考研数学重点笔记
2023考研数学高等数学每章知识点汇总精品
![2023考研数学高等数学每章知识点汇总精品](https://img.taocdn.com/s3/m/5106ef742a160b4e767f5acfa1c7aa00b52a9dc2.png)
2023考研数学高等数学每章知识点汇总精品高等数学基础知识篇一1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。
此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。
考研数学手写知识点总结
![考研数学手写知识点总结](https://img.taocdn.com/s3/m/ecaca11cf11dc281e53a580216fc700abb685293.png)
考研数学手写知识点总结一、数列和数项1. 定义数列是按一定顺序排列的一串数,每个数称为数列的项,用an表示,n称为项标。
2. 数列的表示一般用通项公式或者递推公式表示数列,通常表示成{an}或者{an}∞n=1。
3. 常见数列常见的数列有等差数列、等比数列、递推数列等,它们分别有自己的通项公式和性质。
4. 数列的求和常用的求和方法有等差数列的求和公式、等比数列的求和公式、Telescoping sum等。
二、集合与函数1. 集合的定义集合是由一个或多个共同特征的元素构成的整体,用大括号{}表示,元素之间用逗号隔开。
2. 集合的运算集合的运算包括并集、交集、差集、补集等,它们有自己的运算法则和性质。
3. 函数的定义函数是集合之间的一个对应关系,通常用f(x)表示,其中x是自变量,f(x)是因变量。
4. 函数的性质函数有奇偶性、周期性、单调性等性质,这些性质对函数的图像有一定的影响。
5. 函数的运算函数的运算包括加减乘除、复合函数、反函数等,它们有自己的运算法则和性质。
三、极限1. 极限的定义当自变量趋于某个值时,函数的值不断地接近于一个确定的数,这个确定的数称为极限。
2. 极限的计算常用的求极限的方法有代入法、夹逼法、单调有界法、洛必达法则等。
3. 极限的性质极限有唯一性、保号性、保序性、保界性等性质,这些性质有一定的应用价值。
4. 无穷小量与无穷大量当自变量趋于某个值时,函数的取值趋于零或者趋于无穷大,这种情况称为无穷小量与无穷大量。
四、导数与微分1. 导数的定义函数在某一点的导数是函数在这一点的切线斜率,常用f'(x)或者dy/dx表示。
2. 导数的计算常用的求导法则有常数法则、幂函数法则、指数函数法则、对数函数法则等。
3. 导数的性质导数有和性、差性、积性、商性、复合函数导数等性质。
4. 微分微分是导数的一个应用,微分形式为dy=f'(x)dx,微分近似计算的应用十分广泛。
五、积分1. 不定积分不定积分是导数的逆运算,常用∫f(x)dx表示,它相当于求函数在某一区间上的面积。
考研数学需要重点记忆的知识点
![考研数学需要重点记忆的知识点](https://img.taocdn.com/s3/m/12e97b226ad97f192279168884868762cbaebb4b.png)
考研数学需要重点记忆的知识点考研数学需要重点记忆的知识点准备考研数学的朋友们,需要重点关注记忆的知识点有哪些。
店铺为大家精心准备了考研数学重点记忆的知识点,欢迎大家前来阅读。
考研数学重点记忆的知识点1、两个重要极限,未定式的极限、等价无穷小代换这些小的知识点在历年的考察中都比较高。
而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。
2、处理连续性,可导性和可微性的关系要求掌握各种函数的求导方法。
比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。
数三的同学这儿结合经济类的一些试题进行考察。
3、参数估计这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。
4、级数问题,主要针对数一和数三这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。
对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。
5、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。
对于二阶常系数线性微分方程大家一定要理解解的结构。
另一块对于非齐次的方程来说,考生要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。
这一类问题就是逆问题。
对于二阶常系数非齐次的线性方程大家要分类掌握。
当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。
2024考研数学满分笔记pdf
![2024考研数学满分笔记pdf](https://img.taocdn.com/s3/m/f04b449fb04e852458fb770bf78a6529647d35b5.png)
2024考研数学满分笔记pdf一、数学分析1.极限与连续性极限的定义:对于数列的极限,若对于任意的ε>0,存在正整数N,当n>N时,|an - a| < ε,则称数列{an}收敛于a,记作lim(an) = a。
连续性的定义:若函数f在点x0处连续,则对于任意ε>0,存在δ>0,使得当|x - x0| < δ时,有|f(x) - f(x0)| < ε成立。
2.微分与积分微分的定义:函数f在点x0处可导,则存在常数A,使得当x→x0时,有Δf = f(x) - f(x0) ≈ A(x - x0)成立。
积分的定义:对于定积分∫[a,b]f(x)dx,若存在分点ξk∈[xk-1,xk],使得S = ∑(i=1)^n f(ξi)Δxi = limn→∞ Σ(i=1)^nf(ξi)Δxi成立,则称f在[a,b]上可积。
二、线性代数1.向量空间向量空间的定义:对于域F上的n维数组空间Vn(F),若满足以下条件,则称Vn(F)为F上的n维向量空间:(1)对于任意u、v∈Vn(F),有u+v∈Vn(F);(2)对于任意k∈F、u∈Vn(F),有ku∈Vn(F);(3)存在零向量0∈Vn(F)使得对于任意u∈Vn(F),有u+0=u;(4)对于任意u∈Vn(F),存在-u∈Vn(F),使得u+(-u)=0。
2.矩阵与行列式矩阵的定义:对于m×n矩阵A=(aij),其中aij∈F,则称A为m×n矩阵。
对于n×n矩阵A,若存在n阶单位矩阵En,使得EA=AE=A 成立,则称A为可逆矩阵。
行列式的定义:对于n阶行列式Det(A),其定义为Det(A)=Σα(i1i2...in)Ai1i1Ai2i2...Ainin,其中α(i1i2...in)为排列的符号,Ai1i1Ai2i2...Ainin为n个元素所组成的乘积。
三、概率论与数理统计1.随机变量与概率分布随机变量的定义:对于样本空间Ω上的实函数X(ω),若X(ω)是Ω上的一个实数值函数,则称X(ω)为随机变量。
考研数学每章总结知识点
![考研数学每章总结知识点](https://img.taocdn.com/s3/m/f6c2497b11661ed9ad51f01dc281e53a59025168.png)
考研数学每章总结知识点一、集合与函数1. 集合的基本概念1)集合的含义:集合是由一定的确定的对象组成的总体。
2)元素:属于集合的对象。
3)集合的表示法:列举法、描述法。
4)集合间的关系:包含关系、相等关系、互斥关系。
2. 集合的运算1)并集、交集、差集、补集的概念及运算法则。
2)集合运算律:分配律、结合律、交换律、对偶律。
3. 函数的概念1)函数的含义:每个自变量对应唯一的因变量。
2)定义域、值域、映射关系。
3)函数的表示法:解析式表示、图形表示、映射图表示。
4. 函数的性质1)奇偶性、周期性、单调性、有界性、分段性。
2)反函数的存在与性质。
3)初等函数:幂函数、指数函数、对数函数、三角函数。
二、极限1. 数列极限1)定义:当数列中的项”无限走”时,就引出了极限的概念。
2)数列收敛与发散的判定。
3)数列极限的性质:保号性、夹逼定理、介值性。
2. 函数极限1)定义:当自变量趋于某一点时,函数值的”极限”。
2)函数极限存在与无穷极限。
3)无穷小量与无穷大量。
3. 极限运算法则1)函数极限的四则运算法则。
2)复合函数、柯西收敛准则。
4. 极限存在的条件1)夹逼准则:当函数夹在两个趋于同一个极限的函数中间时,可以得到极限。
2)子数列性质。
3)介值性:利用介值性证明函数的极限。
三、连续1. 连续的概念1)点连续:在函数定义域内任一点处的连续性。
2)间断点:函数在某点处不连续。
3)连续函数的性质:介值定理、零点定理。
2. 连续函数的运算1)和、差、积、商的连续性。
2)复合函数的连续性。
3. 函数的限制1)边界点、左极限、右极限的概念。
2)函数的间断点的分类。
4. 连续函数的应用1)罗尔中值定理、拉格朗日中值定理。
2)柯西中值定理、费马引理。
四、导数1. 导数的概念1)导数的定义:函数在某点处的”无穷小增量与自变量增量”的比值。
2)导数的几何意义。
2. 导数的计算1)基本导数公式。
2)常用的一些导数运算法则。
考研高数每章总结知识点
![考研高数每章总结知识点](https://img.taocdn.com/s3/m/0fd834898ad63186bceb19e8b8f67c1cfad6ee38.png)
考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。
二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。
三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。
四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。
五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。
总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。
在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。
考研数学按知识点总结
![考研数学按知识点总结](https://img.taocdn.com/s3/m/2fe81ac585868762caaedd3383c4bb4cf7ecb78f.png)
考研数学按知识点总结一、代数部分1.1 整式的定义、加减乘除和开方整式是由数字和代数字母以及它们的乘积、商以及多项式的和构成的式子。
在整式运算中,需要掌握整式的加减乘除运算,以及整式的开方运算。
在解题时,要注意将整式分解、合并同类项等方法来简化整式的运算。
1.2 一元高次方程、一元高次不等式的解法一元高次方程指的是一元方程中自变量的最高次数大于或等于2的方程。
在解一元高次方程时,可以运用因式分解、配方法、求根公式以及求导等方法进行解题。
而对于一元高次不等式的解法,可以通过构造法、分解法和取值法等方法来进行解题。
1.3 二元一次方程、二元一次不等式的解法二元一次方程指的是含有两个未知数的一次方程,而二元一次不等式是指含有两个未知数的一次不等式。
解二元一次方程和不等式时,可以采用消元法、代入法、图解法等方法进行解题。
1.4 复数的基本概念和运算法则复数是由实部和虚部构成的数,通常表示为a+bi,其中a为实部,b为虚部,i为虚数单位。
在复数的运算中,需要掌握复数的加减乘除运算、复数的共轭以及复数的乘方和除法等运算法则。
1.5 向量的基本概念和运算法则向量是具有大小和方向的量,在解题时需要掌握向量的基本概念、向量的加减法、向量的数量积和向量的夹角等运算法则。
1.6 矩阵的基本概念和运算法则矩阵是一个按照长方阵列排列的复数或实数集合,在解题时需要掌握矩阵的基本概念、矩阵的加减法、矩阵的乘法以及矩阵的逆矩阵等运算法则。
1.7 行列式的基本概念和运算法则行列式是一种用于求解线性方程的工具,在解题时需要掌握行列式的基本概念、行列式的展开定理、行列式的性质以及行列式的计算方法。
1.8 三角函数和三角方程三角函数是一组周期性函数,包括正弦函数、余弦函数、正切函数等。
在解题时需要掌握三角函数的基本性质、三角函数的图像、三角函数的加减角公式、三角函数的导数和积分等内容。
1.9 数学归纳法、数列的概念和性质数学归纳法是一种论证方法,用于证明一些数学命题的正确性。
考研数学66条笔记
![考研数学66条笔记](https://img.taocdn.com/s3/m/392e0c006c85ec3a87c2c528.png)
1
矩阵 A 的正负惯性指数不等于主子式的正负个数 时间 A、B 相互独立,A、B、 A、B 相互独立 在使用公式 P{a x b} F (b) F (a) 时,在这里{}中的不等式应该是左开右闭
n
证明两条曲线在某一点相切 M ( x0 , y0 ) , 先求交点, 后求交点的导数相等/方向向量
(x)在(a,b)至多有 n 个不同的根 44、 用泰勒公式的证明,关键在于选取展开点,一般来说已知条件给的点作为展开点, 若已知条件给出 f(x),f ’(x)的特征,可选在 x 处展开 45、 注意用词: “某点二阶可导”说明二阶导数在其邻域内是连续的; “在某点存在二阶 导数”说明在该店处是可导的,但是在其邻域内不一定可导 46、 周期函数的导数依然是以 T 为周期的周期函数,而周期函数的原函数可就不一定 是周期函数。只有当
有 z f ( x, y) 区域 Dxy 求极值(最值)用拉格朗日函数,求出 若有两个,则分
别算出后求其极(最)值大小 19、 秩为 1 的矩阵可以化为两个向量的积 A , 为 n 维列向量。并且 A 的自乘
T 2
积 A aA ,a 为常数
20、 21、 22、
A 的行(列)向量相互垂直,且长度相同为 a, B
l i mf x( ) n
n
n
lf im yn ,则 ( )lim f ( x) 不存在
x x0
n
39、
对于任意数列 an ,若满足 an A k an1 A 其中 0<k<1,则必有 lim an A
(整理)数学考研笔记
![(整理)数学考研笔记](https://img.taocdn.com/s3/m/e36312235f0e7cd1842536a3.png)
数学笔记三角函数1.sin()sin cos cos sin αβαβαβ±=±,cos()cos cos sin sin αβαβαβ±=,tan tan tan()1tan tan αβαβαβ±±=2.积化和差:1sin sin [cos()cos()]2αβαβαβ=-+--,1cos cos [cos()cos()]2αβαβαβ=++-1sin cos [sin()sin()]2αβαβαβ=++-,1cos sin [sin()sin()]2αβαβαβ=+--3.和差化积:sin sin 2sin cos 22αβαβαβ+-+=,sin sin 2cos sin22αβαβαβ+--= cos cos 2cos cos 22αβαβαβ+-+=,cos cos 2sin sin22αβαβαβ+--=- 4.倍角公式:sin22sin cos ααα=,2222cos2cos sin 2cos 112sin ααααα=-=-=-,22tan tan 21tan ααα=- 3sin 33sin 4sin ααα=-,3cos34cos 3cos ααα=-,323tan tan tan 313tan αααα-=-5.半角公式:sin2α=cos 2α=1cos sin tan 2sin 1cos ααααα-===- 6.万能公式:设tan 2t α=,则 22sin 1t t α=+,221cos 1t t α-=+,22tan 1t t α=- 7.将次公式:21cos 2sin 2αα-=,21cos 2cos 2αα+= 8.其他:1tan tan()1tan 4απαα±=±,ctan tan 2ctan 2ααα-=函数极限的性质(1)极限唯一;(反证)(2)有界性:若0lim ()x x f x L →=,则在某个0ˆ()N x内()f x 有界; (3)局部保号性;推论1:若0lim (),lim ()x x x x f x A g x B →→==,且A>B ,则在某个0ˆ()N x内()()f x g x >; 推论2:若0lim (),lim ()x x x x f x A g x B →→==,且在某个0ˆ()N x内()()()f x or g x >≥,则A ≥B 。
考研数学:各章必背知识点汇总
![考研数学:各章必背知识点汇总](https://img.taocdn.com/s3/m/891e3c9ef021dd36a32d7375a417866fb84ac00d.png)
考研数学:各章必背知识点汇总第一章函数极限连续1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念.2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系. 理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限,掌握无穷小的比较方法.3、理解函数连续性的概念,会判别函数间断点的类型. 了解初等函数的连续性和闭区间上连续函数的性质(值、最小值定理和介值定理),并会应用这些性质.4、掌握利用两个重要的极限:lim(x→0sinxx)=1,lim(1+1x)xx→∞=e,理解连续函数的概念及闭区间上连续函数的性质.5、理解分段函数、复合函数的概念,了解反函数和隐函数的概念.重点:极限(数列、函数)的概念,两个重要极限,连续函数及其性质应用难点:极限(数列、函数)概念、用定义证明极限第二章一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系.2、掌握导数的四则运算法则和一阶微分的形式不变性. 了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数.3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理.4、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、值和最小值的求法及其应用.5、理解函数极值的概念,掌握函数值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平、铅直和斜渐近线,会描绘简单函数的图形.6、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角.7、掌握用罗必塔法则求未定式极限的方法重点:导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数. 罗必塔法则函数的极值和值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法.难点:复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算.第三章一元函数积分学1、理解原函数和不定积分的概念,了解定积分的概念.2、掌握不定积分的基本公式,不定积分和定积分的性质及定积分中值定理,掌握换元积分法和分部积分法.3、会求有理函数、三角函数和简单无理函数的积分.4、理解变上限积分定义的函数,会求它的导数,掌握牛顿莱布尼兹公式.5、了解广义积分的概念并会计算广义积分.6、掌握用定积分计算一些几何量和物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力等. )重点:原函数与不定积分的概念及性质,基本积分公式及积分的换元法和分部积分法,定积分的性质、计算及应用.难点:第二类换元积分法,分部积分法. 积分上限的函数及其导数,定积分元素法及定积分的应用.第四章向量代数与空间解析几何1、理解向量的概念及其表示.2、掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;掌握单位向量、方向数与方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法.3、掌握平面方程和直线方程及其求法,会利用平面直线的相互关系解决有关问题.4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程.5、了解空间曲线的参数方程和一般方程;了解空间曲线在坐标平面上的投影,并会求其方程.第五章多元函数微分学1、了解二元函数的极限与连续的概念,二元函数的几何意义以及有界闭区域上连续函数的性质.2、理解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分. 掌握多元复合函数偏导数的求法,会求隐函数的偏导数.3、理解方向导数与梯度的概念并掌握其计算方法.4、了解曲线的切线和法平面及曲面的切平面和法线的概念,掌握二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求多元函数的值和最小值及一些简单的应用问题.重点:二元函数的极限和连续的概念,偏导数与全重点是二元函数的极限和连续的概念,偏导数与全微分的概念及计算复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度的概念及其计算. 空间曲线的切线和法平面,曲面的切平面和法线,二元函数极值.难点:多元复合函数的求导法,二元函数的泰勒公式.第六章多元函数积分学1、理解二重积分与三重积分的概念,了解重积分的性质.2、掌握二重积分(直角坐标、极坐标)的计算方法,会计算三重积分(直角坐标、柱面坐标、球面坐标).3、理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;掌握计算两类曲线积分的方法;掌握格林公式并会运用平面曲线积分与路径无关的条件.4、了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法.5、会用重积分、曲线积分和曲面积分求一些几何量和物理量.重点:利用直角坐标、极坐标计算二重积分. 利用直角坐标、柱面坐标、球面坐标计算三重积分. 两类曲线积分的概念、性质及计算,格林公式. 两类曲面积分的概念、性质及计算,高斯公式.难点:化二重积分为二次积分、改换二次积分的积分次序以及三重积分计算. 第二类曲面积分与斯托克斯公式.第七章无穷级数1、了解级数的收敛与发散、收敛级数的和的概念. 掌握级数的基本性质及其级数收敛的必要条件,掌握几何级数与p级数的收敛与发散的条件;掌握正项级数收敛性的的比较判别法与比值判别法.2、会用交错级数的莱布尼兹定理,了解绝对收敛和条件收敛的概念及它们的关系.3、会求幂级数的和函数以及数项级数的和,掌握幂级数收敛域的求法.4、掌握e的x次方、sinx、cosx、ln(1+x),(1+x)的a次方的马克劳林展开式,会用它们将简单函数作间接展开;会将定义在[-L,L]上的函数展开为傅立叶级数,会将定义在上的函数展开为正弦级数和余弦函数.重点:数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,绝对收敛与条件收敛的概念. 幂级数的收敛半径、收敛区间的求法,将函数展成傅立叶级数.难点:求幂级数的和函数,将函数展成幂级数、傅立叶级数.第八章常微分方程1、了解微分方程及其解、阶、通解、初始条件和特解等概念2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的解法.3、会用降阶法解y(n)=f(x),y″=f(x,y),y″=f(y,y')类的方程;理解线性微分方程解的性质和解的结构.4、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.5、会解包含两个未知函数的一阶常系数线性微分方程组.6、了解差分与差分方程及其通解与特解等概念重点:微分方程的概念,变量可分离方程,一阶线性微分方程及二阶的常系数线性微分方程的解法.难点:由实际问题建立微分方程及确定定解条件.第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
考研数学考点总结
![考研数学考点总结](https://img.taocdn.com/s3/m/b9d0dd640166f5335a8102d276a20029bd646302.png)
考研数学考点总结一、高等数学1. 极限与连续•极限的定义及基本性质•无穷大与无穷小•极限存在准则•连续函数的概念与性质•介值定理与零点存在定理2. 一元函数微分学•微分的定义与性质•高阶导数•隐函数与参数方程的导数•微分中值定理•泰勒展开•凸函数与凹函数3. 一元函数积分学•定积分的定义与性质•牛顿-莱布尼兹公式•微积分基本定理•常用函数的不定积分•反常积分的收敛性二、线性代数1. 矩阵与行列式•矩阵的基本运算•矩阵的转置、迹、秩•矩阵的逆与伴随矩阵•行列式的定义与性质•克拉默法则2. 向量空间与线性变换•向量空间的定义与性质•线性相关与线性无关•向量组的秩•线性变换的定义与性质•线性变换的矩阵表示3. 特征值与特征向量•特征值与特征向量的定义•特征值与特征向量的性质•对角化与相似矩阵•幂零矩阵与可对角化矩阵三、概率论与数理统计1. 随机事件与随机变量•随机事件的概念与性质•随机变量的概念与分类•离散型随机变量与连续型随机变量•期望、方差与协方差2. 概率分布•二项分布、泊松分布和正态分布的性质与应用•超几何分布与负二项分布的性质•指数分布与伽玛分布的性质•一致分布、独立同分布与中心极限定理3. 统计推断•参数估计与假设检验的基本概念•点估计与区间估计的方法•假设检验的原理与步骤•单样本均值检验与相关系数检验•双样本均值检验与方差比检验四、离散数学1. 集合与命题•集合的基本运算•命题与命题逻辑的基本概念•命题逻辑的推理法则与运算规则2. 关系与函数•关系的定义与性质•等价关系与偏序关系•函数的定义与性质•映射与逆映射3. 图论•图的基本概念与性质•图的遍历与连通性•最短路径问题与最小生成树•欧拉回路与哈密顿回路以上是考研数学的一些核心考点总结,希望能对广大考生在备考中有所帮助。
当然,这只是一个概述,具体的知识点还需要在学习过程中深入理解和掌握。
努力学习,相信你一定能够顺利应对考试,取得优异的成绩!。
考研数学常考知识点整理
![考研数学常考知识点整理](https://img.taocdn.com/s3/m/1e6b5c0b68eae009581b6bd97f1922791688bee5.png)
考研数学常考知识点整理一、代数部分1.1 数学基础知识1.1.1 函数与方程1.1.1.1 基本函数与其性质1.1.1.2 方程与不等式1.1.2 数列与数列极限1.1.2.1 等差数列与等比数列1.1.2.2 数列极限的定义与性质1.1.3 概率与统计1.1.3.1 随机事件与概率计算1.1.3.2 排列组合与基本统计知识二、微积分部分2.1 极限与连续2.1.1 极限的定义与性质2.1.2 连续的概念与判定2.2 导数与微分2.2.1 导数的定义与性质2.2.2 微分的概念与计算2.3 积分2.3.1 不定积分与定积分的概念2.3.2 基本积分公式与常见积分方法2.3.3 几何应用与物理应用三、线性代数部分3.1 矩阵与行列式3.1.1 矩阵的基本运算与性质3.1.2 行列式的定义与计算3.2 向量空间与线性变换3.2.1 向量空间与子空间的概念3.2.2 线性变换的定义与性质四、概率论与数理统计部分4.1 随机变量与概率分布4.1.1 随机变量的定义与常见概率分布 4.1.2 期望与方差的计算4.2 参数估计与假设检验4.2.1 参数估计的方法与性质4.2.2 假设检验的基本原理与步骤五、常微分方程部分5.1 一阶常微分方程5.1.1 可分离变量与线性方程5.1.2 齐次方程与一阶线性方程 5.2 高阶常微分方程5.2.1 二阶常系数线性齐次方程5.2.2 二阶非齐次线性方程六、离散数学部分6.1 图论与树6.1.1 图的基本概念与性质6.1.2 树的定义与常见性质6.2 排列组合与离散概率6.2.1 排列与组合的基本计算6.2.2 离散概率的计算与应用以上是考研数学常考知识点的整理,希望对你的学习有所帮助。
记得多做练习题,夯实基础,理解概念及性质,注重对解题方法的掌握与应用。
加油!。
考研数学知识点总结
![考研数学知识点总结](https://img.taocdn.com/s3/m/8f7871a3162ded630b1c59eef8c75fbfc67d9459.png)
考研数学知识点总结一、数学分析。
1. 极限与连续。
数列极限、函数极限、无穷小量、无穷大量、函数连续性等概念及相关定理。
2. 导数与微分。
函数的导数与微分、高阶导数、隐函数与参数方程求导、微分中值定理、泰勒公式等内容。
3. 微分方程。
常微分方程的解法、一阶线性微分方程、高阶线性微分方程、常系数齐次线性微分方程等。
4. 不定积分。
不定积分的概念、基本积分法、换元积分法、分部积分法、有理函数积分、三角函数积分等。
5. 定积分。
定积分的概念、定积分的性质、定积分的计算、变限积分、定积分的应用等内容。
二、线性代数。
1. 行列式。
行列式的概念、性质、行列式的计算、克拉默法则、行列式的应用等。
2. 矩阵与向量。
矩阵的概念、矩阵的运算、矩阵的秩、矩阵的逆、向量的线性相关性、向量空间等内容。
3. 线性方程组。
线性方程组的概念、线性方程组的解法、矩阵求解线性方程组、线性方程组的应用等。
4. 特征值与特征向量。
矩阵的特征值与特征向量、特征值与特征向量的性质、对角化、二次型等内容。
5. 线性空间。
线性空间的概念、线性子空间、线性变换、线性空间的基与维数、线性空间的同构等。
三、概率论与数理统计。
1. 随机事件与概率。
随机事件的概念、概率的基本性质、古典概型、条件概率、独立性等内容。
2. 随机变量及其分布。
随机变量的概念、离散型随机变量、连续型随机变量、随机变量的分布函数、常见分布等。
3. 多维随机变量及联合分布。
多维随机变量的概念、联合分布函数、边缘分布、条件分布、独立性等内容。
4. 数理统计。
统计量、抽样分布、参数估计、假设检验、方差分析、相关分析等内容。
5. 随机过程。
随机过程的概念、马尔可夫链、泊松过程、布朗运动等内容。
以上是考研数学知识点的总结,希望对大家复习备考有所帮助。
祝各位考生取得理想的成绩!。
考研数学所有知识点总结
![考研数学所有知识点总结](https://img.taocdn.com/s3/m/cd48035f5acfa1c7aa00cc22.png)
四.闭区间上连续函数的性质 在闭区间 [a, b] 上连续的函数 f ( x ) ,有以下几个基本 性质。这些性质以后都要用到。 定理 1. (有界定理)如果函数 f ( x ) 在闭区间 [a, b] 上 连续,则 f ( x ) 必在 [a, b] 上有界。 定理 2. (最大值和最小值定理)如果函数 f ( x ) 在闭 区间 [a, b] 上连续,则在这个区间上一定存在最大值 M 和 最小值 m 。 其中最大值 M 和最小值 m 的定义如下: 定义 设 f ( x0 ) = M 是区间 [a, b] 上某点 x0 处的函数
则 lim
f (x ) = A (或 ∞ ) g (x )
7.利用导数定义求极限
f ( x 0 + ∆x ) − f ( x0 ) = f ′( x 0 ) [如果 基本公式: lim ∆x → 0 ∆x
存在] 8.利用定积分定义求极限 基本公式
f (ξ ) = c
[如果存在] 推论:如果函数 f ( x ) 在闭区间 [a, b] 上连续,且 f (a ) 与 f (b ) 异号,则在 (a, b ) 内至少存在一个点 ξ ,使得
2n x2 x4 n x + − Λ + (− 1) + 0 x 2n (2n )! 2! 4!
cos x = 1 −
( )
ln (1 + x ) = x −
n x2 x3 n +1 x + − Λ + (− 1) + 0 xn n 2 3
( ) ( )
f (x ) ~ g (x )
3.常见的等价无穷小 当 x → 0时 sin x ~ x , tan x ~ x , arcsin x ~ x , arctan x ~ x
考研必看考研数学基础知识点梳理(高数篇)
![考研必看考研数学基础知识点梳理(高数篇)](https://img.taocdn.com/s3/m/34186109a45177232f60a296.png)
考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
考研数学十二章知识点归纳
![考研数学十二章知识点归纳](https://img.taocdn.com/s3/m/21c5ad5753ea551810a6f524ccbff121dc36c564.png)
考研数学十二章知识点归纳考研数学是许多学生在准备研究生入学考试时的重点科目。
以下是对考研数学十二章知识点的归纳总结:第一章:极限与连续- 极限的定义和性质- 无穷小量的阶- 连续性的定义和性质- 闭区间上连续函数的性质第二章:导数与微分- 导数的定义和几何意义- 基本导数公式- 高阶导数- 隐函数和参数方程求导- 微分的定义和应用第三章:中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式- 导数在几何上的应用:曲线的切线、法线和弧长- 导数在物理上的应用:速度、加速度等第四章:不定积分- 不定积分的定义和性质- 基本积分公式- 换元积分法和分部积分法- 有理函数的积分第五章:定积分- 定积分的定义和性质- 牛顿-莱布尼茨公式- 定积分的计算方法- 定积分在几何和物理上的应用第六章:多元函数微分法- 偏导数和全微分- 多元函数的极值问题- 条件极值和拉格朗日乘数法第七章:重积分- 二重积分和三重积分的定义- 积分区域和积分顺序- 重积分的计算方法:直角坐标系、极坐标系和球坐标系第八章:曲线积分与曲面积分- 第一类和第二类曲线积分- 格林公式和斯托克斯定理- 高斯公式和奥斯特罗格拉德斯基定理第九章:无穷级数- 常数项级数的收敛性- 幂级数和泰勒级数- 函数的幂级数展开- 傅里叶级数和傅里叶变换第十章:常微分方程- 一阶微分方程的解法:分离变量法、变量替换法、常数变易法- 高阶微分方程的降阶- 线性微分方程的解法:特征方程法、常系数线性微分方程第十一章:偏微分方程- 偏微分方程的基本概念- 一阶偏微分方程的解法- 热传导方程、波动方程和拉普拉斯方程第十二章:线性代数- 向量空间和线性变换- 矩阵的运算和性质- 行列式和逆矩阵- 特征值和特征向量- 二次型和正定矩阵结束语:考研数学的知识点广泛,需要同学们系统地学习和大量的练习。
希望以上的归纳能够帮助大家更好地复习和掌握考研数学的主要内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3公式,公式和公式
§4.微分形式的外微分
§5.场论初步
本章教学要求:掌握二类曲线积分与二类曲面积分的概念与计算方法,掌握公式,公式和公式的意义与应用,理解外微分的引入在给出公式,公式和公式统一形式上的意义,对场论知识有一个初步的了解。
第十五章含参变量积分
§1.含参变量的常义积分
第二部分
(1)课程名称:微分几何
(2)基本内容:三维空间中经典的曲线和曲面的理论。主要内容有:
曲线论,内容包括:曲线的切向量与弧长;主法向量与从法向量;曲率与扰率;标架与公式;曲线的局部结构;曲线论的基本定理;平面曲线的一些整体性质,如切线的旋转指标定理,凸曲线的几何性质,等周不等式,四顶点定理与公式;空间曲线的一些整体性质,如球面的公式,定理与定理。
§2.含参变量的反常积分
§3积分
本章教学要求:掌握含参变量常义积分的性质与计算,掌握含参变量反常积分一致收敛的概念,一致收敛的判别法,一致收敛反常积分的性质及其在积分计算中的应用,掌握积分的计算。
第十六章级数
§1.函数的级数展开
§2.级数的收敛判别法
§3.级数的性质
§4.变换和积分
§5.快速变换
本章教学要求:掌握周期函数的级数展开方法,掌握级数的收敛判别法与级数的性质,对变换与积分有一个初步的了解。
第十一章空间上的极限和连续
§1空间上的基本定理
§2.多元连续函数
§3.连续函数的性质
本章教学要求:了解空间的拓扑性质,掌握多元函数的极限与连续性的概念,区分它们与一元函数对应概念之间的区别,掌握紧集上连续函数的性质。
第十二章多元函数的微分学(§1—§5)
§1.偏导数与全微分
§2.多元复合函数的求导法则
§3公式
§4.隐函数
§5.偏导数在几何中的应用
第十二章多元函数的微分学(§6—§7)
§6.无条件极值
§7.条件极值问题与乘数法
本章教学要求:掌握多元函数的偏导数与微分的概念,区分它们与一元函数对应概念之间的区别,熟练掌握多元函数与隐函数的求导方法,掌握偏导数在几何上的应用,掌握求多元函数无条件极值与条件极值的方法。
§4.复合函数求导法则及其应用
§5.高阶导数和高阶微分
本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。
第五章微分中值定理及其应用
§1.微分中值定理
§2'法则
§3.插值多项式和公式
§4.函数的公式及其应用
§5.应用举例
§6.函数方程的近似求解
本章教学要求:掌握微分中值定理与函数的公式,并应用于函数性质的研究,熟练运用L'法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。
§1.反常积分的概念和计算
§2.反常积分的收敛判别法
本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常积分的计算。
第九章数项级数
§1.数项级数Leabharlann 收敛性§2.上级限与下极限
§3.正项级数
§4.任意项级数
§5.无穷乘积
本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。
第一部分
第一章集合与映射
§1.集合
§2.映射与函数
本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。
第二章数列极限
§1.实数系的连续性
§2.数列极限
§3.无穷大量
§4.收敛准则
本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。
基本要求:通过本课程的学习,学生应掌握曲线论与曲面论中的一些基本几何概念与研究微分几何的一些常用方法。以便为以后进一步学习、研究现代几何学打好基础;另一方面培养学生理论联系实际和分析问题解决问题的能力。
二、讲授纲要
第一章三维欧氏空间的曲线论
§1曲线曲线的切向量弧长
第十章函数项级数
§1.函数项级数的一致收敛性
§2.一致收敛级数的判别与性质
§3.幂级数
§4.函数的幂级数展开
§5.用多项式逼近连续函数
本章教学要求:掌握函数项级数(函数序列)一致收敛性概念,一致收敛性的判别法与一致收敛级数的性质,掌握幂级数的性质,会熟练展开函数为幂级数,了解函数的幂级数展开的重要应用。
曲面的局部理论,内容包括:曲面的表示、切向量、法向量;旋转曲面、直纹面与可展曲面;曲面的第一基本形式与内蕴量;曲面的第二基本形式;曲面上的活动标架与基本公式;变换与曲面的渐近线、共扼线;法曲率;主方向、主曲率与曲率线;曲率和平均曲率;曲面的局部结构;映照与第三基本形式;全脐曲面、极小曲面与常曲率曲面;曲面论的基本定理;测地曲率与测地线;向量的平行移动。
第三章函数极限与连续函数
§1.函数极限
§2.连续函数
§3.无穷小量与无穷大量的阶
§4.闭区间上的连续函数
本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。
第四章微分
§1.微分和导数
§2.导数的意义和性质
§3.导数四则运算和反函数求导法则
第十三章重积分
§1.有界闭区域上的重积分
§2.重积分的性质与计算
§3.重积分的变量代换
§4.反常重积分
§5.微分形式
本章教学要求:理解重积分的概念,掌握重积分与反常重积分的计算方法,会熟练应用变量代换法计算重积分,了解微分形式的引入在重积分变量代换的表示公式上的应用。
第十四章曲线积分与曲面积分
§1.第一类曲线积分与第一类曲面积分
第六章不定积分
§1.不定积分的概念和运算法则
§2.换元积分法和分部积分法
§3.有理函数的不定积分及其应用
本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。
第七章定积分(§1 —§3)
§1.定积分的概念和可积条件
§2.定积分的基本性质
§3.微积分基本定理
第七章定积分(§4 —§6)
§4.定积分在几何中的应用
§5.微积分实际应用举例
§6.定积分的数值计算
本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的问题,初步掌握定积分的数值计算。
第八章反常积分