如何求实际问题中自变量取值范围
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何求实际问题中自变量取值范围
一般地求实际问题中的自变量取值范围,可以从静止和运动变化的角度去考虑,下面举例说明.
一、用静止的观点求自变量的取值范围.
由于学生认识能力有限,运动的变化观念和意识尚不成熟,他们往往习惯于用静止的观点看问题.学生在求自变量取值范围时,一般喜欢用静止的观点来求.从静止的角度考虑这个问题一般遵循以下原则:
1.尊重事实.现实世界,“人数”“字数”等均用零和自然数表达,线段的长度,时间均为非负数,这些都是不可违背的事实.
例1设电报费标准是每字0.14元,电报纸每张0.20元,写出电报费y(元)与字数x(个)之间的函数关系及x的取值范围.
解:y=0.14x+0.20,x取正整数.
例2矩形周长20,一边长x,面积为y,试写出y与x关系及x取值范围.
解:y=10x-x2,一边长为x,另一边长为10-x,由于边长不能为负,则x>0,10-x>0,∴0<x<10.
2.遵循定律公理等.
例3等腰梯形腰长和底长均为x,下底长y,其周长为20,写出y与x之间函数关系及x的取值范围.
解:y=20-3x,根据两点间距离线段最短,有:x+x+x>y,
例4等腰三角形腰长x,底边长y,周长30,写出y与x的函数关系及自变量的取值范围.
解:y=30-2x,因三角形两边之和大于第三边,∴x+x>y,
3.符合题目要求
例5一根弹簧,不挂物体时长12厘米,挂上物体以后,它伸长的长度(不超过22厘米)与所挂重物质量成正比.如果挂3千克重物,弹簧总长13.5厘米.求弹簧总长y与所挂重物质量x之间的函数关系,并写出自变量取值范围.
解:y=12+0.5x,因为最长伸长y不超过22厘米,∴12+0.5x≤22,x≤20,又∵x≥0,∴x的取值范围是0≤x≤20.
二、用运动变化的观点求自变量取值范围.
1.让两变量对应的图形或值进行大小变化,从而确定自变量最大值和最小值或者临界值.
例6等腰三角形底角为x,顶角为y,写出y与x之间函数关系及x取值范围.
解:y=180°-2x,我们让x变大,x不可大到90°,让x变小x不能小到0°,这里0°就是x的临界值,∴x的取值范围是0°<x<90°.
例7拖拉机油箱里有油54千克,使用时平均每小时耗油6千克,求箱中剩下油y(千克)与使用时间t(小时)之间函数关系及自变量的取值范围.
解:y=54-6t.当拖拉机不使用时,t=0;开始使用,t在增加,y在减小,到油耗干时,y=0,54-6t=0,t=9,这里,0和9是它的最大值和最小值.∴t 的取值范围是0≤t≤9.
2.让动点动起来.
B点运动到C点,设PB=x,四边形APCD面积为y,写出y与x之间的函数关系及x的取值范围.
例9如图2,在矩形ABCD中,边CD上有一动点P(异于C、D),设DP=x,AD=a,AB=b,△APD和△QCP面积之和为y,写出y与x的函数关系式及自变量x的取值范围.
从靠近C点向D点靠近时,Q沿BC延长线上迅速远离C点,x则由大变小,∴0<x<b.
3.让某部分图形整体移动.
例10如图3,OM⊥ON,AB=a,点A、B分别在ON、OM上滑动.设OB=x,△OAB面积为y,写出y与x的函数关系及x的取值范围.
逐渐提起,A点仍不离ON,并向左推动,此过程x在减小,当AB竖立在ON 线上时,x=0,∴0≤x≤a.
例11如图4,△ABC中,AC=4,AB=5,D是AC边上点,E是AB边上点,∠ADE=∠B,设AD=x,AE=y,则x与y之间函数关系式是[ ]
=0°,不符合题意.在∠ADE向下平移过程中,x在增大,当顶点D到达C处,且∠BDE=∠B,x=4,故0<x≤4,故选(C).
总而言之,求实际问题中的自变量取值范围,如果用静止观点研究,必须遵守三条原则,如果用运动观点研究,动点必须在一定的轨道上运动,而且要时刻兼顾到图形其它的部分的变化.当然,对于此类问题,有时也可动静结合综合考察.