如何求实际问题中自变量取值范围
求函数自变量取值范围的方法
求函数自变量取值范围的方法一、函数自变量取值范围的重要性。
1.1 函数就像一个小机器呀,自变量是我们喂给这个小机器的原料。
自变量取值范围呢,就决定了哪些原料是这个小机器能接受的。
要是给错了原料,这小机器可就没法正常运转啦,就像“巧妇难为无米之炊”一样。
这个取值范围是函数的一个基本属性,它能让我们准确地理解函数的意义和行为。
1.2 比如说在实际生活中,我们要计算一个圆形的面积,函数是面积关于半径的表达式。
那半径这个自变量就不能是负数,因为现实中不存在负的半径呀,这就是自变量取值范围在实际问题中的体现。
如果不考虑取值范围,算出的结果可能就成了无稽之谈。
二、整式函数自变量取值范围。
2.1 对于整式函数,那可就简单得像吃豆腐一样。
整式函数自变量取值范围通常是全体实数。
因为整式在任何实数的代入下都能顺利进行计算,没有什么特殊的限制。
比如说函数y = 3x + 5,x可以取任何实数,就像一个大门敞开着,所有的数都可以进去溜达一圈。
2.2 再比如y = x² 2x + 1,不管x是正数、负数还是零,这个函数都能算出一个对应的y值。
就像一个包容万象的大家庭,什么数来都欢迎。
三、分式函数自变量取值范围。
3.1 分式函数就有点小脾气啦。
分式函数分母不能为零,这是铁的纪律。
因为分母为零的时候,这个分式就没有意义了,就像盖房子没有地基一样。
比如说函数y = 1/(x 2),x就不能等于2。
要是x等于2了,那就像捅了马蜂窝一样,整个式子就乱套了。
3.2 我们得把让分母为零的那些值排除在自变量取值范围之外。
就像筛选珍珠一样,把那些不好的、会让函数出问题的值筛掉,留下的才是自变量合适的取值。
四、根式函数自变量取值范围。
4.1 根式函数呢,这里面有个小门道。
对于二次根式函数,根号下的数得是非负的。
就像我们要保护小树苗一样,根号下的数要是负数,在实数范围内就没有意义啦。
比如说y = √x,x必须大于等于0才行。
要是x是负数,那就像在沙漠里找鱼一样,根本就不存在对应的实数y值。
初中数学_如何确定函数自变量的取值范围
初中数学_如何确定函数自变量的取值范围确定函数自变量的取值范围是数学中的一个重要问题。
在解决数学问题和应用函数时,我们需要正确地确定自变量的取值范围,以保证问题的有效性和解决方案的正确性。
本文将介绍一些常见的确定函数自变量取值范围的方法。
首先,我们需要明确函数的定义域。
函数的定义域是指可以使函数有意义的自变量的取值范围。
根据函数的性质和实际问题的限制,我们可以用以下几种方法确定函数的定义域。
1.代数方法:根据函数的代数表达式,我们可以通过排除无意义或不符合要求的值来确定函数的定义域。
常见的情况包括分母不能为零、平方根函数的被开方数不能为负数等。
例如,对于函数f(x)=1/x,在这个函数中,分母不能为零,所以我们可以排除x=0。
因此,定义域可以表示为x≠0。
2.几何方法:通过函数的几何意义,我们可以确定自变量的取值范围。
例如,对于平方根函数y=√x,我们知道平方根函数的被开方数不能为负数。
因此,自变量的取值范围是x≥0。
3.实际问题的限制:在解决实际问题时,问题本身可能对自变量的取值范围有限制。
例如,一些问题要求在一个已知的范围内解决,那么自变量的取值范围可以限定在这个已知范围内。
其次,我们需要注意函数图像的特点,以确定函数自变量的取值范围。
1.函数的增减性:考虑函数的增减性可以帮助我们确定自变量的取值范围。
例如,对于一个递增函数,在这个函数中,随着自变量的增加,函数值也会增加。
因此,自变量的取值范围可以是无穷大或有实数限制的有界范围。
2.函数的奇偶性:如果函数是奇函数,那么函数图像关于原点对称,即f(x)=-f(-x)。
如果函数是偶函数,那么函数图像关于y轴对称,即f(x)=f(-x)。
根据函数的奇偶性可以帮助我们确定函数自变量的取值范围。
例如,如果函数是奇函数,那么自变量的取值范围可以限定在非负数范围内。
最后,我们可以通过函数的应用问题来确定自变量的取值范围。
1.题目限定:在解决应用问题时,问题本身可能对自变量的取值范围有限制。
1变量与函数如何确定自变量的取值范围
如何确定自变量的取值范围学习了函数以后就会经常遇到求自变量的取值范围的问题,那么如何才能正确地确定自变量的取值范围呢?一般可以从以下几个方面去考虑:一、当解析式是整式时,自变量的取值范围是一切实数例1 求下列函数中自变量x 的取值范围:(1)y =2x +3;(2)y =-3x 2+1.分析 由于这两个函数的解析式都是整式型的,所以自变量的取值范围是一切实数. 解(1)自变量x 的取值范围是一切实数;(2)自变量x 的取值范围是一切实数. 说明 求解时首先应判断函数是否属于是整式型的.二、当解析式是分式时,自变量的取值范围是使分母不为零的一切实数例2 求下列函数中自变量x 的取值范围:(1)y =21x +;(2)y =-22x x x --. 分析 这两道题都是属于分式型的,所以分母不等于零即可.解(1)因为x +1≠0,所以x ≠-1.即y =21x +中的自变量x 的取值范围是x ≠-1. (2)因为x 2-x -2≠0,即(x +1)( x -2)≠0,所以x ≠-1且x ≠2.即y =-22x x x --中的自变量x 的取值范围是x ≠-1且x ≠2.说明 这里在处理(2)时应特别注意文字“或”与“且”的使用.三、当解析式是二次根式时,自变量的取值范围是使被开方数不是负数的一切实数例3 求下列函数中自变量x 的取值范围:(1)y (2)y . 分析 这两道题都是属于根式型的,所以只要被开方数不是负数,即是非负数.解(1)因为x +2≥0,即x ≥-2,所以y x 的取值范围是x ≥-2.(2因为2x -3≥0且3-2x ≥0,即x ≥32且x ≤32,所以x =32,所以y +x 的取值范围是x =32. 说明 在求解第(2)小题时,应保证使每一个根式都同时有意义.四、当解析式是由上述几种形式组合而成,应首先求出式子中各部分的取值范围,然后再求出它们的公共部分例4 求下列函数中自变量x 的取值范围:(1)y+x ;(2)y =1x -. 分析 这两道是属于复合型的,要使函数有意义,必须保证每一个式子都有意义. 解(1)因为根式要分母上,所以只要满足3x +5>0,即x >-53,所以y +x 中的自变量x 的取值范围是x >-53.(2)要使函数有意义,必须满足①x +2≥0,②x -1≠0,即x ≥-2且x ≠-1.说明 在处理复合型函数自变量的取值范围时一定要根据题目的结构特征,分清每一部分的意义,只有保证每一部分都有意义了,才能从整体上保证函数有意义.五、当函数涉及到实际问题时,自变量的取值范围必须保证实际问题有意义例5 一次劳动技术课上,老师要求同学们制作一个周长为20cm 的等腰三角形.请你帮助同学们写出底边长y (cm )与一腰长x (cm )的函数关系式,并求出自变量x 的取值范围.分析 一个等腰三角形有两条腰,一个底边,腰与底的和等于周长,而腰长,即自变量的取值范围必须受到图形本身的限制,一方面边长应是正值,另一方面应满足三角形的两边之和大于第三边.解 依据题意,得2x +y =20,即底边长y (cm )与一腰长x (cm )的函数关系式为y =20-2x .因为x +x =2x >y ,所以0<y =20-2x <2x ,即5<x <10.所以y =80-2x (5<x <10).说明 在求解本题中自变量x 的取值范围得注意两个问题:一是边长x 应是正值,二是应满足三角形的两边之和大于第三边,缺一不可.下面几道习题选自全国部分省市的中考试卷,供同学们练习.1,(广东省)函数y =11x +中自变量x 的取值范围是 ( ) A A.x ≠-l B.x >-1 C.x =-1 D.x <-12,(潍坊市)函数y =12x -中,自变量x 的取值范围是( )D A.x ≥-2 B . x >2 C.x >-1且x ≠2 D. x ≥-1且x ≠23,(苏州市)下列函数中,自变量x 的取值范围是x >2的函数是( )CA.yB.y =C.yD.y。
自变量的取值范围
如何求函数自变量的取值范围求函数自变量的取值范围是初中数学的重点内容、是历年中考的重要内容。
现将有关求函数自变量的取值范围的几种形式综合如下,供参考。
一、整式、奇次根式形式 其自变量的取值范围是全体实数例1 求下列函数中,自变量 x 的取值范围:(1) y=5x 2-2x+1 (2) y=332-x解:(1)(2)中 x 取任意实数,3x 2-2x+1与312-x 都有意义。
∴(1)(2)中 x 的取值范围为一切实数。
练习:(1) 函数y=3x 3-5x 2-7x-8中,自变量 x 的取值范围是____________。
(2) 函数y= 3723--x x 中,自变量 x 的取值范围是____________二、偶次根式形式 其自变量的取值范围是使被开方式的值为非负例2 若36x -在实数范围内有意义,则x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠ (2010南通市中考题) 解:由3x-6≥0 ∴x ≥2 故选C练习:(1)函数y=12-x 中,自变量 x 的取值范围是______。
函数y=x -1中,自变量 x 的取值范围是______。
(2)函数y=32+x 中,自变量 x 的取值范围是______。
三、分式形式 其自变量的取值范围是使分母不为零的实数例3函数的自变量x 的取值范围是( )A .x ≠0B .x ≠1C .x ≥1D .x ≤1 (2010苏州市中考题) 解:令x-1≠0 ∴x ≠1 故选B(2) 练习:(1)函数y=11+x 中,自变量 x 的取值范围是______。
四、0指数幂的形式 其自变量的取值范围是底数不等于零的一切实数例4 求使(2x-3)0有意义的x 的范围解:令2x-3≠0 ∴x ≠3/2练习:求使(3x-2)0+2x-1有意义的x 的范围五、综合形式 其自变量的取值范围是使组成这个函数的各个小部分都有意义 例5 函数y=2+x +31-x 中,自变量 x 的取值范围是______。
变量的关系函数自变量的取值范围的确定方法
一、自变量的取值范围的确定方法
①当解析式为整式时,自变量的取值范围是全体实数;
②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数;
③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数;
④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。
二、变量及函数的定义
函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
变量:
在一个变化过程中,我们称数值发生变化的量为变量。
(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
三、变量的关系:
1.在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的;
2.进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。
也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量;
3.自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。
四、函数自变量的取值范围的确定方法:
使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围.。
(完整版)如何求实际问题中自变量取值范围
如何求实际问题中自变量取值范围一般地求实际问题中的自变量取值范围,可以从静止和运动变化的角度去考虑,下面举例说明.一、用静止的观点求自变量的取值范围.由于学生认识能力有限,运动的变化观念和意识尚不成熟,他们往往习惯于用静止的观点看问题.学生在求自变量取值范围时,一般喜欢用静止的观点来求.从静止的角度考虑这个问题一般遵循以下原则:1.尊重事实.现实世界,“人数”“字数”等均用零和自然数表达,线段的长度,时间均为非负数,这些都是不可违背的事实.例1设电报费标准是每字0.14元,电报纸每张0.20元,写出电报费y(元)与字数x(个)之间的函数关系及x的取值范围.解:y=0.14x+0.20,x取正整数.例2矩形周长20,一边长x,面积为y,试写出y与x关系及x取值范围.解:y=10x-x2,一边长为x,另一边长为10-x,由于边长不能为负,则x>0,10-x>0,∴0<x<10.2.遵循定律公理等.例3等腰梯形腰长和底长均为x,下底长y,其周长为20,写出y与x之间函数关系及x的取值范围.解:y=20-3x,根据两点间距离线段最短,有:x+x+x>y,例4等腰三角形腰长x,底边长y,周长30,写出y与x的函数关系及自变量的取值范围.解:y=30-2x,因三角形两边之和大于第三边,∴x+x>y,3.符合题目要求例5一根弹簧,不挂物体时长12厘米,挂上物体以后,它伸长的长度(不超过22厘米)与所挂重物质量成正比.如果挂3千克重物,弹簧总长13.5厘米.求弹簧总长y与所挂重物质量x之间的函数关系,并写出自变量取值范围.解:y=12+0.5x,因为最长伸长y不超过22厘米,∴12+0.5x≤22,x≤20,又∵x≥0,∴x的取值范围是0≤x≤20.二、用运动变化的观点求自变量取值范围.1.让两变量对应的图形或值进行大小变化,从而确定自变量最大值和最小值或者临界值.例6等腰三角形底角为x,顶角为y,写出y与x之间函数关系及x取值范围.解:y=180°-2x,我们让x变大,x不可大到90°,让x变小x不能小到0°,这里0°就是x的临界值,∴x的取值范围是0°<x<90°.例7拖拉机油箱里有油54千克,使用时平均每小时耗油6千克,求箱中剩下油y(千克)与使用时间t(小时)之间函数关系及自变量的取值范围.解:y=54-6t.当拖拉机不使用时,t=0;开始使用,t在增加,y在减小,到油耗干时,y=0,54-6t=0,t=9,这里,0和9是它的最大值和最小值.∴t 的取值范围是0≤t≤9.2.让动点动起来.B点运动到C点,设PB=x,四边形APCD面积为y,写出y与x之间的函数关系及x的取值范围.例9如图2,在矩形ABCD中,边CD上有一动点P(异于C、D),设DP=x,AD=a,AB=b,△APD和△QCP面积之和为y,写出y与x的函数关系式及自变量x的取值范围.从靠近C点向D点靠近时,Q沿BC延长线上迅速远离C点,x则由大变小,∴0<x<b.3.让某部分图形整体移动.例10如图3,OM⊥ON,AB=a,点A、B分别在ON、OM上滑动.设OB=x,△OAB面积为y,写出y与x的函数关系及x的取值范围.逐渐提起,A点仍不离ON,并向左推动,此过程x在减小,当AB竖立在ON 线上时,x=0,∴0≤x≤a.例11如图4,△ABC中,AC=4,AB=5,D是AC边上点,E是AB边上点,∠ADE=∠B,设AD=x,AE=y,则x与y之间函数关系式是[ ]=0°,不符合题意.在∠ADE向下平移过程中,x在增大,当顶点D到达C处,且∠BDE=∠B,x=4,故0<x≤4,故选(C).总而言之,求实际问题中的自变量取值范围,如果用静止观点研究,必须遵守三条原则,如果用运动观点研究,动点必须在一定的轨道上运动,而且要时刻兼顾到图形其它的部分的变化.当然,对于此类问题,有时也可动静结合综合考察.。
函数自变量的取值范围的确定
已知点A(6,0),点P(x,y)在第一象限,且x+y=8,设∆OPA的面积为S. (1)求S关于x的函数表达式; (2)求x的取值范围; (3)求S=12时,点P的坐标.
求下列函数的自变量x的取值范围:
y 1 (x≠0) x
y 1 (x≠-1) x 1
y x (x≥0) y 4x 5
(x为一切实数)
y x2
(x≥2)
y3 x2
(x为一切实数)
二、实际问题中自变量的取值范围.
在实际问题中确定自变量的取值范围,主要 考虑两个因素:
⑴自变量自身表示的意义.如时间、用油量 等不能为负数.
老张讲数学
函数自变量的取值
一、函数关系式中自变量的取值范围
在一般的函数关系中自变量的取值范围主要考 虑以下四种情况:
⑴函数关系式为整式形式:自变量取值范围为 全体实数;
⑵函数关系式为分式形式:分母的全体不为零 ⑶函数关系式含算术平方根:被开方数的全体
为非负数; ⑷函数关系式含零指数的:底数的全体不,租用汽车接送234名学生和6名教 师集体外出活动,共租车6辆。甲、乙两车载客量和租金如下 表:
甲种车辆 乙种车辆
载客量(单位:人/辆) 45
30
租金(单位:元)
400
280
设租用甲种车x辆,租车费用为y元,求y与x的函数关系式,并 写出自变量x的取值范围.
三、几何图形中函数自变量的取值范围
⑵问题中的限制条件.此时多用不等式或不 等式组来确定自变量的取值范围.
例1.用总长为60m的篱笆围成长方形场地,求 长方形面积S(m2)与边长x(m)之间的函数关系 式,并指出式自变量的取值范围?
初二函数自变量的取值范围方法和经典题型
班级_______ 姓名______ 耀华学号______ 分数___________中考宝典之----确定函数自变量的取值范围的秘诀:(1)关系式为整式时,自变量的取值范围为全体实数;如:27y x =- 中,x 可以取任意实数(2)关系式分母含有变量时,整个分母不等于零;如:y =中,分母含有变量x ,分母为 1x + ,故分母10x +≠(3)关系式含有二次根式时,被开放方数大于等于零;中,被开方数为 21x -,则 210x -≥(4)关系式中含有指数为零的式子时,底数不等于零;即:()010a a =≠,如:()01y x =+ ,底数为1x + ,则 10x +≠ (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
如:某汽车的油箱内装有200 升的油,行驶时每百公里耗油10升,设行使的里程为 x (百公里),则油箱中所剩下的油 y (升)与 x 之间的函数关系式是:20010y x =-,则自变量 x 的范围是 020x ≤≤我一定都能过关!1、(2009·哈尔滨中考)函数y =22x x -+的自变量x 的取值范围是 . 2、(2010黑龙江哈尔滨)函数21-+=x x y 的自变量的取值范围是 。
3、(2010江苏苏州)函数11y x =-的自变量x 的取值范围是( ) A .x ≠0 B .x ≠1 C .x ≥1 D .x ≤1 4、(2009·桂林中考)在函数y =x 的取值范围是 .5、函数x x y 中自变量1-=的取值范围是 ,当2=x 时,函数值y= .6、(2010·威海中考)在函数x y -=3中,自变量x 的取值范围是 .7、(2010湖南常德)函数y =x 的取值范围是 .8、函数y =x 的取值范围是___________.9、(2010广东湛江)函数1-=x y 的自变量x 的取值范围是( )A.1≥xB. 1-≥xC. 1-≤xD. 1≤x10、(2009·牡丹江中考)函数12y x =-中,自变量x 的取值范围是 . 11、函数y=11+x 中自变量x 的取值范围是____________.12、函数中,自变量的取值范围应是( )、 、 、 、13、在函数3y x =-中,自变量x 的取值范围是 。
求实际问题中函数自变量取值范围之思路
求实际问题中函数自变量取值范围之思路作者:陈新富来源:《中学教学参考·理科版》2011年第04期函数是代数的基本内容之一,而函数问题总离不开自变量的取值范围.函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素.对于初中生来说,确定自变量的取值范围是一个难点,特别是函数实际应用问题中的自变量取值范围.笔者在此归纳一些实际问题中求函数自变量取值范围的思路,供大家参考.一、结合问题的实际意义直接给出自变量取值范围在实际生活中自变量一般都不能取负数,结合具体问题很容易找出自变量的取值范围.在求出函数的解析式后,直接写出自变量的取值范围即可.图1【例1】你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm2)的反比例函数,假设其图象如图1所示,则y与x的函数关系式为.解析:观察图象,经过点P(0.04,3200),容易求出函数表达式是y=128x,但由于自变量x表示面条粗细,结合实际意义,x的取值范围应该是x>0.因此,本题的正确答案是y=128x(x>0).评析:此题若忽略条件x>0,函数y=128x的图象应该是经过第一、三象限的双曲线.像这样,函数解析式相同,但由于自变量的取值范围不同而图象不同的例子还有很多,大家要注意,一般当自变量表示与实际相关的量(如时间、边长、面积、价格等)时,切记要符合实际,不能取负值.二、找出变化过程的起点和终点,写出自变量的取值范围多数实际问题有开始有结束,如运动和剩余类问题,我们要从中找到变化过程的起点和终点,自变量的取值范围恰巧就位于其中.【例2】一个游泳池内有水300m3,现打开排水管以每小时25m3的排出量排水,写出游泳池内剩余水量Q m3与排水时间t h间的函数关系式.分析:阅读题目后,很容易列出解析式Q=300-25t.但由于此放水过程有开始,亦有结束,不难发现以现有速度排水,12小时后游泳池内水将排空,变化也就停止,而函数必须是个变化过程,故自变量取值范围应该为0≤t≤12.因此,本题的正确答案应该是Q=300-25t(0≤t≤12).评析:此题若自变量的范围仅考虑为t≥0,那么此函数将不符合实际.此类题目还有很多,大家一般都能找到起点,但容易遗漏终点,因此做此类题目还要想想变化过程是否会结束,务必要符合实际.三、根据题意,列出不等式(组)求出自变量的取值范围常见的最优化问题——最佳方案、最大利润、最小成本、最佳效益等,一般都是先建立相应的“目标函数”,再根据题意,列出不等式(组),求出不等式(组)的解集,结合实际意义,写出符合实际的自变量的取值范围.【例3】一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(1)用含x、y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式.解:(1)60-x-y.(2)由题意,得 900x+1200y+1100(60-x-y)=61000,整理,得 y=2x-50,则购进C型手机部数为:60-x-y=110-3x.根据题意列不等式组,得:x≥8,2x-50≥8,110-3x≥8,解得:29≤x≤34.∴所求的函数关系式是y=2x-50(29≤x≤34,且x取整数).评析:本题是一个购机方案问题,其中函数关系式较容易求出,但自变量取值范围的求取是个难点,要符合题目中给出的条件要求.四、利用特殊点,“走极端”找出自变量的取值范围解决动点问题,通常用一个变量表示出点的运动路程(或线段的长度),然后结合图形,列出函数关系式,再通过研究函数关系式使问题得到解决.对于函数解析式的自变量取值范围,通常采用“走极端”的方法,讨论当动点运动到线段的端点、中点等特殊点时,自变量的取值情况(即自变量取值范围的临界值),然后再考虑临界值能否取得,从而确定取值范围中不等号是否带上“=”号.图2【例4】如图2,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是().A.B.C.D.解析:这是一个动点问题.很容易由△ADE∽△DPC得到AECD=ADDP,从而得出表达式y=12x.因为点P在BC边上运动,当点P与点C重合时,DP与边DC重合,此时DP最短,x=3;当点P与点B重合时,DP与对角线BD重合,此时DP最长,x=5,即x的临界值是3和5.又因为当x取3和5时,线段AE的长可具体求出,因此x的取值范围是3≤x≤5.选C.评析:解决动点问题的常用策略是“以静制动,动静结合”,找准特殊点,是求出临界值的关键.五、根据因变量的取值范围反解求出自变量的取值范围对于有些问题,很难直接求出自变量的取值范围,但发现因变量的取值范围很明显或容易求出,此时,我们可根据因变量的取值范围列出关于自变量的不等式(组),通过解不等式(组)求出自变量的取值范围.图3【例5】如图3,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.求y与x的函数关系式,并求出x与y的取值范围.解:过C作CE⊥AB于E,则CD=AE=3,CE=4,可得BC=5,所以梯形ABCD的周长为18.PQ平分ABCD的周长,所以x+y=9,因为0≤y≤6,所以3≤x≤9,所求函数关系式为:y=-x+9(3≤x≤9).求函数自变量取值范围的方法很多,题型也比较开放,在遇到实际问题时,确定函数的自变量取值范围,除首先要使解析式有意义外,还要注意问题的实际意义对自变量的约束.这点要加倍注意,并养成习惯,形成意识.(责任编辑金铃)。
函数自变量取值范围的确定方法
函数自变量取值范围的确定方法在数学中,函数是一种映射关系,它将自变量的取值映射到因变量的取值。
确定函数自变量的取值范围是非常重要的,它决定了函数的定义域,也就是函数能够接受的有效输入。
以下是几种确定函数自变量取值范围的方法:1.函数定义式:函数的自变量取值范围可以通过函数的定义式来确定。
例如,对于一个有理函数f(x)=1/(x+1),我们可以通过分析定义式知道x的取值范围不能为-1,因为分母不能为零。
2.分段函数:如果一个函数在不同的自变量范围内有不同的定义式,那么我们需要考虑每个定义式的自变量取值范围。
例如,对于一个分段函数f(x)=,x,我们知道在x<0时,f(x)=-x;在x≥0时,f(x)=x。
因此,对于x<0和x≥0,我们需要考虑两个不同的自变量取值范围。
3.函数图象:函数的图象可以提供有关函数自变量的取值范围的一些线索。
我们可以通过观察函数的图象来确定函数自变量的取值范围。
例如,对于一个简单的二次函数f(x)=x^2,我们可以看到函数图象是一个开口朝上的抛物线,意味着函数自变量的取值范围为实数集。
4.函数的性质和约束:函数的性质和约束也可以提供有关函数自变量取值范围的信息。
例如,对于一个表示物体高度的位置函数f(t),我们知道物体不能以负的高度存在,因此自变量t的取值范围不能小于零。
5.实际问题:当函数被用于解决实际问题时,问题所涉及的条件和限制可以帮助确定函数自变量取值范围。
例如,对于一个描述人的体重变化的函数f(t),我们知道体重不能为负,因此自变量t的取值范围不能小于零。
总之,确定函数自变量取值范围的方法包括分析函数的定义式、分段函数的定义式、观察函数图象、考虑函数的性质和约束以及解决实际问题时考虑问题所涉及的条件和限制等。
通过这些方法,我们可以确定函数自变量的取值范围,从而确保函数的定义域是有效的。
自变量取值范围的求法
自变量取值范围的求法在求函数自变量的取值范围时,最关键的是要分析函数存在的形式。
在初中阶段,函数的存在的形式有三种:整式形式的函数,分式形式的函数,二次根式形式的函数,我们把这三种函数叫做求定义域的基本函数。
求函数自变量的方法,一般是根据函数有意义的条件列出有关不等式再来求值即可。
一·基本函数1.整式函数:由于在整式中的字母不受任何条件的限制,即无论字母取什么值函数都有意义,所以自变量的取值范围为全体实数,但遇到实际问题那么函数自变量的取值范围还必须使实际问题有意义。
例1.求中自变量的取值范围·解: 可以看出,取任何实数时这个式子都有意义,所以的取值范围是全体实数。
例2.一辆汽车的邮箱中现有汽油50L,如果不再加油,那么邮箱中的油量(单位:L)随行驶里程(单位:km)的增加而减少,平均耗油量为0.1L∕km.(1)写出表示与的函数关系的式子(2)指出自变量的取值范围。
解:(1)行驶里程是自变量,油箱中的油量是的函数,它们的关系为(2)仅从式子看,可以取任意实数,但是考虑到代表的实际意义为行驶路程,所以不能取负数,并且行驶中的耗油量为0.1,它不能超过油箱中现有汽油量的值50,即因此,自变量的取值范围是2·分式函数:根据分时有意义的条件是坟墓不为零,建立不等式求出解集,即为函数自变量的取值范围例3. 求中自变量的取值范围。
解:要使函数有意义,必须有即的取值范围是1.二次根式函数:根据二次根式有意义的条件是被开方数为非负数,建立不等式求出解集,即为该函数自变量的取值范围。
例4.中自变量的取值范围。
解:要使函数有意义,必须有,即的取值范围是但函数往往不是以某种单一的基本函数形式出现的,而是由两种或两种以上基本函数的形式同时出现在一个函数里面,这样的我们认为复合函数,求复合函数中自变量的取值范围,仍然以基本函数的求法基础。
二·复合二次函数1.两个两个以上的分式函数组成的函数,只要分解出各个不同的分式部分,分别确定其有意义的条件,组成不等式组,求出其解集,即为自变量的取值范围。
自变量的取值范围
函数自变量的取值范围青海省互助县红崖子沟下寨学校星小龙初三数学学习函数时,就遇到了求函数的自变量的取值范围,其实,取值范围并非只有在函数中出现,在各种运算和代数式中都有讨论字母的取值范围的题型。
但只要掌握了函数的自变量的取值范围,各种类型的题都能按照这种方法去解决。
现将初中阶段出现的自变量的取值范围归纳如下,供参考。
一:用整式或奇次根式表示的函数式,其自变量的取值范围是全体实数。
例1:求下列函数的自变量的取值范围。
1. y=2x+82. y=4x2-3x-53. y=3324+x解: 1 根据题意x取任意实数时,都能使2x+8有意义,所以自变量x的取值范围是全体实数。
2 根据题意x取任意实数时,都能使4x2-3x-5有意义,所以自变量x的取值范围是全体实数。
3根据题意x取任意实数时,都能使332+x有意义,所以自变量x的取值范围是全体实数。
二: 用偶次根式表示的函数式,其自变量的取值范围是被开方数为非负数(被开方数≥0)。
例2:求函数y =x 63-的自变量的取值范围。
解: 根据题意有3-6x ≥0解这个不等式得x ≤21 所以自变量的取值范围x ≤21。
例3:x ________时 ,126+x 有意义。
解: 根据题意有6x+12≥0解这个不等式得x ≥-2因此可添≥-2 三:用分式表示的函数式,其自变量的取值范围是分母不为零的实数(分母≠0)。
例4:求函数y =1053-+x x 的自变量的取值范围。
解: 根据题意有0105≠-x ① 03≥+x ②由①得x ≠2 由②得 3-≥x所以自变量的取值范围是3-≥x 且x ≠2四:当偶次根式在分母上时,其自变量的取值范围是被开方数为正数(被开方数>0)。
例5求函数y =9332-+x x 的自变量的取值范围:解: 根据题意有93-x >0解这个不等式得x >3所以自变量的取值范围是x >3常用对数的系统记忆星小龙常用对数一章是对数这一领域中的基础知识。
求函数自变量的取值范围方法总结
求函数自变量的取值范围方法总结函数自变量的取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围.求自变量的取值范围一般从两个方面考虑:(1)使函数关系式有意义;(2)符合客观实际.确定自变量的取值范围的方法:(1)如果函数关系式的右边是关于自变量的整式,则自变量的取值范围是全体实数.例如函数1-=x y ,自变量x 的取值范围是全体实数.(2)如果函数关系式的右边是分式,则自变量的取值范围是使分母不等于零的所有实数.例如函数12-=x y ,自变量x 的取值范围是1≠x . (3)如果函数关系式的右边包含二次根号,则自变量的取值范围是使被开方数为非负数.例如函数2-=x y ,自变量x 的取值范围是x ≥2.(4)如果函数关系式是有具体问题建立的,则自变量的取值范围不但要使函数关系式有意义,还要符合实际意义.例如函数2x y =,自变量x 的取值范围是全体实数,如果x 表示正方形的边长,y 表示正方形的面积,则自变量x 的取值范围就变成了0>x (边长不能为负数).(5)有些函数自变量的取值范围是以上情况的综合,需进行多方面的考虑. 例如函数21-=x y ,自变量x 应满足两个条件:一是满足分母不等于零,二是保证被开方数为非负数,所以得到关于自变量的不等式组⎩⎨⎧≥-≠-0202x x ,求得自变量x 的取值范围是2>x .例1. 求函数131-+-=x x y 中的自变量x 的取值范围.分析:本题中,自变量x 的取值范围应同时满足分母()3-x 不等于零和被开方数()1-x 为非负数.解:⎩⎨⎧≥-≠-0103x x 解这个不等式组得:x ≥1且3≠x .∴自变量x 的取值范围是x ≥1且3≠x .习题1. 函数xx y 2+=的自变量x 的取值范围是__________. 习题2. 函数413-+-=x x y 中自变量x 的取值范围是__________. 习题3. 在函数x xy -=1中, 自变量x 的取值范围是__________.习题4. 下列函数中,自变量的取值范围是2>x 的是 【 】(A )2-=x y (B )21-=x y (C )12-=x y (D )121-=x y习题5. 函数21--=x x y 中,自变量x 的取值范围是__________. 习题6. 下列函数中,自变量的取值范围错误的是 【 】(A )2-=x y (x ≥2) (B )11+=x y (1-≠x ) (C )22x y =(x 取全体实数) (D )31+=x y (x ≥3-) 习题7. 在函数24-++=x x y 中,自变量x 的取值范围是__________.例 2. 已知等腰三角形的周长为20,求底边长y 与腰长x 的函数关系式及自变量的取值范围.分析:本题为易错题,考虑问题不全面导致自变量的取值范围不完整.解决本题要注意两个问题:(1) 边长不能为负数;(2)三角形三边之间的关系.解:由题意得:202=+y x∴y 与x 之间的函数关系式为x y 220-=∵⎪⎩⎪⎨⎧->+>->x x x x x 22002200∴自变量x 的取值范围是105<<x .习题8. 已知等腰三角形的周长为12 cm,底边长y (cm )是腰长x (cm )的函数.(1)写出这个函数关系式;(2)求自变量x 的取值范围.专题 自变量的取值范围受哪些因素的影响求函数自变量的取值范围是学习数学的难点,也是历年来中考的热点,那么,如何确定自变量的取值范围呢?一般情况下,可以遵循以下原则:如果函数解析式是整式,则自变量的取值范围是全体实数(整式型)习题9. 函数12+=x y 中,自变量x 的取值范围是__________.分析:因为函数解析式的右边12+x 是整式,所以自变量x 的取值范围是全体实数.习题10. 函数122-+=x x y 中,自变量x 的取值范围是__________.如果函数解析式含有分式,则自变量的取值范围是使分母不等于零的实数(分式型)习题11. 在函数11-=x y 中,自变量x 的取值范围是__________. 分析:因为11-x 是分式,所以要求分母不等于零,即01≠-x . 习题12. 函数52-=x x y 中,自变量x 的取值范围是__________. 如果函数解析式中含有二次根式,则自变量的取值范围是使被开方数为非负数的实数 习题13. 函数3-=x y 中自变量x 的取值范围是__________.分析:因为3-x 为被开方式,要求被开方式为非负数,所以3-x ≥0,解得x ≥3. 习题14. 函数1+-=x y 中,自变量x 的取值范围是__________.如果函数解析式中含有零指数幂或负整指数幂,则自变量的取值范围是使底数不等于零的实数(指数型)习题15. 函数()221+-=-x y 中,自变量x 的取值范围是__________. 分析:因为函数解析式中含有负整指数幂,所以要求底数02≠-x ,即2≠x . 实际上,()221+-=-x y ,即221+-=x y . 习题16. 函数()202-++=x x y 中,自变量x 的取值范围是__________. 如果函数解析式兼有上述两种或两种以上的结构特点,则先按上述方法分别求出它们的取值范围,再求它们的公共部分(综合型)习题17. 函数()023---=x x x y 中,自变量x 的取值范围是__________. 习题18. 函数31--=x x y 中,自变量x 的取值范围是__________. 习题19. 函数24-++=x x y 中,自变量x 的取值范围是__________. 自变量的取值范围必须符合客观实际,必须使实际问题有意义(如边长不能为负、人数不能为小数等)例3. 某小汽车的油箱可装汽油30升,原装有油10升,现加x 升汽油,如果油价为5元/升,求油箱内汽油的总价y (元)与x (升)之间的函数关系式,并求出自变量x 的取值范围.分析:本题先求出函数关系式,再由关系式和实际意义确定自变量的取值范围.解:由题意得:()y=x5+10∴50=xy5+∵油箱原有油10升,油箱容量为30升∴自变量x的取值范围是0≤x≤20.(也可以是x0≤20)<习题20. 某台拖拉机油箱中有油60升,工作时每小时耗油6升.(1)求出拖拉机油箱中的剩余油量Q(升)与工作时间t(小时)之间的函数关系式;(2)求出自变量t的取值范围;(3)当拖拉机工作3小时后,油箱中还剩多少升油?。
求实际问题中函数自变量取值范围之思路
求实际问题中函数自变量取值范围之思路实际问题中函数的自变量取值范围是指函数在实际问题中合理的输入值的范围。
确定函数自变量的取值范围是解决实际问题的重要一步,它直接影响到问题的有效求解和结果的准确性。
下面将从几个不同的角度探讨确定函数自变量取值范围的思路。
一、问题的物理特性:在物理问题中,函数的自变量往往与一些物理量有关。
我们可以通过对物理问题的分析,确定函数自变量的取值范围。
例如,考虑物体的位移函数,自变量可以是时间t,而时间t的取值范围可以根据实际问题中的时间限制来确定。
二、问题的约束条件:在实际问题中,通常存在一些约束条件,这些约束条件对函数的自变量有一定的限制。
可以通过分析问题的约束条件来确定函数的自变量取值范围。
例如,在一个投资问题中,假设要投资x万元,且投资额必须大于等于100万元,小于等于500万元,那么函数的自变量取值范围就在100到500之间。
三、问题的实际意义:在解决实际问题时,函数的自变量取值范围应当有一定的实际意义。
我们可以通过对实际问题的分析,确定函数自变量的取值范围。
例如,考虑一个数学模型,模型中的自变量表示一些物体的质量,那么自变量的取值范围就应当是非负数。
四、计算机模拟:在一些情况下,我们可以通过计算机模拟来确定函数自变量的取值范围。
通过模拟大量的实际数据,可以发现函数自变量的取值范围。
例如,在疫情模型中,可以通过模拟感染人数随时间的变化来确定感染率的范围。
总之,确定函数自变量取值范围是解决实际问题的关键一步。
我们可以从问题的物理特性、约束条件、实际意义和计算机模拟等不同的角度出发,确定函数自变量的取值范围。
这样可以确保问题的有效求解和结果的准确性。
求函数自变量的取值范围的方法总结
求函数自变量的取值范围的方法总结函数自变量的取值范围是指函数中自变量可以取的所有实数值的集合。
确定函数自变量的取值范围有多种方法,以下总结了几种常见的方法:1.根据函数的定义域确定自变量的取值范围:-如果函数的定义域是实数集(即没有限制),则自变量的取值范围也是实数集。
-如果函数的定义域有限制,需要根据这个限制来确定自变量的取值范围。
例如,如果一个函数的定义域是正实数集(即大于零的实数),则自变量的取值范围也是正实数集。
2.根据函数的图像确定自变量的取值范围:-观察函数的图像,确定自变量在图像上的取值范围。
例如,如果一个函数的图像是一个上升的直线,那么自变量的取值范围是整个实数集。
-需要注意的是,函数图像的性质可能会给出一些限制,例如函数图像是一个分段函数,那么需要根据每个分段函数的定义域确定自变量的取值范围。
3.使用代数方法确定自变量的取值范围:-对于一些特殊的函数,可以使用代数方法来确定自变量的取值范围。
例如,对于有分母的函数,需要考虑分母不能等于零的条件。
这样就可以通过求解不等式来确定自变量的取值范围。
-另一个例子是要求函数的值在一定范围内,可以通过解方程或者不等式来确定自变量的取值范围。
例如,对于一个二次函数,如果要求函数的值在大于等于0的范围内,可以通过求解不等式来确定自变量的取值范围。
4.使用函数性质确定自变量的取值范围:-函数的一些性质可以给出自变量取值范围的一些限制。
例如,对于奇函数来说,只有在定义域的一些小范围内,自变量的正负不同,才能保证函数是奇函数。
在具体问题中,需要根据函数性质来确定自变量的取值范围。
总结起来,确定函数自变量的取值范围需要根据函数的定义域、图像、代数方法和函数性质等多方面的因素综合考虑。
根据具体的问题,选择合适的方法来确定自变量的取值范围,可以帮助我们更好地理解函数的特性和解决相关的数学问题。
怎样确定自变量的取值范围
怎样确定自变量的取值范围函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素。
求函数自变量的取值范围通常有以下六种方法:一、当函数解析是整式时,自变量的取值范围是一切实数。
例1.求下列函数中自变量x的取值范围:(1);(2);(3)分析:以上函数解析式,都是关于自变量x的整式,故自变量x的取值范围都是全体实数。
二.当函数解析式是分式时,自变量的取值范围是使分母不为零的一切实数。
例2.函数中,自变量x的取值范围是________。
分析:要使函数有意义,必须保证:,故应填。
三、当函数解析式是二次根式时,被开方数为一切非负实数。
例3.函数中,自变量x的取值范围是________。
分析:要使函数有意义,必须保证:,解得,故应填。
四.当零次幂或负整数次幂的底数中含有自变量时,该底数不为零。
例4.函数中,自变量x的取值范围是_______。
分析:要使函数有意义,必须保证:,故应填且五、由函数值的变化范围确定自变量的取值范围。
例5.拖拉机的油箱里有油54升,使用时平均每小时耗油6升,求油箱中剩下的油y(升)与使用时间t(小时)之间的函数关系式及自变量t的取值范围。
解:y与t之间的函数关系式是,即易知,从而有即,解得所以自变量t的取值范围是。
六、在实际问题中,自变量的取值范围应使该问题有实际意义例6.等腰三角形的周长为20,腰长为x,底边长为y。
求y与x之间的函数关系式及自变量x的取值范围。
解:y与x之间的函数关系式是,即如下图,因为三条线段构成三角形的条件是“其中任意两边之和大于第三边”,于是有,解得所以自变量x的取值范围是。
求函数自变量的取值范围的确定方法
求函数自变量的取值范围的确定方法确定一个函数自变量的取值范围是数学和实际问题中的一个重要部分。
它可以帮助我们确保函数在给定范围内有定义,避免产生错误或无意义结果。
在确定函数自变量的取值范围时,我们需要考虑函数的定义域、实际问题的限制以及常见的数学规则。
首先,我们需要了解函数的定义域。
函数的定义域是指使函数有意义的自变量的取值范围。
定义域可以通过函数的数学表达式来确定,也可以通过实际问题的限制来确定。
例如,对于函数f(x)=√x,由于平方根只对非负数有定义,因此函数的定义域是x≥0。
其次,我们需要考虑实际问题的限制。
在解决实际问题时,函数的自变量通常具有一些限制条件。
这些限制条件可以是来自实际问题的物理、经济或几何约束。
例如,如果我们正在解决一个关于时间的问题,函数的自变量可能被限制在一些时间段内,如t≥0。
通过考虑这些限制条件,我们可以确定函数自变量的取值范围。
此外,我们还需要考虑数学规则。
在数学中,有一些常见的规则可以帮助我们确定函数自变量的取值范围。
例如,对于分式函数,我们需要排除分母为零的情况,因为分母为零会导致函数无定义。
又如,对于对数函数log(x),由于对数只对正数有定义,因此函数的自变量需要满足x>0。
通过应用这些数学规则,我们可以确定函数自变量的取值范围。
在实际问题中,我们还可以利用图像来帮助确定函数自变量的取值范围。
通过绘制函数的图像,我们可以观察函数的趋势和特征,从而确定自变量的取值范围。
例如,对于一个上升趋势的函数,自变量的取值范围可以是负无穷到正无穷。
最后,我们需要根据具体问题的要求来确定函数自变量的取值范围。
不同的问题可能对函数的自变量有不同的要求,如非负、整数或实数。
通过仔细阅读和分析问题的描述,我们可以得出函数自变量的取值范围的具体要求。
在数学和实际问题中,确定函数自变量的取值范围是解决问题和避免错误的关键步骤。
通过了解函数的定义域,考虑实际问题的限制,应用数学规则,利用图像和根据问题要求确定自变量的取值范围,我们可以确保函数在给定范围内有定义,从而有效地解决问题。
完整版如何求实际问题中自变量取值范围
如何务实诘问题中自变量取值范围一般地务实诘问题中的自变量取值范围,可以从静止和运动变化的角度去考虑,下边举例说明.一、用静止的看法求自变量的取值范围.因为学生认识能力有限,运动的变化看法和意识尚不可以熟,他们常常习惯于用静止的看法看问题.学生在求自变量取值范围时,一般喜爱用静止的看法来求.从静止的角度考虑这个问题一般依据以下原则:1.尊敬事实.现实世界,“人数”“字数”等均用零和自然数表达,线段的长度,时间均为非负数,这些都是不可以违反的事实.例 1 设电报费标准是每字 0.14 元,电报纸每张 0.20 元,写出电报费 y(元)与字数x(个)之间的函数关系及 x 的取值范围.解:y=+, x 取正整数.例 2 矩形周长 20,一边长 x,面积为 y,试写出 y 与 x 关系及 x 取值范围.解:y=10x-x2,一边长为x ,另一边长为10-x ,因为边长不可以为负,则x>0,10-x>0,∴ 0<x<10.2.依据定律公义等.例 3 等腰梯形腰长和底长均为 x,下底长 y,其周长为 20,写出 y 与 x 之间函数关系及 x 的取值范围.解:y=20-3x ,依据两点间距离线段最短,有:x+x+x>y,例 4 等腰三角形腰长 x,底边长 y,周长 30,写出 y 与 x 的函数关系及自变量的取值范围.解:y=30-2x ,因三角形两边之和大于第三边,∴x+ x> y,3.切合题目要求例5 一根弹簧,不挂物体时长12 厘米,挂上物体此后,它伸长的长度(不超出22 厘米)与所挂重物质量成正比.假如挂3 千克重物,弹簧总长13.5 厘米.求弹簧总长 y 与所挂重物质量 x 之间的函数关系,并写出自变量取值范围.解:y= 12+,因为最长伸长 y 不超出 22 厘米,∴ 12+≤22,x≤20,又∵x≥ 0,∴ x 的取值范围是 0≤x≤20.二、用运动变化的看法求自变量取值范围.1.让两变量对应的图形或值进行大小变化,从而确立自变量最大值和最小值也许临界值.例 6 等腰三角形底角为x,顶角为 y,写出 y 与 x 之间函数关系及x 取值范围.解:y= 180°- 2x ,我们让 x 变大,x 不可以大到 90°,让 x 变小 x 不可以小到0°,这里 0°就是 x 的临界值,∴ x 的取值范围是 0°< x<90°.例 7 拖沓机油箱里有油 54 千克,使用时均匀每小时耗油 6 千克,求箱中剩下油y(千克 )与使用时间 t(小时 )之间函数关系及自变量的取值范围.解:y=54-6t.当拖沓机不使用时, t=0;开始使用, t 在增添, y 在减小,到油耗干时, y= 0, 54- 6t= 0, t=9,这里, 0 和 9 是它的最大值和最小值.∴ t 的取值范围是 0≤t≤9.2.让动点动起来.B 点运动到C 点,设 PB=x,四边形 APCD 面积为 y,写出 y 与 x 之间的函数关系及 x 的取值范围.例 9 如图 2,在矩形 ABCD 中,边 CD 上有一动点 P(异于 C、D),设 DP=x , AD =a,AB =b,△APD 和△ QCP 面积之和为 y,写出 y 与 x 的函数关系式及自变量x 的取值范围.从凑近 C 点向 D 点凑近时, Q 沿 BC 延长线上迅速远离 C 点, x 则由大变小,∴0< x< b.3.让某部分图形整体挪动.例 10 如图 3,OM ⊥ON,AB =a,点 A、B 分别在 ON、OM 上滑动.设 OB=x ,△ OAB 面积为 y,写出 y 与 x 的函数关系及 x 的取值范围.逐渐提起, A 点仍不离 ON,并向左推进,此过程 x 在减小,当 AB 直立在 ON 线上时, x= 0,∴ 0≤ x≤ a.例 11 如图 4,△ABC 中,AC=4,AB =5,D 是 AC 边上点, E 是 AB 边上点,∠ADE=∠ B,设 AD =x,AE =y,则 x 与 y 之间函数关系式是 [ ]=0°,不切合题意.在∠ ADE 向下平移过程中, x 在增大,当极点 D 到达 C 处,且∠ BDE=∠ B,x =4,故 0<x≤4,应选 (C).总而言之,务实诘问题中的自变量取值范围,假如用静止看法研究,必然恪守三条原则,假如用运动看法研究,动点必然在必然的轨道上运动,并且要时辰兼备到图形其他的部分的变化.自然,对于此类问题,有时也可动静联合综合观察.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何求实际问题中自变量取值范围
一般地求实际问题中的自变量取值范围,可以从静止和运动变化的角度去考虑,下面举例说明.
一、用静止的观点求自变量的取值范围.
由于学生认识能力有限,运动的变化观念和意识尚不成熟,他们往往习惯于用静止的观点看问题.学生在求自变量取值范围时,一般喜欢用静止的观点来求.从静止的角度考虑这个问题一般遵循以下原则:
1.尊重事实.现实世界,“人数”“字数”等均用零和自然数表达,线段的长度,时间均为非负数,这些都是不可违背的事实.
例1设电报费标准是每字0.14元,电报纸每张0.20元,写出电报费y(元)与字数x(个)之间的函数关系及x的取值范围.
解:y=0.14x+0.20,x取正整数.
例2矩形周长20,一边长x,面积为y,试写出y与x关系及x取值范围.
解:y=10x-x2,一边长为x,另一边长为10-x,由于边长不能为负,则x>0,10-x>0,∴0<x<10.
2.遵循定律公理等.
例3等腰梯形腰长和底长均为x,下底长y,其周长为20,写出y与x之间函数关系及x的取值范围.
解:y=20-3x,根据两点间距离线段最短,有:x+x+x>y,
例4等腰三角形腰长x,底边长y,周长30,写出y与x的函数关系及自变量的取值范围.
解:y=30-2x,因三角形两边之和大于第三边,∴x+x>y,
3.符合题目要求
例5一根弹簧,不挂物体时长12厘米,挂上物体以后,它伸长的长度(不超过22厘米)与所挂重物质量成正比.如果挂3千克重物,弹簧总长13.5厘米.求弹簧总长y与所挂重物质量x之间的函数关系,并写出自变量取值范围.
解:y=12+0.5x,因为最长伸长y不超过22厘米,∴12+0.5x≤22,x≤20,又∵x≥0,∴x的取值范围是0≤x≤20.
二、用运动变化的观点求自变量取值范围.
1.让两变量对应的图形或值进行大小变化,从而确定自变量最大值和最小值或者临界值.
例6等腰三角形底角为x,顶角为y,写出y与x之间函数关系及x取值范围.
解:y=180°-2x,我们让x变大,x不可大到90°,让x变小x不能小到0°,这里0°就是x的临界值,∴x的取值范围是0°<x<90°.
例7拖拉机油箱里有油54千克,使用时平均每小时耗油6千克,求箱中剩下油y(千克)与使用时间t(小时)之间函数关系及自变量的取值范围.
解:y=54-6t.当拖拉机不使用时,t=0;开始使用,t在增加,y在减小,到油耗干时,y=0,54-6t=0,t=9,这里,0和9是它的最大值和最小值.∴t 的取值范围是0≤t≤9.
2.让动点动起来.
B点运动到C点,设PB=x,四边形APCD面积为y,写出y与x之间的函数关系及x的取值范围.
例9如图2,在矩形ABCD中,边CD上有一动点P(异于C、D),设DP=x,AD=a,AB=b,△APD和△QCP面积之和为y,写出y与x的函数关系式及自变量x的取值范围.
从靠近C点向D点靠近时,Q沿BC延长线上迅速远离C点,x则由大变小,∴0<x<b.
3.让某部分图形整体移动.
例10如图3,OM⊥ON,AB=a,点A、B分别在ON、OM上滑动.设OB=x,△OAB面积为y,写出y与x的函数关系及x的取值范围.
逐渐提起,A点仍不离ON,并向左推动,此过程x在减小,当AB竖立在ON 线上时,x=0,∴0≤x≤a.
例11如图4,△ABC中,AC=4,AB=5,D是AC边上点,E是AB边上点,∠ADE=∠B,设AD=x,AE=y,则x与y之间函数关系式是[ ]
=0°,不符合题意.在∠ADE向下平移过程中,x在增大,当顶点D到达C处,且∠BDE=∠B,x=4,故0<x≤4,故选(C).
总而言之,求实际问题中的自变量取值范围,如果用静止观点研究,必须遵守三条原则,如果用运动观点研究,动点必须在一定的轨道上运动,而且要时刻兼顾到图形其它的部分的变化.当然,对于此类问题,有时也可动静结合综合考察.。