北大计量经济学讲义-第五讲
金融计量经济第五讲虚拟变量模型和Probit、Logit模型
第二节 虚拟被解释变量模型
• 问题1:对于商业银行,企业贷款可能出现违约,也就是说一家企 业贷款后有违约和不违约两种可能,如何甄别?(李萌,2005)
• 问题2:证券投资者在特定时期内的投资选择是买或不买,如何确 定这样的选择?(王冀宁等,2003)
• 问题3:上市公司出现经营问题,可能成为ST、PT,是什么原因导 致这样的结果?
6563.76 1597.98
16.904 16.9416 157.922
0
应用例题2:股息税削减对股价的影响
• 背景资料—2005年6月14日,财政部、税务总局发文,规定对个人投资者从
上市公司取得的股息红利所得,暂减按50%计入个应纳税所得额(红利税从 20%降为10%)。
• 利用事件分析法分析该政策对股价有无显著影响,即政策出台前后股票有无 异常收益。时间窗口为发布日及前后各二天。
E( yi ) P( yi 1) X i
• 但因为
i
1 X
Xi i
当yi 1,其概率为X i 当yi 0,其概率为1 X i
• 模型具有明显的异方差性,故而用模型(5.8)直接进行参数估计 是不合适的。
• 另外,由于要求
E( yi ) P( yi 1) Xi 1
亦
难以达到。
Di 0, 其它季度的数据
, i 2,3,4
• •
原 则模 引型 入若 虚为 拟变量后的y模t 型为:
xt
ut
yt xt 2 D2t 3 D3t 4 D4t ut (5.6)
• 回归模型可视为:
yˆt ˆ ˆxt
一季度
yˆt ˆ ˆxt ˆ2 二季度
yˆt ˆ ˆxt ˆ3 三季度
二、虚拟变量的设置原则
最新计量经济学课件-第五章教学讲义PPT
Y t a b 0 X t b 1 Y t 1 b 2 Y t 2 b q Y t q U t
• 3、分布滞后模型的OLS估计 (1)估计中存在的问题: 无限分布滞后:样本有限,无法估计; 有限分布滞后: 没有先验准则确定滞后长度; 滞后期过长导致丧失过多自由度; 容易出现多重共线;
Y b 0 b 1 X b 2 P a 1 D 1 a 2 D 2 a 3 D 3 a 4 D 4 U
存在什么问题?
• 解释变量观测值矩阵为:
1
X1
1
X2
P1
1 0 0 0
P2
0
1
0
0
1
X3
1
X4
P3
0 0 1 0
P4
0 0 0 1
1
X0
1
X n2
Pn 2
• (2)一般处理
各种方法的基本思想大致相同:都是通过对各滞后变 量加权,组成新变量从而有目的地减少滞后变量的数 目,以缓解多重共线性,保证自由度。
经验权数法
根据实际问题的特点、实际经验给各滞后变量指定权 数,滞后变量按权数线性组合,构成新的变量。权数
据的类型有:
• 递减型: 权数是递减的,X的近期值对Y的影响较远期 值大。 如消费函数中,收入的近期值对消费的影响作 用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8 则新的线性组合变量为:
W 1 t1 2X t1 4X t 11 6X t 28 1X t 3
• 矩型: 即认为权数是相等的,X的逐期滞后值对值Y 的影响相同。 如滞后期为3,指定相等权数为1/4,则新的线 性组合变量为:
计量经济学第五讲---模型函数形式
32
第5章
33
第5章
34
第5章
35
第5章
Dependent Variable: Y Method: Least Squares Sample: 1970 1999 Included observations: 30 Variable Coefficient Std. Error t-Statistic Prob.
Akaike info criterion
Schwarz criterion F-statistic Prob(F-statistic)
6.816985
6.915724 8080.449 0.000000
44
第5章
45
第5章
半对数模型总结
1、对数—线性模型(增长率模型)
2、线性—对数模型
LOG(Z)
R-squared
Adjusted R-squared
0.845997
0.995080 0.994501
0.093352
9.062488
0.0000
12.22605 0.381497
-4.155221 -4.005861
Mean dependent var S.D. dependent var
每提高1个百分点,平均而言,数学S.A.T分数将增加0.13 个百分点。根据定义,如果弹性的绝对值小于1,则称缺 乏弹性。因此,在该例中,数学S.A.T分数是缺乏弹性的。 另外,r2=0.9, 表明logX解释了变量logY的90%的变 动。
13
第5章
北大计量经济学讲义-工具变量与两阶段最小二乘法
Intermediate Econometrics,
Intermediate Econometrics,
Yan Shen
18
When an IV is Available: Estimation 当IV存在时:估计
When assumptions (15.4) and (15.5) hold, one can show that the IV estimator is
Suppose the true model regresses log(wage) on education (educ) and ability (abil). 假定真实模型将对数工资对教育和能力回归
Now ability is unobserved, and the proxy, IQ, is not available. 现在能力不可观测,而且没有代理变量IQ
Sometimes we refer to this regression as the first-stage regression. 有时我们将这个回归称为第一阶段回归。
Intermediate Econometrics,
Yan Shen
11
Example: wage determination 例子:工资决定
In this context, identification means that we can
write b1 in terms of population moments that can
计量经济学讲义第五讲(共十讲)
第五讲 自相关高斯-马尔科夫假定五是:(,)0,i j i j C ovariance i j εεεεδ==≠如果该假定不成立,那么称模型的误差项是序列相关的。
由于序列相关主要针对于时间序列数据,因此,下面把i 改写为t ,样本容量N 改写为T 。
笔记:1、如果基于横截面数据的回归模型其误差项是相关的,则称为空间自相关。
但是要记住,除非观察顺序具有某种逻辑或者经济上的意义,否则,在横截面数据回归中,观察顺序是可以随意的,因此,也许在某种观测顺序下误差项呈现出一种模式的自相关但在另一种观测顺序下又呈现出另外一种模式的自相关。
然而,当我们处理时间序列时,观测服从时间上的一种自然顺序。
2、在经济变量时间序列回归模型中,误差项经常被称之为冲击(Shock )。
对经济系统的冲击经常具有持续性,从而这为误差项序列相关提供了现实依据。
一、 自相关的后果在证明高斯-马尔科夫定理时,我们仅仅在证明OLS 估计量的方差最小(在所有线性无偏估计量中)时用到了序列无关假定,而在证明线性、无偏性并没有用到该假定,因此违背无自相关性假定并不影响线性、无偏性,只影响方差最小性质。
在证明方差最小时,我们分了两步,其中第一步是计算OLS 估计量的方差。
对模型:t 01t t y x ββε=++有:12ˆ12222()()()()(())()()[()]t t t t t t t t tx x Variance x x x x Variance x x Variance x x x x βεδβεε-=+---==--∑∑∑∑∑∑在假定五:0,0t t j j εεδ+=≠下,有:122ˆ222()[()]ttt x x x x βεδδ-=-∑∑如果假定五不成立,那么正确的方差表达式应该是:12ˆ1221122()2()()[()]t t t jT T tt t t j t j t x x x x x x x x βεεεδδδ+--+==-+--=-∑∑∑∑所以, OLS 法下通常的系数估计量方差的表示是错误的。
计量经济学第5章PPT学习教案
量保持不变的情况下,Xj每变化1个单位时,Y 的均值E(Y)的变化;
或者说j给出了Xj的单位变化对Y均值的“直
接”或“净”(不含其他变量)影响。
第1页/共49页
2
总体回归模型n个随机方程的矩阵表达式为 Y Xβ μ
其中
1 X 11
X
1
X 12
1 X 1n
所以,
ˆ ~ N(, 2(X X )1)
第24页/共49页
以cii表示矩阵(X’X)-1 主对角线上的第i个元素,于是参数估 计量的 方差为 : 其中,2为随机误差项的总体 方差, 由于总 体未知 ,故方 差也不 可知。 因此, 在实际 计算时 ,用它 的估计 量代替:
ˆi ~ N (i , 2cii )
2Q
ˆˆ
2X X是一个正定矩阵
ˆ (X X ) XY 1
是使方程最小化的解。
第13页/共49页
14
知识点:正定矩阵
对于任意的非零向量c,令
a cX Xc
则
a cXXc vv
vi2
除非v中的每一个元素为0, 否则a为正的。但是,若v为0, 则
v Xc 0
这与X中的向量线性无关的假设是矛盾的,故X满秩,则必
n
第7页/共49页
8
回忆:由线性代数可知
如果一个矩阵没有逆矩阵,则被称 为奇异矩阵,如果有则为非奇异矩 阵(non-singular)
对于n阶方阵A,A是非奇异矩阵的 证明: 充要条件是A的行列式不等于0
当r且an仅k(当X X矩)阵 满ran秩k时(X,) 其k行1列式不 X X为(k等+1于)(零k+1)阶方阵,所以,X X为非奇异矩阵,可逆.
05:第五讲 模型设定和虚拟变量专题
5
Beta 系数
标准化系数,只有标准化后才有大小比较的价 值
其基本原理是y,x均是去均值并除以各自的标 准差
则回归系数表示,x一个标准化变化对y一个标 准化变化的影响效应
6
7
Beta 系数
zy bˆ1z1 bˆ2 z2 ... bˆk zk error 其中,zy 表示 y的z-得分, z1 表示x1 的 z 得分,以此类推。而对于
在该例中,y的预测值为
yˆ exp ˆ 2 2 exp lnˆ y
bk xk
E y | x 0 exp b0 b1x1 bk xk yˆ ˆ0 exp logˆ y
27
当因变量为log y时对y的预测:
(1)从logy对x1 ,x2 , ,xk的回归中得到拟合值logˆyi .
28
例6.7 对CEO薪水的预测
对样本中的每一个观测都求出mˆ exp lsalˆary ;
将salary对mˆ 进行回归(没有常数项)得ˆ0 1.117。
lsalˆary 4.504 0.163 log 5000 0.109 log 10000 0.0117 10 7.013 salˆary 1.117 exp 7.013 1240.967或1240967美元。
25
通过增加回归变量来减少方差的误差
在回归中增加一个新的自变量会加剧多重共线 性问题;另一方面,从误差项中取出一些因素 作为解释变量可以减少误差方差。
应该将那些影响y而又与所有我们关心的自变 量都无关的自变量包括进来。
26
§ 5 对数模型中对y 的预测
北京大学计量经济学讲义chapter
Y 消 费 支 出
1
2=MPC 1
收入
X
17
(3)消费的计量模型的设定 纯数学模型是一种确定性关系,一般不是
计量经济学家研究的对象。 给定收入,支出还受其他因素的影响,例
如家庭大小,家庭成员的年龄等。
18
(3)消费的计量模型的设定
消费支出
60000
40000
u
20000
0
0
20000 40000 60000 80000 100000 120000
3
II、主要教学参考书 :
《计量经济学导论:现代观点》,伍德里 奇著,费剑平等译,中国人民大学出版社, 2003年3月。
《数据分析与Eviews应用》,易丹辉主编, 中国统计出版社,2002年10月。
4
其他教学参考书:
《计量经济学》(第三版),古扎拉蒂著, 林少宫译,中国人民大学出版社,2000年3 月。
发现,虽然有一个趋势,父母高,儿女也高;父 母矮,儿女也矮。但是,给定父母的身高,儿女 辈的平均身高却趋向于或者“回归”到全体人口 的平均身高。
回归分析是关于研究一个叫做因变量的变量对另 一个或多个叫做解释变量的变量的依赖关系,其 用意在于通过后者(在重复抽样中)的已知或设 定值,去估计和(或)预测前者的(总体)均值
收入(GDP)
19
(3)消费的计量模型的设定
计量经济模型: Y= 1+2X+u
u是随机扰动项或随机误差项,是一个随机 变量,有良好定义的概率性质。
u可用来代表所有未经指明的对消费有所影 响的那些因素。
20
(4)获得数据
年
1985
为了估计计量模型,
1986
第五讲 自相关
第五讲、自相关1、自相关的概念:古典线性回归中假设扰动项u i中不存在自相关,即E(u i u j)=0, i≠j这表明任一观察值的扰动项不受其他观察值的扰动项的影响。
但是如果存在E(u i u j) ≠0, i≠j表明存在自相关问题。
自相关通常与时间序列数据有关,但截面数据中也可能产生自相关的问题(空间相关),例如,某一家庭消费支出的增加可能影响不愿比别人逊色的另一家庭消费支出的影响。
图a-d表明扰动项u存在可辨别的模式(可能存在自相关),而图e则表明不存在系统模式(可能不存在自相关)。
2、导致自相关的因素:(1)在涉及时间序列数据的回归方程中,大多数经济时间序列数据的一个显著特征是“惯性”或“延迟性”。
如GDP、就业、货币供给等时间序列都呈现周期性,连续的观察值之间很可能存在相互依赖或是相关的。
(2)模型设定错误:应该包括在模型中的重要变量未包括进模型(过低设定)或模型选择了错误的函数形式,这时残差会呈现出系统模式。
(3)蛛网现象:即解释变量是时间滞后变量,即具有时间滞后效应。
如农产品供给模型中价格对供给的影响存在蛛网现象(滞后效应)。
这种情况下的扰动项不是随机的。
(4)数据加工:在实证研究中,通常原数据是要经过加工的。
例如季度数据的时间序列回归中,数据通常是由月度数据按季相加再平均得到,而这种“平滑”过程的本身可能导致扰动项的系统模式,从而产生自相关。
3、自相关的后果:(1)虽然最小二乘估计仍然是线性和无偏的,但不是有效的,即最小二乘估计量(OLS)不是最优线性无偏估计量(BLUE)。
(2)OLS估计量的方差是有偏的,计算OLS估计量的方差或标准差的公式可能严重低估真实的方差或标准差,从而导致常用的t检验和F检验是不可靠的。
(3)通常计算的R2也是不可靠的。
4、自相关的诊断自相关的诊断存在异方差诊断中的类似问题,即ui是无法观察的,而且也不知道其产生机制:我们通过OLS估计,仅仅得到的是ei,通过对ei的讨论来“了解”自相关是否存在。
(财务知识)计量经济学讲义(一到四章)(计量经济学东北财经大学王
计量经济学讲义王维国讲授课程的性质计量经济学是一门由经济学、统计学和数学结合而成的交叉学科,从学科性质来看,计量经济学是一门应用经济学。
具体来说,计量经济学是在经济学理论指导下,借助于数学、统计学和计算机等方法和技术,研究具有随机特征的经济现象,目的在于揭示其发展变化规律。
课程教学目标计量经济学按其内容划分为理论计量经济学和应用计量经济学。
本课程采用多媒体教学手段,结合Eviews软件应用,讲解理论计量经济学的最基本内容。
本课程教学目标:一是使学生了解现实经济世界中可能存在的计量经济问题,掌握检测及解决计量经济问题的方法和技术;二是使学生能够在计算机软件辅助下,建立计量经济模型,为其他专业课的学习及对经济问题进行实证分析研究奠定基础。
课程适用的专业与年级本大纲适用于数量经济专业2001级计量经济学课程的教学。
课程的总学时和总学分课程总学时为72,共计4学分。
本课程与其他课程的联系与分工学习本课程需要学生具备概率论与数理统计、微积分、线性代数、Excel、微观经济学、宏观经济学、经济统计等学科知识。
概率论与数理统计等数学课是计量经济学的方法论基础,计量经济学主要解决的是实际中不满足数理统计假定时经济变量之间关系及经济变量发展变化规律分析方法和技术,而经济学为计量经济学提供经济理论的准备,它仅就经济变量之间的关系提出一些理论假设,而不进行实证分析,只有具备了计量经济学的基本知识才能更好地解决一些实际问题。
课程使用的教材及教学参考资料使用的教材:计量经济学(Basic Econometrics) 第三版,[美]古扎拉蒂(DamodarN.Gujarati) 著,林少宫译,中国人民大学出版社2000年3月第1版。
该教材畅销美国,并流行于英国及其他英语国家。
该书充分考虑了学科发展的前沿,十分重视基础知识的教学及训练,内容深入浅出。
教学参考资料:1. 王维国,《计量经济学》,东北财经大学出版社2001.2.Aaron C. Johnson, Econometrics Basic and Applied学时分配表第一讲引言:经济计量学的特征及研究范围第一节什么是计量经济学一、计量经济学的来源二、计量经济学的定义计量经济学几种定义。
计量经济学教学课件U5
5.3 异方差性的检验
5.3.3 White检验法
基本思想: 基于异方差性的定义,如果模型存在异方差性,则随机误差项的方差会随着 解释变量变化而变化。因此,可以建立残差平方关于解释变量多项式函数的 辅助回归模型,并对该辅助回归模型进行统计检验,以此判断原模型是否存 在异方差性。由于随机误差项的方差未知,一般用残差平方 近似替代。
1. 用OLS法估计模型,得到残差 2. 建立残差绝对值 对某个解释变量 的各种函数形式辅助回归方程:
, 3. 式中 取不同值并进行估计、检验方程,在一定显著性水平下,应用t或F检验法对某个辅
5.3 异方差性的检验
2. 残差平方 或者残差绝对值 与X相关图
5.3 异方差性的检验
5.3.2 戈德菲尔德-夸特检验法
1965年戈德菲尔德和夸特提出Goldfeld-Quandt检验方法,其基本思想是:对原样本按 某一解释变量进行排序,删除中间一定组数的数据,将容量相同的两端数据分别作 为两个子样本,利用OLS法估计两个子样本回归模型,比较其产生的残差平方和是否 具有显著差异,据此进行异方差性检验。
异方差性检验的基本思路是:通常利用OLS法估计模型产生的残差及其平 方或者绝对值来替代随机误差项方差,根据残差的分布图或者建立残差平 方(或绝对值)关于原模型中解释变量的辅助回归方程来判定其是否存在 异方差性。
异方差性常用检验方法:
1. 图示检验法 2. 戈德菲尔德-夸特(Goldfeld-Quandt)检验法 3. White检验法 4. Park检验法 5. Glejser检验法 6. ARCH检验法
软件实现:
对于Eviews9.0,在利用全部样本数据和OLS法估计回归方程窗口中,选择View\Residual Diagnostic\Heteroskedasticity Tests,在Test type中选择White,点击OK后可得到检验统 计量的值和辅助回归方程。
第五讲 异方差和自相关.
2。利用广义最小二乘法(GLS)
广义最小二乘法是对原模型加权,使之变成一个新 的不存在异方差性的模型,然后采用普通最小二乘 法估计其参数。 其含义为 Var(b) =σ2 (X'X)-1(X'Σ X) (X'X)-1 通过加权使得Σ =I 因此,GLS和WLS要求Σ 已知。
加权最小二乘法(WLS):
4-DL
4
经验上DW值1.8---2.2之间接受原假设, 不存在一阶自相关。 DW值接近于0或者接近于4,拒绝原假 设,存在一阶自相关。
4。Q检验和Bartlett检验 reg D.rs LD.r20 predict e2,res wntestq e2 wntestq e2,lag(2) wntestb e2
r 20t 1 r 20t 1 r 20t 2
rst rst rst 1
回归方程为: use ukrates,clear tsset month reg D.rs LD.r20
自相关的检验
1。图形法:自相关系数和偏自相关系数 predict e1,res ac e1 pac e1 corrgram e1,lag(10)
3。DW检验:只能检验一阶自相关的序列相 关形式,并且要求解释变量严格外生。
根据样本个数和自由度查表得到DL和DU,并 且构造不同的区域。
reg D.rs LD.r20 dwstat
Reject H0
Uncertainty
Accept H0
Uncertainty
Reject H0
0
DL
DU
4-DU
0 . 0
2 1
0
2 2
. 0
0 0 ... . 2 ... n .. ...
完整的计量经济学 计量经济学第五章 线性回归的PPT课件
X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y
或
D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2
第五讲 自相关性
第5章 自相关性5.1 自相关性及其产生的原因5.1.1 什么是自相关性对于模型:t kt k t t t u x b x b x b b y +++++= 22110 (5.1.1)如果随机误差项的各期值之间存在着相关关系,即协方差0)())())(((),cov(≠=--=s t s s t t s t u u E u E u u E u E u u (s t ≠,k s t ,2,1,=)这时,称随机误差项之间存在自相关性或序列相关(Autocorrelation or serial correlation)。
随机误差项的自相关性可以有多种形式,其中最常见的类型是随机误差项之间存在一阶自相关性或一阶序列相关:0)(),cov(11≠=--t t t t u u E u u ,或者:)(1-=t t u f u 。
一阶自相关性可以表示为t t t v u u +⋅=-1ρ (5.1.2)其中ρ是t u 与1-t u 的一阶自相关系数,t v 是满足回归模型基本假定的随机误差项。
因为在大样本情况下,根据OLS 原理,ρ的OLS 估计式为:∑∑--=211ˆt t tuuu ρ(0)(=t u E )而t u 和1-t u 之间的相关系数r 为:∑∑∑--=2121t tt t uu u u r ≈ρˆ211=∑∑--t t tuu u (在大样本情况下,∑∑-≈212t t u u ) 因此,可以认为ρ是t u 与1-t u 的一阶自相关系数。
1≤ρ,1=ρ表示完全正自相关,t t t v u u +=-1;10〈〈ρ表示正自相关;0=ρ表示不存在自相关,t t v u =;01〈〈-ρ表示负自相关;1-=ρ表示完全负自相关,t t t v u u +-=-1。
自相关性的一般形式可以表示成:),,,(21p t t t t u u u f u ---= ,或者:t p t p t t t v u u u u ++++=---ρρρ 2211 (5.1.3)称之为p 阶自回归形式,或模型存在p 阶自相关。
计量经济学重点笔记第五讲
第五讲 自相关高斯-马尔科夫假定五是:(,)0,i j Cov i j εε=≠如果该假定不成立,那么称模型的误差项是序列相关的。
由于序列相关主要针对于时间序列数据,因此我们把脚标i 改写为t ,把样本容量N 改写为T 。
笔记:1、如果基于横截面数据的回归模型其误差项是相关的,则称为空间自相关。
但是要记住,除非观察顺序具有某种逻辑或者经济上的意义,否则,在横截面数据回归中,观察顺序是可以随意的,因此,也许在某种观测顺序下误差项呈现出一种模式的自相关但在另一种观测顺序下又呈现出另外一种模式的自相关。
然而,当我们处理时间序列时,观测服从时间上的一种自然顺序。
2、在时间序列模型中,误差项经常被称之为冲击(Shock)。
对经济系统的冲击经常具有持续性,从而这为误差项序列相关提供了现实依据。
一、 自相关的后果与仅仅违背同方差假定一样,仅仅违背序列无关假定并不影响OLS 估计量所具有的线性、无偏性、一致性等性质。
在误差项序列相关的情况下,OLS 估计法并没有利用这个信息,故OLS 估计量不是最有效的。
我们下面来推导在误差项序列相关情况下OLS 估计量的方差表达。
假定真实模型是:t 01t t y x ββε=++则12ˆ12222()()()()(())()()[()]t t t t t t t t tx x Var x x x x Var x x Var x x x x βεδβεε-=+---==--∑∑∑∑∑∑ 在假定五:0,0t t jj εεδ+=≠下,有:122ˆ222()[()]tt t x x x x βεδδ-=-∑∑但如果假定五不成立,那么正确的方差表达式应该是:12ˆ1221122()2()()[()]t t t j T T tt t t j t j t x x x x x x x x βεεεδδδ+--+==-+--=-∑∑∑∑所以, OLS 法下通常的系数估计量方差的表示是错误的,一般来说它小于真实的方差。
北大计量经济学讲义-第五讲
Intermediate Econometrics, Yan Shen
10
Sampling Distributions as n increases
当n增加时样本的分布
n1 < n2 < n3
n3
例:n1:每次从班上抽取10人, 抽若干次后,平均身高的分布; n2:每次从班上抽取100人, 抽若干次后,平均身高的分布; n3:每次从班上抽取200人, 抽若干次后,平均身高的分布。
ˆ b 1
Intermediate Econometrics, Yan Shen 13
Proving Consistency
证明一致性
B e c a u se a s n , n 1 x i 1 x 1 u i 0 n
1
x i1 x1
2
d o e s n o t c o n v e rg e to z e ro ,
Intermediate Econometrics, Yan Shen
9
Consistency
一致性
Under the Gauss-Markov assumptions OLS is BLUE, but in other cases it won’t always be possible to find unbiased estimators 在高斯-马尔可夫假定下OLS 是最优线性无偏估计量, 但在别的情形下不一定能找到无偏估计量。 In those cases, we may settle for estimators that are consistent, meaning as n ∞, the distribution of the estimator collapses to the true parameter value 在那些情形下,我们只要找到一致的估计量,即当n ∞ 时, 这些估计量的分布退化为参数的真值。
北大经济学原理第五课
第五章弹性及其应用Elasticity and ItsApplication1弹性Elasticity . . .……是对买者和卖者对市场环境变化作出反应程度大小的一种度量方法…is a measure of how much buyers and sellers respond to changes in market conditions……使我们能够更精确地分析供给和需求…allows us to analyze supply and demand with greater precision.2需求的价格弹性Price Elasticity of Demand给定百分之一的价格变化,需求量变化的百分数就是需求的价格弹性Price elasticity of demand is the percentage change in quantity demanded given a percent change in the price.它衡量了一种物品的需求量对该物品价格变化作出反应的程度大小It is a measure of how much the quantity demanded of a good responds to a change in the price of that good.34需求价格弹性的决定因素Determinants ofPrice Elasticity of Demand 必需品还是奢侈品Necessities versus Luxuries相近替代品的可获得性Availability of Close Substitutes市场的界定Definition of the Market时间范围Time Horizon需求价格弹性的决定因素Determinants ofPrice Elasticity of Demand需求倾向于更富有弹性:Demand tends to be more elastic :如果该商品是奢侈品if the good is a luxury.时间间隔越长the longer the time period.相近替代品的个数越多the larger the number of close substitutes.市场界定得越狭隘the more narrowly defined the market.5计算需求价格弹性Computing the Price Elasticityof Demand用需求量变动的百分数除以价格变动的百分数,就计算出了需求的价格弹性The price elasticity of demand is computed as the percentage change in the quantity demanded divided by the percentage change in price.Price Elasticity of Demand=Percentage Change in Quantity Demanded Percentage Changein Price67计算需求价格弹性Computing the Price Elasticityof Demandpricein change Percentage demandedquatity in change Percentage demand of elasticity Price =例:如果冰淇淋蛋卷的价格从2.00美元上升到2.20美元,你所购买的数量从10个下降到8个,那么你的需求弹性可以计算如下:Example: If the price of an ice cream cone increases from $2.00to $2.20 and the amount you buy falls from 10 to 8 cones then your elasticity of demand would be calculated as:(810)10020102(2.20 2.00)101002.00percent percent−×−==−−×运用中点公式计算需求价格弹性Computing the Price Elasticity of Demand Using the MidpointFormula如果你试图计算需求曲线上两点之间的需求价格弹性,你马上就会注意到一个恼人的问题:从A点到B点的弹性,与从B点到A点的弹性是不同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y = b0 + b1x1 + b2x2 + . . . + bkxk + u
Intermediate Econometricse 本章提纲
What do we mean by asymptotic normality and large sample inference 渐近正态性和大样本推断的含义是什么
The asymptotic normality of OLS OLS的渐近正态
Intermediate Econometrics,
令 Wn是基于样本 y1, y2,..., yn的关于 的估计量。
如果对于任何 >0,当 n 时Pr(|Wn | ) 0
Wn便是 的一个一致估计量。
当作是Wnp具li有m(一Wn致) 性时. ,我们In也ter称medYiaatn为e SEhcoeWnnonm的et概rics率, 极限,写
Intermediate Econometrics,
Yan Shen
5
What is Consistency
什么是一致性
Let Wn be an estimator of based on a sample y1, y2 ,..., yn. Wn is a consistent estimator of if for every >0, Pr(|Wn | ) 0 as n . When Wn is consistent, we also say that is the probability limit of Wn , written as p lim(Wn ) .
Consistency 一致性
Asymptotic Normality and Large Sample Inference 渐近正态和大样本推断
Asymptotic Efficiency of OLS OLS的渐近有效性
Intermediate Econometrics,
Yan Shen
2
Lecture Outline 本课提纲
6
Consistency v.s. unbiasedness
一致性与无偏性
Is it possible for an estimator to be biased in finite sample but consistent in large sample?
一个估计量是否有可能在有限样本中是有偏的但又具有一 致性?
Suppose true value of z=0, a random variable x =z with probability (n-1)/n, and x=n with probability 1/n.
假设Z的真值为0,一个随机变量X以(n-1)/n的概率取值为Z,而以 1/n的概率取值为n。
These properties hold for any sample size n. 样本容量为任意n时,这些性质都成立。
Intermediate Econometrics,
Yan Shen
4
Why consider consistency?
为什么考虑一致性
Since in many situations the error term is not normally distributed, it is important to know the asymptotic properties (large sample properties), i.e., the properties of OLS estimator and test statistics when the sample size grows without bound. 由于在很多情形下误差项可能呈现非正态分布,了解 OLS 估计量和检验统计量的渐近性,即当样本容量任意 大时的特性就是重要的问题。
What do we mean by saying consistency 一致性的含义是什么
Consistency of OLS estimators OLS估计量的一致性
The Inconsistency of OLS when the zero conditional mean assumption fails 当零条件均值假设不成立时OLS没有一致性。
Unbiasedness of OLS estimators (MLR.1-4) 在MLR. 1-4下 OLS估计量具有无偏性 BLUE of OLS estimators (MLR.1-5) 在MLR.1-5下 OLS估计量是最优线性无偏估计量 MVUE of OLS estimators (MLR.1-6) 在MLR.1-6 下OLS估计量是最小方差无偏估计量 The distribution of t (F) statistic is t (F)distribution t(F)统计量的分布为t(F)分布。
Yan Shen
3
Why considering consistency?
为什么考虑一致性
We have discussed the following finite sample (small sample) properties of the OLS estimators and test statistics: 我们已经讨论了有限样本(小样本)中OLS估计量和检验统计 量具有的如下性质:
E(x)=z* (n-1)/n+n* 1/n=1 X的期望为1
plim(x) is the value of x as n goes to infinity. Therefore plim(x)=z=0.
记plim(x) 为n趋向无穷大时x的取值。因此
plim(x)=z=0.
Intermediate Econometrics, Yan Shen