点之间的距离公式、基本不等式的性质,考查推理能力与计算能力,属于中档题.6.D解析:D【分析】根据直线过两点,求出直线的斜率,再根据斜率求出倾斜角的取值范围.【详解】解:直线l的斜率为22 12121121y y mk mx x--===---,因为m R∈,所以(],1k∈-∞,所以直线的倾斜角的取值范围是0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭.故选:D.【点睛】本题考查了利用两点求直线的斜率以及倾斜角的应用问题,属于基础题.7.A解析:A【分析】取BC中点E,连接DE,AE,若CB AD⊥,则可证明出BC⊥平面ADE,则可得BC AE⊥. 根据题目中各边长的关系可得出AE,AD关于x的表达式,然后在ADE 中,利用三边关系求解即可.【详解】由题意得BC x=,则212xAD CD BD+===,如图所示,取BC中点E,翻折前,在图1中,连接DE,CD,则1122DE AC==,翻折后,在图2中,若CB AD⊥,则有:∵BC DE⊥,BC AD⊥,AD DE D⋂=,且,AD DE平面ADE,∴BC⊥平面ADE,∴BC AE⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴2114AE x =-,212x AD +=, 在ADE 中,由三边关系得:①221111224x x ++>-,②22111124x x +<+-,③0x >; 由①②③可得03x <<. 故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.8.A解析:A 【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12AC ,易知当1A 、M 、2C 共线时,1A M MC +取得最小值, 因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M = 因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥, 则222211111(2)3M B A A M B =+=+=故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.9.B解析:B 【分析】可证F 为AB 的中点,设1DD 的中点为G ,DFC △的外接圆的球心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,利用解三角形的方法可求DFC △的外接圆的半径,从而可求四面体1CDFD 的外接球的半径.【详解】设1DD 的中点为G ,DFC △的外接圆的圆心为1O ,四面体1CDFD 的外接球的球心为O ,连接11,,,OG OF OO A B ,因为平面11//A ABB 平面11D DCC ,平面1CD E ⋂平面11A ABB EF =, 平面1CD E ⋂平面111D DCC DC =,故1//EF DC , 而11//A B D C ,故1//EF A B ,故F 为AB 的中点, 所以145DF CF ==+,故3cos 5255DFC ∠==⨯⨯,因为DFC ∠为三角形的内角,故4sin 5DFC ∠=,故DFC △的外接圆的半径为1254245⨯=,1OO ⊥平面ABCD ,1DD ⊥平面ABCD ,故11//OO DD ,在平面1GDOO 中,111,OG DD O D DD ⊥⊥,故1//OG O D , 故四边形1GDOO 为平行四边形,故1//OO GD ,1OO GD =,所以四面体1CDFD 4=, 故四面体1CDFD 的外接球表面积为41414164ππ⨯=, 故选:B. 【点睛】方法点睛:三棱锥的外接球的球的半径,关键是球心位置的确定,通常利用“球心在过底面外接圆的圆心且垂直于底面的直线上”来确定.10.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE⊥平面11ACC A 可得BE AM⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1AC CC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥. 11.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.12.C解析:C 【分析】将三棱锥111A AB D -、三棱锥11A BC D -分离出来单独分析,根据线段长度以及线线关系证明1A 的射影点分别是11AB D 和1BC D 的哪一种心. 【详解】三棱锥111A AB D -如下图所示:记1A 在面11AB D 上的射影点为O ,连接11,,AO B O D O ,因为11111AA A D A B ==,又1AO ⊥平面11AB D , 所以2222221111111111,,AA AO AO A D AO OD A B AO OB =+=+=+, 所以11AO OB OD ==,所以O 为11AB D 的外心;三棱锥11A BC D -如下图所示:记1A 在面1BC D 上的射影点为1O ,连接1111,,BO C O DO ,因为11//BC AD ,且四边形11ADD A 是菱形,所以11AD A D ⊥,所以11BC A D ⊥, 又因为11AO ⊥平面1BC D ,所以1111111,AO BC AO A D A ⊥=,所以1BC ⊥平面11AO D ,又因为1DO ⊂平面11AO D ,所以11DO BC ⊥, 同理可知:1111,BO DC C O DB ⊥⊥,所以1O 为1BC D 的垂心, 故选:C. 【点睛】关键点点睛:解答本题的关键是通过1A 的射影点去证明线段长度的关系、线段位置的关系,借助线面垂直的定义和判定定理去分析解答问题.二、填空题13.0或16【分析】根据分层抽样的性质得出的值从而得出圆的方程根据圆与圆的位置关系即可得出实数的值【详解】由分层抽样方法知所以分别为所以圆的圆心为(86)半径为5圆的圆心为半径为5由两圆外切知:解得或故解析:0或16 【分析】根据分层抽样的性质得出,,a b c 的值,从而得出圆A 的方程,根据圆与圆的位置关系,即可得出实数m 的值. 【详解】由分层抽样方法知,400:300:2508:6:5=,所以,,a b c 分别为8,6,5 所以圆A 的圆心为(8,6),半径为5,圆B 的圆心为3(,)4m m ,半径为555=+,解得0m =或16m =. 故答案为:0或16 【点睛】本题主要考查了分层抽样的应用以及由圆与圆的位置关系求参数,属于中档题.14.【分析】由得可知圆心为半径为2而所以可得直线过圆心由此得所以可化为然后利用基本不等式可求得其最小值【详解】解:由得所以曲线表示圆其圆心为半径为2因为直线与曲线交于且所以直线过圆心所以所以当且仅当即时解析:3+【分析】由222410x y x y +--+=得,22(1)(2)4x y -+-=,可知圆心为(1,2),半径为2,而AB 4=,所以可得直线过圆心,由此得21a b +=,所以11a b+可化为112a b a b ⎛⎫+⋅+ ⎪⎝⎭(),然后利用基本不等式可求得其最小值 【详解】解:由222410x y x y +--+=得,22(1)(2)4x y -+-=, 所以曲线222410x y x y +--+=表示圆,其圆心为(1,2),半径为2,因为直线()10,0ax by a b +=>>与曲线222410x y x y +--+=交于A 、B ,且AB 4=,所以直线()10,0ax by a b +=>>过圆心(1,2),所以21a b +=, 所以11112a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭()22332322b a b a a b a b =++≥+⋅=+ 当且仅当2b aa b =,即22,212a b -==-时,取等号 故答案为:322+ 【点睛】此题考查的是直线与圆的位置关系,利用基本不等式求最值,属于中档题15.【分析】利用函数图象考虑当直线与半圆仅有一个交点时的取值范围同时注意讨论直线与圆相切的情况由此求解出的范围并确定出最小值【详解】如图函数的图象是圆的上半部分结合图象可知当时即时直线与半圆只有一个交点解析:13【分析】利用函数图象,考虑当直线与半圆2143y x x -=-+-仅有一个交点时k 的取值范围,同时注意讨论直线与圆相切的情况,由此求解出k 的范围并确定出最小值.【详解】 如图函数2431y x x =-+-+的图象是圆()()22211x y -+-=的上半部分,结合图象可知,当10103010k --≤<--时,即113k ≤<时,直线与半圆只有一个交点; 当直线与半圆相切时也仅有一个交点,则22111k k -=+,解得43k =或0k =(舍), 综上可知:min 13k =. 故答案为:13.【点睛】本题考查根据直线与圆的交点个数求解参数值,着重考查了数形结合思想的运用,难度一般.解答此题时要注意函数2143y x x -=-+-.16.【分析】由圆的方程可得到圆心和半径;根据等边三角形外心与重心重合可确定圆心到直线距离利用点到直线距离公式可构造方程求得所有的取值进而得到结果【详解】由得:则圆心半径的顶点都在圆上圆为的外接圆圆心到的 解析:3-【分析】由圆的方程可得到圆心和半径;根据等边三角形外心与重心重合可确定圆心到直线12y x b =+距离12d r =,利用点到直线距离公式可构造方程求得所有b 的取值,进而得到结果. 【详解】由22640x y x +-+=得:()2235x y -+=,则圆心()3,0M ,半径r =ABC ∆的顶点都在圆22640x y x +-+=上,∴圆22640x y x +-+=为ABC ∆的外接圆,∴圆心M 到12y x b =+的距离122d r ==,d ∴==, 解得:14b =-或114b =-, ∴所有满足题设的实数b 之和为111344--=-. 故答案为:3-. 【点睛】本题考查直线与圆的综合应用问题,关键是能够根据等边三角形外心即为重心的特点,得到圆心到直线距离与半径之间的比例关系,进而利用点到直线距离公式构造方程.17.【分析】先确定轨迹再根据射线上点与圆的位置关系求最值即得结果【详解】所以为以为圆心为半径的圆及其内部设射线的端点为所以的最小值为故答案为:【点睛】本题考查动点轨迹以及点与圆位置关系考查数形结合思想以【分析】先确定D 轨迹,再根据射线上点与圆的位置关系求最值,即得结果. 【详解】2222222(1)1,111,y x c a a c a a =+∴=--=∴=-, 所以D 为以(1,0)F -为圆心,1a +为半径的圆及其内部, 设射线()02x y x =≥-的端点为(2,2)A ,所以PQ 的最小值为||(1),12,AF a a a a -+===【点睛】本题考查动点轨迹以及点与圆位置关系,考查数形结合思想以及基本分析求解能力,属中档题.18.【分析】首先求动点的轨迹方程再根据圆的性质求三角形面积的最大值【详解】以所在直线为轴的垂直平分线为轴建立平面直角坐标系则化简为:整理为:圆是以为圆心半径当点到的距离最大时三角形面积最大距离的最大值是解析:34【分析】首先求动点P 的轨迹方程,再根据圆的性质求三角形面积的最大值. 【详解】以AB 所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,则()1,0A -,()10B ,,(),P x y3= ,化简为:()()22221919x y x y ++=-+ ,整理为:2259416x y ⎛⎫-+= ⎪⎝⎭,圆是以5,04⎛⎫⎪⎝⎭为圆心,半径34r =,2AB =,∴当点P 到AB 的距离最大时,三角形PAB 面积最大,距离的最大值是34r =, 面积的最大值是1332244S =⨯⨯=. 故答案为:34【点睛】本题考查轨迹方程,与圆有关的面积的最值,意在考查数形结合分析问题的能力,属于中档题型.19.【分析】把圆锥侧面展开为一个平面图形利用平面上两点间线段最短可得【详解】由题意所以圆锥侧面展开图中心角为如图则故答案为:【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题空间几何体表面上两点间的最 解析:【分析】把圆锥侧面展开为一个平面图形,利用平面上两点间线段最短可得. 【详解】由题意1,4r l ==,所以圆锥侧面展开图中心角为2142ππθ⨯==,如图,2APA π'∠=, 则2442AA '=⨯=.故答案为:42.【点睛】关键点点睛:本题考查圆锥侧面上的最短距离问题,空间几何体表面上两点间的最短距离问题的解决方法常常是把几何体的表面展开摊平为一个平面图形,利用平面上两点间线段最短求解.20.【分析】由已知得出正二十面体的外接球即为上方正五棱锥的外接球设正五边形的外接圆半径为由平面几何知识可求得外接球的半径【详解】由图正二十面体的外接球即为上方正五棱锥的外接球设其半径为正五边形的外接圆半 1811【分析】由已知得出正二十面体的外接球即为上方正五棱锥的外接球,设正五边形的外接圆半径为r ,由平面几何知识可求得外接球的半径.【详解】由图,正二十面体的外接球即为上方正五棱锥的外接球, 设其半径为R ,正五边形的外接圆半径为r ,则33sin 365r ==,得=5r ,所以正五棱362511-= 所以(222511R R =+,解得181111R = 1811. 【点睛】关键点点睛:本题考查几何体的外接球的问题,关键在于确定外接球的球心和半径.21.【分析】由圆柱体积求得底面半径母线长设底面圆心为可得为异面直线与所成的角(或其补角)在对应三角形中求解可得【详解】设圆柱底面半径为则母线长为由得设底面圆心为连接则所以为异面直线所成的角在中所以故答案 解析:63【分析】由圆柱体积求得底面半径,母线长,设底面圆心为O ,可得OEF ∠为异面直线AC 与EF 所成的角(或其补角).在对应三角形中求解可得. 【详解】设圆柱底面半径为r ,则母线长为2r ,由2216r r ππ⋅=得2r.设底面圆心为O ,连接OE ,OF .则//OE AC ,所以OEF ∠为异面直线AC ,EF 所成的角.在Rt OEF △中,2OF =,22OE =,23EF =. 所以6cos OE OEF EF ∠==. 故答案为:6.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.22.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,12633DM ⨯==, 6D M DM '==, 则222222666612cos 2232DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.23.【分析】取的中点连接可得所以或其补角即为异面直线与所成角在中求即可求解【详解】取的中点连接因为所以且所以或其补角即为异面直线与所成角设则所以因为是等边三角形所以因为平面平面所以所以在中因为异面直线所 解析:31020【分析】取11AC 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解. 【详解】取11AC 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC , 因为112AE A A =,所以11//EO AC 且111=2EO AC , 所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角, 设1AB =,则12AA =, 所以2211115=1222EO AC =+=,112BE =+= 因为111A B C △是等边三角形,112AE A A =,所以2111312B O ⎛⎫=-= ⎪⎝⎭因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O ,所以222111131942BO BB B O ⎛⎫=+=+= ⎪ ⎪⎝⎭在1BEO 中,2221111519231044cos 2205222BE EO BO BEO BE EO +-+-∠===-⨯⨯⨯,因为异面直线所成的角为锐角或直角,所以异面直线1AC 与BE 所成角的余弦值为20,【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.24.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE ,则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,AD =2AB =,PA PD =,则//OE AB ,112OE AB ==, 12PE AD == 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,22222214R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题25.(Ⅰ)证明见解析;(Ⅱ)5. 【分析】(Ⅰ)由中位线定理证明1//OM C D ,即可得线面平行;(Ⅱ)连1D O ,证明1D OD ∠为二面角1D AC D --的平面角, 在直角1D DO △中计算可得. 【详解】解:(Ⅰ)连1BC ,则M 也为1BC 的中点,又M 为BD 的中点,所以1//OM C D ,因为OM ⊄平面11DB C ,1C D ⊂平面11DC B ,所以直线//OM 平面11DB C ;(Ⅱ)连1D O ,因为ABCD 是菱形,所以DO AC ⊥,又1111ABCD A BC D -为直棱柱,底面为菱形,所以11D A D C =,而O 为AC 中点,所以1D O AC ⊥,所以1D OD ∠为二面角1D AC D --的平面角,因为ABCD 是边长为2的菱形,且60BAD ∠=︒,所以1DO =,又12DD =, 由直棱柱知1DD DO ⊥,所以15DO =,所以115cos DO D OD D O ∠==.【点睛】方法点睛:本题考查证明线面平行,考查求二面角角,求二面角常用方法:(1)定义法:作出二面角的平面角并证明,然后在三角形中计算可得;(2)向量法:建立空间直角坐标系,求出两个平面的法向量夹角的余弦即可得二面角的余弦(注意判断二面角是锐角还是钝角).26.(1)证明见解析(2)存在,点E 是11C D 的中点,证明见解析 【分析】(1)根据线面垂直的判定定理即可证明BD ⊥平面1BDC ;(2)存在点E 是11C D 的中点,使//AE 平面1BDC ,由线面平行的判定定理进行证明即可得到结论. 【详解】(1)因为1AA ⊥底面ABCD ,所以1CC ⊥底面ABCD , 因为BD ⊂底面ABCD , 所以1CC BD ⊥,因为底面ABCD 是梯形,//AB DC ,90BAD ∠=︒,22CD AB AD ==,设1AB =,则1AD =,2CD = 所以2BD =,2BC =,所以在BCD ∆中,222BD BC CD +=, 所以90CBD ∠=︒, 所以BD BC ⊥,又因为1CC BD ⊥,且1CC BC C ⋂= 所以BD ⊥平面1BCC .(2)存在点E 是11C D 的中点,使//AE 平面1BDC 证明如下:取线段11C D 的中点为点E ,连结AE ,如图,所以11//C D CD ,且112C P CD =因为//AB CD ,12AB CD =, 所以1//C E AB ,且1C E AB = 所以四边形1ABC E 是平行四边形. 所以1//AE CB .又因为1BC ⊂平面1BDC ,AE ⊂/平面1BDC , 所以//AE 平面1BDC . 【点睛】关键点点睛:解决是否存在问题时,可以先寻求特殊位置,再证明,本题中取中点后连结AE ,可利用平行四边形 1//AE CB ,再根据线面平行的判定定理求证即可,属于先猜后证的方法.27.(1)证明见解析;(2)3. 【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;(2)过点E 作EH AB ⊥交AB 于H ,根据题中条件,求出EH ,设D 到平面ACE 的距离为h ,再利用等体积法,由D ACE E ACD V V --=,即可求出结果. 【详解】(1)证明:在正方形ABCD 中,有CB AB ⊥, ∵平面AEB ⊥平面ABCD ,且平面AEB 平面ABCD AB =,∴CB ⊥平面ABE ,因为AE ⊂平面ABE ,所以CB AE ⊥; ∵2AB =,EB =4EBA π∠=,所以AE BE =∴222AE BE AB +=,即AE BE ⊥, 又EBBC B =,BC ⊂平面BCE ,EB ⊂平面BCE ,∴AE ⊥平面BCE ;因为BF ⊂平面BCE ,所以AE BF ⊥;又BF CE ⊥,CE AE E =,CE ⊂平面ACE ,AE ⊂平面ACE ,∴BF ⊥平面ACE ;(2)解:过点E 作EH AB ⊥交AB 于H , ∵平面AEB ⊥平面ABCD ,平面AEB 平面ABCD AB =,∴EH ⊥平面ABCD,则14EH π==,设D 到平面ACE 的距离为h , 由D ACE E ACD V V --=,得1133ACEACDSh S EH ⋅=⋅.∴1212AD DC EHh AE EC ⋅⋅===⋅.。
新北师大版高中数学必修二第二章《解析几何初步》测试卷(含答案解析)
一、选择题1.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .62.若直线y x b =+与曲线y =b 的取值范围为( )A .[]22-,B .2,⎡-⎣C .-⎡⎣D .(-3.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=4.已知圆()()22:122C x y -++=,若直线24y kx =-上存在点P ,使得过点P 的圆C 的两条切线互相垂直,则实数k 的取值范围是( )A .23k ≤-或0k ≥ B .38k ≤- C .38k ≤-或0k ≥D .23k ≤-5.ABC 中,(1,5)A ,高BE ,CF 所在的直线方程分别为20x y -=,5100++=x y ,则BC 所在直线的方程是( ).A .04=+y xB .528x y -=C .350x y +=D .5328x y -=6.在平面直角坐标系xoy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是( ) A .43-B .54-C .35D .53-7.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π8.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π9.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )为( )A .43B .2C .4D .610.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π11.如图是某个四面体的三视图,则下列结论正确的是( )A.该四面体外接球的体积为48πB.该四面体内切球的体积为2 3πC.该四面体外接球的表面积为323πD.该四面体内切球的表面积为2π12.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A.8,14253V L==+B.8,1425V L==+C.8,16253V L==+D.8,1625V L==+二、填空题13.已知圆M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点.过点P 作圆M 的切线PA ,PB ,切点为A ,B ,当PM AB ⋅最小时,直线AB 的方程为______.14.若圆22220x y x y k +---=上的点到直线100x y +-=的最大距离与最小距离的差为6,则实数k =________. 15.在极坐标系中,过点22,4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的极坐标方程是__________.16.已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于,A B 两点,且AC BC ⊥,则实数a 的值为_________.17.在平面直角坐标系xOy 中,A 的坐标为(2,0),B 是第一象限内的一点,以C 为圆心的圆经过O 、A 、B 三点,且圆C 在点A ,B 处的切线相交于P ,若P 的坐标为(4,2),则直线PB 的方程为_____. 18.已知α∈R ,()ππ2k k Z α≠+∈,设直线:tan l y x m α=+,其中0m ≠,给出下列结论:①直线l 的方向向量与向量()cos , sin a αα=共线; ②若π04α<<,则直线l 与直线y x =的夹角为π4α-; ③直线l 与直线sin cos 0x y n αα-+=(n m ≠)一定平行; 写出所有真命题的序号________19.如图,已知直四棱柱1111ABCD A BC D -的所有棱长均相等,3BAD π∠=,E 是棱AB的中点,设平面α经过直线1A E ,且α平面111,B BCC l α=⋂平面112C CDD l =,若α⊥平面11A ACC ,则异面直线1l 与2l 所成的角的余弦值为_______.20.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;21.一个三棱锥的三视图如图所示,该三棱锥中最长棱的长度为_______.22.三棱锥P ABC -的各顶点都在同一球面上,PC ⊥底面ABC ,若1PC AC ==,2AB =,且60BAC ∠=︒,给出如下命题:①ACB △是直角三角形;②此球的表面积等于11π; ③AC ⊥平面PBC ;④三棱锥A PBC -的体积为3. 其中正确命题的序号为______.(写出所有正确结论的序号)23.如图,在三棱锥A BCD -,,AB AD BC ⊥⊥平面ABD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF AD ⊥.则下列结论中:正确结论的序号是______.①//EF 平面ABC ;②AD AC ⊥;③//EF CD24.如图,已知正四面体D ABC -,P 为线段AB 上的动点(端点除外),则二面角D PC B --的平面角的余弦值的取值范围是___________.三、解答题25.如图,四面体ABCD 中,O 是BD 的中点,点G 、E 分别在线段AO 和BC 上,2BE EC =,2AG GO =,2CA CB CD BD ====,2AB AD ==.(1)求证://GE 平面ACD ; (2)求证:平面ABD ⊥平面BCD .26.如图,四棱锥P ABCD -中,2PC PD DC AD ===,底面ABCD 为矩形,平面PCD ⊥平面ABCD ,O 、E 分别是棱CD 、PA 的中点.(1)求证://OE 平面PBC ; (2)求二面角PAB C 的大小.27.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒==∠=,1cos ,3BAP AP BC ∠=-⊥.(1)若23BM MC =,求证:PM BC ⊥; (2)当3AP =,且N 为BC 中点时,求AN 与平面PBC 所成角的正弦值. 28.在四棱锥P ABCD -中,底面ABCD 为矩形,AP ⊥平面PCD ,E ,F 分别为PC ,AB 的中点求证:(1)平面PAD ⊥平面ABCD ; (2)//EF 平面PAD【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】试题分析:222430x y x y ++-+=即22(1)(2)2x y ++-=,由已知,直线260ax by ++=过圆心(1,2)C -,即2260,3a b b a -++==-,由平面几何知识知,为使由点(,)a b 向圆所作的切线长的最小,只需圆心(1,2)C -与直线30x y --=上的点连线段最小,所以,切线长的最小值为2123()242----=,故选B .考点:圆的几何性质,点到直线距离公式.2.B解析:B 【分析】直线y x b =+与曲线24y x =-有公共点,转化为直线y x b =+与半圆()224,0x y y +=≥有交点,分析几何图形得出有交点的临界情况.【详解】 由24y x =-可得()224,0x y y +=≥,表示圆心 (0,0),2r =的半圆,当y x b =+经过(2,0)时,此时2b =-; 当y x b =+与此半圆相切时,222221(1)r b ==⇒=+-,作出半圆与直线的图象如下,由图象可知,要使直线y x b =+与曲线24y x =-则2,22b ⎡⎤∈-⎣⎦.故选:B 【点睛】关键点点睛:由y =y x b =+与其有公共点的临界情况,是解决问题的关键.3.D解析:D 【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l的距离为2d ==>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =当直线MP l ⊥时,min MP =, min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得, 10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D. 【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.4.A解析:A 【分析】直接利用直线与圆的位置关系,由于存在点P 使圆的两条切线垂直,得到四边形为正方形,进一步利用点到直线的距离公式求出k 的取值范围. 【详解】解:设过点P 的圆C 的两条切线分别与圆相切于,A B , 因为过点P 的圆C 的两条切线互相垂直,所以四边形APBC 为正方形,此时正方形的对角线长为2,所以只需圆心(1,2)-到直线的距离小于等于2,≤2, 1k -,解得23k ≤-或0k ≥, 故选:A 【点睛】此题考查直线与圆的位置关系的应用,点到直线的距离公式,考查运算能力和转化能力,属于中档题.5.C解析:C 【分析】由垂直关系可得AB 和AC 的斜率,进而可得AB 和AC 的方程,分别解方程组可得B ,C 的坐标,进而可得方程. 【详解】解:∵两边AB ,AC 上的高线方程分别为5100++=x y 与20x y -=, ∴它们的斜率分别为15-,12,故AB 和AC 的斜率分别为5,2-, ∴AB 和AC 的方程分别为()551y x -=-,()521y x -=--, 整理为一般式可得50x y -=,270x y +-=联立方程组5020x y x y -=⎧⎨-=⎩,解得00x y =⎧⎨=⎩,即()0,0B ,同理联立2705100x y x y +-=⎧⎨++=⎩,解得53x y =⎧⎨=-⎩,即()5,3C -,∴BC 所在直线的方程为3050y x --=-,即350x y +=. 故选:C. 【点睛】本题考查直线的一般式方程和垂直关系,涉及直线的点斜式方程和斜率公式以及方程组的解法,属中档题.6.A解析:A 【分析】化圆C 的方程为22(4)1x y -+=,求出圆心与半径,由题意,只需22(4)4x y -+=与直线2y kx =+有公共点即可. 【详解】 解:圆C 的方程为228150x y x +-+=,整理得:22(4)1x y -+=,即圆C 是以(4,0)为圆心,1为半径的圆;又直线2y kx =+上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆22:(4)4C x y '-+=与直线2y kx =+有公共点即可.设圆心(4,0)C 到直线2y kx =+的距离为d , 则221d k=+,即234k k -,403k ∴-. k ∴的最小值是43-. 故选:A . 【点睛】本题考查直线与圆的位置关系,将条件转化为“22(4)4x y -+=与直线2y kx =+有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.7.A解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+,解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.8.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则223R =, 所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.9.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD , 所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下: (1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.10.C解析:C 【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积. 【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =, 矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=.故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.11.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,42AB =2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得1222OE BF AB ===所以222(22)2,23R R =+∴=, 所以外接球的体积为343)3233ππ⨯=,所以选项A 错误; 所以外接球的表面积为24(23)48ππ⨯=,所以选项C 错误; 由题得22(42)(22)210AC AD ==+=所以△ACD △的高为24026-=, 设内切球的半径为r ,则1111111(422242222446)24423222232r ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯⨯⨯ 所以2r, 所以内切球的体积为3422)3ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()2ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .12.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A BC D -中,P ,E 分别为11,BC BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、填空题13.【分析】根据题意只需转化为圆上的点到直线的距离最小即转化为圆心到直线的距离再利用四点共圆的知识求得动点的轨迹联立两个圆的方程可得所求的直线的方程【详解】⊙M :则圆心为半径如图连接四边形的面积为要使最 解析:210x y ++=【分析】根据题意,只需转化为圆上的点到直线的距离最小,即转化为圆心到直线的距离,再利用四点共圆的知识求得动点的轨迹,联立两个圆的方程可得所求的直线的方程. 【详解】⊙M :222220x y x y +---=,则()()22114x y -+-=,圆心为()1,1,半径2r,如图,连接,,AM BM ,四边形PAMB 的面积为1||||2PM AB ⋅,要使||||PM AB ⋅最小,则需四边形PAMB 的面积最小,即只需PAM △的面积最小,因为2,AM =,所以只需 ||PA 最小,又2224,PA PM AMPM =-=-,所以只需直线2++20x y =上的动点P 到点M 的距离最小,其最小值是圆心到直线l 的距离2+1+255d ==,此时,PM l ⊥所以直线PM 的方程为210.x y -+=由220210x y x y ++=⎧⎨-+=⎩,解得1x y =-⎧⎨=⎩,所以(1,0)P -,所以点,,,P A M B 四点共圆,所以以点PM 为直径的圆的方程为22215()()2x y +-=,即2210x y y +--=,联立两个圆的方程2222222010x y x y x y y ⎧+---=⎨+--=⎩得直线AB 的方程为:210x y ++=. 故答案为:210x y ++=.【点睛】在解决直线与圆的位置关系的相关问题时,注意运用圆的几何性质,求解圆的弦长,切线长等问题.14.7【分析】先将圆的方程化为标准方程设圆心到直线的距离则圆上的点到直线的最大距离为最小距离为(为圆的半径)根据已知条件求出半径从而可求得的值【详解】圆的方程化为标准方程得则圆的半径为设圆心到直线的距离解析:7 【分析】先将圆的方程化为标准方程,设圆心到直线的距离d ,则圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为d r +,最小距离为d r -(r 为圆的半径),根据已知条件求出半径,从而可求得k 的值. 【详解】圆的方程化为标准方程得()()22112x y k -+-=+,则202k k +>⇒>-, 圆的半径为2r k =+设圆心()1,1到直线100x y +-=的距离为d ,d == 当dr 时,圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为d r +,最小距离为d r -,由已知条件得()()263d r d r r r +--==⇒=,3=,解得7k =.此时,3d ==>,直线100x y +-=与圆()()22119x y -+-=相离,符合题意. 当d r ≤时,圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为d r +,最小距离为0,由已知条件得66d r r +=⇒=-综上,7k = 故答案为:7 【点睛】关键点点睛:解此题的关键在于分类讨论的思想,根据直线与圆的位置关系不同,分别求解,综合即可求解.15.【解析】试题分析:点的直角坐标为将圆的方程化为直角坐标方程为化为标准式得圆心坐标为半径长为而点在圆上圆心与点之间连线平行于轴故所求的切线方程为其极坐标方程为考点:1极坐标与直角坐标之间的转化;2圆的解析:cos 2ρθ=. 【解析】试题分析:点4π⎛⎫⎪⎝⎭的直角坐标为()2,2,将圆4sin ρθ=的方程化为直角坐标方程为224x y y +=,化为标准式得()2224x y +-=,圆心坐标为()0,2,半径长为2,而点()2,2在圆()2224x y +-=上,圆心与点4π⎛⎫⎪⎝⎭之间连线平行于x 轴,故所求的切线方程为2x =,其极坐标方程为cos 2ρθ=.考点:1.极坐标与直角坐标之间的转化;2.圆的切线方程16.0或6【分析】计算得到圆心半径根据得到利用圆心到直线的距离公式解得答案【详解】即圆心半径故圆心到直线的距离为即故或故答案为:或【点睛】本题考查了根据直线和圆的位置关系求参数意在考查学生的计算能力和转解析:0或6 【分析】计算得到圆心()1,2C -,半径3r =,根据AC BC ⊥得到d =距离公式解得答案. 【详解】222440x y x y ++--=,即()()22129x y ++-=,圆心()1,2C -,半径3r =.AC BC ⊥,故圆心到直线的距离为d =2d ==,故6a =或0a =. 故答案为:0或6. 【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《解析几何初步》检测试题
一、选择题(本大题共12小题,每小题5分,共60分)
1.过点(1,0)且与直线x-2y-2=0平行的直线方程是 ( )
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0
2.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为
31,则m ,n 的值分别为 ( ) A.4和3 B.-4和3 C.- 4和-3 D.4和-3
3.x 轴上任一点到定点(0,2)、(1,1)距离之和最小值是( )
A .2
B .22+
C .10
D .15+
4.下列命题中为真命题的是 ( )
A .平行直线的倾斜角相等
B .平行直线的斜率相等
C .互相垂直的两直线的倾斜角互补
D .互相垂直的两直线的斜率互为相反
5.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线l 的方程是 ( )
A .524=+y x
B .524=-y x
C .52=+y x
D .52=-y x
6.过直线013=-+y x 与072=-+y x 的交点,且与第一条直线垂直的直线l 方程是( )
A .073=+-y x
B .0133=+-y x
C .072=+-y x
D .053=--y x
7.直线x-y+1=0与圆(x+1)2+y 2
=1的位置关系是 ( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离
8.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( )
A .50x y --=
B .50x y -+=
C .50x y ++=
D .50x y +-= 9.直线2x =被圆
422=+-y a x )(所截得的弦长等于32,则a 的值为 ( ) A 、-1或-3 B 、22-或 C 、1或3 D 、3
10.由直线y=x+1上的一点向圆x 2+y 2-6x+8=0引切线,则切线长的最小值为 ( )
A .1
B .22
C .7
D .3
11.已知1O :06422=+-+y x y x 和2O :0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 ( )
A. 30x y ++= B. 250x y --= C. 390x y --= D. 4370x y -+=
12.空间直角坐标系中,点(3,4,0)A -和点(2,1,6)B -的距离是 ( )
A .
B .
C .9
D 二填空题:(本大题共4小题,每小题5分,共20分.)
13.直线x y 2=关于x 轴对称的直线方程为 .
14.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为
15.经过)1,2(-A 和直线1x y +=相切,且圆心在直线x y 2-=上的圆的方程为_____________ _________ __________ .
16.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程 .
三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.求经过点)2,1(A 且到原点的距离等于1的直线方程.
18.已知一曲线是与两个定点(0,0)O 、(3,0)A 距离的比为
2
1的点的轨迹,则求此曲线的方程.
19.求垂直于直线0743=--y x ,且与两坐标轴构成周长为10的三角形的直线方程
20.自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程.
21.已知圆C:()22
19
x y
-+=
内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(Ⅰ)当l经过圆心C时,求直线l的方程;
(Ⅱ)当弦AB被点P平分时,写出直线l的方程;
(Ⅲ)当直线l的倾斜角为45º时,求弦AB的长.
22.已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)的条件下,求以MN为直径的圆的方程.。