最新中考专题复习-二次函数与方程(组)或不等式

合集下载

2023年人教版九年级数学中考复习考点专练——二次函数与不等式(组)的综合应用(含答案)

2023年人教版九年级数学中考复习考点专练——二次函数与不等式(组)的综合应用(含答案)

2023人教版数学中考复习考点专练——二次函数与不等式(组)的综合应用一、单选题1.如图,一次函数y1=mx+n(m≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于两点A(-1,5)、B(9,3),请你根据图象写出使y1≥y2成立的x的取值范围( )A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥92.已知抛物线y=x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.x<-1B.-1<x<3C.x<-1或x>3D.x<-1或x>43.一次函数y1=mx+n(m≠0)与二次函数y2=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c>mx+n的解集为()A.-4<x<3B.x<-4C.3-<<x<-4D.x>3或x<-44.二次函数2y ax bx c =++的图象开口向上,对称轴为直线x =-2,图象经过(1,0),下列结论中,正确的一项( ) A .0c >B .240ac b ->C .93a c b+>D .5a b >5.根据二次函数y =-x 2+2x +3的图像,判断下列说法中,错误的是( )A .二次函数图象的对称轴是直线x =1B .当x >0时,y <4C .当x≤1时,函数值y 是随着x 的增大而增大D .当y≥0时,x 的取值范围是-1≤x≤3时6.如图,已知抛物线 2y ax c =+ 与直线 y kx m =+ 交于 1(3)A y -, , 2(1)B y ,两点,则关于 x 的不等式 2ax c kx m +≥-+ 的解集是( )A .3x ≤- 或 1x ≥B .1x ≤- 或 3x ≥C .31x -≤≤D .13x -≤≤7.若二次函数y=ax 2+bx+c (a <0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y >0成立的x 的取值范围是( ) A .x <﹣4或x >2 B .﹣4≤x≤2 C .x≤﹣4或x≥2D .﹣4<x <28.如图,二次函数y=ax 2+bx+c 的图象与x 轴两交点的横坐标分别为x 1,x 2,且x 1<0<x 2,则当ax 2+bx+c≤0时,x 的取值范围是( )A .x 1<x <x 2B .x 1≤x≤x 2C .﹣x 1≤x≤x 2D .x≤x 1或x≥x 29.小明从如图所示的二次函数y=ax 2+bx+c (a≠0)的图象中,观察得出了下面五条信息:①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤32a b =.你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个10.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如表.下列结论:①0ac <;②当1x >时,y 的值随x 值的增大而减小③3是方程2(1)0ax b x c +-+=的一个根;④当13x -<<时,2(1)0ax b x c +-+>.其中正确的个数为( )二、填空题11.抛物线y =ax 2+bx +c (a >0)与x 轴的两个交点分别是A (﹣1,0),B (2,0).当y >0时,x 的取值范围是 .12.已知点A ,B 的坐标分别为(1,0),(2,0).若二次函数y=x 2+(a ﹣3)x+3的图象与线段AB 只有一个交点,则a 的取值范围是 .13.如图是二次函数 ()210y ax bx c a =++≠ 和一次函数 ()20y mx n m =+≠ 的图象,当 21y y > , x 的取值范围是 .14.抛物线 ()26y a x k =-+ 经过点 ()0,2 ,当 9x = 时2.43y > ,当 18x =时 0y < ,则k 的取值范围是 .15.对任意实数 a ,若多项式 22253b ab a +﹣ 的值总大于 3﹣,则实数 b 的取值范围是 .三、解答题16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,二次函数y=-23x 2+bx+c 的图象经过B 、C 两点.(1)求b ,c 的值.(2)结合函数的图象探索:当y >0时x 的取值范围.17.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y (件)是售价x (元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件. (1)求y 与x 的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价﹣成本)18.已知关于x 的一元二次方程ax 2-3x -1=0有两个不相等的实数根,且两个实数根都在-1和0之间(不包含-1和0),求a 的取值范围.19.已知二次函数y =x 2﹣2mx+1.记当x =c 时,函数值为y c ,那么,是否存在实数m ,使得对于满足0≤x≤1的任意实数a ,b ,总有y a +y b ≥1.20.在平面直角坐标系xOy 中,抛物线y=ax 2-2x (a≠0)与x 轴交于点A ,B (点A 在点B 的左侧).(1)当a=-1时,求A ,B 两点的坐标;(2)过点P (3,0)作垂直于x 轴的直线l ,交抛物线于点C . ①当a=2时,求PB+PC 的值;②若点B 在直线l 左侧,且PB+PC≥14,结合函数的图象,直接写出a 的取值范围.答案解析部分1.【答案】A 2.【答案】C 3.【答案】A 4.【答案】D 5.【答案】B 6.【答案】D 7.【答案】D 8.【答案】B 9.【答案】D 10.【答案】C11.【答案】x <﹣1或x >212.【答案】﹣1≤a <﹣ 12或a=3﹣2 13.【答案】-2<x <1 14.【答案】83k >15.【答案】66b <<﹣16.【答案】(1)∵正方形OABC 的边长为2,∴B (2,2),C (0,2), 把B (2,2),C (0,2)代入y=-x 2+bx+c 得,解得;(2)二次函数解析式为y=-x 2+x+2,当y=0时,-x 2+x+2=0,解得x 1=-1,x 2=3,∴抛物线与x 轴的交点坐标为(-1,0),(3,0), ∴当-1<x <3时,y >0.17.【答案】解:(1)设y 与x 的函数关系式为y=kx+b (k≠0),把x=22,y=780,x=25,y=750代入y=kx+b 得2278025750k b k b +=⎧⎨+=⎩,解得101000k b =-⎧⎨=⎩∴函数的关系式为y=﹣10x+1000; (2)设该工艺品每天获得的利润为w 元,则w=y (x ﹣20)=(﹣10x+1000)(x ﹣20)=﹣10(x ﹣60)2+16000; ∵﹣10<0,∴当20<x≤30时,w 随x 的增大而增大,所以当售价定为30元/时,该工艺品每天获得的利润最大. 即w 最大=﹣10(30﹣60)2+16000=7000元;答:当售价定为30元/时,该工艺品每天获得的利润最大,最大利润为7000元.18.【答案】解:∵关于x 的一元二次方程ax 2-3x -1=0有两个不相等的实数根∴△= ()()234a 10--⨯⨯-> ,解得,a > 94-令y=ax 2-3x -1,则该二次函数的图象与y 轴交于(0,-1)∵方程ax 2-3x -1=0的两个实数根都在-1和0之间∴二次函数y=ax 2-3x -1与x 轴两交点的横坐标都在-1和0之间 ∴a <0,其大致图象如图所示: 当x=-1时,y=ax 2-3x -1=a +2<0 解得,a <-2 综上可得: 94-<a <-2. 19.【答案】解:设y 在0≤x≤1的最小值为M ,原问题等价于2M≥1,M≥12, 二次函数y =x 2﹣2mx+1的图象是一条开口向上的抛的线, ①当对称轴x =m≤0时,由图象可知,x =0时,y 最小=1,这时1≥12成立; ②当对称轴x =m ,0<m <1时,由图象可知x =m 时,y 最小且y 最小=1﹣m 2,有1﹣m 2≥12 ,m 2≤ 12 ,故有0<m≤ 2; ③当对称轴x =m ,m≥1时,由图象可知,x =1时,y 最小且y 最小=2﹣2m ,这时有2﹣2m≥12 ,m≤ 34与m≥1矛盾.综上可知,满足条件的m 存在,且m 的取值范围是m≤2. 20.【答案】(1)解:当a=-1时,有y=-x 2-2x .令y=0,得:-x 2-2x=0. 解得x 1=0,x 2=-2. ∵点A 在点B 的左侧, ∴A (-2,0),B (0,0)(2)解:①当a=2时,有y=2x 2-2x . 令y=0,得2x 2-2x=0. 解得x 1=0,x 2=1. ∵点A 在点B 的左侧, ∴A (0,0),B (1,0). ∴PB=2.当x=3时,y C =2×9-2×3=12. ∴PC=12. ∴PB+PC=14.②点B 在直线l 左侧,如图所示:∵PB+PC≥14,∴3-x+ax2-2x≥14,可得:a≤- 59或a≥2.。

备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综合应用,综合题专训及答案

备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综合应用,综合题专训及答案


≤-2,比较 与 的大小;
(4) 当抛物线F与线段AB有公共点时,直接写出m的取值范围。
9、 (2017濉溪.中考模拟) 2016年里约奥运会,中国跳水队赢得8个项目中的7块金牌,优秀成绩的取得离不开艰辛的训练 .某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线,已知跳板AB长为2米 ,跳板距水面CD的高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度k米,现以CD为横轴,CB 为纵轴建立直角坐标系.
下面是他的探究过程,请将探究过程补充完整: 将不等式按条件进行转化:
当x=0时,原不等式不成立; 当x>0时,原不等式可以转化为x2+4x﹣1> ; 当x<0时,原不等式可以转化为x2+4x﹣1< ; (1) 构造函数,画出图象 设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
备考2021年中考数学复习专题:函数_二次函数_二次函数与不等式(组)的综
合应用,综合题专训及答案
备 考 2021中 考 数 学 复 习 专 题 : 函 数 _二 次 函 数 _二 次 函 数 与 不 等 式 ( 组 ) 的 综 合 应 用 , 综 合 题 专 训
1、 (2018长春.中考真卷) 如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y轴于点E(点A在点D 的左侧),经过E、D两点的函数y=﹣ x2+mx+1(x≥0)的图象记为G1 , 函数y=﹣ x2﹣mx﹣1(x<0)的图象记为G2 , 其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.
交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:

中考数学压轴题---《方程(组)+不等式(组)二次函数模型》例题讲解

中考数学压轴题---《方程(组)+不等式(组)二次函数模型》例题讲解

中考数学压轴题---《方程(组)+不等式(组)二次函数模型》例题讲解【典例3】(2021•遂宁)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?【解答】解:(1)设T恤的销售单价提高x元,由题意列方程得:(x+40﹣30)(300﹣10x)=3360,解得:x1=2或x2=18,∵要尽可能减少库存,∴x2=18不合题意,应舍去.∴T恤的销售单价应提高2元,答:T恤的销售单价应提高2元;(2)设利润为M元,由题意可得:M=(x+40﹣30)(300﹣10x),=﹣10x2+200x+3000,=﹣10(x﹣10)2+4000,∴当x=10时,M最大值=4000元,∴销售单价:40+10=50(元),答:当服装店将销售单价定为50元时,得到最大利润是4000元.【变式3-1】(2023•蜀山区校级一模)随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植,现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.某地某种粮大户,去年种植优质水稻200亩,平均每亩收益480元.计划今年多承包一些土地,已知每增加一亩,每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年应承租多少亩土地,才能使今年总收益达到96600元?(2)该大户今年应承租多少亩土地,可以使今年总收益最大,最大收益是多少?【解答】解:(1)设该大户今年应承租x亩土地,才能使今年总收益达到96600元,由题意得x[480﹣2(x﹣200)]=96600,解得x2﹣440x+48300=0,解得x=230或x=210,∴该大户今年应承租210亩或230亩土地,才能使今年总收益达到96600元;(2)设该大户今年应承租m亩土地,收益为W元,由题意得W=m[480﹣2(m﹣200)]=﹣2m2+880m=﹣2(m﹣220)2+96800,∵﹣2<0,∴当m=220时,W最大,最大为96800,∴大户今年应承租220亩土地,可以使今年总收益最大,最大收益是96800元.【变式3-2】某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?【解答】解:(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,根据题意得:,解得,答:A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;(2)①根据题意,A款纪念册每本降价m元,可多售出2m本A款纪念册,∵两款纪念册每天销售总数不变,∴B款纪念册每天的销售量为(80﹣2m)本;②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',根据表格可得:,解得,∴y=﹣2x+124,当y=80﹣2m时,x=22+m,即B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,设该店每天所获利润是w元,由已知可得w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,∵﹣4<0,∴m=6时,w取最大值,最大值为1264元,此时A款纪念册售价为32﹣m=32﹣6=26(元),答:当A款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元.【变式3-3】(2022秋•中原区校级期中)党的“二十大”期间,某网店直接从工厂购进A、B两款纪念“二十大”的钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)(1)网店第一次用8500元购进A、B两款钥匙扣共300件,求两款钥匙扣分别购进的件数;(2)第一次购进的两款钥匙扣售完后,该网店计划再次购进A、B两款钥匙扣共800件(进货价和销售价都不变),且进货总价不高于22000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)“二十大”临近结束时,B款钥匙扣还有大量剩余,网店打算把B款钥匙扣调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,根据题意得:,解得:.答:购进A款钥匙扣200件,B款钥匙扣100件.(2)设购进m件A款钥匙扣,则购进(800﹣m)件B款钥匙扣,根据题意得:30m+25(800﹣m)≤22000,解得:m≤400.设再次购进的A、B两款钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(800﹣m)=3m+9600.∵3>0,∴w随m的增大而增大,∴当m=400时,w取得最大值,最大值=3×400+9600=10800,此时800﹣m=800﹣400=400.答:当购进400件A款钥匙扣,400件B款钥匙扣时,才能获得最大销售利润,最大销售利润是10800元.(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,根据题意得:(a﹣25)(78﹣2a)=90,整理得:a2﹣64a+1020=0,解得:a1=30,a2=34.又∵要尽快减少库存,∴a=30.答:B款钥匙扣的售价应定为30元.【变式3-4】(2020•鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元/件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(1≤m≤6),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.【解答】解:(1)设y与x的函数关系式为:y=kx+b(k≠0),把x=4,y=10000和x=5,y=9500代入得,,解得,,∴y=﹣500x+12000;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,”得,,解得,3≤x≤12,设利润为w元,根据题意得,w=(x﹣3)y=(x﹣3)(﹣500x+12000)=﹣500x2+13500x﹣36000=﹣500(x﹣13.5)2+55125,∵﹣500<0,∴当x<13.5时,w随x的增大而增大,∵3≤x≤12,且x为正整数∴当x=12时,w取最大值为:﹣500×(12﹣13.5)2+55125=54000,答:这一周该商场销售这种商品获得的最大利润为54000元,售价为12元;(3)根据题意得,w=(x﹣3﹣m)(﹣500x+12000)=﹣500x2+(13500+500m)x﹣36000﹣12000m,∴对称轴为x=﹣=13.5+0.5m,∵﹣500<0,∴当x<13.5+0.5m时,w随x的增大而增大,∵该商场这种商品售价不大于15元/件时,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.又∵x为整数,∴对称轴在x=14.5的右侧时,当x≤15(x为整数)时,w都随x的增大而增大,∴14.5<13.5+0.5m,解得m>2,∵1≤m≤6,∴2<m≤6。

中考数学专题复习二次函数试题(无答案)

中考数学专题复习二次函数试题(无答案)

中考数学专题复习二次函数试题(无答案)二次函数专题考点一:二次函数的解析式及其求解一般的,形如),0(2是常数、、c b a a c bx ax y ≠++=的函数叫做二次函数,其中,x 是自变量,c b a 、、分别为二次函数的二次项系数、一次项系数和常数项。

(1)一般式:c bx ax y ++=2。

已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2。

已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.(4)对称点式:已知图像上有两个关于y 轴对称的点()()k x k x ,,,21,那么函数的方程可以选用对称点式()()k x x x x a y +--=21,代入已知的另外的点就可以求出函数的方程来了。

例题1:根据题意,求解二次函数的解析式。

(1)求过点A(1,0),B(2,3),C(3,1)的抛物线的方程(2)已知抛物线与x 轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式.(3)已知二次函数的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4,求二次函数的解析式。

(4)已知二次方程32=++c bx ax 的两个根是-1和2,而且函数c bx ax y ++=2过点(3,4),求函数c bx ax y ++=2的解析式。

(5)已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式.(6)已知二次函数当x =2时有最大值3,且它的图象与x 轴两交点间的距离为6,求这个二次函数的解析式。

变式1:(1)、已知二次函数的图像经过点A(2,1),B(3,4),且与y 轴交点为(0,7),则求函数的解析式(2)已知过点(2,0),(3,5)的抛物线c bx ax y ++=2与直线33+=x y 相交与x 轴上,求二次函数的解析式(3)已知二次函数c bx ax y ++=2,其顶点为(2,2),图象在x 轴截得的线段长为2,求这个二次函数的解析式。

专题16 二次函数与不等式(组)(基础)-冲刺2021年中考数学(解析版)

专题16 二次函数与不等式(组)(基础)-冲刺2021年中考数学(解析版)

专题16 二次函数与不等式(组)(基础)1.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0),B ,且当x =4时,二次函数的值为6.(1)求m 的值和抛物线的解析式;(2)求不等式x 2+bx +c >x +m 的解集.【分析】(1)直接把点A (1,0)代入直线y =x +m 即可得出m 的值;再把点A (1,0)与当x =4时,y =6代入抛物线y =x 2+bx +c 即可得出b 、c 的值,进而得出抛物线的解析式;(2)根据(1)中m 、b 、c 的值即可得出一次函数与二次函数的解析式,故可得出B 点坐标,根据函数的图象即可得出结论.【解答】解:(1)∵直线y =x +m 和经过点A (1,0),∴1+m =0,解得m =﹣1;∵抛物线y =x 2+bx +c 经过点A (1,0),且当x =4时,二次函数的值为6,∴{1+b +c =016+4b +c =6,解得{b =−3c =2, ∴抛物线的解析式为y =x 2﹣3x +2;(2)∵由(1)知m =﹣1,抛物线的解析式为y =x 2﹣3x +2,∴直线的解析式为y =x ﹣1,∴{y =x −1y =x 2−3x +2,解得{x =3y =2或{x =1y =0, ∴B (3,2).∵由函数图象可知,当x <1或x >3时,二次函数的值大于一次函数的值,∴不等式x 2+bx +c >x +m 的解集为x <1或x >3.【点评】本题考查的是二次函数与不等式,能根据题意利用数形结合求出不等式的解集是解答此题的关键.2.已知二次函数y 1=x 2+mx +n 的图象经过点P (﹣3,1),对称轴是直线x =﹣1.(1)求m ,n 的值;(2)如图,一次函数y 2=x +b 的图象经过点P ,与二次函数的图象相交于另一点B ,请求出点B 的坐标,并观察图象直接写出y 1≥y 2的x 的取值范围.【分析】(1)利用待定系数法求抛物线解析式,从而得到m 、n 的值;(2)先把P 点坐标代入y =x +b 中求出b 得到一次函数解析式为y =x +4,再解方程组{y =x 2+2x −2y =x +4得B 点坐标,然后利用函数图象,写出抛物线不在一次函数图象下方所对应的自变量的范围.【解答】解:(1)根据题意得{9−3m +n =1−m 2=−1,解得{m =2n =−2, 抛物线解析式为y =x 2+2x ﹣2;(2)把P (﹣3,1)代入y =x +b 得﹣3+b =1,解得b =4,∴一次函数解析式为y =x +4,解方程组{y =x 2+2x −2y =x +4得{x =−3y =1或{x =2y =6, ∴B 点坐标为(2,6),当x ≤﹣3或x ≥2时,y 1≥y 2.【点评】本题考查了二次函数与不等式(组):对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,可利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.3.已知二次函数y =ax 2+bx +c 的图象过A (2,0),B (0,﹣1)和C (4,5)三点(1)求二次函数的解析式;(2)直接写出不等式ax 2+bx +c <x +1的解集.【分析】(1)利用待定系数法求抛物线解析式;(2)先解方程12x 2−12x ﹣1=x +1得抛物线y =ax 2+bx +c 与直线y =x +1的交点的横坐标分别为﹣1,4;如图,然后写出直线在抛物线上方所对应的自变量的范围即可.【解答】解:(1)根据题意得{4a +2b +c =0c =−116a +4b +c =5,解得{ a =12b =−12c =−1, 所以抛物线解析式为y =12x 2−12x ﹣1;(2)解方程12x 2−12x ﹣1=x +1得x 1=﹣1,x 2=4, 即抛物线y =ax 2+bx +c 与直线y =x +1的交点的横坐标分别为﹣1,4;如图,所以当﹣1<x <4时,ax 2+bx +c <x +1,即不等式ax 2+bx +c <x +1的解集为﹣1<x <4.【点评】本题考查了二次函数与不等式(组):对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.4.如图,抛物线y 1=﹣x 2+2x +3与直线y 2=4x 交于A ,B 两点.(1)求A ,B 两点的坐标;(2)当x 取何值时,y 1>y 2?【分析】(1)联立两函数解析式求解即可;(2)根据函数图象写出抛物线直线上方部分的x 的取值范围即可.【解答】解:(1)由题意可得:{y 1=−x 2+2x +3y 2=4x, 解得:{x 1=1y 1=4,{x 2=−3y 2=−12, 所以A 点的坐标是(1,4),B 点的坐标是(﹣3,﹣12);(2)由图可知,﹣3<x <1时,y 1>y 2.【点评】本题考查了二次函数与不等式,主要利用了联立两函数解析式求交点坐标的方法,利用函数图象求不等式的解集,利用数形结合的思想求解是更简便.5.如图,已知直线y 1=−12x +2与x 轴、y 轴分别相交于A 、B 两点,过A 、B 两点的抛物线y 2=ax 2+bx +c 交x 轴于点C (﹣1,0).(1)求A 、B 的坐标;(2)求抛物线的表达式;(3)并指出当y 2>y 1时,x 的取值范围.【分析】(1)利用一次函数的解析式确定A 、B 的坐标;(2)利用待定系数法求抛物线解析式;(3)写出抛物线在直线上方所对应的自变量的范围.【解答】解:(1)当x =0时,y =−12x +2=2,则B (0,2);当y =0时,−12x +2=0,解得x =4,则A (4,0);(2)设抛物线解析式为y =a (x +1)(x ﹣4),把B (0,2)代入得a (0+1)(0﹣4)=2,解得a =−12,所以抛物线解析式为y =−12(x +1)(x ﹣4),即y =−12x 2+32x +2;(3)当y 2>y 1时,x 的取值范围为0<x <4.【点评】本题考查了二次函数与不等式(组):对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了抛物线与x 轴的交点问题和二次函数的性质.6.已知抛物线y 1=x 2与直线y 2=−12x +3相交于A 、B 两点.(1)求A 、B 两点的坐标;(2)点O 为坐标原点,△AOB 的面积等于 214; (3)当y 1<y 2时,x 的取值范围是 ﹣2<x <32 .【分析】(1)通过解方程组{y =x 2y =−12x +3得A 点和B 点坐标; (2)先求出直线y =−12x +3与y 轴的交点坐标,然后根据三角形面积公式求解;(3)写出一次函数图象在抛物线上方所对应的自变量的范围即可.【解答】解:(1)解方程组{y =x 2y =−12x +3得{x =−2y =4或{x =32y =94, 所以A 点坐标为(﹣2,4),B (32,94); (2)当x =0时,y =−12x +3=3,则直线y =−12x +3与y 轴的交点坐标为(0,3),所以,△AOB 的面积=12×3×(32+2)=214; (3)当﹣2<x <32时,y 1<y 2.故答案为214;﹣2<x <32. 【点评】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.如图,A (﹣1,0)、B (2,﹣3)两点在一次函数y 1=﹣x +m 与二次函数y 2=ax 2+bx ﹣3的图象上.(1)求m 的值和二次函数的解析式,(2)请直接写出使y 1≤y 2时自变量x 的取值范围.【分析】(1)因为点A (﹣1,0)、B (2,﹣3)都在一次函数和二次函数图象上,一次函数只有一个待定系数m ,所以将A (﹣1,0)、B (2,﹣3)中任意一点的坐标代入y 2=﹣x +m 即可;二次函数y 1=ax 2+bx ﹣3有两个待定系数a 、b ,所以需要A (﹣1,0)、B (2,﹣3)两点的坐标都代入y 1=ax 2+bx ﹣3,用二元一次方程组解出a 、b 的值.(2)直接观察图象中同一个横坐标对应的y 1、y 2的值,直接得到答案.【解答】解:(1)把A (﹣1,0)代入y 2=﹣x +m 得:0=﹣(﹣1)+m ,∴m =﹣1.把A (﹣1,0)、B (2,﹣3)两点代入y 1=ax 2+bx ﹣3得:{a −b −3=04a +2b −3=−3, 解得:{a =1b =−2, ∴y 2=x 2﹣2x ﹣3;(2)∵y 1=x 2﹣2x ﹣3=(x +1)(x ﹣3),抛物线开口向上,∵A (﹣1,0),B (2,﹣3)∴当y 1≤y 2时,x ≤﹣1或x ≥2.【点评】此题考查了二次函数与不等式(组),熟练掌握用待定系数法求二次函数解析式的方法是解题的关键.8.如图,A (﹣1,0)、B (2,﹣3)两点在一次函数y 2=﹣x +m 与二次函数y 1=ax 2+bx ﹣3的图象上(1)求一次函数和二次函数的解析式;(2)请直接写出y 2>y 1时,自变量x 的取值范围.【分析】(1)利用待定系数法求一次函数和抛物线解析式;(2)利用函数图象,写出一次函数图象在二次函数图象上方所对应的自变量的范围即可.【解答】解:(1)把A (﹣1,0)代入y =﹣x +m 得1+m =0,解得m =﹣1,∴一次函数解析式为y =﹣x ﹣1;把A (﹣1,0)、B (2,﹣3)代入y =ax 2+bx ﹣3得{a −b −3=04a +2b −3=−3,解得{a =1b =−2,∴抛物线解析式为y=x2﹣2x﹣3;(2)当﹣1<x<2时,y2>y1.【点评】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围或利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.9.已知二次函数y=x2﹣(a﹣1)x+a﹣2,其中a是常数.(1)求证:不论a为何值,抛物线y=x2﹣(a﹣1)x+a﹣2与x轴一定有交点;(2)若抛物线y=x2﹣(a﹣1)x+a﹣2的图象如图所示,请直接写出不等式x2﹣(a﹣1)x+a﹣2<0的解集;(3)在(2)的条件下,若关于x的方程x2﹣(a﹣1)x+a﹣2=k恰有两个相等的实数根,求k的值.【分析】(1)计算判别式得到△=(a﹣3)2,则根据非负数的性质可判断△≥0,然后根据判别式的意义得到结论;(2)利用对称轴方程得到a=4,则抛物线解析式为y=x2﹣3x+2,再解方程x2﹣3x+2=0得抛物线与x 轴的两个交点坐标为(1,0),(2,0),然后写出抛物线在x轴下方所对应的自变量的范围得到不等式x2﹣(a﹣1)x+a﹣2<0的解集;(3)方程整理为x2﹣3x+2﹣k=0,然后利用判别式的意义得到△=32﹣4(2﹣k)=0,然后解关于k 的方程即可.【解答】(1)证明:△=(a﹣1)2﹣4(a﹣2)=a2﹣2a+1﹣4a+8=(a﹣3)2,∵(a﹣3)2≥0,即△≥0,∴不论a为何值,抛物线y=x2﹣(a﹣1)x+a﹣2与x轴一定有交点;(2)解:∵x=−−(a−1)2=32,∴a=4,∴抛物线解析式为y=x2﹣3x+2,当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,∴抛物线与x轴的两个交点坐标为(1,0),(2,0),当1<x<2时,y<0,即不等式x2﹣(a﹣l)x+a﹣2<0的解集为1<x<2;(3)解:x2﹣3x+2=k,即x2﹣3x+2﹣k=0,∵方程x2﹣(a﹣1)x+a﹣2=k恰有两个相等的实数根,∴△=32﹣4(2﹣k)=0,解得k=−1 4.【点评】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0),利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了判别式的意义.10.如图,抛物线y1=ax2+bx+c与直线y2=mx+n交于A(0,1),B(3,0).(1)当x=0或3时,y1=y2;(2)当0<x<3时,y1>y2;(3)当x<0或x>3时,ax2+bx+c<mx+n.【分析】(1)x取抛物线与直线的交点的横坐标即可;(2)利用函数图象,写出抛物线在直线上方所对应的自变量的范围即可;(3)利用函数图象,写出直线在抛物线上方所对应的自变量的范围即可.【解答】解:(1)当x=0或x=3时,y1=y2;(2)当0<x<3时,y1>y2;(3)当x<0或x>3时,ax2+bx+c<mx+n.故答案为0或3;0<x<3;x<0或x>3.【点评】本题考查了二次函数与不等式(组):二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.11.二次函数y=x2+bx+c的图象经过点A(1,0),B(0,3),点C与点B关于该二次函数图象的对称轴对称,已知一次函数y=mx+n的图象经过A,C两点.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足不等式x2+bx+c>mx+n的x的取值范围.【分析】(1)根据二次函数y=x2+bx+c的图象经过点A(1,0),B(0,3),可以求得二次函数的解析式,再根据点C 与点B 关于该二次函数图象的对称轴对称,一次函数y =mx +n 的图象经过A ,C 两点,从而可以求得一次函数的解析式;(2)根据函数图象可以直接写出满足不等式x 2+bx +c >mx +n 的x 的取值范围.【解答】解:(1)∵二次函数y =x 2+bx +c 的图象经过点A (1,0),B (0,3),∴{1+b +c =0c =3,得{b =−4c =3, ∴y =x 2﹣4x +3=(x ﹣2)2﹣1,∴二次函数的对称轴为直线x =2,∵B (0,3),点C 与点B 关于该二次函数图象的对称轴对称,∴点C (4,3),设∵一次函数y =mx +n 的图象经过A ,C 两点,∴{m +n =04m +n =3,得{m =1n =−1, ∴一次函数y =x ﹣1,即二次函数的解析式为y =x 2﹣4x +3,一次函数的解析式为y =x ﹣1;(2)由图象可知,不等式x 2+bx +c >mx +n 的x 的取值范围:x <1或x >4.【点评】本题考查二次函数与不等式组、待定系数法求一次函数解析式和二次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.如图,已知抛物线y =ax 2+bx +c 与直线y =x +3分别交于x 轴和y 轴的同一点A 和C ,且抛物线的对称轴为直线x =﹣2.(1)求抛物线与x 轴的两个交点A 和B 的坐标;(2)试确定抛物线的解析式;(3)观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围.【分析】(1)根据已知得出点A 、C 的坐标,再利用点A 与点B 关于直线x =﹣2对称,即可求出B 点坐标;(2)利用待定系数法求二次函数解析式,即可得出答案;(3)由图象观察可知,二次函数值小于一次函数值时,得出x 的取值范围.【解答】解:(1)y =x +3中,当y =0时,x =﹣3,∴点A 的坐标为(﹣3,0),当x =0时,y =3,∴点C 坐标为(0,3),∵抛物线的对称轴为直线x =﹣2,∴点A 与点B 关于直线x =﹣2对称,∴点B 的坐标是(﹣1,0);(2)设二次函数的解析式为y =ax 2+bx +c ,∵二次函数的图象经过点C (0,3)和点A (﹣3,0),且对称轴是直线x =﹣2,∴可列得方程组:{c =39a −3b +c =0−b 2a =−2, 解得:{a =1b =4c =3,∴二次函数的解析式为y =x 2+4x +3;(3)由图象观察可知,当﹣3<x <0时,二次函数值小于一次函数值.【点评】此题主要考查了一次函数与交点坐标求法以及待定系数法求二次函数解析式和结合图象比较函数大小关系等知识,利用函数图象比较函数的大小关系是难点,同学们应重点掌握.13.如图,已知二次函数y =ax 2+bx ﹣1的图象经过点D (﹣1,0)和点C (4,5).(1)求二次函数的解析式;(2)在同一坐标系中直接画出直线y =x +1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.【分析】(1)根据待定系数法即可求得二次函数的解析式;(2)直线y =x +1经过点D (﹣1,0)和点C (4,5),再根据图象直接得出答案.【解答】解:(1)∵二次函数y =ax 2+bx ﹣1的图象经过点D (﹣1,0)和点C (4,5).∴{a −b −1=016a +4b −1=5,解得{a =12b =−12, ∴二次函数的解析式为y =12x 2−12x ﹣1;(2)∵直线y =x +1经过点点D (﹣1,0)和点C (4,5).∴当一次函数的值大于二次函数的值时,x 的取值范围是﹣1<x <4.【点评】本题考查了用待定系数法求二次函数的解析式以及函数与不等式的关系,数形结合是解题的关键.14.已知二次函数y=ax2+bx+c的图象如图所示,顶点为A,抛物线与y轴交于点B(0,3),与x轴交于C(﹣1,0)和D两点.(1)求此抛物线的解析式;(2)结合图象填空:①关于x的一元二次方程ax2+bx+c=3的解是x1=0,x2=2;②不等式ax2+bx+c<0的解集为x<﹣1或x>3.【分析】(1)由图象可知抛物线顶点为(1,4),故设抛物线解析式为y=a(x﹣1)2+4,.代入点(0,3)即可求得a的值;(2)根据抛物线的对称性求得点(0,3),(﹣1,0)的对称点,然后根据图象即可求得.【解答】解:(1)由图象可知抛物线顶点为(1,4),∴设抛物线解析式为y=a(x﹣1)2+4,∵抛物线与y轴交于点B(0,3),∴3=a+4,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4;(2)①∵抛物线对称轴为直线x=1,∴(0,3)的对称点是(2,3),∴关于x的一元二次方程ax2+bx+c=3的解是x1=0,x2=2;②∵抛物线对称轴为直线x=1,∴(﹣1,0)的对称点是(3,0),∴等式ax2+bx+c<0的解集为x<﹣1或x>3,故答案为x<﹣1或x>3.【点评】本题考查了待定系数法求二次函数的解析式,二次函数与方程、二次函数与不等式的关系,数形结合是解题的关键.15.如图,二次函数y1=−25x2+bx+c的图象与x轴、y轴分别交于点A(﹣1,0)和点B(0,2),图象的对称轴交x轴于点C,一次函数y2=mx+n的图象经过点B,C,与二次函数图象的另一个交点为点D .(1)求二次函数的解析式y 1和一次函数的解析式y 2;(2)求点D 的坐标;(3)结合图象,请直接写出y 1≤y 2时,x 的取值范围: x ≤0或x ≥132 .【分析】(1)利用待定系数法可求出二次函数的解析式和一次函数的解析式;(2)解析式联立,解方程组即可求得交点D 的坐标,(3)根据交点坐标,结合图象即可求得.【解答】解:(1)将点A (﹣1,0)和点B (0,2)代入y 1=−25x 2+bx +c ,得:{c =2−25−b +c =0, 解得:{b =85c =2, ∴二次函数的解析式为y 1=−25x 2+85x +2.∵二次函数的对称轴为直线x =−852×(−25)=2,∴C (2,0),∵一次函数y 2=mx +n 的图象经过点B 、C ,∴{n =22m +n =0,解得{m =−1n =2, ∴一次函数的解析式为y 2=﹣x +2;(2)解{y =−25x 2+85x +2y =−x +2得{x =0y =2或{x =132y =−92, ∴点D 为(132,−92); (3)由图象可知,当x ≤0或x ≥132时,有y 1≤y 2.故答案为x ≤0或x ≥132.【点评】本题考查了待定系数法求一次函数的解析式,求二次函数的解析式,二次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.16.如图,二次函数y =(x +2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y =kx +b 的图象经过该二次函数图象上点A (﹣1,0)及点B .(1)求二次函数的解析式;(2)根据图象,写出满足kx+b≥(x+2)2+m的x的取值范围.【分析】(1)先利用待定系数法求出m,即可求得抛物线的解析式;(2)先求得C的坐标,然后根据对称性求出点B坐标,即可根据二次函数的图象在一次函数的图象下面即可写出自变量x的取值范围.【解答】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1;(2)令x=0,则y=(x+2)2﹣1=3,∴点C坐标(0,3),∵对称轴为直线x=﹣2,B、C关于对称轴对称,∴点B坐标(﹣4,3),由图象可知,满足kx+b≥(x+2)2+m的x的取值范围为﹣4≤x≤﹣1.【点评】本题考查二次函数与不等式、待定系数法等知识,解题的关键是灵活运用待定系数法确定二次函数解析式,学会利用图象根据条件确定自变量取值范围.17.如图,抛物线y1=﹣x2﹣x+c与直线y2=12x+b交于A,B(1,0)两点.(1)分别求c,b的值.(2)求y1﹣y2的最大值.(3)求点A的坐标,并根据图象判断,当x取何值时,y1>y2?【分析】(1)根据抛物线y1=﹣x2﹣x+c与直线y2=12x+b交于A,B(1,0)两点,可以求得b、c的值;(2)根据(1)中b、c的值,可以写出y1和y2的解析式,然后作差,根据二次函数的性质,即可得到y1﹣y2的最大值;(3)将y1和y2的解析式联立方程组,求出x、y的值,即可得到点A的坐标,然后根据图象,可以写出当x取何值时,y1>y2.【解答】解:(1)∵抛物线y 1=﹣x 2﹣x +c 与直线y 2=12x +b 交于A ,B (1,0)两点,∴0=﹣1﹣1+c ,0=12×1+b , 解得,b =−12,c =2;(2)∵b =−12,c =2,∴抛物线y 1=﹣x 2﹣x +2,直线y 2=12x −12,∴y 1﹣y 2=(﹣x 2﹣x +2)﹣(12x −12) =﹣x 2−32x +52=﹣(x +34)2+4916,即当x =−34时,y 1﹣y 2取得最大值4916, 即y 1﹣y 2的最大值是4916;(3){y =−x 2−x +2y =12x −12, 解得,{x =−52y =−74或{x =1y =0, ∴点A 的坐标为(−52,−74),由图象可得,当−52<x <1时,y 1>y 2.【点评】本题考查二次函数与不等式组、二次函数的最值,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,二次函数y =(x ﹣2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求B 点坐标与二次函数的解析式;(2)根据图象,写出满足kx +b ≥(x ﹣2)2+m 的x 的取值范围.(3)求线段AB 的长度.【分析】(1)先利用待定系数法先求出m,即可求得抛物线解析式,进而求得C的坐标,根据对称性求出点B坐标.(2)根据二次函数的图象在一次函数的图象下面即可写出自变量x的取值范围;(3)利用勾股定理即可求得.【解答】解:(1)∵抛物线y=(x﹣2)2+m经过点A(1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x﹣2)2﹣1=x2﹣4x+3,∴点C坐标(0,3),∵对称轴为直线x=2,B、C关于对称轴对称,∴点B坐标(4,3);(2)由图象可知,满足kx+b≥(x﹣2)2+m的x的取值范围为1≤x≤4.(3)∵A(1,0),B(4,3),∴AB=√(4−1)2+(3−0)2=3√2.【点评】本题考查二次函数与不等式的关系,待定系数法求二次函数解析式,勾股定理的应用,数形结合是解题的关键.19.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出方程ax2+bx+c<0时x的取值范围;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.【分析】(1)根据图象可知x=1和3是方程的两根;(2)找出函数值小于0时x的取值范围即可;(3)首先找出对称轴,然后根据图象写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,据此求出k的取值范围.【解答】解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为x=2,开口向下,即当x>2时,y随x的增大而减小;(4)由图象可知,二次函数y=ax2+bx+c(a≠0)的最大值为2,若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,则k<2.【点评】本题主要考查了二次函数与不等式以及抛物线与x轴的交点的知识,解答本题的关键是熟练掌握二次函数的性质以及图象的特点,此题难度不大.20.二次函数y=ax2+bx+c(a≠0)与一次函数y=x+k(k≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c﹣x﹣k<0的解集;(3)写出二次函数值y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=m有两个不等的实数根,求m的取值范围;【分析】观察函数图象即可求解.【解答】解:(1)从图象看,方程ax2+bx+c=0的两个根为x=﹣3或﹣1;(2)从图象看,﹣3<x<﹣0.5时,ax2+bx+c<x+k,即ax2+bx+c﹣x﹣k<0;(3)从图象看x<﹣2时,y随x的增大而减小;(4)设y=m,当m>﹣2时,y=m与y=ax2+bx+c有两个交点,故m>﹣2.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.。

专题08二次函数的图象与性质(讲)-2019年中考数学二轮复习

专题08二次函数的图象与性质(讲)-2019年中考数学二轮复习

备战2019年中考二轮讲练测(精选重点典型题)专题08 二次函数的图象与性质(讲案)一讲考点——考点梳理(一)二次函数的定义形如2y ax bx c =++(其中0a ≠,a 、b 、c 是常数)的式子,称y 是x 的二次函数. (二)二次函数的性质(1)a 决定抛物线的开口方向①0a >⇔开口向上;②0a <⇔开口向下. (2)c 决定抛物线与y 轴交点的位置①0c >⇔图象与y 轴交点在x 轴上方;②0c =⇔图象过原点;③0c <⇔图象与y 轴交点在x 轴下方. (3)a b 、决定抛物线对称轴的位置(对称轴:2bx a=-) ①a b 、同号⇔对称轴在y 轴左侧;②0b =⇔对称轴是y 轴;③a b 、异号⇔对称轴在y 轴右侧,简记为:左同右异中为0.(4)顶点坐标24()24b ac b a a --,.(5)24b ac ∆=-决定抛物线与x 轴的交点情况. ①△>0⇔抛物线与x 轴有两个不同交点; ②△=0⇔抛物线与x 轴有唯一的公共点(相切); ③△<0⇔抛物线与x 轴无公共点.(6)二次函数是否具有最大、最小值由a 判断.①当a>0时,抛物线有最低点,函数有最小值;②当a<0时,抛物线有最高点,函数有最大值. (7)242a b a b c a b c ±±+±+、、 的符号的判定:x yO-112a-b 2a+b①若对称轴在直线x=1的左侧,则2a b +与a 同号,若对称轴在直线x=1的右侧,则2a b +与a 异号,若对称轴为直线x=1,则2a b +=0,简记为:1的两侧判2a b +,左同右异中为0;②若对称轴在直线1x =-的左侧,则2a b -与a 异号,若对称轴在直线1x =-的右侧,则2a b -与a 同号,若对称轴为直线1x =-,则2a b -=0,简记为:-1的两侧判2a b -,左异右同中为0; ③当1x =时,y a b c =++,所以a b c ++的符号由1x =时,对应的函数值y 的符号决定; 当1x =-时,y a b c =-+,所以a b c -+的符号由1x =-时,对应的函数值y 的符号决定; 当2x =时,42y a b c =++,所以42a b c ++的符号由2x =时,对应的函数值y 的符号决定; 当2x =-时,42y a b c =-+,所以42a b c -+的符号由2x =-时,对应的函数值y 的符号决定; 简记为:表达式,请代值,对应y 值定正负; 对称轴,用处多,三种式子a 相约;y 轴两侧判a b 、,左同右异中为0;1的两侧判2a b +,左同右异中为0; 1两侧判2a b -,左异右同中为0. (三)二次函数的解析式①一般式:2y ax bx c =++()0≠a ,用于已知三点,求抛物线的解析式.②顶点式:2()y a x h k =-+,用于已知顶点坐标或最值或对称轴,求抛物线的解析式.③交点式:()()21x x x x a y --=,其中1x 、2x 是二次函数与x 轴的两个交点的横坐标.若已知对称轴和在x 轴上的截距,也可用此式. (四)二次函数的增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少.(五)二次函数图象的平移 方法一:顶点法二次函数的平移实际上是顶点的平移,故可以把原抛物线化为顶点式,通过顶点的平移来寻找答案。

【中考复习】苏教版2023学年中考数学专题复习 二次函数

【中考复习】苏教版2023学年中考数学专题复习  二次函数

二次函数一.选择题(共10小题)1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1, 2)B.(1, 2)C.(2, ﹣1)D.(2, 1)2.下列抛物线中, 在开口向下的抛物线中开口最大的是()A.y=x2B.C.D.y=﹣3x23.已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:对称轴为()x﹣10123y51﹣1﹣11 A.y轴B.直线x=C.直线x=D.直线x=24.抛物线y=ax2+(a﹣2)x﹣a﹣1经过原点, 那么a的值等于()A.0B.1C.﹣1D.35.抛物线y=﹣2(x+3)2+4的顶点坐标是()A.(﹣3, 4)B.(3, 4)C.(﹣3, ﹣4)D.(3, ﹣4)6.将二次函数y=x2的图象向右平移2个单位, 再向下平移3个单位, 得到的函数图象的表达式是()A.y=(x+2)2+3B.y=(x+2)2﹣3C.y=(x﹣2)2+3D.y=(x﹣2)2﹣3 7.抛物线y=2(x﹣1)2﹣1可由抛物线y=﹣2x2平移得到, 则平移的方式是()A.向右平移1个单位长度, 再向上平移1个单位长度B.向左平移1个单位长度, 再向上平移1个单位长度C.向右平移1个单位长度, 再向下平移1个单位长度D.向左平移1个单位长度, 再向下平移1个单位长度8.将抛物线y=(x﹣1)2+2向下平移1个单位长度, 再向左平移2个单位长度后, 得到的抛物线表达式是()A.y=x2+2B.y=(x+1)2+3C.y=(x+1)2+1D.y=(x﹣3)2+1 9.若函数是二次函数, 则m的值是()A.2B.﹣1或3C.﹣1D.310.已知二次函数y=a(x﹣1)2+k(a>0)的图象上有A(, y1)、B(, y2)两个点, 则()A.y1=y2B.y1>y2C.y1<y2D.无法确定二.填空题(共5小题)11.某商场要经营一种新上市的文具, 进价为20元, 试营销阶段发现:当销售单价是25元时, 每天的销售量为250件, 销售单价每上涨1元, 每天的销售量就减少10件, 当销售单价为元时, 该文具每天的销售利润最大.12.已知关于x的二次函数y=(m+1)x2﹣x+m2﹣1的图象经过原点, 则m的值为.13.将抛物线y=x2+1向右平移2个单位长度后所得的抛物线的函数表达式为.14.抛物线y=x2+mx+4的图象与y轴的交点坐标是.15.某二次函数y1=ax2+bx+c(a≠0)的图象与直线y2=kx+m(k≠0)相交于点M、N, 则当y1>y2时, 自变量x的取值范围是.三.解答题(共6小题)16.如图, 用一段长为28m的篱笆围出一个一边靠墙的矩形菜园, 墙长为18m.设矩形的一边长为xm, 面积为ym2.(1)求y与x的函数关系式;(2)写出此二次函数的二次项系数、一次项系数和常数项;(3)写出二次函数图象的对称轴.17.在平面直角坐标系xOy中, 二次函数y=x2+mx+n的图象经过点A(0, 1), B(3, 4).求此二次函数的解析式及函数图象的对称轴.18.学校附近顺天府超市销售一种进价为10元/双的手套, 经调查发现, 该种手套每天的销售量w(双)与销售单价x(元)满足w=﹣2x+40(10<x<20), 设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少?19.已知二次函数顶点是(2, 3)且经过(0, 1), 求此二次函数的解析式.20.为了改善小区环境, 某小区决定要在一块一边靠墙(墙长18m)的空地上修建一个矩形绿化带ABCD, 绿化带一边靠墙, 另三边用总长为40m的栅栏围住(如图).若设绿化带的AB边长为xm, 绿化带的面积为ym2.(1)求y与x之间的函数关系式, 并写出自变量x的取值范围;(2)当x为何值时, 满足条件的绿化带的面积最大?21.已知抛物线y=﹣x2+2x+m.抛物线过点A(3, 0), 与x轴的另一个交点为C.与y轴交于点B.直线AB与这条抛物线的对称轴交于点P.(1)求抛物线的解析式及点B, C的坐标;(2)求直线AB的解析式和点P的坐标;(3)在第一象限内的该抛物线有一点D, 且S△ABD=S△ABC, 求点D的坐标.2023年中考数学专题复习--二次函数参考答案与试题解析一.选择题(共10小题)1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1, 2)B.(1, 2)C.(2, ﹣1)D.(2, 1)【分析】直接根据二次函数的顶点式可得出结论.【解答】解:∵抛物线的解析式为:y=(x﹣1)2+2,∴其顶点坐标为(1, 2).故选:B.【点评】本题考查的是二次函数的性质, 熟知二次函数的顶点式是解答此题的关键.2.下列抛物线中, 在开口向下的抛物线中开口最大的是()A.y=x2B.C.D.y=﹣3x2【分析】根据二次函数的性质, 开口向下, 二次项系数小于0, 二次项系数的绝对值越小, 开口越大解答.【解答】解:∵抛物线开口向下,∴二次项系数小于0,∵|﹣|<|﹣3|,∴y=﹣x2的开口更大.故选:B.【点评】本题考查了二次函数的性质, 熟记二次项系数与二次函数的开口方向和开口大小的关系是解题的关键.3.已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:对称轴为()x﹣10123y51﹣1﹣11 A.y轴B.直线x=C.直线x=D.直线x=2【分析】由于x=1和2时的函数值相等, 然后根据二次函数的对称性列式计算即可得解.【解答】解:∵x=1和2时的函数值都是﹣1,∴对称轴为直线x==.故选:C.【点评】本题考查了二次函数的性质, 主要利用了对称性, 掌握对称轴的求解方法是解题的关键.4.抛物线y=ax2+(a﹣2)x﹣a﹣1经过原点, 那么a的值等于()A.0B.1C.﹣1D.3【分析】根据抛物线y=ax2+(a﹣2)x﹣a﹣1经过原点, 可以得到0=﹣a﹣1, 然后求出a的值即可.【解答】解:∵抛物线y=ax2+(a﹣2)x﹣a﹣1经过原点,∴0=﹣a﹣1,解得a=﹣1,故选:C.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征, 解答本题的关键是明确题意, 利用二次函数的性质解答.5.抛物线y=﹣2(x+3)2+4的顶点坐标是()A.(﹣3, 4)B.(3, 4)C.(﹣3, ﹣4)D.(3, ﹣4)【分析】根据二次函数的顶点式, 可以直接写出顶点坐标.【解答】解:∵二次函数y=﹣2(x+3)2+4,∴该函数的顶点坐标为(﹣3, 4),故选:A.【点评】本题考查二次函数的性质, 解答本题的关键是明确题意, 由顶点式可以写出顶点坐标.6.将二次函数y=x2的图象向右平移2个单位, 再向下平移3个单位, 得到的函数图象的表达式是()A.y=(x+2)2+3B.y=(x+2)2﹣3C.y=(x﹣2)2+3D.y=(x﹣2)2﹣3【分析】直接根据“上加下减, 左加右减”的原则进行解答.【解答】解:二次函数y=x2的图象向右平移2个单位, 再向下平移3个单位, 得到的函数图象的表达式是:y=(x﹣2)2﹣3.故选:D.【点评】本题考查的是二次函数的图象与几何变换, 熟知函数图象平移的法则是解答此题的关键.7.抛物线y=2(x﹣1)2﹣1可由抛物线y=﹣2x2平移得到, 则平移的方式是()A.向右平移1个单位长度, 再向上平移1个单位长度B.向左平移1个单位长度, 再向上平移1个单位长度C.向右平移1个单位长度, 再向下平移1个单位长度D.向左平移1个单位长度, 再向下平移1个单位长度【分析】原抛物线顶点坐标为(0, 0), 平移后抛物线顶点坐标为(1, ﹣1), 由此确定平移的步骤.【解答】解:∵y=﹣2(x﹣1)2﹣1,∴该抛物线的顶点坐标是(1, ﹣1),∵抛物线y=﹣2x2的顶点坐标是(0, 0),∴平移的方法可以是:将抛物线y=2x2向右平移1个单位, 再向下平移1个单位.故选:C.【点评】本题考查了二次函数图象与几何变换.关键是将抛物线的平移问题转化为顶点的平移, 寻找平移方法.8.将抛物线y=(x﹣1)2+2向下平移1个单位长度, 再向左平移2个单位长度后, 得到的抛物线表达式是()A.y=x2+2B.y=(x+1)2+3C.y=(x+1)2+1D.y=(x﹣3)2+1【分析】直接根据“上加下减, 左加右减”的原则进行解答.【解答】解:将抛物线y=(x﹣1)2+2向下平移1个单位长度, 再向左平移2个单位长度后, 得到的抛物线表达式是y=(x﹣1+2)2+2﹣1, 即y=(x+1)2+1.故选:C.【点评】本题考查的是二次函数的图象与几何变换, 熟知函数图象平移的法则是解答此题的关键.9.若函数是二次函数, 则m的值是()A.2B.﹣1或3C.﹣1D.3【分析】直接利用二次函数的定义分析得出答案.【解答】解:由题意得:m2﹣2m﹣1=2, 且m2+m≠0,解得:m=3.故选:D.【点评】此题主要考查了二次函数的定义, 正确把握定义是解题关键.10.已知二次函数y=a(x﹣1)2+k(a>0)的图象上有A(, y1)、B(, y2)两个点, 则()A.y1=y2B.y1>y2C.y1<y2D.无法确定【分析】A、B的坐标两个点的横坐标离对称轴的距离, 二次函数图象上点的横坐标离对称轴越近, 对应的纵坐标越小;判断出y1、y2的大小关系.【解答】解:∵y=a(x﹣1)2+k(a>0)∴抛物线开口向上, 对称轴为x=1, 开口向上.∵点A横坐标到对称轴的距离是|﹣1|=,点B到横坐标对称轴的距离是|1|,∴y1>y2.故选:B.【点评】本题考查判断函数值大小, 正确掌握二次函数图象的性质是解题关键.二.填空题(共5小题)11.某商场要经营一种新上市的文具, 进价为20元, 试营销阶段发现:当销售单价是25元时, 每天的销售量为250件, 销售单价每上涨1元, 每天的销售量就减少10件, 当销售单价为35元时, 该文具每天的销售利润最大.【分析】设该文具定价为x元, 每天的利润为y元, 根据每天利润=单件利润×销售量列出函数解析式, 用函数的性质求最值.【解答】解:设该文具定价为x元, 每天的利润为y元,根据题意得:y=(x﹣20)[250﹣10(x﹣25)]=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∵﹣10<0,∴当x=35时, y最大, 最大值为2250,故答案为:35.【点评】本题考查二次函数的实际应用, 关键是找到等量关系列出函数解析式.12.已知关于x的二次函数y=(m+1)x2﹣x+m2﹣1的图象经过原点, 则m的值为1.【分析】将原点坐标代入解析式求出m的值, 再由m+1≠0求解.【解答】解:将(0, 0)代入y=(m+1)x2﹣x+m2﹣1得0=m2﹣1,解得m=1或m=﹣1,∵m+1≠0,∴m≠﹣1, m=1.故答案为:1.【点评】本题考查二次函数的性质, 解题关键是掌握二次函数与方程的关系.13.将抛物线y=x2+1向右平移2个单位长度后所得的抛物线的函数表达式为y=(x﹣2)2+1.【分析】根据“左加右减”的法则进行解答即可.【解答】解:将抛物线y=x2+1向右平移2个单位长度后所得的抛物线的函数表达式为y =(x﹣2)2+1,故答案为:y=(x﹣2)2+1.【点评】本题考查的是二次函数的图象与几何变换, 熟知二次函数图象平移的法则是解答此题的关键.14.抛物线y=x2+mx+4的图象与y轴的交点坐标是(0, 4).【分析】根据题意得出x=0, 然后求出y的值, 即可以得到与y轴的交点坐标.【解答】解:令x=0, 得y=4,故与y轴的交点坐标是:(0, 4).故答案为:(0, 4).【点评】本题主要考查了抛物线与坐标轴交点的知识, 正确把握二次函数图象上点的坐标特征是解题关键, 此题难度不大.15.某二次函数y1=ax2+bx+c(a≠0)的图象与直线y2=kx+m(k≠0)相交于点M、N, 则当y1>y2时, 自变量x的取值范围是x<﹣1或x>2.【分析】根据抛物线与直线交点坐标, 结合图象求解.【解答】解:∵抛物线与直线交点坐标为M(﹣1, 4), N(2, 1),∴x<﹣1或x>2时, 抛物线在直线上方,∴当y1>y2时, 自变量x的取值范围是x<﹣1或x>2.故答案为:x<﹣1或x>2.【点评】本题考查二次函数与不等式的关系, 解题关键是结合图象求解.三.解答题(共6小题)16.如图, 用一段长为28m的篱笆围出一个一边靠墙的矩形菜园, 墙长为18m.设矩形的一边长为xm, 面积为ym2.(1)求y与x的函数关系式;(2)写出此二次函数的二次项系数、一次项系数和常数项;(3)写出二次函数图象的对称轴.【分析】(1)根据矩形的面积公式列出函数解析式即可;(2)由函数解析式可得结论;(3)由函数解析式可得结论.【解答】解:(1)依题意得, 矩形的另一边长为m,则y=x×=﹣x2+14x,自变量x的取值范围是0<x≤18,∴y与x的函数关系式为y=﹣x2+14x(0<x≤18);(2)由(1)中解析式知, 二次项系数为, 一次项系数为14, 常数项为0;(3)对称轴为直线x=﹣=14.【点评】本题考查二次函数的应用, 关键是列出函数解析式.17.在平面直角坐标系xOy中, 二次函数y=x2+mx+n的图象经过点A(0, 1), B(3, 4).求此二次函数的解析式及函数图象的对称轴.【分析】把A、B的坐标代入y=x2+mx+n, 根据待定系数法即可求得一般式, 化成顶点式即可求得顶点坐标.【解答】解:∵二次函数y=x2+mx+n的图象经过点A(0, 1), B(3, 4);∴,解得:,∴y=x2﹣2x+1,∵y=x2﹣2x+1=(x﹣1)2,∴函数图象的对称轴为直线x=1.【点评】本题考查了待定系数法求二次函数的解析式, 二次函数图象上点的坐标特征, 熟知待定系数法是解题的关键.18.学校附近顺天府超市销售一种进价为10元/双的手套, 经调查发现, 该种手套每天的销售量w(双)与销售单价x(元)满足w=﹣2x+40(10<x<20), 设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少?【分析】(1)用每双手套的利润乘以销售量得到每天的利润;(2)由(1)得到的是一个二次函数, 利用二次函数的性质, 可以求出最大利润以及销售单价.【解答】解:(1)y=w(x﹣10)=(﹣2x+40)(x﹣10)=﹣2x2+60x﹣400;(2)y=﹣2(x﹣15)2+50,∵10<x<20, a=﹣2<0,∴当x=15时, y最大值=50.答:当销售单价定为每双15元时, 每天的利润最大, 最大利润为50元.【点评】本题考查的是二次函数的应用, 解题的关键是(1)根据题意得到二次函数;(2)利用二次函数的性质求出最大值.19.已知二次函数顶点是(2, 3)且经过(0, 1), 求此二次函数的解析式.【分析】由于已知抛物线的顶点坐标, 则可设顶点式y=a(x﹣2)2+3, 然后把(0, 1)代入求出a的值即可.【解答】解:设二次函数的解析式是y=a(x﹣2)2+3,把(0, 1)代入, 得4a+3=1, 即a=﹣,∴该二次函数的解析式是y=﹣(x﹣2)2+3.【点评】本题考查了待定系数法求二次函数的解析式:一般地, 当已知抛物线上三点时, 常选择一般式, 用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时, 常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时, 可选择设其解析式为交点式来求解.20.为了改善小区环境, 某小区决定要在一块一边靠墙(墙长18m)的空地上修建一个矩形绿化带ABCD, 绿化带一边靠墙, 另三边用总长为40m的栅栏围住(如图).若设绿化带的AB边长为xm, 绿化带的面积为ym2.(1)求y与x之间的函数关系式, 并写出自变量x的取值范围;(2)当x为何值时, 满足条件的绿化带的面积最大?【分析】(1)依题意易求得y与x的函数关系式以及x的取值范围.(2)根据函数的性质以及x的取值范围求最大值.【解答】解:(1)由题意得:x2+20x,自变量x的取值范围是0<x≤18;∴y与x之间的函数关系式是y=﹣x2+20x(0<x≤18);(2)y=﹣x2+20x=﹣(x﹣20)2+200,∵﹣<0, 0<x≤18,∴当x=18时, y有最大值, 最大值为192,即当x=18时, 满足条件的绿化带面积最大.【点评】本题考查的是二次函数的实际应用.求二次函数的最大(小)值有三种方法, 第一种可由图象直接得出, 第二种是配方法, 第三种是公式法, 常用的是后两种方法.21.已知抛物线y=﹣x2+2x+m.抛物线过点A(3, 0), 与x轴的另一个交点为C.与y轴交于点B.直线AB与这条抛物线的对称轴交于点P.(1)求抛物线的解析式及点B, C的坐标;(2)求直线AB的解析式和点P的坐标;(3)在第一象限内的该抛物线有一点D, 且S△ABD=S△ABC, 求点D的坐标.【分析】(1)根据待定系数法即可求得解析式, 令x=0, 求得y的值, 即可求得B的坐标, 求得对称轴, 根据抛物线的对称性即可求得C的坐标;(2)根据待定系数法即可求得直线AB的解析式, 把x=1代入求得的直线解析式即可求得P的坐标;(3)过D点作DE⊥x轴, 交直线AB与E, 表示出DE, 然后根据三角形面积公式得到关于x的方程, 解方程求得x的值, 进而求得D的坐标.【解答】解:(1)∵抛物线y=﹣x2+2x+m过点A(3, 0),∴﹣9+6+m=0, 解得m=3,∴抛物线为y=﹣x2+2x+3,令x=0, 则y=3,∴B(0, 3),∵对称轴为直线x=﹣=1,∴点A(3, 0)关于对称轴的对称点为(﹣1, 0), ∴C(﹣1, 0);(2)设直线AB的解析式为y=kx+b,把A(3, 0), B(0, 3)代入得,解得,∴直线AB的解析式为y=﹣x+3,把x=1代入y=﹣x+3得, y=2,∴P的坐标为(1, 2);(3)∵抛物线有一点D(x.y),∴D(x, ﹣x2+2x+3),过D点作DE⊥x轴, 交直线AB与E,∴E(x, ﹣x+3),∵A(3, 0), B(0, 3), C(﹣1, 0),∴S△ABC=×(3+1)×3=6,∴S△ABD=S△ABC=3,∵S△ABD=S△ADE+S△BDE,∴(﹣x2+2x+3+x﹣3)×3=3,解得x1=1, x2=2,∴D(1, 4)或(2, 3).【点评】本题考查了待定系数法求函数的解析式, 函数图象上点的坐标特征, 二次函数的性质, 三角形的面积, 表示交点的坐标是解题的关键.。

初三数学复习《二次函数》(专题复习)PPT课件

初三数学复习《二次函数》(专题复习)PPT课件

面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上

专题05 二次函数与一元二次方程、不等式(解析版)

专题05 二次函数与一元二次方程、不等式(解析版)

目录不等关系与不等式 ................................................................................................. 错误!未定义书签。

考点1:二次函数与一元二次方程、不等式 (2)考点2:一元二次不等式在实际问题中的应用 (9)专题05 二次函数与一元二次方程、不等式考点1:二次函数与一元二次方程、不等式知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅题型1:解不含参数的一元二次不等式例1解下列不等式:(1)-x2+5x-6>0;(2)3x2+5x-2≥0;(3)x2-4x+5>0.解(1)不等式可化为x2-5x+6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .变式 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.题型2:三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根, 所以⎩⎨⎧-3+2=-b -8a,-3×2=-a -aba ,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512. 所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .变式 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎨⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x+1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤1.题型3:含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1a<x <2; ②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >2.变式 (1)当a =12时,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集; (2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集. 解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎫a +1a x +1≤0⇔⎝⎛⎭⎫x -1a (x -a )≤0, ①当0<a <1时,a <1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪a ≤x ≤1a ; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 1a ≤x ≤a . 综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a≤x ≤a .考点1:练习题1.已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎫x -1m <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1m <x <m B.⎩⎨⎧⎭⎬⎫x ⎪⎪x >1m 或x <m C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >m 或x <1m D.⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-b a ,-2×3=ca ,∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( ) A .5 B .-5 C .-25 D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2, ∴方程(mx -1)(x -2)=0的两个实数根为1m 和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧ 1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎨⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0, 若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③ D .④ 答案 C解析 ①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ; ③中Δ=62-4×10<0.满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.故选C. 12.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .{x |0<x <2} B .{x |-2<x <1} C .{x |x <-2或x >1} D .{x |-1<x <2}答案 B解析 根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1), 又x ⊙(x -2)<0,则(x +2)(x -1)<0,故不等式的解集是{x |-2<x <1}.13.若关于x 的方程(a -2)x 2-2(a -2)x +1=0无实数解,则a 的取值范围是________. 答案 2≤a <3解析 若a -2=0,即a =2时,原方程为1=0不合题意, ∴a =2满足条件,若a -2≠0,则Δ=4(a -2)2-4(a -2)<0, 解得2<a <3,综上有a 的取值范围是2≤a <3.14.已知不等式x 2-2x +5≥a 2-3a 对∀x ∈R 恒成立,则a 的取值范围为________. 答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立,∴a 2-3a ≤4,即a 2-3a -4≤0, ∴(a -4)(a +1)≤0,∴-1≤a ≤4.考点2:等式性质与不等式性质知识点 用一元二次不等式解决实际问题的步骤 1.理解题意,搞清量与量之间的关系;2.建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题. 3.解决这个一元二次不等式,得到实际问题的解.题型1:分式不等式的解法例1 解下列不等式:(1)2x -5x +4<0; (2)x +12x -3≤1. 解 (1)2x -5x +4<0⇔(2x -5)(x +4)<0⇔-4<x <52,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-4<x <52.(2)∵x +12x -3≤1,∴x +12x -3-1≤0,∴-x +42x -3≤0,即x -4x -32≥0.此不等式等价于(x -4)⎝⎛⎭⎫x -32≥0且x -32≠0,解得x <32或x ≥4, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <32或x ≥4.变式 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 解 (1)原不等式可化为⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0.解得⎩⎨⎧x ≤-13或x ≥12,x ≠-13,∴x <-13或x ≥12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x ≥12. (2)方法一 原不等式可化为⎩⎪⎨⎪⎧ x +3>0,2-x >x +3或⎩⎪⎨⎪⎧x +3<0,2-x <x +3.解得⎩⎪⎨⎪⎧ x >-3,x <-12或⎩⎪⎨⎪⎧x <-3,x >-12, ∴-3<x <-12,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12. 方法二 原不等式可化为(2-x )-(x +3)x +3>0,化简得-2x -1x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,解得-3<x <-12.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <-12.题型2:一元二次不等式的实际应用例2 某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担.政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x >0)个百分点,预测收购量可增加2x 个百分点.(1)写出降税后税收y (万元)与x 的关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值范围.解 (1)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万担,收购总金额为200a (1+2x %)万元.依题意得y =200a (1+2x %)(10-x )%=150a (100+2x )(10-x )(0<x <10). (2)原计划税收为200a ×10%=20a (万元).依题意得150a (100+2x )(10-x )≥20a ×83.2%, 化简得x 2+40x -84≤0,解得-42≤x ≤2.又因为0<x <10,所以0<x ≤2.即x 的取值范围为{x |0<x ≤2}.变式 北京、张家口2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入x 5万元作为浮动宣传费用.试问:当该商品改革后的销售量a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?此时该商品每件定价多少元?解 (1)设每件定价为t 元,依题意得⎝⎛⎭⎫8-t -251×0.2t ≥25×8, 整理得t 2-65t +1 000≤0,解得25≤t ≤40.所以要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意得当x >25时,不等式ax ≥25×8+50+16(x 2-600)+x 5有解, 等价于当x >25时,a ≥150x +x 6+15有解. 由于150x +x 6≥2150x ·x 6=10,当且仅当150x =x 6,即x =30时等号成立, 所以a ≥10.2.故当该商品改革后的销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.考点2:练习题1.不等式3x -12-x≥1的解集是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x ≤2 B.⎩⎨⎧⎭⎬⎫x ⎪⎪ 34≤x <2 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >2或x ≤34 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥34 答案 B解析 不等式3x -12-x ≥1,移项得3x -12-x-1≥0, 即x -34x -2≤0,可化为⎩⎪⎨⎪⎧ x -34≥0,x -2<0或⎩⎪⎨⎪⎧x -34≤0,x -2>0, 解得34≤x <2,则原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x <2, 故选B.2.与不等式x -32-x≥0同解的不等式是( ) A .(x -3)(2-x )≥0B .0<x -2≤1 C.2-x x -3≥0 D .(x -3)(2-x )>0答案 B解析 解不等式x -32-x≥0,得2<x ≤3, A .不等式(x -3)(2-x )≥0的解是2≤x ≤3,故不正确.B .不等式0<x -2≤1的解是2<x ≤3,故正确.C .不等式2-x x -3≥0的解是2≤x <3,故不正确. D .不等式(x -3)(2-x )>0的解是2<x <3,故不正确.故选B.3.若关于x 的不等式ax -b >0的解集为{x |x >1},则关于x 的不等式ax +b x -2>0的解集为( ) A .{x |x >1或x <-2}B .{x |1<x <2}C .{x |x >2或x <-1}D .{x |-1<x <2}答案 C解析 x =1为ax -b =0的根,∴a -b =0,即a =b ,∵ax -b >0的解集为{x |x >1},∴a >0,故ax +b x -2=a (x +1)x -2>0, 等价为(x +1)(x -2)>0.∴x >2或x <-1.4.已知不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围为( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1} 答案 A解析 由题意知,原不等式可化为-(x -2)2+4≥a 2-3a 在R 上有解,∴a 2-3a ≤4,即(a -4)(a +1)≤0,∴-1≤a ≤4,故选A.5.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x (单位:元)的取值范围是( )A .{x |10≤x <16}B .{x |12≤x <18}C .{x |15<x <20}D .{x |10≤x <20} 答案 C解析 设这批台灯的销售单价为x 元,则[30-(x -15)×2]x >400,即x 2-30x +200<0,∴10<x <20,又∵x >15,∴15<x <20.故选C.6.若不等式ax 2+bx +c >0的解集为{x |-1<x <2},则不等式2a +b x +c >bx 的解集为________.答案 {x |x <0}解析 由题意知,-1,2为ax 2+bx +c =0的两根,∴⎩⎪⎨⎪⎧b =-a ,c =-2a 且a <0, ∴不等式2a +b x +c >bx 可化为a x-2a >-ax , ∵a <0,即1x -2<-x ,即(x -1)2x<0, ∴x <0.7.现有含盐7%的食盐水200克,生产含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是________.答案 {x |100<x <400}解析 5%<x ·4%+200·7%x +200<6%, 解得x 的取值范围是{x |100<x <400}.8.某种汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m和汽车车速x km/h 有如下关系:s =118x +1180x 2.在一次交通事故中,测得这种车的刹车距离不小于40 m ,那么这辆汽车刹车前的车速不低于________ km/h.答案 80解析 根据题意,得118x +1180x 2≥40. 移项整理,得x 2+10x -7 200≥0.显然Δ>0,x 2+10x -7 200=0有两个实数根,即x 1=80,x 2=-90,然后,根据二次函数y =x 2+10x -7 200的图象(图略),得不等式的解集为{x |x ≤-90或x ≥80}.在这个实际问题中,x >0,所以这辆汽车刹车前的车速不低于80 km/h.9.解关于x 的不等式a -x x +1>0(a ∈R ). 解 原不等式可化为x -a x +1<0, 即(x +1)(x -a )<0,①当a =-1时,x ∈∅;②当a >-1时,{x |-1<x <a };③当a <-1时,{x |a <x <-1}.综上,a =-1时,不等式的解集为∅,a >-1时,不等式的解集为{x |-1<x <a },a <-1时,不等式的解集为{x |a <x <-1}.10.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000×(1+0.6x )(0<x <1),整理得y =-6 000x 2+2 000x +20 000(0<x <1).(2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧ y -(12-10)×10 000>0,0<x <1, 即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1, 解得0<x <13, 所以投入成本增加的比例x 应在0<x <13的范围内. 11.不等式x 2-x -2x -2>0的解集为( ) A .{x |x >-1且x ≠2}B .{x |x >-1}C .{x |-1<x <2}D .{x |x <-1或x >2} 答案 A解析 原不等式可化为(x -2)(x +1)x -2>0⇒⎩⎪⎨⎪⎧x +1>0,x -2≠0,∴x >-1且x ≠2.故选A. 12.若a >0,b >0,则不等式-b <1x<a 的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1b 或x >1a B.⎩⎨⎧⎭⎬⎫x ⎪⎪ -1a <x <1b C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >1bD.⎩⎨⎧⎭⎬⎫x ⎪⎪-1b <x <0或0<x <1a 答案 A解析 原不等式可化为⎩⎨⎧1x >-b ,1x <a ,即⎩⎨⎧ bx +1x >0,ax -1x >0, 可得⎩⎨⎧ x <-1b 或x >0,x <0或x >1a , 故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1b 或x >1a . 13.不等式x 2-2x -2x 2+x +1<2的解集为( ) A .{x |x ≠-2}B .RC .∅D .{x |x <-2或x >2} 答案 A解析 ∵x 2+x +1>0恒成立,∴原不等式⇔x 2-2x -2<2x 2+2x +2⇔x 2+4x +4>0⇔(x +2)2>0,∴x ≠-2.∴不等式的解集为{x |x ≠-2}.14.在一个限速40 km /h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m .又知甲、乙两种车型的刹车距离s m 与车速x km/h 之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.这次事故的主要责任方为________.答案 乙车解析 由题意列出不等式s 甲=0.1x +0.01x 2>12,s 乙=0.05x +0.005x 2>10.分别求解,得x 甲<-40或x 甲>30.x 乙<-50或x 乙>40.由于x >0,从而得x 甲>30 km /h ,x 乙>40 km/h.经比较知乙车超过限速,应负主要责任.。

中考函数专题复习(知识点+试题)含答案[1]

中考函数专题复习(知识点+试题)含答案[1]

中考函数专题复习一. 本周教学内容: 函数专题复习 (一)一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。

2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。

k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。

(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。

(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。

3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。

(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x ==-⎧⎨⎪⎩⎪ ()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。

3. 应用()应用在上()应用在上()其它其要点是会进行“数形结合”来解决问题123P FS u S t==⎧⎨⎪⎪⎪⎩⎪⎪⎪(三)二次函数1. 定义:应注意的问题(1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22. 图象:抛物线3. 图象的性质:分五种情况可用表格来说明4. 应用:(1)最大面积;(2)最大利润;(3)其它【例题分析】例1. 已知一次函数y=kx+2的图象过第一、二、三象限且与x、y轴分别交于A、B两点,O为原点,若ΔAOB的面积为2,求此一次函数的表达式。

中考专题复习-二次函数与方程(组)或不等式

中考专题复习-二次函数与方程(组)或不等式

中考专题复习 二次函数与方程(组)或不等式◆知识讲解(1)最大值或最小值的求法第一步确定a 的符号:a>0有最小值,a<0有最大值;第二步求顶点,•顶点的纵坐标即为对应的最大值或最小值.(2)y 轴与抛物线y=ax 2+bx+c 的交点为(0,c ).(3)与y 轴平行的直线x=h 与抛物线y=ax 2+bx+c 有且只有一个交点(h ,ah 2+bh+c ).(4)抛物线与x 轴的交点.二次函数y=ax 2+bx+c 的图像与x 轴的两个交点的横坐标x 1,x 2是对应的一元二次方程ax 2+bx+c=0的两个实数根.抛物线与x •轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔△>0⇔抛物线与x 轴相交.②有一个交点(顶点在x 轴上)⇔△=0⇔抛物线与x 轴相切;③没有交点⇔△<0⇔抛物线与x 轴相离.(5)平行于x 轴的直线与抛物线的交点.同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,•两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2+bx+c=k 的两个实数根.(6)一次函数y=kx+n (k≠0)的图像L 与二次函数y=ax 2+bx+c (a≠0)的图像G 的交点,由方程组2y kx ny ax bx c =+⎧⎨=++⎩的解的数目确定:①当方程组有两组不同的解时⇔L与G 有两个交点;②方程组只有一组解时⇔L 与G 只有一个交点;③方程组无解时⇔L 与G 没有交点.(7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x 轴的交点,•再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分.◆例题解析例1 如图所示,已知抛物线y=-12x 2+(5)x+m -3与x 轴有两个交点A ,B ,点A •在x 轴的正半轴上,点B 在x 轴的负半轴上,且OA=OB .(1)求m 的值;(2)求抛物线的解析式,并写出抛物线的对称轴和顶点C 的坐标;(3)问在抛物线上是否存在一点M ,△MAC ≌△OAC ,若存在,求出点M 的坐标;若不存在,请说明理由.【分析】抛物线与x 轴交于A ,B 两点,OA=OB ,故A ,B 两点关于y 轴对称,就可求得m 的值,由抛物线交y 轴的正半轴,得m 的确定值.【解答】(1)∵抛物线与y 轴交于正半轴,且OA=OB .∴3050m a ->⎧⎪⎨=⎪⎩ 由②得m=±5,由①m>3,故m=-5应舍去.∴m=5.(2)抛物线的解析式为y=-12x 2+2,对称轴是y 轴,顶点C 的坐标为C (0,2). (3)令y=0得 -12x 2+2=0,∴x=±2. ∴A (2,0),B (-2,0),C (0,2),△OAC 是等腰直角三角形.若存在一点M ,使△MAC ≌△OAC ,∵AC 为公共边,OA=OC ,∴点M 与O 关于直线AC 对称,∴M 点的坐标为(2,2).当x=2时,-12x 2+2=0≠2. ∴M (2,2)不在抛物线上,即不存在一点M ,使△MAC ≌△OAC .【点评】存在性问题,通常是先假定存在,若能找出具备某种条件或性质的对象,就说明存在,其叙述过程就是理由;若不存在,就需要进一步说明理由.例2 已知二次函数y=x 2-(2m+4)x+m 2-4(x 为自变量)的图像与y 轴的交点在原点下方,与x 轴交于A ,B 两点,点A 在点B 的左边,且A ,B 两点到原点的距离AO ,OB •满足3(•OB -AO )=2AO·OB ,直线y=kx+k 与这个二次函数图像的一个交点为P ,且锐角∠POB •的正切值4.(1)求m 的取值范围;(2)求这个二次函数的解析式;(3)确定直线y=kx+k的解析式.【分析】利用抛物线与x轴的交点A,B的位置及与y轴交点的位置和A,B两点到原点的距离可以求出m的值,再利用一元二次方程根与系数的关系可以求解.【解答】(1)设点A,B的坐标分别为A(x1,0),B(x2,0)(x1<x2),依题意,方程x2-(2m+4)x+m2-4=0有两个不相等的实数根.∴△=[-(2m+4)] 2-4(m2-4)>0.解得m>-2.①又∵函数的图像与y轴的交点在原点下方,∴m2-4<0,∴-2<m<2.②(2)∵图像交y轴于负半轴,与x轴交于A,B两点,且x1<x2,∴x1<0,x2>0.由3(OB-AO)=2AO·OB可得3[x2-(-x1)]=2(-x1)·x2即3(x1+x2)=-2x1x2由于x1,x2是方程x2-(2m+4)x+m2-4=0的两个根,所以x1+x2=2m+4,x1·x2=m2-4.∴3(2m+4)=-2(m2-4)整理,得m2+3m+2=0.∴m=-1或m=-2(舍去).∴二次函数的解析式为y=x2-2x-3.(3)由y=x2-2x-3,得A(-1,0),B(3,0).∵直线y=kx+k与抛物线相交,∴由223,,y x xy kx k⎧=-+⎨=+⎩解得121,0.x y =-⎧⎨=⎩ 或2223,4.x k y k k =+⎧⎨=+⎩ ∵∠POB 为锐角.∴点P 在y 轴右侧,∴点P 坐标为(k+3,k 2+4k ),且k+3>0.∵tan ∠POB=4,∴2|4|3k k k ++=4. 如图所示,当点P 在x 轴上方时.243k k k ++=4.解得k 1k 2=-经检验,k 1,k 2=-k 2+3<0.∴k 2=-∴直线的解析式为当点P 在x 轴下方时,243k k k ++=-4, 解得k 3=-2,k 4=-6.经检验,k 3=-2,k 4=-6是方程的解,但k 4+3<0.∴k 4=-6舍去.∴y=-2x -2.∴所求直线的解析式为,或y=-2x -2.【点评】本题以求解析式为目标,综合了函数,一元二次方程根与系数的关系,三角函数等知识,综合性强,灵活性大,解题关键是认真审题,认真分析纷繁复杂的条件,从中找到解题的突破口,易错点是在第(3)小题中忽视分类讨论而失解.◆强化训练一、填空题1.与抛物线y=2x 2-2x -4关于x 轴对称的图像表示的函数关系式是_______.2.已知二次函数y=(a -1)x 2+2ax+3a -2的图像最低点在x 轴上,那么a=______,此时函数的解析式为_______.3.某涵洞的截面是抛物线型,如图1所示,在图中建立的直角坐标系中,抛物线的解析式为y=-14x 2,当涵洞水面宽AB 为12m 时,水面到桥拱顶点O •的距离为_______m .图1 图2 4.甲,乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P ,羽毛球飞行的水平距离s (m )与其距地面高度h (m )之间的关系式为h=-112s 2+23s+32.如图2,已知球网AB 距原点5m ,乙(用线段CD 表示)扣球的最大高度为94m ,•设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m 的取值范围是_______.5.若抛物线y=12x 2与直线y=x+m 只有一个公共点,则m 的值为_____. 6.设抛物线y=x 2+(2a+1)x+2a+54的图像与x •轴只有一个交点,•则a 18+•323a -6•的值为_______.7.已知直线y=-2x+3与抛物线y=x 2相交于A ,B 两点,O 为坐标原点,那么△OAB •的面积等于______.8.图3为二次函数y=ax 2+bx+c 的图像,在下列说法中:①ab<0;②方程ax 2+bx+c=0的根是x 1=-1,x 2=3;③a+b+c>0;④当x>1时,y 随着x •的增大而增大.正确的说法有_______.(请写出所有正确说法的序号)图3 图4 图5二、选择题9.小敏在某次投篮球中,球的运动路线是抛物线y=-15x 2+3.5的一部分(图4),若命中篮圈中心,则他与篮底的距离是( )A .3.5mB .4mC .4.5mD .4.6m10.当m )A .0B .5C .D .911.二次函数y=ax 2+bx+c 的图像如图5所示,则下列结论:①a>0,②c>0, ③b 2-4ac>0,其中正确的个数是( )A .0个B .1个C .2个D .3个12.抛物线y=x 2+(2m -1)x+m 2与x 轴有两个交点,则m 的取值范围是( )A .m>14B .m>-14C .m<14D .m<-1413.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数y的对应值,•判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.20 14.若二次函数y=ax2+bx+c(a≠0)的图像的顶点在第一象限且经过点(0,1)和(•-1,0),则S=a+b+c的值的变化范围是()A.0<S<2 B.0<S<1 C.1<S<2 D.-1<S<115.二次函数y=ax2+bx+c(a≠0)的最大值是零,那么代数式│a│+244ac ba的化简结果是()A.a B.-a C.D.016.已知y=2x2的图像是抛物线,若抛物线不动,把x轴,y•轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2+2 B.y=2(x+2)2-2C.y=2(x-2)2-2 D.y=2(x+2)2+2三、解答题17.如图,三孔桥横截面的三个孔都呈抛物线形,•两小孔形状,大小都相同.正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),•小孔顶点N距水面4.5m(即NC=4.5m).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.18.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-35x2+3x+1的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4m,在一次表演中,人梯到起跳点A的水平距离是4m,问这次表演是否成功?请说明理由.19.某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)•之间存在正比例函数关系:y A=kx,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)•之间存在二次函数关系:y B=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元时,•可获得3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A,B两种产品共投资10万元.•请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.20.如图所示,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y•轴于M点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴下方的部分是否存在点N,使以A,C,M,N•为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P•关于原点的对称点Q是否在抛物线L2上,请说明理由.21.已知:二次函数y=ax2+bx+c的图像经过点A(0,4),顶点在x轴上,•且对称轴在y 轴的右侧.设直线y=x与二次函数图像自左向右分别交于P(x1,y1),Q(x2,y2)两点,•且OP:PQ=1:3.(1)求二次函数的解析式;(2)求△PAQ的面积;(3)在线段PQ上是否存在一点D,使△APD≌△QPA,若存在,求出点D坐标,•若不存在,说明理由.22.已知二次函数y=ax2-ax+m的图像交x轴于A(x1,0),B(x2,0)两点,x1<x2,交y轴的负半轴于C点,且AB=3,tan∠BAC-tan∠ABC=1.(1)求此二次函数的解析式;(2)在第一象限,抛物线上是否存在点P,使S△PAC=6?若存在,请你求出点P的坐标;•若不存在,请你说明理由.答案:1.y=-2x2+2x+4 2.2;y=x2+4x+4 3.9 4.5.-126.5796 7.6 8.①②④9.B 10.B 11.C12.C 13.C 14.A 15.B 16.B 17.设抛物线解析式为y=ax2+6,依题意得,B(10,0).∴a×102+6=0,解得a=-0.06.即y=-0.06x2+6,当y=4.5时,-0.06x2+6=4.5,解得x=±5,∴DF=5,EF=10,即水面宽度为10m.18.(1)y=-35x2+3x+1=-35(x-52)2+194.∵-35<0,∴函数的最大值是194.答:演员弹跳离地面的最大高度是194m.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.19.(1)当x=5时,y A=2,2=5k,k=0.4.∴y A=0.4x,当x=2时,y B=2.4;当x=4时,y B=3.2.∴2.442,3.2164.a ba b=+⎧⎨=+⎩解得0.2,1.6.ab=-⎧⎨=⎩∴y B=-0.2x2+1.6x.(2)设投资B种商品x万元,则投资A种商品(10-x)万元,获得利润W万元,根据题意可得W=-0.2x2+1.6x+0.4(10-x)=-0.2x2+1.2x+4.∴W=-0.2(x-3)2+5.8.当投资B种商品3万元时,可以获得最大利润5.8万元.所以投资A种商品7万元,B种商品3万元,这样投资可以获得最大利润5.8万元.20.(1)令y=0时,得-x2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0).∵抛物线L1向右平移2个单位长度得抛物线L2,∴C(-1,0),D(3,0).∴抛物线L2为y=-(x+1)(x-3).即y=-x2+2x+3.(2)存在.如图所示.令x=0,得y=3,∴M(0,3).∵抛物线L2是L1向右平移2个单位长度得到的,∴点N(2,3)在L2上,且MN=2,MN∥AC.又∵AC=2,∴MN=AC.∴四边形ACNM为平行四边形.同理,L1上的点N′(-2,3)满足N′M∥AC,N′M=AC,∴四边形ACMN′是平行四边形.∴N(2,3),N′(-2,3)即为所求.(3)设P(x1,y1)是L1上任意一点(y1≠0),则点P关于原点的对称点Q(-x1,-y1),且y1=-x12-2x1+3,将点Q的横坐标代入L2,得y Q=-x12-2x1+3=y1≠-y1.∴点Q 不在抛物线L 2上.21.(1)抛物线过(0,4)点.∴c=4,∴y=ax 2+bx+4又OP :PQ=1:3,∴x 1:x 2=1:4由24y xy ax bx =⎧⎨=++⎩得ax 2+(b -1)x+4=0,∵x 1,x 2是该方程的两个根,∴x 1+x 2=-1b a -,x 1·x 2=4a. 消去x 1得25a=(b -1)2.∵抛物线的对称轴在y 轴右侧∴-2b a >0, ∴b a<0,又抛物线的顶点在x 轴上, ∴b 2=16a 得a=1,b=-4(b=49舍去). ∴y=x 2-4x+4.(2)如图所示,S △PAQ =S △AQO -S △APO=12×4×x 2-12×4×x 1=2(x 2-x 1). (3)存在点D ,设D (m ,n )易得P (1,1),Q (4,4),由△APD ∽△QPA 得PA 2=PQ·PD ,运用勾股定理得│m -1│=53,得m=83或23. ∵1<m<4,∴D (83,83).22.(1)∵AB=3,x 1<x 2,∵x 2-x 1=3.由根与系数的关系有x 1+x 2=1,∴x 1=-1,x 2=2.∴OA=1,OB=2,x 1·x 2=m a=-2. ∵tan ∠BAC -tan ∠ABC=1,∴=1,∴OC=2∴m=-2,a=1.∴此二次函数的解析式为y=x 2-x -2.(2)在第一象限,抛物线上存在一点P 使S △APC =6.解法一:过点P 作直线MN ∥AC 交x 轴于点M ,交y 轴于点N ,连接PA ,PC ,MC ,NA ,如图所示.∵MN ∥AC ,∴S △MAC =S △NAC =S △PAC =6.由(1)有OA=1,OC=2∴12×AM×2=12×CN×1=6,∴AM=6,CN=12.∴M (5,0),N (0,10).∴直线MN 的解析式为y=-2x+10.由2210,2.y x y x x =-+⎧⎨=--⎩ 得12123,4,4.18.x x y y ==-⎧⎧⎨⎨==⎩⎩(舍去).∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6.解法二:设AP 与y (0,n )(n>0).∴直线AP 的解析式为y=nx+n . 22,.y x x y nx n ⎧=--⎨=+⎩∴x 2-(n+1)x -n -2=0,∴x A +x P =n+1,∴x P =n+2.又S △PAC =S △ADC +S △PDC =12CD·AO+12CD·x p =12CD (AO+x p ). ∴12(n+2)(1+n+2)=6,n 2+5n -6=0. ∴n=-6(舍去)或n=1.∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6.。

二次函数专题复习

二次函数专题复习

二次函数专题复习第一小节: 一元二次函数、一元二次方程、一元二次不等式(一) 一.知识梳理1. 二次函数的表达式(也称作解析式)的三种形式: (1)一般式:)0.()(2≠++=a c bx ax x f(2)两根式:))(()(21x x x x a x f --=,其中21,x x 是方程0)(=x f 的两根(即是二次函数)(x f y =的图像与x 轴交点的横坐标)(3)顶点式:n m x a x f +-=)()(, 其中m 、n 分别为二次函数)(x f y =图像的顶点的横纵坐标3二次函数的图象及性质:二次函数c bx ax y ++=2的图象的对称轴方程是ab x 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--ab ac a b 4422, 4.一元二次函数、一元二次方程02=++c bx ax 的根、一元二次不等式的解之间的相互关系(仅就0>a 情况讨论如下)三.典例解析例1. 已知二次函数)(x f 满足)2()2(x f x f -=+,且0)(=x f 的两实根平方和 为10,且此函数的图像过点(0、 3),求此函数的表达式例 2.设),0(,)(2>++=a c bx ax x f 方程0)(=-x x f 的两根为1x 、2x 且ax x 1021<<<(1)若10x x <<,证明:1)(x x f x <<(2)若)(x f 图像的对称轴为0x x =,证明:210x x <例4.已知二次函数()2f x ax bx c =++.(1)若()10f -=,试判断方程0)(=x f 根的个数;(2) 若对12,,x x R ∈且12x x <,()()12f x f x ≠,证明方程()()()1212fx fx fx =+⎡⎤⎣⎦ 必有一个实数根属于()12,x x 。

(3)是否存在实数a 、b 、c ,使()f x 同时满足以下条件①当1x =-时, 函数()f x 有最小值0;;②对x R ∀∈,都有210()(1)2f x x x ≤-≤-。

备考2022年中考数学二轮复习-函数_二次函数_二次函数与不等式(组)的综合应用-综合题专训及答案

备考2022年中考数学二轮复习-函数_二次函数_二次函数与不等式(组)的综合应用-综合题专训及答案

备考2022年中考数学二轮复习-函数_二次函数_二次函数与不等式(组)的综合应用-综合题专训及答案二次函数与不等式(组)的综合应用综合题专训1、(2017丰台.中考模拟) 在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+2m﹣1(m≠0)与平行于x轴的一条直线交于A,B两点.(1)求抛物线的对称轴;(2)如果点A的坐标是(﹣1,﹣2),求点B的坐标;(3)抛物线的对称轴交直线AB于点C,如果直线AB与y轴交点的纵坐标为﹣1,且抛物线顶点D到点C的距离大于2,求m的取值范围.2、(2018西湖.中考模拟) 二次函数y=(m+1)x2﹣2(m+1)x﹣m+3.(1)求该二次函数的对称轴;(2)过动点C(0,n)作直线l⊥y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;(3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m.3、(2017江北.中考模拟) 如图,已知图①中抛物线y=ax2+bx+c经过点D(﹣1,0)、C(0,﹣1)、E(1,0).(1)求图①中抛物线的函数表达式;(2)将图①中抛物线向上平移一个单位,再绕原点O顺时针旋转180°后得到图②中抛物线,则图②中抛物线的函数表达式为;(3)图②中抛物线与直线y=﹣x﹣相交于A、B两点(点A在点B的左侧),如图③,求点A、B的坐标,并直接写出当一次函数的值大于二次函数的值时,x 的取值范围.4、(2017杭州.中考模拟) 已知抛物线y=x2﹣2bx+c(1)若抛物线的顶点坐标为(2,﹣3),求b,c的值;(2)若b+c=0,是否存在实数x,使得相应的y的值为1,请说明理由;(3)若c=b+2且抛物线在﹣2≤x≤2上的最小值是﹣3,求b的值.5、(2016杭州.中考真卷) 已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.6、(2019河南.中考模拟) 根据下列要求,解答相关问题:(1)请补全以下求不等式﹣2x2﹣4x≥0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;抛物线的对称轴x=﹣1,开口向下,顶点(﹣1,2)与x轴的交点是(0,0),(﹣2,0),用三点法画出二次函数y=﹣2x2﹣4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程﹣2x2﹣4x=0的解为;③借助图象,写出解集:由图象可得不等式﹣2x2﹣4x≥0的解集为.(2)利用(1)中求不等式解集的方法步骤,求不等式x2﹣2x+1<4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式ax2+bx+c>0(a>0)的解集.7、(2017荆州.中考真卷) 已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.8、(2017长沙.中考真卷) 若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.9、(2017揭阳.中考模拟) 如图,直线y=﹣x﹣2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.(1)求该抛物线的解析式;(2)若点C(m,﹣)在抛物线上,求m的值.(3)根据图象直接写出一次函数值大于二次函数值时x的取值范围.10、(2019昆明.中考模拟) 已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B (3,0).(1)求抛物线的解析式;(2)过点D(0,)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤ 时,直接写出x的取值范围是.11、(2019盘龙.中考模拟) 如图,已知抛物线与轴交于点,,且线段,该抛物线与轴交于点,对称轴为直线.(1)求抛物线的函数表达式;(2)根据图象,直接写出不等式的解集:;(3)设D为抛物线上一点,为对称轴上一点,若以点,,,为顶点的四边形是菱形,则点的坐标为.12、(2020萧山.中考模拟) 已知点A(1,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)上一点。

中考数学重点专题复习 考点11 二次函数-备战2022年中考数学必考点与题型全归纳(原卷版)

中考数学重点专题复习 考点11 二次函数-备战2022年中考数学必考点与题型全归纳(原卷版)

考点11 二次函数二次函数是非常重要的函数,年年都会考查,总分值为18~20分,预计2022年各地中考还会考,它经常以一个压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与几何图形结合来考查。

1、二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2、二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0. 3、二次函数的图象及性质解析式 二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴 x =–2ba 顶点 (–2b a ,244ac b a-)a 的符号a >0a<0图象开口方向 开口向上 开口向下最值 当x =–2b a 时,y 最小值=244ac b a- 当x =–2b a 时,y 最大值=244ac b a- 最点抛物线有最低点抛物线有最高点增减性当x <–2ba 时,y 随x 的增大而减小;当x >–2b a 时,y 随x 的增大而增大当x <–2ba 时,y 随x 的增大而增大;当x >–2b a时,y 随x 的增大而减小4二次函数平移遵循“上加下减,左加右减”的原则,据此,可以直接由解析式中常数的加或减求出变化后的解析式;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.5、二次函数与一元二次方程的关系1)二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了一元二次方程ax 2+bx +c =0(a ≠0). 2)ax 2+bx +c =0(a ≠0)的解是抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴交点的横坐标. 3)(1)b 2–4ac >0⇔方程有两个不相等的实数根,抛物线与x 轴有两个交点; (2)b 2–4ac =0⇔方程有两个相等的实数根,抛物线与x 轴有且只有一个交点; (3)b 2–4ac <0⇔方程没有实数根,抛物线与x 轴没有交点. 6、二次函数的综合 1)函数存在性问题解决二次函数存在点问题,一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的坐标;后用该点的坐标表示出与该点有关的线段长或其他点的坐标等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在. 2)函数动点问题(1)函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题(2)解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数表达式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案. (3)解决二次函数动点问题,首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的坐标或表示出与动点有关的线段长度,最后结合题干中与动点有关的条件进行计算.考向1 二次函数的有关概念1.二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零. 2.一般式,顶点式,交点式是二次函数常见的表达式,它们之间可以互相转化.3.二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.1.(2021·甘肃兰州·中考真题)二次函数222=++y x x 的图象的对称轴是( ) A .1x =- B .2x =- C .1x = D .2x =2.(2021·浙江中考真题)如图,已知经过原点的抛物线与轴交于另一点A (2,0). (1)求的值和抛物线顶点的坐标;(2)求直线的解析式.1.(2020·江苏无锡·中考真题)请写出一个函数表达式,使其图象的对称轴为y 轴:__________.2.(2021·安徽·淮北市中考模拟)若221()3m y m m x x +=+-+是关于x 的二次函数,则m =_______.考向2 二次函数的图象二次函数的图象是一条关于某条直线对称的曲线,叫做抛物线,该直线叫做抛物线的对称轴,对称轴与抛物线的交点叫做抛物线的顶点.1.(2021·湖北襄阳市·中考真题)一次函数y ax b =+的图象如图所示,则二次函数2y ax bx =+的图象可能是( )A .B .C .D .2.(2021·江西中考真题)在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是( )A .B .C .D .1.(2021·山东聊城市·中考真题)已知二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 的图象和反比例函数y =的图象在同一坐标系中大致为() 22y x mx =+x m MAM 2y ax =y bx c =+2y ax bx c =++a b cx++A.B.C.D.2.(2021·湖北黄冈市·中考真题)如图,为矩形的对角线,已知,.点P沿折线以每秒1个单位长度的速度运动(运动到D点停止),过点P作于点E,则的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.考向3 二次函数的图象与字母系数的关系1.(2021·山东日照·中考真题)抛物线()20y ax bx c a=++≠的对称轴是直线1x=-,其图象如图所示.下列结论:①0abc<;②()()2242a c b+<;③若()11,x y和()22,x y是抛物线上的两点,则当1211x x+>+时,12y y<;④抛物线的顶点坐标为()1,m-,则关于x的方程21ax bx c m++=-无实数根.其中正确结论的个数是()A.4B.3C.2D.12.(2021·四川遂宁市·中考真题)已知二次函数2(0)y ax bx c a=++≠的图象如图所示,有下列5个结论:①0abc>;②24b ac<;③23c b<;④2()a b m am b+>+(1m≠);⑤若方程2ax bx c++=1有四个根,则这四个根的和为2,其中正确的结论有()A.2个B.3个C.4个D.5个1.(2021·湖北恩施土家族苗族自治州·中考真题)如图,已知二次函数的图象与轴交于,顶点是,则以下结论:①;②;③若,则或;④.其中正确的有()个.A.1 B.2 C.3 D.42.(2021·黑龙江齐齐哈尔市·中考真题)如图,二次函数2(0)y ax bx c a=++≠图象的一部分与x轴的一个交点坐标为()1,0,对称轴为1x=-,结合图象给出下列结论:①0a b c++=;②20a b c-+<;③关于x的一元二次方程20(a0)++=≠ax bx c的两根分别为-3和1;④若点()14,y-,()22,y-,()33,y均在二次函数图象上,则123y y y<<;⑤()a b m am b-<+(m为任意实数).其中正确的结论有()A.1个B.2个C.3个D.4个考向4 二次函数的性质二次函数的解析式中,a决定抛物线的形状和开口方向,h、k仅决定抛物线的位置.若两个二次函数的图象形状完全相同且开口方向相同,则它们的二次项系数a必相等.AC ABCD3AD=4CD=C A D--PE BC⊥CPE△2y ax bx c=++x()3,0-()1,m-0abc>420a b c++>y c≥2x-≤0x≥12b c m+=1.(2021·内蒙古赤峰市·中考真题)已知抛物线2上的部分点的横坐标x 与纵坐标y 的对应值如表:x … -1 0 1 2 3 … y…3-1m3…A .抛物线2y ax bx c =++的开口向下B .当3x <时,y 随x 增大而增大C .方程20ax bx c ++=的根为0和2D .当0y >时,x 的取值范围是02x <<2.(2021·山东菏泽市·中考真题)定义:[],,a b c 为二次函数2y ax bx c =++(0a ≠)的特征数,下面给出特征数为[],1,2m m m --的二次函数的一些结论:①当1m =时,函数图象的对称轴是y 轴;②当2m =时,函数图象过原点;③当0m >时,函数有最小值;④如果0m <,当12x >时,y 随x 的增大而减小,其中所有正确结论的序号是______.3.(2021·北京中考真题)在平面直角坐标系中,点和点在抛物线上.(1)若,求该抛物线的对称轴;(2)已知点在该抛物线上.若,比较的大小,并说明理由.1.(2021·江苏泰州市·中考真题)在函数2(1)y x =-中,当x >1时,y 随x 的增大而 ___.(填“增大”或“减小”) 2.(2021·山东中考真题)在直角坐标系中,若三点A (1,﹣2),B (2,﹣2),C (2,0)中恰有两点在抛物线y =ax 2+bx ﹣2(a >0且a ,b 均为常数)的图象上,则下列结论正确是_______.A .抛物线的对称轴是直线12x = B .抛物线与x 轴的交点坐标是(﹣12,0)和(2,0)C .当t >94-时,关于x 的一元二次方程ax 2+bx ﹣2=t 有两个不相等的实数根 D .若P (m ,n )和Q (m +4,h )都是抛物线上的点且n <0,则0h > .3.(2021·浙江嘉兴市·中考真题)已知二次函数. (1)求二次函数图象的顶点坐标;(2)当时,函数的最大值和最小值分别为多少? (3)当时,函数的最大值为,最小值为,m -n=3求的值.考向5 二次函数的平移1.抛物线在平移的过程中,a 的值不发生变化,变化的只是顶点的位置,且与平移方向有关. 2.涉及抛物线的平移时,首先将表达式转化为顶点式y =a (x –h )2+k 的形式.3.抛物线的移动主要看顶点的移动,y =ax 2的顶点是(0,0),y =a (x –h )2+k 的顶点是(h ,k ). 4.抛物线的平移口诀:自变量加减左右移,函数值加减上下移.1.(2021·山西中考真题)抛物线的函数表达式为()2321y x =-+,若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A .()2313y x =++B .()2353y x =-+ C .()2351y x =--D .()2311y x =+-2.(2021·江苏盐城市·中考真题)已知抛物线经过点和.(1)求、的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.xOy ()1,m ()3n ,()20y ax bx a =+>3,15m n ==()()()1231,,2,,4,y y y -0mn <123,,y y y 265y x x =-+-14x ≤≤3t x t +≤≤m n t 2(1)y a x h =-+(0,3)-(3,0)a h1.(2021·江苏苏州市·中考真题)已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( ) A .5-或2 B .5- C .2 D .2- 2.(2021·西藏·中考真题)将抛物线y =(x ﹣1)2+2向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为( ) A .y =x 2﹣8x +22 B .y =x 2﹣8x +14 C .y =x 2+4x +10 D .y =x 2+4x +2考向6 二次函数与一元二次方程、不等式的综合抛物线y =ax 2+bx +c (a ≠0)与x 轴的交点个数及相应的一元二次方程根的情况都由Δ=b 2–4ac 决定.1.当Δ>0,即抛物线与x 轴有两个交点时,方程ax 2+bx +c =0有两个不相等的实数根,这两个交点的横坐标即为一元二次方程的两个根.2.当Δ=0,即抛物线与x 轴有一个交点(即顶点)时,方程ax 2+bx +c =0有两个相等的实数根,此时一元二次方程的根即为抛物线顶点的横坐标.3.当Δ<0,即抛物线与x 轴无交点时,方程ax 2+bx +c =0无实数根,此时抛物线在x 轴的上方(a >0时)或在x 轴的下方(a <0时).1.(2021·山东淄博市·中考真题)对于任意实数a ,抛物线22y x ax a b =+++与x 轴都有公共点.则b 的取值范围是_______.2.(2021·广西贺州市·中考真题)如图,已知抛物线2y ax c =+与直线y kx m =+交于1(3,)A y -,2(1,)B y 两点,则关于x 的不等式2ax c kx m +≥-+的解集是( )A .3x ≤-或1≥xB .1x ≤-或3x ≥C .31x -≤≤D .13x -≤≤3.(2021·湖北宜昌市·中考真题)在平面直角坐标系中,抛物线()()14y x x n =-+-与x 轴交于点A 和点()(),04B n n ≥-,顶点坐标记为()11,h k .抛物线()222229y x n n n =-+-++的顶点坐标记为()22,h k .(1)写出A 点坐标;(2)求1k ,2k 的值(用含n 的代数式表示);(3)当44n -≤≤时,探究1k 与2k 的大小关系;(4)经过点()229,5M n n+-和点()22,95N n n -的直线与抛物线()()14y x x n =-+-,()222229y x n n n =-+-++的公共点恰好为3个不同点时,求n 的值.1.(2020·黑龙江大庆市·中考真题)已知关于x 的一元二次方程220x x a --=,有下列结论: ①当1a >-时,方程有两个不相等的实根;②当0a >时,方程不可能有两个异号的实根; ③当1a >-时,方程的两个实根不可能都小于1;④当3a >时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.2.(2021·四川南充市·中考真题)关于抛物线221(0)y ax x a =-+≠,给出下列结论:①当0a <时,抛物线与直线22y x =+没有交点;②若抛物线与x 轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则1a .其中正确结论的序号是________. 3.(2021·四川乐山市·中考真题)已知关于的一元二次方程. (1)若方程有两个不相等的实数根,求的取值范围;(2)二次函数的部分图象如图所示,求一元二次方程的解.x 20x x m +-=m 2y x x m =+-20x x m +-=考向7 二次函数的实际应用在生活中,我们常会遇到与二次函数及其图象有关的问题,解决这类问题的一般思路:首先要读懂题意,弄清题目中牵连的几个量的关系,并且建立适当的直角坐标系,再根据题目中的已知条件建立数学模型,即列出函数关系式,然后运用数形结合的思想,根据函数性质去解决实际问题.考察背景主要有:经济问题;物体运动轨迹问题;拱桥问题等1.(2021·浙江杭州市·中考真题)在“探索函数的系数,,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,,,,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为( )A .B .C .D .2.(2021·山东青岛·中考真题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示;小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示. (1)直接写出1y 与x 之间的函数关系式;(2)求出2y 与x 之间的函数关系式; (3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?3.(2021·辽宁盘锦·中考真题)某工厂生产并销售A ,B 两种型号车床共14台,生产并销售1台A 型车床可以获利10万元;如果生产并销售不超过4台B 型车床,则每台B 型车床可以获利17万元,如果超出4台B 型车床,则每超出1台,每台B 型车床获利将均减少1万元.设生产并销售B 型车床台. (1)当时,完成以下两个问题:A 型B 型车床数量/台 ________每台车床获利/万元10________B 型车床多少台?(2)当0<≤14时,设生产并销售A ,B 两种型号车床获得的总利润为W 万元,如何分配生产并销售A ,B 两种车床的数量,使获得的总利润W 最大?并求出最大利润.2y ax bx c =++a b c ()0,2A ()10B ,()3,1C ()2,3D a 52325612x 4x >x x1.(2021·江苏连云港市·中考真题)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元. 2.(2021·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB 是抛物线的一部分,抛物线的顶点C 在y 轴上,杯口直径4AB =,且点A ,B 关于y 轴对称,杯脚高4CO =,杯高8DO =,杯底MN 在x 轴上.(1)求杯体ACB 所在抛物线的函数表达式(不必写出x 的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体A CB ''所在抛物线形状不变,杯口直径//A B AB '',杯脚高CO 不变,杯深CD '与杯高OD '之比为0.6,求A B ''的长.3.(2021·山东临沂市·中考真题)公路上正在行驶的甲车,发现前方20m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s (单位:m )、速度v (单位:m/s )与时间t (单位:s ) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s 时,它行驶的路程是多少? (2)若乙车以10m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?考向8 二次函数与几何图形(选填题)1.(2021·广东中考真题)设O 为坐标原点,点A 、B 为抛物线2y x 上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值( ) A .12B 2C 3D .12.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,抛物线()210:+=+L y ax bx c a ≠与x 轴只有一个公共点A (1,0),与y 轴交于点B (0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为( )A .1B .2C .3D .41.(2021·吉林长春市·中考真题)如图,在平面直角坐标系中,点(2,4)A 在抛物线2y ax =上,过点A 作y 轴的垂线,交抛物线于另一点B ,点C 、D 在线段AB 上,分别过点C 、D 作x 轴的垂线交抛物线于E 、F 两点.当四边形CDFE 为正方形时,线段CD 的长为_________.2.(2021·湖北武汉市·中考真题)如图(1),在ABC 中,AB AC =,90BAC ∠=︒,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x AD =,y AE CD =+,y 关于x 的函数图象如图(2),图象过点()0,2,则图象最低点的横坐标是__________.3.(2021·浙江柯桥·九年级阶段练习)如图,“心”形是由抛物线26y x =-+和它绕着原点O ,顺时针旋转60°的图形经过取舍而成的,其中顶点C 的对应点为D ,点A ,B 是两条抛物线的两个交点,点E ,F ,G 是抛物线与坐标轴的交点,则AB =_______________.考向9 存在性问题与动态问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数表达式,最后根据函数表达式判别图象的变化.1.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.(1)求,,三点的坐标并直接写出直线,的函数表达式;(2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.21262y x x =+-x A B A B y C AC BC A B C AC BC P AC P BC l AC D l E D C B E E l M AC N DMN AOC S S =△△DM2.(2021·湖南岳阳市·中考真题)如图,抛物线经过,两点,与轴交于点,连接.(1)求该抛物线的函数表达式;(2)如图2,直线:经过点A ,点为直线上的一个动点,且位于轴的上方,点为抛物线上的一个动点,当轴时,作,交抛物线于点(点在点的右侧),以,为邻边构造矩形,求该矩形周长的最小值; (3)如图3,设抛物线的顶点为,在(2)的条件下,当矩形的周长取最小值时,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,请说明理由.1.(2021·广东中考真题)已知二次函数的图象过点,且对任意实数x ,都有.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.(2021·四川达州市·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++交x 轴于点A 和()1,0C ,交y 轴于点()0,3B ,抛物线的对称轴交x 轴于点E ,交抛物线于点F .(1)求抛物线的解析式;(2)将线段OE 绕着点О沿顺时针方向旋转得到线段'OE ,旋转角为()090αα︒<<︒,连接'AE ,'BE ,求13''BE AE +的最小值.(3)M 为平面直角坐标系中一点,在抛物线上是否存在一点N ,使得以A ,B ,M ,N 为顶点的四边形为矩形?若存在,请直接写出点N 的横坐标;若不存在,请说明理由;1.(2021·贵州·峰林学校九年级期中)已知二次函数()2113my m x m +=-+,下列说法正确的是( )A .图象开口向上B .图象的顶点坐标为()2,3-C .图象的对称轴是直线3x =-D .有最大值,为-32.(2021·湖南张家界市·中考真题)若二次函数的图象如图所示,则一次函数与反比例函数在同一个坐标系内的大致图象为( ) 22y ax bx =++()1,0A -()4,0B y C BC l 3y kx =+P l x Q //PQ y QM PQ ⊥M M Q PQ QM PQMN D PQMN F CBF =∠DQM ∠F 2y ax bx c =++()1,0-22412286x ax bx c x x -≤++≤-+2(0)y ax bx c a =++≠y ax b =+cy x=-A .B .C .D .3.(2021·广西河池·中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示,下列说法中,错误的是( )A .对称轴是直线12x =B .当12x -<<时,0y <C .a c b +=D .a b c +>- 4.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论:22=的两根为=﹣,=;④<.其中正确的有( )x … ﹣3 ﹣2 ﹣1 1 2 … y…1.8753m1.875…5.(2021·陕西中考真题)下表中列出的是一个二次函数的自变量与函数y 的几组对应值:x… -2 0 1 3 … y…6-4-6-4…A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大6.(2021·江苏常州市·中考真题)已知二次函数2(1)y a x =-,当0x >时,y 随x 增大而增大,则实数a 的取值范围是( ) A .0a > B .1a > C .1a ≠ D .1a <7.(2021·江苏徐州市·中考真题)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+ B .()221y x =++ C .()221y x =+- D .()221y x =--8.(2021·贵州铜仁市·中考真题)已知直线过一、二、三象限,则直线与抛物线的交点个数为( ) A .0个 B .1个 C .2个 D .1个或2个9.(2021·山东淄博市·中考真题)已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABP ABP ABP S SSm ===,则m 的值是( )A .1B .32C .2D .410.(2021·四川雅安市·中考真题)定义:{}()min ,()a ab a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为( ) A .0 B .2 C .3 D .4 11.(2021·辽宁盘锦·中考真题)如图,四边形ABCD 是菱形,BC =2,∠ABC =60°,对角线AC 与BD 相交于点O ,线段BD 沿射线AD 方向平移,平移后的线段记为PQ ,射线PQ 与射线AC 交于点M ,连结PC ,设OM 长为x ,△PMC 面积为y .下列图象能正确反映出y 与x 的函数关系的是( )2y kx =+2y kx =+223y x x =-+A.B.C.D.12.(2021·贵州黔东南苗族侗族自治州·中考真题)如图,二次函数()2=++0y ax bx c a≠的函数图像经过点(1,2),且与x轴交点的横坐标分别为1x、2x,其中-1<1x<0,1<2x<2,下列结论:①0abc>;②20a b+<;③420a b c-+>;④当()12x m m=<<时,22am bm c<+-;⑤1b>,其中正确的有___________.(填写正确的序号)13.(2021·黑龙江中考真题)二次函数232y x=-的最小值为________.14.(2021·青海西宁·中考真题)从12-,-1,1,2,-5中任取一个数作为a,则抛物线2y ax bx c=++的开口向上的概率是______.15.(2021·江苏无锡市·中考真题)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数的图象交于A、B两点,且,P为的中点,设点P的坐标为,写出y关于x的函数表达式为:________.16.(2021·四川成都市·中考真题)在平面直角坐标系xOy中,若抛物线22y x x k=++与x轴只有一个交点,则k=_______.17.(2021·湖北襄阳市·中考真题)从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数关系式2241y x x=-++,喷出水珠的最大高度是______m.18.(2020·山东临沂·中考真题)已知抛物线22232(0)y ax ax a a=--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;19.(2021·安徽中考真题)已知抛物线221(0)y ax x a=-+≠的对称轴为直线1x=.(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且110x-<<,212x<<.比较y1与y2的大小,并说明理由;(3)设直线(0)y m m=>与抛物线221y ax x=-+交于点A、B,与抛物线23(1)y x=-交于点C,D,求线段AB与线段CD的长度之比.20.(2021·浙江宁波市·中考真题)如图,二次函数(a为常数)的图象的对称轴为直线.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.2y x3CB AC CB(,)(0)P x y x>()()1y x x a=--2x=21.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t ,加工过程中原料的质量有20%的损耗,加工费m (万元)与原料的质量x (t )之间的关系为m =50+0.2x ,销售价y (万元/t )与原料的质量x (t )之间的关系如图所示. (1)求y 与x 之间的函数关系式;(2)设销售收入为P (万元),求P 与x 之间的函数关系式;(3)原料的质量x 为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).22.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.23.(2021·黑龙江中考真题)如图,抛物线()230y axbx a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D .(1)求抛物线的解析式;(2)求BOC ∆的面积.24.(2021·河南中考真题)如图,抛物线2y x mx =+与直线y x b =-+交于点A (2,0)和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>-+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标M x 的取值范围.25.(2021·江苏徐州市·中考真题)如图,点,A B 在函数214y x =的图像上.已知,A B 的横坐标分别为-2、4,直线AB 与y 轴交于点C ,连接,OA OB .(1)求直线AB 的函数表达式;(2)求AOB ∆的面积;(3)若函数A B A B A B 100kg A 2kg B 4kg x x w wx a a214y x =的图像上存在点P ,使得PAB ∆的面积等于AOB ∆的面积的一半,则这样的点P 共有___________个.26.(2021·黑龙江鹤岗市·中考真题)如图,抛物线2()30y ax bx a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点C ,连接BC ,与抛物线的对称轴交于点E ,顶点为点D . (1)求抛物线的解析式;(2)点P 是对称轴左侧抛物线上的一个动点,点Q 在射线ED 上,若以点P 、Q 、E 为顶点的三角形与BOC 相似,请直接写出点P 的坐标.27.(2021·黑龙江大庆市·中考真题)如图,抛物线2y ax bx c =++与x 轴交于除原点O 和点A ,且其顶点B 关于x 轴的对称点坐标为()2,1.(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点F ,使得抛物线2y ax bx c =++上的任意一点G 到定点F 的距离与点G 到直线2y =-的距离总相等.①证明上述结论并求出点F 的坐标;②过点F 的直线l 与抛物线2y ax bx c =++交于,M N 两点.证明:当直线l 绕点F旋转时,11MF NF+是定值,并求出该定值;(3)点()3,C m 是该抛物线上的一点,在x 轴,y 轴上分别找点,P Q ,使四边形PQBC 周长最小,直接写出,P Q 的坐标.28.(2021·贵州毕节市·中考真题)如图,抛物线2y x bx c =++与x 轴相交于A ,B 两点,与y 轴相交于点C ,对称轴为直线2x =,项点为D ,点B 的坐标为3,0.(1)填空:点A 的坐标为_________,点D 的坐标为_________,抛物线的解析式为_________; (2)当二次函数2y x bx c =++的自变量:满足2m x m ≤≤+时,函数y 的最小值为54,求m 的值;(3)P 是抛物线对称轴上一动点,是否存在点P ,使PAC △是以AC 为斜边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.。

中考数学专题《二次函数》复习课件(共54张PPT)

中考数学专题《二次函数》复习课件(共54张PPT)

当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

中考热点-- 二次函数与方程、不等式,求参数范围(解析版)

中考热点-- 二次函数与方程、不等式,求参数范围(解析版)

中考热点01二次函数与方程、不等式,求参数范围一、解答题1(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.【答案】(1)t=3 2(2)t=5(3)3<m<4或m>6【分析】(1)将坐标代入解析式,求解待定参数值;(2)确定抛物线的对称轴,对待定参数分类讨论,若0<t≤3,当x=t时,函数值最小,求得t=5,若t>3,当x=3时,函数值最小,解得t=73(不合题意,舍去);(3)由A(m-2,a),C(m,a)关于对称轴对称得m-1=t,且A在对称轴左侧,C在对称轴右侧;确定抛物线与y轴交点(0,3),此交点关于对称轴的对称点为(2m-2,3);由a<3,b<3且t>0∴4<2m-2解得m>3;分类讨论:当A,B都在对称轴左边时,4<m-2,解得m>6,当A,B分别在对称轴两侧时,4-(m-1)>m-1-(m-2),解得m<4,∴3<m<4.【解析】(1)将(2,1)代入y=x2-2tx+3中,得1=4-4t+3,解得,t=3 2;(2)抛物线对称轴为x=t.若0<t≤3,当x=t时,函数值最小,∴t2-2t2+3=-2,解得t=±5.∵t>0,∴t=5若t>3,当x=3时,函数值最小,∴-2=9-6t+3,解得t=73(不合题意,舍去)综上所述t=5.(3)∵A(m-2,a),C(m,a)关于对称轴对称∴m-2+m2=t,m-1=t,且A在对称轴左侧,C在对称轴右侧∵抛物线与y轴交点为(0,3),抛物线对称轴为直线x=t,∴此交点关于对称轴的对称点为(2m-2,3)∵a<3,b<3且t>0∴4<2m-2,解得m>3.当A,B都在对称轴左边时,∵a<b∴4<m-2,解得m>6,∴m>6当A,B分别在对称轴两侧时∵a<b∴B到对称轴的距离大于A到对称轴的距离∴4-(m-1)>m-1-(m-2),解得m<4∴3<m<4综上所述3<m<4或m>6.【点睛】本题考查二次函数图象的性质、极值问题;存在待定参数的情况下,对可能情况作完备的分类讨论是解题的关键.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.【答案】(1)a=-1,b=-2(2)-4<n<-2(3)见解析【分析】(1)由m=-1可得图像过点1,0和-3,0,然后代入解析式解方程组即可解答;(2)先确定函数图像的对称轴为直线x=m,则抛物线过点n,3,0,3,即n=2m,然后再结合-2 <m<-1即可解答;(3)根据图像的对称性得-b2a =m,即b=-2am,顶点坐标为m,am2+bm+3;将点-m,0和3m,0分别代入表达式并进行运算可得am2=-1;则am2+bm+3=am2-2am2+3=-am2+3=4,进而得到12a-b24a=4,然后化简变形即可证明结论.【解析】(1)解:当m=-1时,图像过点1,0和-3,0,∴0=a+b+30=9a-3b+3,解得a=-1b=-2,∴y=-x2-2x+3,∴a=-1,b=-2.(2)解:∵函数图像过点-m,0和3m,0,∴函数图像的对称轴为直线x=m.∵图像过点n,3,0,3,∴根据图像的对称性得n=2m.∵-2<m<-1,∴-4<n<-2.(3)解:∵图像过点-m,0和3m,0,∴根据图像的对称性得-b2a=m.∴b=-2am,顶点坐标为m,am2+bm+3.将点-m,0和3m,0分别代人表达式可得0=am2-bm+3①0=9am2+3bm+3②①×3+②得12am2+12=0,∴am2=-1.∴am2+bm+3=am2-2am2+3=-am2+3=4.∴12a-b24a=4.∴12a-b2=16a.∴b2+4a=0.【点睛】本题主要考查了运用待定系数法求二次函数解析式、二次函数的对称性、解不等式等知识点,掌握二次函数的对称性是解答本题的关键.3(2023·浙江杭州·统考二模)在平面直角坐标系中,已知二次函数y=-x2+bx+c(b,c是常数).(1)当b=2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,-3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.【答案】(1)1,4(2)n=m2-2m-2(3)2【分析】(1)将二次函数化为顶点式求解即可;(2)根据二次函数的性质和已知条件得到m=b2,n=c+b24,b=2m,c=-2-2m,进而求解即可;(3)当b=2c+1时,二次函数y=-x2+2c+1x+c的对称轴为直线x=2c+12=c+12,开口向下,分0≤c+12≤2 、c+12<0、c+12>2三种情况,利用二次函数的性质求解即可.【解析】(1)解:当b=2,c=3时,y=-x2+2x+3=-x-12+4,∴当b=2,c=3时,该函数图象的顶点坐标为1,4;(2)解:∵该函数图象经过点(1,-3),∴-1+b+c=-3,则c=-2-b,∵该二次函数图象的顶点坐标是(m,n),∴m=-b2×-1=b2,n=4×-1×c-b24×-1=4c+b24=c+b24,∴b=2m,c=-2-2m,∴n=-2-2m+4m24,即n=m2-2m-2;(3)解:当b=2c+1时,二次函数y=-x2+2c+1x+c的对称轴为直线x=2c+12=c+12,开口向下,∵0≤x≤2,∴当0≤c+12≤2即-12≤c≤32时,该函数的最大值为4×-1×c-2c+124×-1=c+2c+124=8,即4c2+8c-31=0,解得c1=-1+352,c2=-1-352,不合题意,舍去;当c+12<0即c<-12时,0≤x≤2时,y随x的增大而减小,∴当x=0时,y有最大值为c=8,不合题意,舍去;当c+12>2即c>32时,0≤x≤2时,y随x的增大而增大,∴当x=2时,y有最大值为-22+22c+1+c=8,解得c=2,符合题意,综上,满足条件的c的值为2.【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,利用分类讨论思想求解第(3)问是解答的关键.4(2023·浙江宁波·校考三模)如图,已知二次函数y=-x2+bx+c的图像经过点A4,1,点B0,5.(1)求该二次函数的表达式及顶点坐标;(2)点C m,n在该二次函数图像上,当m≤x≤4时,n的最大值为294,最小值为1,请根据图像直接写出m的取值范围.【答案】(1)该二次函数表达式y=-x2+3x+5;顶点坐标:32,294(2)-1≤m≤32【分析】(1)根据待定系数法即可求得;(2)把y=1代入抛物线解析式求得对应的x的值,再根据函数最大值和最小值,即可得答案.【解析】(1)解:∵二次函数y=-x2+bx+c的图像经过点A4,1,点B0,5,∴-16+4b+c=1c=5,解得b=3c=5,∴该二次函数为y=-x2+3x+5,∵y=-x-322+294,∴顶点为32,29 4;(2)让y=1,则-x2+3x+5=1,解得:x1=-1,x2=4,当x=32时,y=294,∵当m≤x≤4时,n的最大值为294,最小值为3 2,∴-1≤x≤32.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图像上点的坐标特征,数形结合是解题的关键.5(2023·浙江舟山·统考三模)在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A1,0,点B0,3.点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)若-1≤x≤d时,-1≤y≤8,则d的取值范围是.(3)点P和点A之间(包括端点)的函数图象称为图象G,当图象G的最大值和最小值差是5时,求m的值.【答案】(1)y=x2-4x+3(2)2≤d≤5(3)m=2+5或m=2-6【分析】(1)利用待定系数法求出抛物线的解析式即可;(2)先求出抛物线的顶点坐标,得出函数的最小值为-1,把y=8代入y=x2-4x+3求出x1=5,x2= -1,根据-1≤x≤d时,-1≤y≤8,得出-1≤x≤d时,函数能够取到最小值,从而得出d的取值范围;(3)分情况讨论,当点P在顶点的右侧,即m≥2时,当点P在顶点与点A之间,即1<m<2时,当点P在点A的左侧,即m≤1时,分别求出m的值即可.【解析】(1)解:把点A1,0,点B0,3,代入抛物线y=x2+bx+c得:1+b+c=0c=3,解得:b=-4 c=3,∴抛物线的解析式为y=x2-4x+3;(2)解:∵y=x2-4x+3=x-22-1,∴抛物线的顶点坐标为2,-1,∴y的最小值为-1,把y=8代入y=x2-4x+3得8=x2-4x+3,解得:x1=5,x2=-1,∵-1≤x≤d时,-1≤y≤8,∴-1≤x≤d时,函数能够取到最小值,∴2≤d≤5;故答案为:2≤d≤5.(3)解:当点P在顶点的右侧,即m≥2时,此时函数能够取到最小值-1,∵图象G的最大值和最小值差是5,∴此时点P的纵坐标y P=-1+5=4,即点P的坐标为m,4,把m,4代入y=x2-4x+3得,m2-4m+3=4,解得:m=2+5或m=2-5(舍去);当点P在顶点与点A之间时,即1<m<2,图象G的最大值和最小值差不可能是5;当点P在点A的左侧,即m≤1时,此时函数的最小值为0,∵图象G的最大值和最小值差是5,∴此时点P的纵坐标y P=0+5=5,即点P的坐标为m,5,把m,5代入y=x2-4x+3得,m2-4m+3=5,解得:m=2-6或m=2+6(舍去);综上分析可知,m=2+5或m=2-6.【点睛】本题主要考查了二次函数的综合应用,求抛物线的解析式,抛物线的图象和性质,解题的关键是数形结合,注意进行分类讨论.6(2023·浙江杭州·统考二模)在平面直角坐标系中,设二次函数y=x2-2ax+1(a是常数).(1)当a=2时,求函数图象的顶点坐标和对称轴.(2)若函数图象经过点(1,p),(-1,q),求证:pq≤4.(3)已知函数图象经过点A(-3,y1),B(a+1,y2),点C(m,y3),若对于任意的4≤m≤6都满足y1>y3> y2,求a的取值范围.【答案】(1)顶点坐标(2,-3),对称轴为直线x=2(2)见解析(3)3<a<3或a>72【分析】(1)当a=2时,y=x2-4x+1=x-22-3,进而可求顶点坐标与对称轴;(2)将(1,p),(-1,q),代入y=x2-2ax+1得,p=2-2a,q=2+2a,则pq=2-2a=42+2a-4a2≤4,进而结论得证;(3)由题意知,二次函数图象开口向上,对称轴为直线x =a ,则B (a +1,y 2)在对称轴右侧,由对于任意的4≤m ≤6都满足y 1>y 3>y 2,则点A ,B ,C 存在如下情况:情况1,如图1,根据二次函数的图象与性质,以及y 1>y 3>y 2,列不等式-3 2-2a ×-3 +1>62-2a ×6+1,a +1<4,求解集即可;情况2,如图2,由二次函数的图象与性质可得-3 2-2a ×-3 +1>42-2a ×4+1,6<a ;a +12-2a ×a +1 +1<62-2a ×6+1,分别求解满足要求的解集即可.【解析】(1)解:当a =2时,y =x 2-4x +1=x -2 2-3,∴顶点坐标(2,-3),对称轴为直线x =2;(2)证明:将(1,p ),(-1,q ),代入y =x 2-2ax +1得,p =1-2a +1=2-2a ,q =1+2a +1=2+2a ,∴pq =2-2a 2+2a =4-4a 2≤4,∴pq ≤4;(3)解:由题意知,二次函数图象开口向上,对称轴为直线x =a ,则B (a +1,y 2)在对称轴右侧,∵对于任意的4≤m ≤6都满足y 1>y 3>y 2,∴点A ,B ,C 存在如下情况:情况1,如图1,由二次函数的图象与性质可得-3 2-2a ×-3 +1>62-2a ×6+1,解得a >32,a +1<4,解得a <3,∴32<a <3;情况2,如图2,由二次函数的图象与性质可得-3 2-2a ×-3 +1>42-2a ×4+1,解得a >12,又∵6<a ,a +1 2-2a ×a +1 +1<62-2a ×6+1,解得a <5或a >7,∴a >7;综上所述,a 的取值范围为32<a <3或a >7.【点睛】本题考查了二次函数的图象与性质.解题的关键在于数形结合.7(2023·浙江杭州·统考二模)已知函数y 1=x 2-m +2 x +2m +3,y 2=nx +k -2n (m ,n ,k 为常数且n ≠0).(1)若y 1的图象经过点A -1,3 ,求该函数的表达式.(2)若函数y 1,y 2的图象始终经过同一定点M .①求点M 的坐标和k 的值.②若m ≤2,当-1≤x ≤2时,总有y 1≤y 2,求m +n 的取值范围.【答案】(1)y 1=x 2-x +1(2)①M 2,3 ,k =3;②m +n ≤-1【分析】(1)利用待定系数法求解即可;(2)①先求出函数y 1经过定点2,3 ,则M 2,3 ,且M 2,3 在函数y 2的图象上,由此把M 2,3 代入y 2解析式中求出k 的值即可;②先求出抛物线y 1的对称轴在定点M 2,3 的左侧,再结合函数图象可知当x =-1时,一次函数的函数值要大于等于二次函数的函数值,由此建立不等式求解即可.【解析】(1)解:把A -1,3 代入y 1=x 2-m +2 x +2m +3中得:-1 2+m +2 +2m +3=3,解得m =-1,∴y 1=x 2--1+2 x -2+3=x 2-x +1;(2)解:①在y 1=x 2-m +2 x +2m +3中,当x =2时,y 1=22-2m +2 +2m +3=4-2m -4+2m +3=3,∴函数y 1经过定点2,3 ,∵函数y 1,y 2的图象始终经过同一定点M ,∴M 2,3 ,且M 2,3 在函数y 2的图象上,∴2n +k -2n =3,∴k =3;②∵m≤2,抛物线y1的对称轴为直线x=m+2 2,∴抛物线y1的对称轴在定点M2,3的左侧,由①得y2=nx+3-2n,∵m≤2,当-1≤x≤2时,总有y1≤y2,∴如图所示,当x=-1时,一次函数的函数值要大于等于二次函数的函数值∴-12+m+2+2m+3≤-n+3-2n∴3m+3n≤-3,∴m+n≤-1.【点睛】本题主要考查了求二次函数解析式,二次函数的性质,二次函数与不等式,解题的关键是理解题意,灵活运用所学知识解决问题.8(2023·浙江杭州·统考二模)已知二次函数y1=ax x-ma≠0和一次函数y2=ax+b a≠0.(1)二次函数y1的图象过1,0,2,2点,求二次函数的表达式;(2)若一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点.①求证:b=-am;②若两个函数图象的另一个交点为二次函数的顶点,求m的值.【答案】(1)二次函数y1的表达式为y1=x x-1;(2)①证明见解析,②m=2【分析】(1)待定系数法,求出函数解析式即可.(2)①先求出二次函数y1=ax x-ma≠0与x轴的交点坐标,进而得到一次函数y2与二次函数y1的图象的交点坐标,代入一次函数,即可得出结论;②求出二次函数的顶点坐标,代入一次函数即可得出结果.【解析】(1)解:∵二次函数y1=ax x-ma≠0过1,0,2,2,∴m=1,∴二次函数的表达式为y1=ax x-1,将2,2点代入,得2=2a,∴a=1;∴二次函数y1的表达式为y1=x x-1.(2)①∵当y=0时,ax x-m=0解得:x1=0,x2=m,∴二次函数y1=ax x-1与x轴交于0,0和m,0点,又一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点,∴一次函数y2过m,0点,∴am +b =0,∴b =-am ;②∵b =-am ,∴y 2=ax -am ,∵两个函数图象的另一个交点为二次函数的顶点,∵二次函数y 1=ax x -m 的顶点为m 2,-am 24,∴y 2=ax -am 过m 2,-am 24,∴-am 24=-am 2∵a ≠0,m ≠0,∴m 2=2m ,∴m =2.【点睛】本题考查二次函数与一次函数的综合应用.熟练掌握二次函数与一次函数的图象和性质,是解题的关键.9(2023·浙江杭州·杭州市公益中学校考二模)在平面直角坐标系中,当x =-2和x =4时,二次函数y =ax 2+bx -2(a ,b 是常数,a ≠0)的函数值相等.(1)若该函数的最大值为1,求函数的表达式,并写出函数图象的顶点坐标;(2)若该函数的图象与x 轴有且只有一个交点,求a ,b 的值.(3)记(2)中的抛物线为y 1,将抛物线y 1向上平移2个单位得到抛物线y 2,当-2≤x ≤m 时,抛物线y 2的最大值与最小值之差为8,求m 的值.【答案】(1)y =-3x -1 2+1,1,1 ;(2)a =-2,b =4;(3)1-5.【分析】(1)根据二次函数的性质及对称轴即可解答;(2)根据二次函数与x 轴的交点个数及二次函数的性质即可解答;(3)根据二次函数的平移规律及二次函数的性质即可解答.【解析】(1)解:∵当x =-2和x =4时,二次函数y =ax 2+bx -2(a ,b 是常数,a ≠0)的函数值相等,∴二次函数的对称轴为x =-2+42=1,4a -2b -2=16a +4b -2①,∵该函数的最大值为1,∴该函数的顶点坐标为1,1 ,∴1=a +b -2②,∴由①②可得:a =-3b =6 ,∴函数表达式为:y =-3x -1 2+1;(2)解:∵该函数的图象与x 轴有且只有一个交点,∴一元二次方程ax 2+bx -2=0,该函数的顶点坐标为1,0 ,∴Δ=b 2+8a =0①,a +b -2=0①,∴由①②可得a =0b =2(舍去),a =-2b =4 ,∴a =-2,b =4;(3)解:由(2)可得y 1的解析式为:y 1=-2x 2+4x -2,∵将抛物线y 1向上平移2个单位得到抛物线y 2,∴y 2=-2x 2+4x ,∴当x =-2时,y 2=-16,∵y 2的顶点坐标为1,2 ,且当-2≤x ≤m 时,抛物线y 2的最大值与最小值之差为8,∴m <1,y 2随x 的增大而增大,∴-16+8=-8,∴-2m 2+4m =-8,∴m -1 2=5,∴m =1±5,∵m <1,∴m =1-5.【点睛】本题考查了二次函数的性质,二次函数的顶点坐标,二次函数的最值,二次函数与x 轴的交点坐标,掌握二次函数的性质是解题的关键.10(2023·浙江丽水·统考二模)二次函数y =x 2+bx +c 的图象与x 轴交于点A x 1,0 ,B x 2,0 且x 1≠x 2.(1)当x 1=2,且b +c =-6时,①求b ,c 的值②当t ≤x ≤t +2时,二次函数y =x 2+bx +c 的最小值为2t ,求t 的值;(2)若x 1=3x 2,求证:32b -c ≤3.【答案】(1)①b =2,c =-8;②t =4或t =22(2)见解析【分析】(1)①依题意,b +c =-64+2b +c =0 ,解方程组即可求解;②根据①得出解析式,对称轴为直线x =-1,进而分t +2≤-1,t <-1<t +2,t ≥-1,三种情况求得最小值,根据题意建立方程,解方程即可求解;(2)由题意得:x 12+bx 1+c =0,x 22+bx 2+c =0,将x 1=3x 2代入,得出 9x 22+3bx 2+c =0,得出x 2=-14b ,代入x 22+bx 2+c =0得c =316b 2,进而32b -c =-316b -4 2+3≤3,即可得证.【解析】(1)解:①依题意,b +c =-64+2b +c =0解得b =2,c =-8②y =x 2+2x -8=x +1 2-9若t +2≤-1,即t ≤-3,当x =t +2时,y =t +2+1 2-9=2t ,解得:t =0(舍去)或t =-4;若t <-1<t +2,即-3<t <-1,当x =-1时,y =-1+1 2-9=2t ,解得:t =-4.5(舍去);若t ≥-1,当x =t 时,y =t +1 2-9=2t ,解得:t =-22(舍去)或t =22;综上所述:t =4或t =22.(2)∵x 1≠x 2,x 1=3x 2 ∴3x 2≠x 2 ∴x 2≠0由题意得:x 12+bx 1+c =0,x 22+bx 2+c =0,∴9x 22+3bx 2+c =0,∴8x 22+2bx 2=0∴2x 24x 2+b =0∵x 2≠0 ∴4x 2+b =0 即x 2=-14b∴把x 2=-14b ,代入x 22+bx 2+c =0得c =316b 2;∴32b -c =32b -316b 2=-316b 2-8b =-316b -4 2+3≤3.【点睛】本题考查了二次函数的性质,熟练掌握函数的性质是解题的关键.11(2023·浙江杭州·统考二模)二次函数y =ax 2+bx -1(a ,b 为常数,a ≠0)的图像经过点A 1,2 .(1)求该二次函数图像的对称轴(结果用含a 的代数式示)(2)若该函数图像经过点B 3,2 ;①求函数的表达式,并求该函数的最值.②设M x 1,y 1 ,N x 2,y 2 是该二次函数图像上两点,其中x 1,x 2是实数.若x 1-x 2=1,求证:y 1+y 2≤112【答案】(1)x =a -32a(2)①y =-x 2+4x -1,最大值为3;②见解析【分析】(1)首先将点A 1,2 代入表达式,然后利用对称轴公式求解即可;(2)①将点B 3,2 代入求出函数的表达式,然后转化成顶点式即可求出该函数的最值;②首先根据x 1-x 2=1得到x 1=x 2+1,然后表示出y 1+y 2利用二次函数的性质求解即可.【解析】(1)将点A 1,2 代入y =ax 2+bx -1得,a +b -1=2,∴b =3-a ,∴二次函数y =ax 2+3-a x -1,∴对称轴为x =-3-a 2a =a -32a;(2)①将B 3,2 代入y =ax 2+3-a x -1得,9a +9-3a -1=2,∴解得a =-1,∴二次函数y =-x 2+4x -1,∴y =-x 2+4x -1=-x 2-4x -1=-x -2 2+3,∵-1<0,∴抛物线开口向下,∴该函数的最大值为3;②∵x 1-x 2=1∴x 1=x 2+1,∴y 1+y 2=-x 12+4x 1-1-x 22+4x 2-1=-x 2+1 2+4x 2+1 -1-x 22+4x 2-1=-2x 22+6x 2+1=-2x 2-3 2+112∵-2<0,∴y 1+y 2的最大值为112,∴y 1+y 2≤112.【点睛】本题考查了根据对称性求对称轴,待定系数法求二次函数解析式,掌握二次函数图象的性质是解题的关键.12(2023·浙江杭州·统考一模)二次函数y =ax 2+bx +c (a ≠0)与x 轴交于A (1,0),B (m ,0)两点.(1)当a =1,b =2时,求m 的值.(2)当0<a <2,c =2时,①求证:m >1.②点C x 1,y 1 ,D x 2,y 2 在该抛物线上,且x 1>x 2,x 1+x 2<2,试比较y 1与y 2的大小.【答案】(1)-3;(2)①见解析;(2)y 1<y 2【分析】(1)当a =1,b =2时,y =x 2+2x +c ,把A (1,0)代入求得c =-3,得到y =x 2+2x -3,把B (m ,0)代入y =x 2+2x -3得,0=m 2+2m -3,解方程即可得到答案;(2)①把A (1,0),B (m ,0)代入y =ax 2+bx +c (a ≠0)得a +b +c =0,am 2+bm +c =0,由c =2得到a +b +2=0,am 2+bm +2=0进一步得am 2-a +2 m +2=0,则Δ=a +2 2-4a ×2=a -2 2≥0,由0<a <2,解方程求出m ,即可判断.②由①得b =-a -2,c =2,则y =ax 2-a +2 x +2,把C x 1,y 1 ,D x 2,y 2 代入得y 1=ax 12-a +2 x1+2,y 2=ax 22-a +2 x 2+2,则y 1-y 2=x 1-x 2 a x 1+x 2 -a +2 ,由x 1>x 2,x 1+x 2<2,得到x 1-x 2>0,,a x 1+x 2 -a +2 <0,进一步即可得到答案.【解析】(1)解:当a =1,b =2时,y =x 2+2x +c ,把A (1,0)代入得,0=1+2+c ,解得c =-3,∴y =x 2+2x -3,把B(m,0)代入y=x2+2x-3得,0=m2+2m-3,解得m=1或-3;∵二次函数y=ax2+bx+c(a≠0)与x轴交于A(1,0),B(m,0)两点,∴m=-3;(2)①把A(1,0),B(m,0)代入y=ax2+bx+c(a≠0)得,a+b+c=0,am2+bm+c=0,∵c=2,∴a+b+2=0,am2+bm+2=0,由b=-a-2得到am2-a+2m+2=0,则Δ=a+22-4a×2=a-22≥0,∴m=a+2±a-222a=a+2±a-22a,∴m1=1(舍去),m2=2a,∵0<a<2,∴m>1.②由①得b=-a-2,c=2,∴y=ax2-a+2x+2,把C x1,y1,D x2,y2代入得,y1=ax12-a+2x1+2,y2=ax22-a+2x2+2,∴y1-y2=ax12-a+2x1+2-ax22-a+2x2+2=a x1-x2x1+x2-a+2x1-x2=x1-x2a x1+x2-a+2,∵x1>x2,x1+x2<2,∴x1-x2>0,a x1+x2-a+2<2a-a+2,∵0<a<2,∴2a-a+2=a-2<0,∴a x1+x2-a+2<0,∴y1-y2=x1-x2a x1+x2-a+2<0,∴y1<y2.【点睛】此题考查了二次函数的性质、解一元二次方程、比较函数值大小等知识,读懂题意并准确计算是解题的关键.13(2023·浙江绍兴·统考一模)在平面直角坐标系xOy中,已知抛物线y=x2-2tx+1.(1)求该抛物线的对称轴(用含t的式子表示);(2)若点M t-2,m,N t+3,n在抛物线y=x2-2tx+1上,试比较m,n的大小;(3)P x1,y1,Q x2,y2是抛物线y=x2-2tx+1上的任意两点,若对于-1≤x1<3且x2=3,都有y1≤y2,求t的取值范围;(4)P t+1,y1,Q2t-4,y2是抛物线y=x2-2tx+1上的两点,且均满足y1≥y2,求t的最大值.【答案】(1)抛物线的对称轴为直线x=t;(2)n>m;(3)t≤1;(4)t的最大值为5.【分析】(1)把解析式化成顶点式即可求得;(2)根据二次函数的性质以及二次函数图象上点的坐标特征即可判断;(3)分3种情况求解即可;(4)分两种情况讨论,根据题意列出关于t的不等式,解不等式即可解决问题.【解析】(1)解:∵y=x2-2tx+1=x-t2-t2+1,∴抛物线的对称轴为直线x=t;(2)解:∵点M t-2,m在抛物线y=x2-2tx+1上,,N t+3,n∴抛物线的开口向上,对称轴为直线x=t,又∵|t-(t-2)|=2,|t-(t+3)|=3,2<3,∴点N t+3,n离抛物线y=x2-2tx+1的对称轴距离较大,∴n>m;(3)解:∵抛物线的开口向上,∴离抛物线y=x2-2tx+1的对称轴距离较大,函数值越大.当t>3时,点P离对称轴远,不符合题意;当-1≤t≤3时,由题意得,3-t≥t--1,解得t≤1,∴-1≤t≤1时,都有y1≤y2;当t<-1时,点Q离对称轴远,都有y1≤y2.综上,当t≤1时,都有y1≤y2.(4)解:∵抛物线的开口向上,对称轴为直线x=t,∴点P在抛物线y=x2-2tx+1对称轴的右侧,∵y1≥y2,①当点Q在对称轴的右侧或在对称轴上,且在点P的左侧或与点P重合时满足条件,∴2t-4≥t且2t-4≤t+1,解得4≤t≤5;②当点Q在对称轴的左侧,且点Q到抛物线对称轴的距离小于或等于点P到对称轴的距离时满足条件,∴2t-4<t,t-2t-4≤t+1-t,解得3≤t<4,综上所述:当3≤t≤5时,满足题意.∴t的最大值为5.【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,掌握性质是解题的关键.14(2023·浙江杭州·模拟预测)在平面直角坐标系中,抛物线y=x2-2mx+m2+1存在两点A m-1,y1.,B m+2,y2(1)求抛物线的对称轴;(用含m的式子表示)(2)记抛物线在A,B之间的部分为图象F(包括A,B两点),y轴上一动点C0,a,过点C作垂直于y轴的直线l与F有且仅有一个交点,求a的取值范围;(3)若点M2,y3也是抛物线上的点,记抛物线在A,M之间的部分为图象G(包括M,A两点),记图形G 上任意一点的纵坐标的最大值与最小值的差为t,若t≥y2-y1,求m的取值范围.【答案】(1)x=m(2)a=1或2<a≤5(3)m≤2-3或m≥4【分析】(1)将一般式转化为顶点式即可得解;(2)将A m-1,y1代入解析式,求出y1,y2,画出函数图象,利用数形结合的方法求解即 ,B m+2,y2可;(3)分点M在点A的左侧;点A的右侧,对称轴的左侧;以及对称轴的右侧,结合图象进行分类讨论求解即可.【解析】(1)解:y=x2-2mx+m2+1=x-m2+1,∴对称轴为:x=m;(2)解:由y=x2-2mx+m2+1=x-m2+1可知:抛物线的顶点坐标为:m,1,当x=m-1时:y1=m-1-m2+1=2,当x=m+2时:y1=m+2-m2+1=5,∴A m-1,2,B m+2,5,∵C0,a,∴过点C垂直于y轴的直线l:y=a,如图:由图象可知:当a=1或2<a≤5时,直线l与F有且仅有一个交点,∴a的取值范围为:a=1或2<a≤5;(3)解:∵A m-1,2,,B m+2,5∴t≥y2-y1=5-2=3,当x=2时,y3=m2-4m+5,∴M2,m2-4m+5①当M在点A的左侧,即:m-1>2,m>3时:在对称轴的左侧,y随x的增大而减小,∴M点的纵坐标最大,A点的纵坐标最小,∴t=m2-4m+5-2=m2-4m+3≥3,解得:m≥4或m≤0(舍掉);②当M在点A的右侧,对称轴的左侧时,此时t<2-1=1,不符合题意;③当M对称轴的右侧,即m<2时,当y3≤2时,此时A点的纵坐标最大,抛物线的顶点处的纵坐标最小:t=2-1=1<3不符合题意;③当M对称轴的右侧,即m<2时,当y3>2时,此时M 点的纵坐标最大,抛物线的顶点处的纵坐标最小,∴t =m 2-4m +5-1=m 2-4m +4≥3,解得:m ≥2+3(舍),或m ≤2-3;∴m ≤2-3;综上:m ≤2-3或m ≥4.【点睛】本题考查二次函数的综合应用.熟练掌握二次函数的图象和性质,利用数形结合的思想进行求解是解题的关键.二、填空题(共0分15(2022春·九年级课时练习)抛物线y =(k -1)x 2-x +1与x 轴有交点,则k 的取值范围是.【答案】k ≤54且k ≠1【分析】直接利用根的判别式进行计算,再结合k -1≠0,即可得到答案.【解析】解:∵抛物线y =(k -1)x 2-x +1与x 轴有交点,∴Δ=(-1)2-4×(k -1)×1≥0,∴k ≤54,又∵k -1≠0,∴k ≠1,∴k 的取值范围是k ≤54且k ≠1;故答案为:k ≤54且k ≠1.【点睛】本题考查了二次函数与坐标轴有交点的问题,解题的关键是掌握根的判别式求参数的取值范围.16(2020秋·九年级课时练习)抛物线y =x 2+8x -4与直线x =-4的交点坐标是.【答案】(-4,-20)【解析】解:∵当x =-4时,y =(-4)2+8×(-4)-4=-20,∴抛物线y =x 2+8x -4与直线x =-4的交点坐标是(-4,-20).故答案为(-4,-20).17(2023·安徽淮北·校考一模)若对称轴为直线x =-2的抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),则一元二次方程ax 2+bx +c =0的根是.【答案】x 1=-5,x 2=1【分析】根据二次函数的对称性求出(1,0)的对称点,即可得到答案;【解析】解:∵对称轴为直线x =-2的抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),∴点(1,0)的对称点是:(-2×2-1,0),即(-5,0),∴方程ax 2+bx +c =0的根是x 1=-5,x 2=1,故答案为:x 1=-5,x 2=1;【点睛】本题考查抛物线的性质及二次函数与一元二次方程关系,解题的关键是根据对称性求出对称点.18(2021春·九年级课时练习)抛物线y =2x 2+2k -1 x -k (k 为常数)与坐标轴交点的个数是.【答案】3个【分析】先令y =0,得出关于x 的一元二次方程,由△>0得方程有两个不相等的实数根,即抛物线与x 轴有两个不同的交点,与y 轴有一个交点.【解析】解:∵抛物线y =2x 2+2(k -1)x -k (k 为常数),∴当y =0时,0=2x 2+2(k -1)x -k ,∴△=[2(k -1)]2-4×2×(-k )=4k 2+4>0,∴0=2x 2+2(k -1)x -k 有两个不相等的实数根,∴抛物线y =2x 2+2(k -1)x -k (k 为常数)与x 轴有两个交点,∴抛物线y =2x 2+2(k -1)x -k (k 为常数)与y 轴有一个交点,所以,抛物线y =2x 2+2k -1 x -k (k 为常数)与坐标轴交点有3个,故答案为:3个.【点睛】本题考查抛物线与x 、y 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.19(2023·湖北武汉·统考模拟预测)已知二次函数y =ax 2+bx +c a ≠0 的部分图象如图所示,图象过点-1,0 ,对称轴为直线x =1,下列结论:①2a +b =0;②当m ≠-1时,am 2-b m +1 <a ;③若点A -2,y 1 ,点B 12,y 2 ,点C 52,y 3 均在该图象上,则y 1<y 3<y 2;④若关于x 的方程a x +1 x -3 =p p >0 的两根都是整数,则这样的p 值有3个.其中正确的结论有(填序号).【答案】①②③【分析】根据图象对称轴为直线x =1,可得2a =-b ;可判断①;设w =am 2-b m +1 ,可得w =am 2-b m +1 =am 2+2a m +1 =a m +1 2+a ,再由a <0,可得当m =-1时,w 取得最大值,最大值为a ,可判断②;根据1--2 >52-1>1-12,可得y 1<y 3<y 2,可判断③;根据题意可得关于x 的方程a x +1 x -3 =p p >0 的根即为抛物线与直线y =p p >0 的交点的横坐标,可判断④,即可.【解析】解:①∵图象对称轴为直线x =1,∴-b 2a=1,∴即2a +b =0,故①正确;②设w =am 2-b m +1 ,∴w =am 2-b m +1 =am 2+2a m +1 =am 2+2am +2a =a m +1 2+a ,∵二次函数y =ax 2+bx +c a ≠0 的图象开口向下,∴a <0,∴当m =-1时,w 取得最大值,最大值为a ,∴当m ≠1时,am 2-b m +1 <a ,故②正确;③∵点A -2,y 1 ,点B 12,y 2 ,点C 52,y 3 均在该图象上,且1--2 >52-1>1-12,∴y 1<y 3<y 2,故③正确;④∵图象过点-1,0 ,对称轴为直线x =1,∴抛物线与x 轴的另一个交点为3,0 ,∴抛物线的解析式为y =a x +1 x -3 ,∴关于x 的方程a x +1 x -3 =p p >0 的根即为抛物线与直线y =p p >0 的交点的横坐标,∴当p >0且抛物线与直线y =p p >0 的有两个交点,且交点的横坐标为整数时,这样的点P 有1个,∴关于x 的方程a x +1 x -3 =p p >0 的两根都是整数,则这样的p 值有1个,故④错误.故答案为:①②③【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.三、单选题(共0分20(2023·浙江·校联考三模)已知点x 1,y 1 ,x 2,y 2 为二次函数y =-x 2图象上的两点(不为顶点),则以下判断正确的是()A.若x 1>x 2,则y 1>y 2B.若x 1<x 2,则y 1<y 2C.若:x 1x 2<x 2 2,则y 1>y 2D.若x 1x 2>x 2 2,则y 1<y 2【答案】D【分析】根据二次函数的性质,逐一进行判断即可.【解析】解:∵y =-x 2,a =-1<0,对称轴为y 轴,∴在y 轴左侧,y 随x 的增大而增大,在y 轴右侧,y 随x 的增大而减小,抛物线上的点离对称轴越远,函数值越小;A 、x 1>x 2,y 1不一定大于y 2,例如x 1=1时,y 1=-1,x 2=-1时,y 2=-1,此时x 1>x 2,但是y 1=y 2;故选项A 错误;B 、x 1<x 2,y 1不一定小于y 2,例如x 1=-1时,y 1=-1,x 2=1时,y 2=-1,此时x 1<x 2,但是y 1=y 2;故选项B 错误;C 、当x 1x 2<x 2 2,y 1不一定大于y 2,例如x 1=-3时,y 1=-9,x 2=1时,y 2=-1,此时x 1x 2=-3<x 22=1,但是y1<y2;故选项C错误;D、当x1x2>x22,即:x1x2>x2x2>0,∴x1<x2<0或x1>x2>0,当x1<x2<0时,y1<y2,当x1>x2>0时,y1<y2,∴当x1x2>x22时,y1<y2;故选项D正确;故选D.【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的性质,是解题的关键.本题可以利用特殊值法进行排除,进行判断.21(2023·浙江杭州·统考二模)已知二次函数y1=(ax+1)(bx+1),y2=(x+a)(x+b),(a,b为常数,且ab≠0),则下列判断正确的是()A.若ab<1,当x>1时,则y1>y2B.若ab>1,当x<-1时,则y1>y2C.若ab<-1,当x<-1时,则y1>y2D.若ab>-1,当x>1时,则y1>y2【答案】B【分析】先计算y1-y2=ax+1x+1x-1,再根据各选项给=ab-1x+bbx+1-x+a定的条件逐一分析即可得到答案.【解析】解:∵ab<1,x>1,∴ab-1<0,x-1>0,x+1>0,∴y1-y2=ax+1bx+1x+b-x+a=abx2+ax+bx+1-x2-ax-bx-ab=ab-1x2+1-ab=ab-1,x-1x+1∴y1-y2<0;∴y1<y2;故A不符合题意;∵ab>1,x<-1,∴ab-1>0,x-1<0,x+1<0,∴y1-y2>0;∴y1>y2;故B符合题意;∵ab<-1,x<-1,∴ab-1<0,x-1<0,x+1<0,∴y1-y2<0;∴y1<y2;故C不符合题意;∵ab>-1,x>1,∴ab-1>-2,x-1>0,x+1>0,∴y1-y2可以比0大,也可以比0小;∴y1,y2的大小不确定;故D不符合题意;故选B【点睛】本题考查的是二次函数的函数值的大小比较,因式分解的应用,熟练的利用作差的方法比较大小是解本题的关键.22(2023·浙江杭州·统考二模)点P m ,n 在二次函数y =ax 2-2ax a ≠0 的图象上,针对n 的不同取值,存在点P 的个数不同,甲乙两位同学分别得到如下结论:甲:若P 的个数为1,则n =-a ;乙:若P 的个数为2,则n ≥-a 则下列判断中正确的是()A.甲正确,乙正确B.甲正确,乙错误C.甲错误,乙正确D.甲错误,乙错误【答案】B【分析】根据抛物线的对称性可知,当n 是顶点的纵坐标时,P 的个数为1,当n 不是顶点纵坐标时,P 的个数为2,即可得出结论.【解析】解:∵y =ax 2-2ax =a x -1 2-a ,∴抛物线的顶点坐标为:1,-a ,∵点P m ,n 在二次函数y =ax 2-2ax a ≠0 的图象上,∴当n =-a 时,点P 为抛物线的顶点,只有1个,当n ≠-a 时,根据抛物线的对称性,点P 的个数为2;∴甲正确,乙错误;故选B .【点睛】本题考查二次函数的图象和性质.熟练掌握抛物线的对称性,是解题的关键.23(2023·浙江宁波·校考二模)已知点A x 1,y 1 ,B x 2,y 2 在抛物线y =-(x -4)2+m (m 是常数)上.若x 1<4<x 2,x 1+x 2>8,则下列大小比较正确的是()A.y 1>y 2>mB.y 2>y 1>mC.m >y 1>y 2D.m >y 2>y 1【答案】C【分析】根据二次函数的性质得到抛物线y =-(x -4)2+m 的开口向下,有最大值为m ,对称轴为直线x =4,根据x 1<4<x 2,x 1+x 2>8,设A x 1,y 1 的对称点为A 1(x 0,y 1),得出x 1+x 0=8,则在对称轴右侧,y 随x 的增大而减小,则当4<x 0<x 2时,m >y 1>y 2.【解析】解:∵y =-x -4 2+m ,∴a =-1<0,∴当x =4时,有最大值为y =m ,∴抛物线开口向下,∵抛物线y =-x -4 2+m 对称轴为直线x =4,设A x 1,y 1 的对称点为A 1(x 0,y 1),即x 0>4,∴x 1+x02=4,∴x 1+x 0=8,∵x 1+x 2>8,∴x 1+x 2>x 1+x 0,∴x 2>x 0,∴4<x 0<x 2,∴m >y 1>y 2.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数y =ax 2+bx +c (a ≠0)的图象为抛物线,则抛物线上的点的坐标满足其解析式;当a <0,抛物线开口向下;对称轴为直线x =-b2a,在对称轴左侧,y 随x 的增大而增大,在对称轴右侧,y 随x 的增大而减小.24(2023·统考二模)已知二次函数y =x 2+bx +c 过点A x 1,y 1 ,B x 1+t ,y 2 ,C x 1+2t ,y 3 三点.记m =y 2-y 1,n =y 3-y 2,下列命题正确的是()A.若n -m >2,则t <-1B.若n -m <2,则t >-1C.若t >1,则n -m >2D.若t <1,则n -m <2【答案】C【分析】根据题意求出m 和n ,再计算n -m ,再分别分析各选项即可得出真命题.【解析】解:由题意可得:m =y 2-y 1=x 1+t 2+b x 1+t +c -x 12+bx 1+c =x 1+t 2+b x 1+t -x 12-bx 1=t 2+2tx 1+bt n =y 3-y 2=x 1+2t 2+b x 1+2t +c -x 1+t 2+b x 1+t +c =x 1+2t 2+b x 1+2t +c -x 1+t 2-b x 1+t -c =3t 2+2tx 1+bt∴n -m =3t 2+2tx 1+bt -t 2+2tx 1+bt =2t 2,若n -m >2,则2t 2>2,∴t >1或t <-1,故A 是假命题;若n -m <2,则2t 2<2,∴-1<t <1,故B 是假命题;若t >1,则n -m =2t 2>2,故C 为真命题;若t <1,则0<2t 2<2,即0<n -m <2,故D 为假命题,故选C .【点睛】本题考查了二次函数图像上的点,最值,解题的关键是将对应点代入,计算并化简得到n -m =2t 2.25(2023·浙江杭州·统考二模)已知y 关于x 的二次函数y =2mx 2+1-m x -1-m ,下列结论中正确的序号是()①当m =-1时,函数图象的顶点坐标为12,12;②当m ≠0时,函数图象总过定点:③当m >0时,函数图象在x 轴上截得的线段的长度大于32;④若函数图象上任取不同的两点P 1x 1,y 1 、P 2x 2,y 2 ,则当m <0时,函数在x >14时一定能使y 2-y 1x 2-x 1<0成立.A.①②③B.①③④C.②③④D.①②④【答案】A【分析】求出当m =-1时,二次函数图象的顶点坐标即可判断①;当m ≠0时,二次函数y =m 2x 2-x -1 +x -1,当2x 2-x -1=0时,y 的值与m 无关,求出x 的值,即可得到定点,即可判断。

中考数学专题复习目录

中考数学专题复习目录

中考数学专题复习目录
目录
第一章数与式第一讲实数
第二讲实数的运算
第三讲整式
第四讲因式分解
第五讲分式
第六讲二次根式
第二章方程与不等式第七讲一次方程(组)
第八讲一元二次方程及应用
第九讲分式方程
第十讲一元一次不等式(组)
第三章函数及其图象第十一讲:平面直角坐标系与函数第十二讲一次函数
第十三讲反比例函数
第十四讲二次函数的同象和性质
第十五讲二次函数的综合题及应用
第四章图形的认识与三角形第十六讲图形初步及相交线、平行线第十七讲三角形与全等三角形
第十八讲等腰三角形与直角三角形第十九讲解直角三角形
第五章四边形第二十讲多边形与平行四边形
第二十一讲矩形菱形正方形
第二十二讲梯形
第六章圆第二十三讲圆的有关概念及性质第二十四讲与圆有关的位置关系第二十五讲与圆有关的计算
第七章图形与变换第二十六讲平移、旋转与对称
第二十七讲相似图形
第二十八讲投影与视图
第八章统计与概率第二十九讲数据的收集与处理。

中考数学复习考点知识与题型专题讲义16--- 二次函数与不等式(组)(提高篇)

中考数学复习考点知识与题型专题讲义16--- 二次函数与不等式(组)(提高篇)

中考数学复习考点知识与题型专题讲义16 二次函数与不等式(组)(提高篇)1.关于x的二次函数y1=kx2+(2k﹣1)x﹣2(k为常数)和一次函数y2=x+2.(1)求证:函数y1=kx2+(2k﹣1)x﹣2的图象与x轴有交点.(2)已知函数y1的图象与x轴的两个交点间的距离等于3,①试求此时k的值;②若y1>y2,试求x的取值范围.【分析】(1)证明△=b2﹣4ac≥0,便可得结论;(2)①函数y1的图象与x轴的两个交点间的距离等于3,根据根与系数的关系列出k的方程,便可求解;②分k=1和k=−15两种情况,依据y1>y2列出关于x的不等式,解之可得.【解答】解:(1)∵△=(2k﹣1)2+8k=4k2﹣4k+1+8k=4k2+4k+1=(2k+1)2≥0,∴函数y1=kx2+(2k﹣1)x﹣2的图象与x轴有交点;(2)①设kx2+(2k﹣1)x﹣2=0的两根为x1,x2,则x1+x2=−2k−1k,x1x2=−2k,∴(x1−x2)2=(x1+x2)2−4x1x2=(2k+1)2k2,∵函数y1的图象与x轴的两个交点间的距离等于3,∴|x1﹣x2|=3,∴(2k+1)2k2=32,解得,k=1或k=−1 5;②当k=1时,y1=(x+2)(x﹣1),y2=x+2∵y1>y2,∴(x+2)(x﹣1)>x+2,即(x+2)(x﹣2)>0,解得:x<﹣2或x>2;当k=−15时,∵y1>y2,∴−15(x+2)(x+5)>x+2,即(x+2)(x+10)<0,解得:﹣10<x<﹣2.【点评】本题主要考查二次函数与不等式组及二次函数与x轴的交点,熟练掌握二次函数的图象和性质是解题的关键.2.已知二次函数y1=−12x2+bx+c(b,c是常数)与一次函数y2=kx+c(k是常数,k≠0).(1)若y1的图象与x轴只有一个交点(2,0),求b,c的值;(2)若y1的图象可由抛物线y=ax2+2c(a是常数,a≠0)向左平移2个单位,向上平移1个单位得到,求出y1的函数关系式;(3)若k+b=3,当x≥2时,y1<y2恒成立,求k的取值范围.【分析】(1)抛物线的对称轴x=−b2a=b=2,当x=2时,y1=0,即可求解;(2)由平移的性质即可求解;(3)两个函数交点的横坐标为2或2b﹣2k,当x≥2时,y1<y2恒成立,即:2b﹣2k≥2,即可求解.【解答】解:(1)抛物线的对称轴x=−b2a=b=2,当x=2时,y1=−12x2+bx+c=﹣2+4+c=0,解得:c=﹣2,故b=2,c=﹣2;(2)由题意得:a=−12,则y=−12(x+2)2+2c+1=−12x2﹣2x+2c﹣1=−12x2+bx+c,故2c﹣1=c,解得:c=1,故抛物线的表达式为:y=−12x2﹣2x+1;(3)联立两个函数的表达式并整理得:x2=2b﹣2kx,解得:x=0或2b﹣2k,又∵k+b=3,故两个函数的交点的横坐标为0或6﹣4k,当6﹣4k≤0时,即k≥1.5时,恒有y1<y2;当0<k<1.5时,6﹣4k≤2,即1≤k<1.5;当k<0时,6﹣4k≤2,解得k≥1,故无解;当k=1时,b=2,当x=2时,有y1=y2,综上,k>1.【点评】本题考查的是二次函数综合运用,涉及到一次函数、图形的平移、解不等式等,有一定的综合性,难度适中.3.如图,抛物线y1=ax2+c的顶点为M,且抛物线与直线y2=kx+1相交于A、B两点,且点A在x 轴上,点B的坐标为(2,3),连结AM、BM.(1)a=1,c=﹣1,k=1(直接写出结果);(2)当y1<y2时,则x的取值范围为﹣1<x<2(直接写出结果);(3)在直线AB下方的抛物线上是否存在一点P,使得△ABP的面积最大?若存在,求出△ABP 的最大面积及点P坐标.【分析】(1)将点B的坐标(2,3)代入y2=kx+1求得k值;再令y2=0,可求得点A的坐标;将A(﹣1,0)、B(2,3)代入y1=ax2+c,解方程组可求得a和c的值;(2)由A(﹣1,0)、B(2,3),结合函数图象可得答案;(3)如图,设平行于直线y2=x+1的直线解析式为:y3=x+b,则该直线与抛物线在第四象限相切时,△ABP的面积最大,由一元二次方程的根的判别式可求得b值,从而可得点P坐标及y3=x+b 的解析式,从y3=x+b与x轴的交点C向直线y2=kx+1作垂线段CD,在等腰直角三角形△ACD 中,可求得CD的长;求得AB的长,利用三角形的面积公式,可得答案.【解答】解:(1)将点B的坐标(2,3)代入y2=kx+1得:3=2k+1解得:k=1∴y2=x+1令y2=0得:0=x+1解得:x=﹣1∴A(﹣1,0)将A(﹣1,0)、B(2,3)代入y1=ax2+c得:{0=a+c3=4a+c解得:a=1,c=﹣1故答案为:1,﹣1,1;(2)∵A (﹣1,0)、B (2,3)∴结合图象可得:当y 1<y 2时,则x 的取值范围为﹣1<x <2故答案为:﹣1<x <2;(3)在直线AB 下方的抛物线上存在一点P ,使得△ABP 的面积最大.如图,设平行于直线y 2=x +1的直线解析式为:y 3=x +b由{y 2=x 2−1y 3=x +b得:x 2﹣1=x +b ∴x 2﹣x ﹣1﹣b =0令△=0得:1﹣4(﹣1﹣b )=0解得:b =−54∴y 3=x −54,∴x 2﹣x ﹣1+54=0解得:x 1=x 2=12∴P (12,−34) ∴当点P 坐标为(12,−34)时,△ABP 的面积最大 设y 3=x −54与x 轴交于点C ,则点C 坐标为:(54,0),过点C 作CD ⊥AB 由平行线间的距离处处相等,可知线段CD 的长度即为△ABP 的高的长度∵y 2=x +1与x 轴所成锐角为45°∴△ACD 为等腰直角三角形∵AC =54−(﹣1)=94∴CD =√2=94√2=9√28 ∵A (﹣1,0)、B (2,3)∴AB =√(2+1)2+32=3√2∴△ABP 的面积为:12×3√2×9√28=278∴在直线AB 下方的抛物线上存在一点P ,使得△ABP 的面积最大;△ABP 的最大面积为278;点P坐标为(12,−34).【点评】本题考查了求一次函数、二次函数的解析式中的相关字母、构成的三角形的面积最大值的动点的存在性、二次函数与不等式的关系、抛物线与直线的交点个数与一元二次方程的实数根的关系等知识点,具有一定的综合性与难度.4.已知在同一平面直角坐标系中有函数y 1=ax 2﹣2ax +b ,y 2=﹣ax +b ,其中ab ≠0.(1)求证:函数y 2的图象经过函数y 1的图象的顶点;(2)设函数y 2的图象与x 轴的交点为M ,若点M 关于y 轴的对称点M '在函数y 1图象上,求a ,b 满足的关系式;(3)当﹣1<x <1时,比较y 1与y 2的大小.【分析】(1)将函数y 1的解析式配方,即可找出其顶点坐标,将顶点坐标代入函数y 2的解析式中,即可证得结论;(2)设函数y 2的图象与x 轴的交点M (m ,0),则点M 关于y 轴的对称点M '(﹣m ,0),根据图象上点的坐标特征得出{−am +b =0am 2+2am +b =0,解得b =﹣3a ; (3)两函数解析式做差,即可得出y 1﹣y 2=ax (x ﹣1),根据x 的取值范围可得出x (x ﹣1)的符号,分a >0或a <0两种情况考虑,即可得出结论.【解答】解:(1)证明:∵y 1=ax 2﹣2ax +b =a (x ﹣1)2﹣a +b ,∴函数y 1的顶点为(1,﹣a +b ),把x =1代入y 2=﹣ax +b 得,y =﹣a +b ,∴函数y 2的图象经过函数y 1的图象的顶点;(2)设函数y 2的图象与x 轴的交点M (m ,0),则点M 关于y 轴的对称点M '(﹣m ,0),由题意可知{−am +b =0am 2+2am +b =0,解得b =﹣3a ; (3)∵y 1=ax 2﹣2ax +b ,y 2=﹣ax +b ,∴y 1﹣y 2=ax (x ﹣1).∵﹣1<x <1,∴当﹣1<x <0,x (x ﹣1)>0.当0<x <1,x (x ﹣1)<0,当x =0,x (x ﹣1)=0, ∴y 1=y 2;当a >0且﹣1<x <0时,ax (x ﹣1)>0,y 1>y 2;当a >0且0<x <1时,ax (x ﹣1)<0,y 1<y 2;当a <0且﹣1<x <0时,ax (x ﹣1)<0,y 1<y 2;当a <0且0<x <1时,ax (x ﹣1)>0,y 1>y 2.【点评】本题考查了二次函数的图象上点的坐标特征,二次函数的性质,分类讨论是解题的关键.5.已知抛物线C :y 1=﹣x 2+bx +4.(1)如图,抛物线与x 轴相交于两点(1﹣m ,0)、(1+m ,0).①求b 的值;②当n ≤x ≤n +1时,二次函数有最大值为3,求n 的值.(2)已知直线l :y 2=2x ﹣b +9,当x ≥0时,y 1≤y 2恒成立,求b 的取值范围.【分析】(1)﹣x2+bx+4=0,x1+x2=b−1=1﹣m+1+m=2,b=2;(2)分n+1≤1即n≤0、n≤1≤n+1即0≤n≤1、iii:n≥1三种情况,分别求解即可;(3)①:△≤0,(2﹣b)2﹣4(5﹣b)≤0;②:△>0,则b>4或b<﹣4,即可求解.【解答】解:(1)﹣x2+bx+4=0x1+x2=b−1=1﹣m+1+m=2,b=2;(2)抛物线开口向下,对称轴左侧y随x的增大而增大;对称轴右侧,y随x的增大而减小.i:n+1≤1即n≤0,当x=n+1时,y有最大值,﹣(n+1)2+2(n+1)+4=3,n=±√2,又∵n≤0,∴n=−√2,ii:n≤1≤n+1即0≤n≤1,当x=1时y有最大值,﹣12+2<1+4=3不成立,iii:n≥1时,当x=n时,y有最大值,﹣n2+2n+4=3,解得n=1±√2,又∵n≥1,∴n=1+√2,综上所述:n=−√2或n=1+√2;(3)y1≤y2,﹣x2+bx+4≤2x﹣b+9,x2+(2﹣b)x+5﹣b≥0,①:△≤0,(2﹣b)2﹣4(5﹣b)≤0,﹣4≤b≤4;②:△>0则b>4或b<﹣4,i:−2−b2>0,不成立,ii:{−2−b2≤05−b≥0,b≤2,又∵b>4或b<﹣4,∴b<﹣4,综上所述b≤4.【点评】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.6.如图,已知直线y1=﹣x+3与x轴交于点B,与y轴交于点C,抛物y2=ax2+bx+c经过点B,C并与x轴交于点A(﹣1,0).(1)求抛物线解析式,并求出抛物线的顶点D坐标(1,4);(2)当y2<0时、请直接写出x的取值范围x<﹣1或x>3;(3)当y1<y2时、请直接写出x的取值范围0<x<3;(4)将抛物线y2向下平移,使得顶点D落到直线BC上,求平移后的抛物线解析式y=x2+2x+1.【分析】(1)列方程得到C(0,3),B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),列方程即可得到结论;(2)由图象即可得到结论;(3)由图象即可得到结论;(4)当根据平移的性质即可得到结论.【解答】解:(1)对于y1=﹣x+3,当x=0时,y=3,∴C(0,3),当y=0时,x=3,∴B(3,0),∵抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线解析式为y=a(x+1)(x﹣3),抛物线过点C(0,3),∴3=a(0+1)(0﹣3),解得:a=1,∴y=(x+1)(x﹣3)=x+2x+3,∴顶点D(1,4);(2)由图象知,当y2<0时、x的取值范围为:x<﹣1或x>3;(3)由图象知当y1<y2时、x的取值范围为:0<x<3;(4)当x=1时,y=﹣1+3=2,∵抛物线向下平移2个单位,∴抛物线解析式为y=﹣x2+2x+3﹣2=﹣x2+2x+1.故答案为:(1)(1,4);(2)x<﹣1或x>3;(3)0<x<3;(4)y=﹣x2+2x+1.【点评】本题考查了二次函数的性质,待定系数法取函数的解析式,正确的理解题意是解题的关键.7.如图,已知抛物线y1=ax2+k经过点(﹣2,﹣2)和(0,2)(1)求y1的解析式;(2)直接写出:抛物线y1向右平移一个单位,当y1>y2时,自变量x的取值范围为x<12.【分析】(1)依题意得:k=2,将点(﹣2,﹣2)代入函数表达式得:﹣2=4a+2,解得:a=﹣1,即可求解;(2)y2=﹣(x﹣1)2+2,联立①②并解得:x=12,即可求解.【解答】解:(1)依题意得:k=2,将点(﹣2,﹣2)代入函数表达式得:﹣2=4a+2,解得:a=﹣1,故抛物线的表达式为:y1=﹣x2+2…①;(2)y2=﹣(x﹣1)2+2…②,联立①②并解得:x=1 2,从图象可以看出,当y1>y2时,自变量x的取值范围为:x<1 2;故答案为:x<1 2.【点评】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.8.已知二次函数y=﹣x2+4x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(6,0),与y轴交于点B,点P是二次函数对称轴上的一个动点,当PB+P A的值最小时,求P的坐标;(3)在(2)的条件下,根据图象直接写出使一次函数值大于二次函数值的x的取值范围.【分析】(1)由抛物线与x轴有两个交点可知△>0,从而得到关于m的不等式,然后求得不等式的解集即可;(2)连结AB,与对称轴交于点P,此时PB+P A最小.根据抛物线解析式求出B(0,12),利用待定系数法求出直线AB的解析式,于是得到结论;(3)根据图象即可求得使一次函数值大于二次函数值的x的取值范围.【解答】解:(1)∵二次函数的图象与x轴有两个交点,∴△=42+4m>0.解得:m>﹣4.(2)连结AB,与对称轴交于点P,此时PB+P A最小.把(6,0)代入y =﹣x 2+4x +m ,得﹣62+4×6+m =0.解得m =12.故该抛物线解析式是y =﹣x 2+4x +12当x =0时,y =12,则B (0,12).设直线AB 的解析式为y =mx +n ,∵A (6,0),B (0,12),∴{6m +n =0n =12,解得∴{m =−2n =12, ∴直线AB 的解析式为y =﹣2x +12,∵y =﹣x 2+4x +12=﹣(x ﹣2)2+16,∴对称轴是直线x =2.把x =2代入y =﹣2x +12得,y =﹣4+12=8,∴P (2,8);(3)∵A (6,0),B (0,12),使一次函数值大于二次函数值的x 的取值范围是x <0或x >6.【点评】本题是二次函数综合题,其中涉及到二次函数与不等式,二次函数的性质,函数图象上点的坐标特征,轴对称﹣最短路线问题等知识,利用数形结合是解题的关键.9.如图,一次函数y =﹣2x +6的图象与y 轴交于A 点,与x 轴交于B 点,二次函数y =﹣x 2+bx +c 的图象经过A 、B 两点.(1)求二次函数的解析式;(2)根据图象直接写出当x 取何值时,﹣2x +6>﹣x 2+bx +c >0;(3)点P 是抛物线在第一象限上的一个动点,是否存在点P ,使△ABP 面积最大,若存在,求出此时点P 坐标以及△ABP 面积,若不存在,请说明理由.【分析】(1)先求出一次函数y =﹣2x +6与y 轴、x 轴交点A 、B 的坐标,再用待定系数法求出二次函数的解析式;(2)观察图象直接得到答案;(3)过点P 作y 轴的平行线PQ 交AB 于点Q ,先利用图象上点的特征表示出P 、Q 两点的坐标,再求出PQ 的长,进而表示出△ABP 的面积,利用顶点坐标求最值.【解答】解:∵一次函数y =﹣2x +6的图象与y 轴交于A 点,与x 轴交于B 点,∴A (0,6),B (3,0),∵二次函数y =﹣x 2+bx +c 的图象经过A 、B 两点,∴{c =6−9+3b +c =0, 解得:{b =1c =6, ∴二次函数的解析式的解析式为:y =﹣x 2+x +6;(2)当y =0时,﹣x 2+x +6=0,解得x 1=﹣2,x 2=3,∴抛物线与x 轴交点坐标为(﹣2,0),(3,0),当﹣2<x <0或x >3时,﹣2x +6>﹣x 2+bx +c ,但只有当﹣2<x <0时,﹣2x +6>﹣x 2+bx +c >0,当﹣2<x <0时,﹣2x +6>﹣x 2+bx +c >0;(3)过点P 作y 轴的平行线PQ 交AB 于点Q ,由点P在y=﹣x2+x+6的图象上,可设P(m,﹣m2+m+6)(0<m<3),则Q(m,﹣2m+6),则PQ=﹣m2+m+6+2m﹣6=﹣m2+3m,∴S△ABP=12OB×PQ=12×3×(﹣m2+3m)=−32(m−32)2+278,∵﹣2<0,∴当m=32时,即P点坐标为(32,214)时,S△ABP取得最大值,最大值为278.【点评】本题考查了用待定系数法求二次函数解析式、二次函数与坐标轴的交点问题、二次函数与不等式组、二次函数的最值问题,观察图象、求出特殊点坐标是解题的关键.10.如图,二次函数y=x2﹣4x+3与一次函数y=x﹣1的图象交于点A及点B,与y轴交于点C.(1)求点A、B、C的坐标;(2)根据图象,直接写出满足x﹣1≥x2﹣4x+3的x的取值范围;(3)在抛物线的对称轴上是否存在一点P,使得P A+PC最小,求点P坐标及P A+PC的最小值.【分析】(1)根据题意解方程组即可得到结论;(2)根据函数图象点A以及点A右边的部分,点B以及点B左边的部分的自变量x的取值范围即为不等式的解集;(3)根据点B 是点C 关于该二次函数图象的对称轴对称的点,于是得到直线AB 与对称轴的交点即为点P ,P A +PC 最小值=AB ,根据勾股定理得到AB ,把x =2代入y =x ﹣1即可得到结论.【解答】解:(1)在y =x 2﹣4x +3中,令x =0,得y =3,∴C (0,3),解{y =x 2−4x +3y =x −1得,{x =1y =0,{x =4y =3, ∴A (1,0),B (4,3);(2)由图象可知,满足kx +b ≥x 2﹣4x +m 的x 的取值范围为:1≤x ≤4;(3)存在,∵点B 是点C 关于该二次函数图象的对称轴对称的点,∴直线AB 与对称轴的交点即为点P ,则P A +PC 最小值=AB ,∴AB =√(4−1)2+(3)2=3√2,把x =2代入y =x ﹣1得,y =1,∴P (2,1),P A +PC 最小值=3√2.【点评】本题考查了二次函数与不等式(组),待定系数法求二次函数解析式,待定系数法求一次函数解析式,轴对称的性质,难点在于求出点B 的坐标.11.直线y 1=x +m 与抛物线y 2=ax 2+bx +c 交于P 、Q (2,3)两点,其中P 在x 轴上,Q (2,3)是抛物线y 2的顶点.(1)求y 1与y 2的函数解析式;(2)求函数值y 1<y 2时x 的取值范围.【分析】(1)先求出Q 点的坐标,再求出直线的解析式,再把Q 、P 的坐标代入二次函数的解析式求出a 的值即可;(2)根据函数的性质和交点坐标得出即可.【解答】解:(1)把点Q(2,3)代入y=x+m,∴3=2+m,∴m=1,∴y1=x+1,∴令y=0,x+1=0,∴x=﹣1,∴P(﹣1,0),∴顶点为(2,3),∴设抛物线y=a(x﹣2)2+3,把P(﹣1,0)代入得:0=a(﹣1﹣2)2+3,解得:a=−1 3,∴y2=−13(x−3)2+3,即y=−13x2+43x+53;(2)∵直线y1=x+1与抛物线y2=−13(x﹣3)2+3交于P(﹣1,0)、Q(2,3)两点,∴函数值y1<y2时x的取值范围是﹣1<x<2.【点评】本题考查了一次函数与二次函数的交点问题,一次函数和二次函数的图象和性质,用待定系数法求一次函数与二次函数的解析式等知识点,能求出两函数的解析式是解此题的关键.12.已知抛物线y=x2+(1﹣3m)x﹣3m,(−14<m≤2).直线l:y=(k+1)x﹣3m+4.(1)若该抛物线与y轴交点的纵坐标为﹣4,求该抛物线的顶点坐标.(2)证明:该抛物线与直线l必有两个交点.(3)若该抛物线经过点(t,﹣4),且对任意实数x,不等式x2+(1﹣3m)x﹣3m≥﹣4都成立;当k﹣2≤x≤k时,该二次函数的最小值为﹣2k+1.求直线l的解析式.【分析】(1)依题意可知﹣3m=﹣4,即可求解;(2)将y=(k+1)x﹣3m+4代入y=x2+(1﹣3m)x﹣3m,整理得:x2﹣(k+3m)x﹣4=0,△=[﹣(k+3m)]2﹣4×(﹣4)=(k+3m)2+16>0,即可求解;(3)分k<1、1≤k≤3、k>3三种情况,分别求解即可.【解答】解:(1)依题意可知﹣3m=﹣4,解得:m=4 3,∴该抛物线对应的函数解析式为y=x2−3x−4=(x−32)2−254,∴该抛物线的顶点坐标为(32,−254).(2)联立y=(k+1)x﹣3m+4和y=x2+(1﹣3m)x﹣3m并整理得:x2﹣(k+3m)x﹣4=0,∵△=[﹣(k+3m)] 2﹣4×(﹣4)=(k+3m)2+16>0,∴该抛物线与直线l必有两个交点.(3)∵由抛物线经过点(t,﹣4),且对任意实数x,不等式x2+(1﹣3m)x﹣3m≥﹣4都成立,∴抛物线y=x2+(1﹣3m)x﹣3m的最小值为﹣4,∵y=x2+(1﹣3m)x﹣3m=(x+1−3m2)2−3m−(1−3m2)2=(x+1−3m2)2−9m2+6m+14,∴−9m2+6m+14=−4,整理得3m2+2m﹣5=0,解得m=1或m=−53(−53<−14,舍去),∴当m=1时,抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,①当k<1时,函数值y随x的增大而减小,∴当x=k时,y min=k2﹣2k﹣3,∴k2﹣2k﹣3=﹣2k+1,解得k=﹣2或k=2(舍去),∴直线l的解析式为y=﹣x+1;②当k﹣2≤1≤k时,即1≤k≤3,当x=1时,y min=﹣4=﹣2k+1,解得k=5 2,∴直线l的解析式为y=72x+1;③当k﹣2>1时,函数值y随x的增大而增大,∴当x=k﹣2时,y min=(k﹣2)2﹣2(k﹣2)﹣3,∴(k﹣2)2﹣2(k﹣2)﹣3=﹣2k+1,解得k1=k2=2(舍去),综上,直线l的解析式为y=﹣x+1或y=72x+1.【点评】本题考查的是二次函数与不等式(组)和待定系数法求二次函数解析式,解题的关键是确定函数图象的交点,根据交点处图象之间的位置关系,确定不等式的解集.13.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.【分析】(1)将点A的坐标代入二次函数解析式求出m的值,再根据二次函数解析式求出点C的坐标,然后求出点B 的坐标,最后利用待定系数法求一次函数解析式求解即可;(2)根据函数图象点A 以及点A 右边的部分,点B 以及点B 左边的部分的自变量x 的取值范围即为不等式的解集.【解答】解:(1)∵抛物线y =(x +2)2+m 经过点A (﹣1,0),∴0=1+m ,∴m =﹣1,∴抛物线解析式为y =(x +2)2﹣1=x 2+4x +3,∴点C 坐标(0,3),∵对称轴x =﹣2,B 、C 关于对称轴对称,∴点B 坐标(﹣4,3),∵y =kx +b 经过点A 、B ,∴{−k +b =0−4k +b =3, 解得{k =−1b =−1, ∴一次函数解析式为y =﹣x ﹣1;(2)由图象可知,满足(x +2)2+m ≥kx +b 的x 的取值范围为x ≤﹣4或x ≥﹣1.【点评】本题考查了二次函数与不等式,待定系数法求二次函数解析式,待定系数法求一次函数解析式,难点在于求出点B 的坐标.14.如图,一元二次方程x 2+2x ﹣3=0的二根x 1,x 2(x 1<x 2)是抛物线y =ax 2+bx +c 与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6).(1)求此二次函数的解析式;(2)写出不等式ax 2+bx +c ≥0的解集;(3)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;(4)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.【分析】(1)先求出一元二次方程的两个根,即可知与x轴的两个交点的坐标,进而即可求出二次函数的解析式;(2)根据B、C两点的坐标可求出二次函数的顶点坐标及对称轴,根据A、C两点坐标可求出直线AC的解析式,再联立两个方程即可求出Q点的坐标;(3)根据两点之间线段最短,当此三点在同一条直线上时MQ+MA取得最小值,作A点关于x轴的对称点进而求得M点的坐标.【解答】解:(1)一元二次方程x2+2x﹣3=0的二根x1,x2(x1<x2)为:x1=﹣3,x2=1.∴抛物线y=ax2+bx+c与x轴的两个交点的坐标为B(1,0),C(﹣3,0).设二次函数的解析式为y=a(x+3)(x﹣1),∵抛物线过点A(3,6).∴6=a(3+3)(3﹣1),解得a=1 2.∴二次函数的解析式为y=12(x+3)(x﹣1)=12x2+x−32.(2)根据图象可知:不等式ax2+bx+c≥0的解集为:x≤﹣3或x≥1;(3)由y=12x2+x−32.∴抛物线的顶点坐标为P(﹣1,﹣2),对称轴方程为x=﹣1.设直线AC解析式为y=kx+b,将A(3,6),C(﹣3,0),代入解得:k=1,b=3,直线AC解析式为y=x+3.将x=﹣1代入,得y=2.∴Q(﹣1,2).(4)作点A关于x轴的对称点A′(3,﹣6),连接A′Q,A′Q与x轴交于点M即为所求的点.设直线A′Q的解析式为y=kx+b,将A′(3,﹣6),Q(﹣1,2)代入解得:k=﹣2,b=0.∴直线A′C的解析式为y=﹣2x.令x=0,则y=0.∴M(0,0).【点评】本题考查了二次函数的综合知识,解决本题的关键是综合运用二次函数相关知识.15.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求△MCB的面积;(3)根据图形直接写出使一次函数值大于二次函数值的x的取值范围.【分析】(1)把A点、C点和D点坐标代入y=ax2+bx+c得到关于a、b、c的方程组,然后解方程求出a、b、c即可得到抛物线解析式;(2)连接OM,如图,先把(1)中解析式配成顶点式得到M(2,9),再利用对称性得到B(5,0),然后利用S△BCM=S△OCM+S△BOM﹣S△OBC进行计算;(3)观察函数图象,写出一次函数图象在抛物线上方所对应的自变量的范围即可.【解答】解:(1)∵A(﹣1,0),C(0,5),D(1,8)三点在抛物线y=ax2+bx+c上,∴{a−b+c=0c=5a+b+c=8解方程组得{a=−1b=4c=5,∴抛物线的解析式为y=﹣x2+4x+5;(2)连接OM,如图,∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴M(2,9),∵抛物线的对称轴为直线x=2,∴B(5,0),∴S△BCM=S△OCM+S△BOM﹣S△OBC=12×5×2+12×5×9−12×5×5=15;(3)x<0或x>2.【点评】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了待定系数法求抛物线解析式.16.如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.【分析】(1)把A坐标代入二次函数解析式求出c的值,确定出二次函数解析式,把B坐标代入求出n 的值,把A 与B 坐标代入一次函数解析式求出k 与b 的值即可;(2)根据函数图象,确定出所求x 的范围即可;(3)连接AC ,BC ,设直线AB 与y 轴交于点D ,三角形ABC 面积等于三角形ACD 面积+三角形BCD 面积,求出即可.【解答】解:(1)把A (﹣1,2)代入y =﹣x 2+c 得:﹣1+c =2,解得:c =3,∴y =﹣x 2+3,把B (2,n )代入y =﹣x 2+3得:n =﹣1,∴B (2,﹣1),把A (﹣1,2)、B (2,﹣1)分别代入y =kx +b 得{−k +b =22k +b =−1, 解得:{k =−1b =1, ∴y =﹣x +1;(2)根据图象得:使二次函数的值大于一次函数的值的x 的取值范围是﹣1<x <2;(3)连接AC 、BC ,设直线AB 交y 轴于点D ,把x =0代入y =﹣x 2+3得:y =3,∴C (0,3),把x =0代入y =﹣x +1得:y =1,∴D(0,1),∴CD=3﹣1=2,则S△ABC=S△ACD+S△BCD=12×2×1+12×2×2=1+2=3.【点评】此题考查了二次函数与不等式,待定系数法求二次函数解析式,以及待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.17.如图,抛物线y1=ax2+2ax+1与x轴有且仅有一个公共点A,经过点A的直线y2=kx+b交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求a的值;(2)求直线AB对应的函数解析式;(3)直接写出当y1≥y2时,x的取值范围.【分析】(1)根据判别式的意义得到△=4a2﹣4a=0,然后解方程和根据二次函数的定义可确定a 的值;(2)把抛物线的解析式配成顶点式得到A(﹣1,0),则把A点坐标代入y=kx+b中得b=k,所以一次函数解析式为可表示为y=kx+k,则C(0,k),利用线段中点坐标公式得到B(1,2k),然后把B(1,2k)代入y=x2+2x+1求出k即可得到直线AB的解析式;(3)利用函数图象,写出抛物线在直线AB上方所对应的自变量的范围即可.【解答】解:(1)∵抛物线y1=ax2+2ax+1与x轴有且仅有一个公共点A,∴△=4a 2﹣4a =0,而a ≠0,∴a =1;(2)抛物线的解析式为y =x 2+2x +1=(x +1)2,∴A (﹣1,0),把A (﹣1,0)代入y =kx +b 得﹣k +b =0,解得b =k ,∴一次函数解析式为y =kx +k ,当x =0时,y =kx +k =k ,则C (0,k ),∵点C 是线段AB 的中点,∴B (1,2k ),把B (1,2k )代入y =x 2+2x +1得2k =1+2+1,解得k =2,∴直线AB 的解析式为y =2x +2;(3)当x ≤﹣1或x ≥1时,y 1≥y 2.【点评】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了抛物线与x 轴的交点和二次函数的性质.18.如图,在平面直角坐标系中,已知抛物线C 1:y =32x 2+6x +2的顶点为M ,与y 轴相交于点N ,先将抛物线C 1沿x 轴翻折,再向右平移p 个单位长度后得到抛物线C 2:直线l :y =kx +b 经过M ,N 两点.(1)结合图象,直接写出不等式32x 2+6x +2<kx +b 的解集; (2)若抛物线C 2的顶点与点M 关于原点对称,求p 的值及抛物线C 2的解析式.【分析】(1)令抛物线C 1的解析式中x =0,求出y 值即可得出点N 的坐标,再利用配方法将抛物线C 1的解析式配方,即可得出顶点M 的坐标,结合函数图象的上下位置关系,即可得出不等式的解集;(2)找出点M 关于x 轴对称的对称点的坐标,找出点M 关于原点对称的对称点的坐标,二者横坐标做差即可得出p 的值,根据抛物线的开口大小没变,开口方向改变,再结合平移后的抛物线的顶点坐标即可得出抛物线C 2的解析式;【解答】解:(1)令y =32x 2+6x +2中x =0,则y =2,∴N (0,2);∵y =32x 2+6x +2=32(x +2)2﹣4,∴M (﹣2,﹣4).观察函数图象,发现:当﹣2<x <0时,抛物线C 1在直线l 的下方,∴不等式32x 2+6x +2<kx +b 的解集为﹣2<x <0. (2)∵y =32x 2+6x +2抛物线C 1:的顶点为M (﹣2,﹣4),沿x 轴翻折后的对称点坐标为(﹣2,4).∵抛物线C 2的顶点与点M 关于原点对称,∴抛物线C 2的顶点坐标为(2,4),∴p =2﹣(﹣2)=4.∵抛物线C 2与C 1开口大小相同,开口方向相反,∴抛物线C 2的解析式为y =−32(x ﹣2)2+4=−32x 2+6x ﹣2.【点评】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求函数解析式以及根的判别式,解题的关键是:(1)求出M 、N 点的坐标;(2)根据点M 找出抛物线C 2的顶点坐标;19.已知二次函数y =ax 2+bx +c 的图象经过点(﹣2,0),且对一切实数x ,都有2x ≤ax 2+bx +c ≤12x 2+2成立.(1)当x =2时,求y 的值;(2)求此二次函数的表达式;(3)当x =t +m 时,二次函数y =ax 2+bx +c 的值为y 1,当x =t 2时,二次函数y =ax 2+bx +c 的值为y 2,若对一切﹣1≤t ≤1,都有y 1<y 2,求实数m 的取值范围.【分析】(1)可令x =2,可得4≤4a +2b +c ≤4,即有4a +2b +c =4;(2)通过图象过一点点(﹣2,0)得到4a ﹣2b +c =0,由x =2得4a +2b +c =4,再将b 、c 都有a 表示.不等式2x ≤ax 2+bx +c ≤12x 2+2对一切实数x 都成立可转化成两个一元二次不等式即{ax 2−x +2−4a ⩾0(a −12)x 2+x −4a ⩽0恒成立,即可解得a =14; (3)当﹣1≤t ≤1时,y 1﹣y 2<0,可得3t 2+(8+8m )t +4m 2+16m <0 恒成立.设W =3t 2+(8+8m )t +4m 2+16m ,则{3+(8+8m)+4m 2+16m <03−(8+8m)+4m 2+16m <0,由此求得t 的范围. 【解答】解:(1)解:∵不等式2x ≤ax 2+bx +c ≤12x 2+2对一切实数x 都成立,∴当x =2时也成立,即4≤4a +2b +c ≤4,即有y =4;(2)根据二次函数y =ax 2+bx +c 的图象经过点(﹣2,0), 可得4a ﹣2b +c =0 ①,又f (2)=4,即4a +2b +c =4 ②.由①②求得 b =1,4a +c =2,∴y =ax 2+x +2﹣4a ,∴2x ≤ax 2+x +2﹣4a ≤12x 2+2,即{ax 2−x +2−4a ⩾0(a −12)x 2+x −4a ⩽0恒成立, ∴{ a >0△1=1−4a(2−4a)⩽0a −12<0△2=1−4(a −12)⋅(−4a)⩽0, 解得:a =14,∴c =2﹣4a =1,二次函数的表达式为y =14x 2+x +1.(3)∵当﹣1≤t ≤1时,y 1<y 2,即:y 1﹣y 2<0,即[14(t +m)2+(t +m)+1]−[14(t 2)2+t 2+1]<0. 整理得:3t 2+(8+8m )t +4m 2+16m <0,∵当t =1或﹣1时均成立,∴{3+(8+8m)+4m 2+16m <03−(8+8m)+4m 2+16m <0,整理得:{4m 2+24m +11<04m 2+8m −5<0解得:{−112<m <−12−52<m <12,∴−52<m<−12【点评】本题考查了二次函数与不等式恒成立问题,以及二次函数的性质,赋值法(特殊值法)可以使问题变得比较明朗,它是解决这类问题比较常用的方法.20.二次函数y1=ax2+2x过点A(﹣2,0)和点B,过点A,B作一次函数y2=kx+b,若点B的横坐标为1.(1)求出二次函数与一次函数的解析式;(2)根据图象,当y2>y1时,请直接写出x的取值范围;(3)若P点在抛物线y1上,且横坐标为﹣1,求△ABP的面积.【分析】(1)利用待定系数法求二次函数与一次函数的解析式;(2)根据图象直接写出y2>y1时,﹣2<x<1;(3)过P作PQ∥y轴,交AB于Q,依据S△ABP=S△APQ+S△BPQ进行计算即可.【解答】解:(1)如图1,把A(﹣2,0)代入y1═ax2+2x中得:4a+2×(﹣2)=0,a=1,∴二次函数的解析式y1═x2+2x,当x=1时,y1=1+2=3,∴B(1,3),把A(﹣2,0)、B(1,3)代入y2=kx+b中得:{−2k +b =0k +b =3, 解得:{k =1b =2, ∴一次函数的解析式:y 2=x +2;(2)由图象得:当﹣2<x <1时,y 2>y 1;(3)过P 作PQ ∥y 轴,交AB 于Q ,y 1═x 2+2x ,令x =﹣1,则y =﹣1,即P (﹣1,﹣1),y 2=x +2,令x =﹣1,则y =1,即Q (﹣1,1),∴PQ =2,∴S △ABP =S △APQ +S △BPQ =12×2×(1+2)=3.【点评】本题主要考查了利用待定系数法求二次函数与一次函数的解析式;采用数形结合的方式是解决第2小题的关键,第3问中需要运用割补法计算三角形的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题复习 二次函数与方程(组)或不等式◆知识讲解(1)最大值或最小值的求法第一步确定a 的符号:a>0有最小值,a<0有最大值;第二步求顶点,•顶点的纵坐标即为对应的最大值或最小值.(2)y 轴与抛物线y=ax 2+bx+c 的交点为(0,c ).(3)与y 轴平行的直线x=h 与抛物线y=ax 2+bx+c 有且只有一个交点(h ,ah 2+bh+c ).(4)抛物线与x 轴的交点.二次函数y=ax 2+bx+c 的图像与x 轴的两个交点的横坐标x 1,x 2是对应的一元二次方程ax 2+bx+c=0的两个实数根.抛物线与x •轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔△>0⇔抛物线与x 轴相交.②有一个交点(顶点在x 轴上)⇔△=0⇔抛物线与x 轴相切;③没有交点⇔△<0⇔抛物线与x 轴相离.(5)平行于x 轴的直线与抛物线的交点.同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,•两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2+bx+c=k 的两个实数根.(6)一次函数y=kx+n (k≠0)的图像L 与二次函数y=ax 2+bx+c (a≠0)的图像G 的交点,由方程组2y kx ny ax bx c =+⎧⎨=++⎩的解的数目确定:①当方程组有两组不同的解时⇔L与G 有两个交点;②方程组只有一组解时⇔L 与G 只有一个交点;③方程组无解时⇔L 与G 没有交点.(7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x 轴的交点,•再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分.◆例题解析例1 如图所示,已知抛物线y=-12x 2+(5)x+m -3与x 轴有两个交点A ,B ,点A •在x 轴的正半轴上,点B 在x 轴的负半轴上,且OA=OB .(1)求m 的值;(2)求抛物线的解析式,并写出抛物线的对称轴和顶点C 的坐标;(3)问在抛物线上是否存在一点M ,△MAC ≌△OAC ,若存在,求出点M 的坐标;若不存在,请说明理由.【分析】抛物线与x 轴交于A ,B 两点,OA=OB ,故A ,B 两点关于y 轴对称,就可求得m 的值,由抛物线交y 轴的正半轴,得m 的确定值.【解答】(1)∵抛物线与y 轴交于正半轴,且OA=OB .∴3050m a ->⎧⎪⎨=⎪⎩ 由②得m=±5,由①m>3,故m=-5应舍去.∴m=5.(2)抛物线的解析式为y=-12x 2+2,对称轴是y 轴,顶点C 的坐标为C (0,2). (3)令y=0得 -12x 2+2=0,∴x=±2. ∴A (2,0),B (-2,0),C (0,2),△OAC 是等腰直角三角形.若存在一点M ,使△MAC ≌△OAC ,∵AC 为公共边,OA=OC ,∴点M 与O 关于直线AC 对称,∴M 点的坐标为(2,2).当x=2时,-12x 2+2=0≠2. ∴M (2,2)不在抛物线上,即不存在一点M ,使△MAC ≌△OAC .【点评】存在性问题,通常是先假定存在,若能找出具备某种条件或性质的对象,就说明存在,其叙述过程就是理由;若不存在,就需要进一步说明理由.例2 已知二次函数y=x 2-(2m+4)x+m 2-4(x 为自变量)的图像与y 轴的交点在原点下方,与x 轴交于A ,B 两点,点A 在点B 的左边,且A ,B 两点到原点的距离AO ,OB •满足3(•OB -AO )=2AO·OB ,直线y=kx+k 与这个二次函数图像的一个交点为P ,且锐角∠POB •的正切值4.(1)求m 的取值范围;(2)求这个二次函数的解析式;(3)确定直线y=kx+k的解析式.【分析】利用抛物线与x轴的交点A,B的位置及与y轴交点的位置和A,B两点到原点的距离可以求出m的值,再利用一元二次方程根与系数的关系可以求解.【解答】(1)设点A,B的坐标分别为A(x1,0),B(x2,0)(x1<x2),依题意,方程x2-(2m+4)x+m2-4=0有两个不相等的实数根.∴△=[-(2m+4)] 2-4(m2-4)>0.解得m>-2.①又∵函数的图像与y轴的交点在原点下方,∴m2-4<0,∴-2<m<2.②(2)∵图像交y轴于负半轴,与x轴交于A,B两点,且x1<x2,∴x1<0,x2>0.由3(OB-AO)=2AO·OB可得3[x2-(-x1)]=2(-x1)·x2即3(x1+x2)=-2x1x2由于x1,x2是方程x2-(2m+4)x+m2-4=0的两个根,所以x1+x2=2m+4,x1·x2=m2-4.∴3(2m+4)=-2(m2-4)整理,得m2+3m+2=0.∴m=-1或m=-2(舍去).∴二次函数的解析式为y=x2-2x-3.(3)由y=x2-2x-3,得A(-1,0),B(3,0).∵直线y=kx+k与抛物线相交,∴由223,,y x xy kx k⎧=-+⎨=+⎩解得121,0.x y =-⎧⎨=⎩ 或2223,4.x k y k k =+⎧⎨=+⎩ ∵∠POB 为锐角.∴点P 在y 轴右侧,∴点P 坐标为(k+3,k 2+4k ),且k+3>0.∵tan ∠POB=4,∴2|4|3k k k ++=4. 如图所示,当点P 在x 轴上方时.243k k k ++=4.解得k 1k 2=-经检验,k 1,k 2=-k 2+3<0.∴k 2=-∴直线的解析式为当点P 在x 轴下方时,243k k k ++=-4, 解得k 3=-2,k 4=-6.经检验,k 3=-2,k 4=-6是方程的解,但k 4+3<0.∴k 4=-6舍去.∴y=-2x -2.∴所求直线的解析式为,或y=-2x -2.【点评】本题以求解析式为目标,综合了函数,一元二次方程根与系数的关系,三角函数等知识,综合性强,灵活性大,解题关键是认真审题,认真分析纷繁复杂的条件,从中找到解题的突破口,易错点是在第(3)小题中忽视分类讨论而失解.◆强化训练一、填空题1.与抛物线y=2x 2-2x -4关于x 轴对称的图像表示的函数关系式是_______.2.已知二次函数y=(a -1)x 2+2ax+3a -2的图像最低点在x 轴上,那么a=______,此时函数的解析式为_______.3.某涵洞的截面是抛物线型,如图1所示,在图中建立的直角坐标系中,抛物线的解析式为y=-14x 2,当涵洞水面宽AB 为12m 时,水面到桥拱顶点O •的距离为_______m .图1 图2 4.甲,乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P ,羽毛球飞行的水平距离s (m )与其距地面高度h (m )之间的关系式为h=-112s 2+23s+32.如图2,已知球网AB 距原点5m ,乙(用线段CD 表示)扣球的最大高度为94m ,•设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m 的取值范围是_______.5.若抛物线y=12x 2与直线y=x+m 只有一个公共点,则m 的值为_____. 6.设抛物线y=x 2+(2a+1)x+2a+54的图像与x •轴只有一个交点,•则a 18+•323a -6•的值为_______.7.已知直线y=-2x+3与抛物线y=x 2相交于A ,B 两点,O 为坐标原点,那么△OAB •的面积等于______.8.图3为二次函数y=ax 2+bx+c 的图像,在下列说法中:①ab<0;②方程ax 2+bx+c=0的根是x 1=-1,x 2=3;③a+b+c>0;④当x>1时,y 随着x •的增大而增大.正确的说法有_______.(请写出所有正确说法的序号)图3 图4 图5二、选择题9.小敏在某次投篮球中,球的运动路线是抛物线y=-15x 2+3.5的一部分(图4),若命中篮圈中心,则他与篮底的距离是( )A .3.5mB .4mC .4.5mD .4.6m10.当m )A .0B .5C .D .911.二次函数y=ax 2+bx+c 的图像如图5所示,则下列结论:①a>0,②c>0, ③b 2-4ac>0,其中正确的个数是( )A .0个B .1个C .2个D .3个12.抛物线y=x 2+(2m -1)x+m 2与x 轴有两个交点,则m 的取值范围是( )A .m>14 B .m>-14 C .m<14 D .m<-1413.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数y的对应值,•判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.20 14.若二次函数y=ax2+bx+c(a≠0)的图像的顶点在第一象限且经过点(0,1)和(•-1,0),则S=a+b+c的值的变化范围是()A.0<S<2 B.0<S<1 C.1<S<2 D.-1<S<115.二次函数y=ax2+bx+c(a≠0)的最大值是零,那么代数式│a│+244ac ba的化简结果是()A.a B.-a C.D.016.已知y=2x2的图像是抛物线,若抛物线不动,把x轴,y•轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2+2 B.y=2(x+2)2-2C.y=2(x-2)2-2 D.y=2(x+2)2+2三、解答题17.如图,三孔桥横截面的三个孔都呈抛物线形,•两小孔形状,大小都相同.正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),•小孔顶点N距水面4.5m(即NC=4.5m).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.18.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-35x2+3x+1的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4m,在一次表演中,人梯到起跳点A的水平距离是4m,问这次表演是否成功?请说明理由.19.某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)•之间存在正比例函数关系:y A=kx,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)•之间存在二次函数关系:y B=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元时,•可获得3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A,B两种产品共投资10万元.•请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.20.如图所示,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y•轴于M点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴下方的部分是否存在点N,使以A,C,M,N•为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P•关于原点的对称点Q是否在抛物线L2上,请说明理由.21.已知:二次函数y=ax2+bx+c的图像经过点A(0,4),顶点在x轴上,•且对称轴在y 轴的右侧.设直线y=x与二次函数图像自左向右分别交于P(x1,y1),Q(x2,y2)两点,•且OP:PQ=1:3.(1)求二次函数的解析式;(2)求△PAQ的面积;(3)在线段PQ上是否存在一点D,使△APD≌△QPA,若存在,求出点D坐标,•若不存在,说明理由.22.已知二次函数y=ax2-ax+m的图像交x轴于A(x1,0),B(x2,0)两点,x1<x2,交y轴的负半轴于C点,且AB=3,tan∠BAC-tan∠ABC=1.(1)求此二次函数的解析式;(2)在第一象限,抛物线上是否存在点P,使S△PAC=6?若存在,请你求出点P的坐标;•若不存在,请你说明理由.答案:1.y=-2x2+2x+4 2.2;y=x2+4x+4 3.9 4.5.-126.5796 7.6 8.①②④9.B 10.B 11.C12.C 13.C 14.A 15.B 16.B 17.设抛物线解析式为y=ax2+6,依题意得,B(10,0).∴a×102+6=0,解得a=-0.06.即y=-0.06x2+6,当y=4.5时,-0.06x2+6=4.5,解得x=±5,∴DF=5,EF=10,即水面宽度为10m.18.(1)y=-35x2+3x+1=-35(x-52)2+194.∵-35<0,∴函数的最大值是194.答:演员弹跳离地面的最大高度是194m.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.19.(1)当x=5时,y A=2,2=5k,k=0.4.∴y A=0.4x,当x=2时,y B=2.4;当x=4时,y B=3.2.∴2.442,3.2164.a ba b=+⎧⎨=+⎩解得0.2,1.6.ab=-⎧⎨=⎩∴y B=-0.2x2+1.6x.(2)设投资B种商品x万元,则投资A种商品(10-x)万元,获得利润W万元,根据题意可得W=-0.2x2+1.6x+0.4(10-x)=-0.2x2+1.2x+4.∴W=-0.2(x-3)2+5.8.当投资B种商品3万元时,可以获得最大利润5.8万元.所以投资A种商品7万元,B种商品3万元,这样投资可以获得最大利润5.8万元.20.(1)令y=0时,得-x2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0).∵抛物线L1向右平移2个单位长度得抛物线L2,∴C(-1,0),D(3,0).∴抛物线L2为y=-(x+1)(x-3).即y=-x2+2x+3.(2)存在.如图所示.令x=0,得y=3,∴M(0,3).∵抛物线L2是L1向右平移2个单位长度得到的,∴点N(2,3)在L2上,且MN=2,MN∥AC.又∵AC=2,∴MN=AC.∴四边形ACNM为平行四边形.同理,L1上的点N′(-2,3)满足N′M∥AC,N′M=AC,∴四边形ACMN′是平行四边形.∴N(2,3),N′(-2,3)即为所求.(3)设P(x1,y1)是L1上任意一点(y1≠0),则点P关于原点的对称点Q(-x1,-y1),且y1=-x12-2x1+3,将点Q 的横坐标代入L 2,得y Q =-x 12-2x 1+3=y 1≠-y 1.∴点Q 不在抛物线L 2上.21.(1)抛物线过(0,4)点.∴c=4,∴y=ax 2+bx+4又OP :PQ=1:3,∴x 1:x 2=1:4由24y x y ax bx =⎧⎨=++⎩得ax 2+(b -1)x+4=0, ∵x 1,x 2是该方程的两个根,∴x 1+x 2=-1b a -,x 1·x 2=4a. 消去x 1得25a=(b -1)2.∵抛物线的对称轴在y 轴右侧∴-2b a >0, ∴b a<0,又抛物线的顶点在x 轴上, ∴b 2=16a 得a=1,b=-4(b=49舍去). ∴y=x 2-4x+4.(2)如图所示,S △PAQ =S △AQO -S △APO=12×4×x 2-12×4×x 1=2(x 2-x 1). (3)存在点D ,设D (m ,n )易得P (1,1),Q (4,4),由△APD ∽△QPA 得PA 2=PQ·PD ,运用勾股定理得│m -1│=53,得m=83或23. ∵1<m<4,∴D(83,83).22.(1)∵AB=3,x1<x2,∵x2-x1=3.由根与系数的关系有x1+x2=1,∴x1=-1,x2=2.∴OA=1,OB=2,x1·x2=ma=-2.∵tan∠BAC-tan∠ABC=1,∴=1,∴OC=2∴m=-2,a=1.∴此二次函数的解析式为y=x2-x-2.(2)在第一象限,抛物线上存在一点P使S△APC=6.解法一:过点P作直线MN∥AC交x轴于点M,交y轴于点N,连接PA,PC,MC,NA,如图所示.∵MN∥AC,∴S△MAC =S△NAC =S△PAC =6.由(1)有OA=1,OC=2∴12×AM×2=12×CN×1=6,∴AM=6,CN=12.∴M (5,0),N (0,10).∴直线MN 的解析式为y=-2x+10. 由2210,2.y x y x x =-+⎧⎨=--⎩ 得12123,4,4.18.x x y y ==-⎧⎧⎨⎨==⎩⎩(舍去). ∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6. 解法二:设AP 与y (0,n )(n>0).∴直线AP 的解析式为y=nx+n .22,.y x x y nx n ⎧=--⎨=+⎩ ∴x 2-(n+1)x -n -2=0,∴x A +x P =n+1,∴x P =n+2.又S △PAC =S △ADC +S △PDC =12CD·AO+12CD·x p =12CD (AO+x p ). ∴12(n+2)(1+n+2)=6,n 2+5n -6=0. ∴n=-6(舍去)或n=1.∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6.。

相关文档
最新文档