6最小二乘法推导公式
最小二乘法原理
最小二乘法原理1. 概念 最小二乘法多项式曲线拟合,根据给定的m 个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。
2. 原理给定数据点pi(xi,yi),其中i=1,2,…,m 。
求近似曲线y= φ(x)。
并且使得近似曲线与y=f(x)的偏差最小。
近似曲线在点pi 处的偏差δi= φ(xi)-yi ,i=1,2,...,m 。
常见的曲线拟合方法:1. 是偏差绝对值最小11min (x )y m mi i i i i φδφ===-∑∑ 2. 是最大的偏差绝对值最小min max (x )y i i i iφδϕ=- 3. 是偏差平方和最小2211min ((x )y )m mii i i i φδϕ===-∑∑ 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:01...k k y a a x a x =+++2. 各点到这条曲线的距离之和,即偏差平方和如下:22011(...)m k i i k i i R y a a x a x =⎡⎤=-+++⎣⎦∑ 3. 为了求得符合条件的a 值,对等式右边求ak 偏导数,因而我们得到了:0112(...)0m k i k i i y a a x a x =⎡⎤--+++=⎣⎦∑0112(...)0m k ik i i y a a x a x x =⎡⎤--+++=⎣⎦∑……..0112( 0k k i k i i y a a x a x x =⎡⎤--+++=⎣⎦∑4. 将等式简化一下,得到下面的式子01111...n n nki k ii i i i a n a x a x y ===+++=∑∑∑ 21011111...n n n nk i ik i i i i i i i a x a x a x y x +====+++=∑∑∑∑ ……12011111...n n n nkk k k ii k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ 5. 把这些等式表示成矩阵形式,就可以得到下面的矩阵:11102111111121111.........n n n k i i i i i i n n n n k i i i i i i i i i n n n n k k k k k i i i i i i i i i n x x y a a x x x x y a x x x x y ===+====+====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑∑∑∑∑∑∑∑ 6. 将这个范德蒙矩阵化简后得到:011112221...1...1...k k k k n n n a y x x a y x x a y x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦。
最小二乘法LSQ(least square)_计算公式
的一个二元函数, 把 M 看成自变量 a 和 b 的一个二元函数, 那么问题就可归结为求函数 M = M ( a , b ) 在那 些点处取得最小值. 些点处取得最小值
7 ∂M ∂a = −2∑ [ yi − (at i + b )]t i = 0, i =0 令 7 ∂M = −2∑ [ yi − (at i + b )] = 0; ∂b i =0
7 7 7
(1)
计算得
∑t
i =0 7 i =0
7
i
= 28, = 208.5,
∑t
i =0 7 i =0
7
2 i
= 140, = 717.0
∑y
i
∑yt
i i
代入方程组( ) 代入方程组(1)得
140a + 28b = 717, 28a + 8b = 208.5.
解此方程组, 解此方程组,得到 a = −0.3036, b = 27.125. 这样便得到所求经验公式(回归方程 为 这样便得到所求经验公式 回归方程 )为
在研究单分子化学反应速度时,得到下列数据: 例2 在研究单分子化学反应速度时,得到下列数据:
i
1 3
2 6
3 9
4 12
5 15
6 18
7 21 8.9
8 24 6.5
τi
yi
57.6 41.9 31.0 22.7 16.6 12.2
y 表示从实验开始算起的时间, 其中 τ 表示从实验开始算起的时间, 表示时刻τ 反应物的量. 反应物的量.试定出经验公式 y = f (τ ).
试根据上面的试验数据建立 y 和 t 之间的经验公 式 y = f (t ).
递推阻尼最小二乘法辨识算法公式的详细推导与说明
控制理论与控制工程学位课程《系统辨识》考试报告递推阻尼最小二乘法公式详细推导专业:控制理论与控制工程班级:2011双控(研)学生姓名:江南学号:20110201016任课教师:蔡启仲老师2012年06月29 日摘要在参数辨识中,递推最小二乘法是用得最多的一种算法。
但是,最小二乘法存在一些缺点,如随着协方差矩阵的减小,易产生参数爆发现象;参数向量和协方差矩阵的处置选择不当会使得辨识过程在参数收敛之前结束;在存在随机噪声的情况下,参数易产生漂移,出现不稳定等。
为了防止参数爆发现象,Levenberg 提出在参数优化算法中增加一个阻尼项,以增加算法的稳定性。
本文在一般的最小二乘法中增加了阻尼因子,构成了阻尼最小二乘法。
又根据实时控制的要求,详细推到了递推阻尼最小二乘公式,实现在线辨识。
关键字:系统辨识,最小二乘法,递推算法正文1.题目的基本要求已知单入单出系统的差分方程以及噪声,在应用最小二乘法进行辨识的时候,在性能指标中加入阻尼因子,详细推导阻尼最小二乘法的递推公式。
2.输入辨识信号和系统噪声的产生方法和理论依据 2.1系统辩识信号输入选择准则(1)输入信号的功率或副度不宜过大,以免使系统工作在非线性区,但也不应过小,以致信噪比太小,直接影响辩识精度;(2)输入信号对系统的“净扰动”要小,即应使正负向扰动机会几乎均等; (3)工程上要便于实现,成本低。
2.2白噪声及其产生方法 (1) 白噪声过程(2)白噪声是一种均值为0、谱密度为非0常数的平稳随机过程。
(3)白噪声过程定义:如果随机过程()t ω的均值为0,自相关函数为()()2R t t ωσδ= (2.2.1)式中()t δ 为狄拉克(Dirac) 分布函数,即(){(),00,01t t t dt δδ∞∞=≠∞==⎰-且t (2.2.2)则称该随机过程为白燥声过程。
2.3白噪声序列 (1) 定义 如果随机序列{()}w t 均值为0,并且是两两不相关的,对应的自相关函数为()2,0,1,2w l R l l σδ==±± 式中{1,00,0l l l δ=≠=则称这种随机序列{()}w t 为白噪声序列。
参数的最小二乘法估计
第四章最小二乘法与组合测量§1概述最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。
对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。
例如,取重复测量数据的算术平均值作为测量的结果,就是依据了使残差的平方和为最小的原则,又如,在本章将要用最小二乘法来解决一类组合测量的问题。
另外,常遇到用实验方法来拟合经验公式,这是后面一章回归分析方法的内容,它也是以最小二乘法原理为基础。
最小二乘法的发展已经经历了200多年的历史,它最先起源于天文和大地测量的需要,其后在许多科学领域里获得了广泛应用,特别是近代矩阵理论与电子计算机相结合,使最小二乘法不断地发展而久盛不衰。
本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用,一些深入的内容可参阅专门的书籍和文献。
§2最小二乘法原理最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。
对某量x 测量一组数据n x x x ,,,21 ,假设数据中不存在系统误差和粗大误差,相互独立,服从正态分布,它们的标准偏差依次为:n σσσ ,,21记最可信赖值为x ,相应的残差x x v i i -=。
测值落入),(dx x x i i +的概率。
根据概率乘法定理,测量n x x x ,,,21 同时出现的概率为显然,最可信赖值应使出现的概率P 为最大,即使上式中页指数中的因子达最小,即权因子:22oi iw σσ=即权因子i w ∝21i σ,则再用微分法,得最可信赖值x11ni ii nii w xx w===∑∑即加权算术平均值这里为了与概率符号区别,以i ω表示权因子。
特别是等权测量条件下,有:以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法原理。
它是以最小二乘方而得名。
为从一组测量数据中求得最佳结果,还可使用其它原理。
例如(1)最小绝对残差和法:Min v i =∑ (2)最小最大残差法:Min v i =max (3)最小广义权差法:Min v v i i =-m in m ax以上方法随着电子计算机的应用才逐渐引起注意,但最小二乘法便于解析,至今仍用得最广泛。
最小二乘法方差推导
最小二乘法方差推导导言最小二乘法是一种常用的回归分析方法,用于建立变量之间的关系模型。
在使用最小二乘法进行回归分析时,我们通常会考虑误差的大小和分布情况。
方差是一种常用的衡量误差大小的指标,通过推导最小二乘法的方差,可以更好地理解最小二乘法的原理和应用。
一、线性回归模型线性回归模型是最简单也是最常用的回归模型之一。
假设我们有一组观测数据(x1,y1),(x2,y2),...,(x n,y n),其中x i表示自变量,y i表示因变量。
线性回归模型的基本形式可以表示为:y=β0+β1x+ϵ其中y表示因变量,β0和β1分别表示截距和斜率,ϵ表示误差。
二、最小二乘法原理最小二乘法的目标是找到一条直线,使得观测数据到这条直线的距离最短。
假设观测数据的真实值为y i,模型预测值为y î,则观测数据的误差可以表示为e i=y i−y î。
最小二乘法的原理是通过最小化误差的平方和来估计回归模型的参数。
具体来说,我们希望找到一组参数β0̂和β1̂,使得观测数据的误差平方和最小。
误差平方和可以表示为:nSSE=∑(y i−y î)2i=1三、最小二乘法方差的推导最小二乘法方差是衡量观测数据与回归模型之间的离散程度的指标。
我们通过推导最小二乘法的方差,可以更好地理解模型的可靠性和拟合程度。
3.1 残差在推导最小二乘法方差之前,我们首先定义残差e i。
残差表示观测数据的真实值与模型预测值之间的差异。
对于线性回归模型,残差可以表示为e i=y i−y î。
3.2 方差推导方差是衡量观测数据与回归模型之间的离散程度的指标。
我们通过推导最小二乘法的方差,可以衡量回归模型的可靠性和拟合程度。
方差可以表示为残差平方和除以观测数据的数量。
具体来说,方差可以表示为:Var=SSE n其中,n表示观测数据的数量,SSE表示观测数据的误差平方和。
四、小结最小二乘法是一种常用的回归分析方法,可以用于建立变量之间的关系模型。
通过最小化观测数据与模型预测值之间的误差平方和,可以得到回归模型的参数估计值。
最小二乘法线性详细说明
1
在处理数据时,常要把实验获得的一系 列数据点描成曲线表反映物理量间的关系。 为了使曲线能代替数据点的分布规律,则 要求所描曲线是平滑的,既要尽可能使各 数据点对称且均匀分布在曲线两侧。由于 目测有误差,所以,同一组数据点不同的 实验者可能描成几条不同的曲线(或直线), 而且似乎都满足上述平滑的条件。那么, 究竟哪一条是最曲线呢?这一问题就是 “曲线拟合”问题。一般来说,“曲线拟 合”的任务有两个:
2.Y与X之间是否是直线关系(协方差或相关系 数)?若是,将用一条直线描述它们之间的关系。
3.什么是最好?—找出判断“最好”的原则。 最好指的是找一条直线使得这些点到该直线的纵 向距离的和(平方和)最小。
9
第一节 一元线性拟合
1. 函数形式已知
数学推证过程
1.已知函数为线性关系,其形式为:
大。
22
23
这时“最佳”二字只能说明数据点距这直线的总偏差 较小,但不能反映出数据点的分布规律。或者说,我 们事先的初步判断是错误的。数据点的分布规律不是 线形的,根本就不能用一条直线表示。
为了帮助我们理解这一点,我们再讨论极限情况。
当 R=0时(s 最大)sxy 0 , syy 0,sxx 0,所以
b=0,a= y , 从而得到y= y 的错误结论。这说明数据点
的分布不是线性,不能拟合为线性关系曲线。
24
起码相关系数 -- R0
R0 的值与数据点的个数n有关。书中P40表5-3 中给出了起码相关系数 R0的值。
如果有一组数据点初步观测为线性分布。那么, 为多大R 时,就可以用一条最佳直线来表示其分 布呢?
只有相关系数 R≥ R时0 ,才能用线性回归方程
y=a+bx来描述数据的的分布规律。否则毫无 意义。
最小二乘法
第3章 线性动态模型参数辨识-最小二乘法3.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类: ① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:min )()ˆ(ˆ==∑=θθLk k J 12ε 其中)(k ε代表模型输出与系统输出的偏差。
典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。
② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。
③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度)|(θz p 最大限度地逼近条件0θ下的概率密度)|(0θz p ,即)|()ˆ|(0m a x θθz p z p −−→−。
典型的方法是极大似然法。
3.2 最小二乘法的基本概念● 两种算法形式 ① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。
② 递推算法:在上次模型参数估计值)(ˆ1-k θ的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值)(ˆk θ,广泛采用的递推算法形式为() ()()()~()θθk k k k d z k =-+-1K h其中)(ˆk θ表示k 时刻的模型参数估计值,K (k )为算法的增益,h (k -d ) 是由观测数据组成的输入数据向量,d 为整数,)(~k z 表示新息。
● 最小二乘原理定义:设一个随机序列)},,,(),({L k k z 21∈的均值是参数θ 的线性函数E{()}()T z k k θ=h其中h (k )是可测的数据向量,那么利用随机序列的一个实现,使准则函数21()[()()]LT k J z k k θθ==-∑h达到极小的参数估计值θˆ称作θ的最小二乘估计。
● 最小二乘原理表明,未知参数估计问题,就是求参数估计值θˆ,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。
最小二乘法的基本公式
最小二乘法的基本公式最小二乘法,这玩意儿听起来是不是有点高大上?但别怕,其实它并没有那么复杂,就像咱们学骑自行车,一开始觉得难,掌握窍门后就变得轻松自如啦!先来说说最小二乘法到底是啥。
简单来讲,它就是一种找数据最佳拟合直线或者曲线的方法。
比如说,你记录了一堆气温和日期的数据,想找出它们之间的规律,这时候最小二乘法就派上用场了。
那它的基本公式是啥呢?咱们来瞧瞧。
假设咱们有一堆数据点(x₁, y₁), (x₂, y₂),..., (xₙ, yₙ),然后要找一条直线 y = ax + b 来拟合这些点。
那最小二乘法就是要让每个点到这条直线的垂直距离的平方和最小。
这个垂直距离,咱们叫它残差。
具体的公式就是:Q = Σ(yi - (axi + b))²,这里的Σ是求和符号,就是把所有的残差平方加起来。
然后通过求 Q 对 a 和 b 的偏导数,令它们等于 0 ,就能解出 a 和 b 的值,从而得到最佳拟合直线的方程。
我给您讲个我亲身经历的事儿吧。
有一次我带着学生们去做一个关于植物生长和光照时间关系的实验。
我们每天记录植物的高度和对应的光照时长,最后想用最小二乘法来找出它们之间的关系。
一开始,学生们都被这些数据弄得晕头转向的。
有的说:“老师,这也太乱了,怎么找规律啊?”我就告诉他们,别着急,咱们有最小二乘法这个法宝呢!然后我一步一步地给他们讲解公式的原理和计算方法。
有个叫小明的同学特别认真,眼睛紧紧盯着黑板,手里的笔不停地记着。
可算到中间的时候,他突然举手说:“老师,我这一步算错了,得重新来。
”我鼓励他说:“没关系,重新算,多算几遍就熟练啦。
”最后,经过大家的努力,我们终于算出了最佳拟合直线的方程。
当我们把这个方程画在图上,看到那些数据点都很接近这条直线的时候,孩子们都兴奋得欢呼起来。
从那以后,学生们对最小二乘法的理解可深刻多了。
他们知道了,数学不仅仅是书本上的公式,还能真真切切地帮助我们解决生活中的问题。
(完整word版)最小二乘法(word文档良心出品)
最小二乘法基本原理:成对等精度测得一组数据,试找出一条最佳的拟合曲线,使得这条曲线上的各点值与测量值的平方和在所有的曲线中最小。
我们用最小二乘法拟合三次多项式。
最小二乘法又称曲线拟合,所谓的“拟合”就是不要求曲线完全通过所有的数据点,只要求所得的曲线反映数据的基本趋势。
曲线的拟合几何解释:求一条曲线,使所有的数据均在离曲线的上下不远处。
第一节 最小二乘法的基本原理和多项式拟合 一最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m)常用的方法有以下三种:一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir 0,即误差向量r 的1—范数;三是误差平方和∑=mi ir02的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir02来 度量误差i r (i=0,1,…,m)的整体大小。
数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=m i ir 02=[]∑==-mi ii y x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线)(x p y =(图6-1)。
函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。
Φ可有不同的选取方法.6—1二多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。
最小二乘法
1.什么时候用最小二乘法在研究两个变量之间的关系时,可以用回归分析的方法进行分析。
当确定了描述两个变量之间的回归模型后,就可以使用最小二乘法估计模型中的参数,进而建立经验方程.例如,在现实世界中,这样的情形大量存在着:两个变量X和Y(比如身高和体重)彼此有一些依赖关系,由X可以部分地决定Y的值,但这种关系又是不确定的.人们常常借助统计学中的回归模型来寻找两个变量之间的关系,而模型的建立当然是依据观测数据.首先通过试验或调查获得x和Y的一组对应关系(x1,Y1),(x2,Y2),…,(x n,Y n),然后回答下列5个问题:1. 这两个变量是否有关系?(画出散点图,作直观判断)2. 这些关系是否可以近似用函数模型来描述?(利用散点图、已积累的函数曲线形状的知识和试验数据,选择适当的回归模型,如一元线性模型y=b0+b1x,二次函数模型y=b0+b1x+b2x2等)3. 建立回归模型.4. 对模型中的参数进行估计,最小二乘法是这些参数的一种常用估计方法.5. 讨论模型的拟合效果.在上述第3步中,设所建立的回归模型的一般形式是,其中Y称为响应变量,x称为解释变量或协变量;是一个由参数决定的回归函数;是一个不可观测的随机误差.为了通过试验数据来估计参数的值,可以采用许多统计方法,而最小二乘法是目前最常用、最基本的.由的估计值决定的方程称为经验回归方程或经验方程.教科书中涉及的回归模型是最简单的一元线性模型Y=b0+b1x+,此时模型的拟合效果可以通过Pearson相关系数来描述。
事实上,在线性回归模型中可以证明相关指数等于相关系数的平方.2.什么是最小二乘法思想简单地说,最小二乘的思想就是要使得观测点和估计点的距离的平方和达到最小.这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小.例如,对于回归模型,若,…,为收集到的观测数据,则应该用来估计,这里是的估计值。
各种最小二乘法汇总(算例及MATLAB程序)
图 1 一般最小二乘参数过渡过程 .....................................................4 图 2 一般最小二乘方差变化过程 ....................................................5 图 3 遗忘因子法参数过渡过程 ........................................................7 图 4 遗忘因子法方差变化过程 ........................................................8 图 5 限定记忆法参数过渡过程 ......................................................10 图 6 限定记忆法方差变化过程 ......................................................10 图 7 偏差补偿最小二乘参数过渡过程 ..........................................12 图 8 偏差补偿最小二乘方差变化过程 ..........................................12 图 9 增广最小二乘辨识模型 ..........................................................13 图 10 增广最小二乘参数过渡过程 ................................................14 图 11 广义最小二乘参数过渡过程 ................................................16 图 12 广义最小二乘方差变化过程 ................................................16 图 13 辅助变量法参数过渡过程 ....................................................18 图 14 辅助变量法方差变化过程 ....................................................18 图 15 二步法参数过渡过程 ............................................................20 图 16 二步法方差变化过程 ............................................................20
最小二乘法及其应用..
最小二乘法及其应用1.引言最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。
据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。
同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。
如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。
拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。
正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。
在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。
到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。
最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。
相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。
正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。
最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。
2. 最小二乘法所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小.用数学公式表示为:21022)()(mini i i i ix b b Y Y Y e 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例.iiix B B Y 10(一元线性回归方程)由于总体回归方程不能进行参数估计,我们只能对样本回归函数来估计即:i iie x b b Y 10)...2,1(n i从上面的公式可以看出:残差i e 是i Y 的真实值与估计值之差,估计总体回归函数最优方法是,选择10,B B 的估计量10,b b ,使得残差i e 尽可能的小.总之,最小二乘原理就是选择样本回归函数使得所有Y 的估计值与真实值差的平方和为最小,这种确定10,b b 的方法叫做最小二乘法。
最小二乘配置
实际情况:
很难选择和实际情况完全符 合的模型, 或者模型过于复杂 不便解算甚至不能解算。
直线方程: vi a0 a1 xi Li
应用背景
30 25 20 15
f(x)
10 5 0 -5 0 5 10 15 20
x
应用背景
30 25 20 15
f(x)
10 5 0 -5 0 5 10 15 20
SS ' S
隐信号的方差(协方差)对参数估值
ˆ 没有影响。 ˆ 、信号的估值 S X
公式推导 公式汇集:
PL1 ( P1 S )
ˆ ( AT P A) 1 AT P L X L L
分析:
B I
1 Y
0
ˆ P ( AX ˆ L) S S L ˆ ' P ( AX ˆ L) S S 'S L ˆ L) V P1 PL ( AX
0
ˆ ( AT P A) 1 AT P L X L L
ˆ P ( AX ˆ L) S S L ˆ ' P ( AX ˆ L) S S 'S L ˆ L) V P1 PL ( AX
S P Y S ' S
BPY1 BT S PL1 ( P1 S )
ˆ L) K PL ( AX
(8)代入(3)、(4),得
(8) (9)
ˆ L) V P1 PL ( AX
ˆ P 1 BT P ( AX ˆ L) (10) Y Y L
公式推导 公式汇集:
PL1 ( P1 BPY1 BT )
分析:
B I
1 Y
第一类:非随机或者先验性质未知的,或已知而不考虑 其随机性质的,称为参数(倾向参数) 第二类:已知其先验统计性质,且求其估值时需要顾及 的,称之为信号。信号又分为已测点信号和未
最小二乘法的综述及算例
百度文库•让每个人平等地捉升口我题目:最小二乘法的综述及算例院系:航天学院自动化班级: 学号:学生签名: 指导教师签名:日期:2011年12月6日目录1・综述 (3)2.概念 (3)百度文邮-让每个人平零地捉升口我3.原理 (4)4.算例 (6)5・总结 (10)参考文献 (10)1.综述最小二乘法最早是由髙斯提出的,这是数据处理的一种很有效的统汁方法。
高斯用这种方法解决了天文学方面的问题,特别是确立了某些行星和彗星的天体轨迹。
这类天体的椭圆轨迹由5个参数确龙,原则上,只要对它的位苣做5次测量就足以确定它的整个轨迹。
但由于存在测量误差,由5次测量所确定的运行轨迹极不可靠,相反,要进行多次测量,用最小二乘法消除测量误差,得到有关轨迹参数的更精确的值。
最小二乘法近似将几十次甚至上百次的观察所产生的髙维空间问题降到了椭圆轨迹模型的五维参数空间。
最小二乘法普颯适用于各个科学领域,它在解决实际问题中发挥了重要的作用。
它在生产实践、科学实验及经济活动中均有广泛应用。
比如说,我们引入等效时间的概念,根据Arrhenius函数和指数函数研究水化热化学反应速率随温度的变化,最后采用最小二乘法回归分析试验数据,确定绝热温升和等效时间的关系式。
为了更好地掌握最小二乘法,我们引入以下两个问题:(1)假设已知一组二维数据(“片),(i=l,2,3・・・n),怎样确定它的拟合曲线y=f(x)(假设为多项式形式f(x)=4 +®Y +...+“”X"),使得这些点与曲线总体来说尽量接近?(2)若拟合模型为非多项式形式,怎样根据已知的二维数据用最小二乘线性拟合确定其系数,求出曲线拟合函数?怎样从给左的二维数据岀发,寻找一个简单合理的函数来拟合给泄的一组看上去杂乱无章的数据,正是我们要解决的问题。
2.概念在科学实验的统汁方法研究中,往往要从一组实验数(兀,儿)(i=1.2,3・・・m)中寻找自变量x 与y之间的函数关系y=F(x).由于观测数拯往往不准确,此时不要求戶F(x)经过所有点(心,儿),而只要求在给立心上误差J. =F ( x, ) (i=l,2,3・・・m)按某种标准最小。
最小二乘法公式推导过程
最小二乘法公式推导过程最小二乘法是一种最常用的数据拟合方法,主要用于回归分析和曲线拟合等数据处理领域中。
其核心思想是通过最小化残差平方和,找到一条最佳拟合直线(或曲线),使预测结果与实际观测值间的误差最小化。
最小二乘法的具体应用可以分为两个步骤。
第一步是建立模型,根据实际数据的分布情况建立数学模型。
常见的模型有线性回归模型、多项式回归模型、指数回归模型等等。
第二步则是通过最小化残差平方和来求解使模型拟合结果最优的参数。
下面我们就来具体了解一下最小二乘法的公式推导过程。
首先,我们先给出一个简单的线性回归模型:y = ax + b,其中x 为自变量,y为因变量,a和b是待求解的参数。
假设我们有n个数据点,其中第i个数据点的实际观测值为yi,预测值为a xi + b,那么第i个数据点的残差 ei=yi-a xi -b。
我们的目标是通过最小化所有数据点残差平方和来找到最佳拟合直线(或曲线)的参数。
即最小化S=∑(ei)²,其中i=1,2,…,n。
下面是最小二乘法的公式推导过程:(1)将S展开:S=(e1)²+(e2)²+...+(en)²=(y1-a x1-b)²+(y2-a x2-b)²+...+(yn-a xn-b)²=(y1²-2a x1 y1-2b y1+a² x1²+2a b x1+b²)+(y2²-2a x2 y2-2b y2+a² x2²+2a b x2+b²)+...+(yn²-2a xn yn-2b yn+a² xn²+2a bxn+b²)=(y1²+y2²+...+yn²)+(a² x1²+a² x2²+...+a² xn²)+(n b²)-2a(x1 y1+x2 y2+...+xn yn)-2b(y1+y2+...+yn)a+2(n a b x1+...+n a b xn)(2)将S对a、b分别求偏导:∂S/∂a=2(a x1²+a x2²+...+a xn²)-2(x1 y1+x2 y2+...+xn yn)-2(n a b x1+...+n a b xn)∂S/∂b=2(n b)-2(y1+y2+...+yn)+2(a x1+...+a xn)(3)令∂S/∂a=0,∂S/∂b=0,我们可以得到两个方程:a=(n∑xy-∑x∑y)/(n∑x²-(∑x)²)b=(∑y-a∑x)/n其中,∑表示sigma符号,∑xy为x和y的乘积之和,∑x²为x 的平方和,∑y²为y的平方和,∑x和∑y分别为x和y的和,n为数据点的数量。
最小二乘法公式例题
最小二乘法公式例题在我们学习数学的过程中,有一个非常实用的工具叫做最小二乘法。
这玩意儿听起来可能有点高大上,但其实没那么可怕,咱们通过一些例题来好好瞅瞅它。
我记得有一次给学生们讲最小二乘法的时候,有个学生瞪着大眼睛,一脸迷茫地问我:“老师,这到底是啥呀?”我笑着回答:“别着急,咱们一步步来。
”咱们先来说说最小二乘法的公式:对于给定的一组数据(x₁, y₁),(x₂, y₂),...,(xₙ, yₙ),要找到一条直线 y = a + bx 来拟合这些数据,使得误差的平方和最小。
这里误差就是实际的 y 值减去通过直线计算得到的 y 值。
那误差的平方和 S 就可以表示为:S = Σ(yᵢ - (a + bxᵢ))²。
为了找到使 S 最小的 a 和 b 的值,我们需要对 S 分别关于 a 和 b 求偏导数,并令它们等于 0。
经过一系列计算(这个过程咱就不细说了,不然脑袋得晕),最终可以得到求解 a 和 b 的公式:b = [Σ(xᵢ - x)(yᵢ - ȳ)] / [Σ(xᵢ - x)²] ,a = ȳ - b x。
这里x是 x 的平均值,ȳ是 y 的平均值。
咱们来看个例题哈。
假设我们有一组数据:(1,2),(2,3),(3,5),(4,6),(5,7)。
首先,咱们来计算一下 x 的平均值x和 y 的平均值ȳ 。
x = (1 + 2 + 3 + 4 + 5)/ 5 = 3 ,ȳ = (2 + 3 + 5 + 6 + 7)/ 5 = 4.6 。
然后计算Σ(xᵢ - x)(yᵢ - ȳ)和Σ(xᵢ - x)²。
(1 - 3)×(2 - 4.6) + (2 - 3)×(3 - 4.6) + (3 - 3)×(5 - 4.6)+ (4 - 3)×(6 - 4.6) + (5 - 3)×(7 - 4.6),(1 - 3)² + (2 - 3)² + (3 - 3)² + (4 - 3)² + (5 - 3)²。
推导最小二乘法的两种方法
推导最小二乘法的两种方法最小二乘法是一种常用的数学优化方法,用于拟合数据,并找到最佳的拟合直线或曲线。
它通过最小化实际观测值与模型预测值之间的残差平方和来实现拟合。
方法一:几何推导首先,假设我们有一组数据点{(x1, y1), (x2, y2), ..., (xn, yn)},要找到一条直线y = mx + b,使得这条直线与数据点的残差平方和最小。
我们可以利用几何推导来得到该直线的斜率m和截距b。
1. 首先计算数据点的均值(x_mean, y_mean):x_mean = (x1 + x2 + ... + xn) / ny_mean = (y1 + y2 + ... + yn) / n2. 计算斜率m:numerator = (x1 - x_mean)*(y1 - y_mean) + (x2 - x_mean)*(y2 - y_mean) + ... + (xn - x_mean)*(yn - y_mean)denominator = (x1 - x_mean)^2 + (x2 - x_mean)^2 + ... + (xn - x_mean)^2m = numerator / denominator3. 计算截距b:b = y_mean - m*x_mean方法二:矩阵推导另一种推导最小二乘法的方法是使用矩阵。
我们可以将数据点表示为矩阵X和向量y,并通过求解线性方程组X^T*X*w = X^T*y来得到拟合直线的参数w。
1. 构建矩阵X和向量y:X = [[1, x1], [1, x2], ..., [1, xn]]y = [y1, y2, ..., yn]2. 计算参数w:w = (X^T*X)^(-1) * X^T * y总结通过几何推导或矩阵推导,我们可以得到最小二乘法的两种求解方法。
这些方法在数据拟合和回归分析中广泛应用,可以帮助我们找到最佳的拟合曲线,并进行相关的预测与分析。
最小二乘法
性质2:只要适当大,总成立:S( xk z) S( xk ).
性质3:当充分大时,方向z与方向 S( xk )充分接近。
6.采用进退方法调整:一次成功迭代后将缩小,迭代 遇到困难时将放大。
Ax * b 2 A 2 可见,当δ 0时取到最小值.
例
给定方程组
2 x1 x1
2x2 2x2
3 1
,
试用最小二乘法求此方程组
x1 4 x2 3
的近似解。
解:令 F ( x) ( 2x1 2x2 3 )2 ( x1 2x2 1)2 ( x1 4x2 3 )2 ,
(3)
性质:若f(x)满足一定条件且x0充分接近x *,
则: (1)由迭代得到的{ x k }是收敛的; (2) 在一定条件下,收敛阶是二阶的。
3.改进的Gauss-Newton法:
因为S( x)
m
2
fi ( x)fi ( x)
2 AT
(x)
f
(x),
i 1
记 Hk 2 AkT Ak , 则Hk 是 ( x) 在点 xk 的Hesse 矩阵。
f1
其中
A(
x
k
)
x1
fm
x1
... ...
f1
xn
fm
xn
(
fi ( x x j
k
)
)mn
。
x xk
记 Ak A( x k ) , 则有
S( x) f ( xk ) Ak ( x xk ) 2 Akd k f ( xk ) 2
[ Akd k f ( x k ) ]T [ Akd k f ( x k ) ], 其中:d k x xk。 记 ( x) [ Akd k f ( xk ) ]T [ Akd k f ( xk ) ],则可用min ( x) 的极小点近似原问题的极小点。