数字推理题库
数字推理题库道及详解
数字推理最新题库180道及详解1、5,10,17,26,()A、30;B、43;C、37;D、41解答:相邻两数之差为5、7、9、11,构成等差数列2、,3,,,()A、2;B、;C、4;D、3解答:把四个数全部化为根号,则根号里新的数是2、9、28、65、(),这明显是1、2、3、4、5的立方加1,所以括号中应为5的立方加1,即126的开方,故选D。
3、1,13,45,97,()A、169;B、125;C、137;D、189解答:相邻两数之差构成12、32、52这样的等差数列,故下一个数就应该是97+72=169,选A。
4、1,01,2,002,3,0003,()…A、40003;B、4003;C、400004;D、40004解答:隔项为自然数列和等比数列,故选D。
5、2,3,6,36,()A、48;B、54;C、72;D、1296解答:从第三项开始,每一项都是前几项的乘积。
故选D6、3,6,9,()A、12;B、14;C、16;D、24解答:等比数列。
7、1,312,623,()A、718;B、934;C、819;D、518解答:个位数分别是1、2、3、4,十位数分别是0、1、2、3,百位数分别是0、3、6、9,所以选B。
8、8,7,15,22,()A、37;B、25;C、44;D、39解答:从第三项开始,后一项是前两项的和。
故选A。
9、3,5,9,17,()A、25;B、33;C、29;D、37解答:相邻两项的差构成等比数列。
故选B。
10、20,31,43,56,()A、68;B、72;C、80;D、70解答:相邻两项的差构成等差数列。
故选D。
11、+1,-1,1,-1,()A、+1;B、1;C、-1;D、-1解答:从第三项开始,后一项是前两项的乘积。
12、+1,4,3+1,()A、10;B、4+1;C、11;D、解答:选A13、144,72,18,3,()A、1;B、1/3;C、3/8;D、2解答:相邻两数的商构成2、4、6、(),是等差数列。
数字推理精选500道(打印版)
12. 3 ,10 ,11 ,( ) ,127 A.44 B.52 C.66 D.78 解析:3=1^3+2 10=2^3+2 11=3^2+2 66=4^3+2 127=5^3+2 其中 指数成3、3、2、3、3 规律 13. 1913 ,1616 ,1319 , 1022 ,() A.724 B.725 C.526 D.726 解析:1913,1616,1319,1022 每个数字的前半部分和后半部 分分开。 即:将1913 分成19,13。所以 新的数组为,(19,13),(16, 16),(13,19),(10,22), 可以看出19,16,13,10,7 递 减3,而13,16,19,22,25 递 增3,所以为725。 14. 1 ,2/3 , 5/9 ,( 1/2 ) , 7/15 , 4/9 ,4/9 A.1/2 B.3/4 C.2/13 D.3/7 解析:1/1 、2/3 、5/9、1/2 、 7/15、4/9、4/9=>规律以1/2 为 对称=>在1/2 左侧,分 子的2 倍-1=分母;在1/2 时, 分子的2 倍=分母;在1/2 右 侧,分子的2 倍+1=分母 15. 5 ,5 ,14 ,38 ,87 , () A.167 B.168 C.169 D.170 解析:(方法一)前三项相加 再加一个常数×变量 (即:N1 是常数;N2 是变量, a+b+c+N1×N2) 5+5+14+14×1=38 38+87+14+14×2=167 (方法二)后项减前项得:0 9 24 49 80 1^2-1=0 3^2=9 5^2-1=24 7^2=49 9^2-1=80 (方法三)5+1^2-1=5 5+3^2=14 14+5^2-1=38 38+7^2=87
数字推理题库道详解
数字推理题100道详解【301】1,8,9,4,(),1/6A,3;B,2;C,1;D,1/3分析:选C, 1=14;8=23;9=32;4=41;1=50;1/6=6(-1)【302】63,26,7,0,-2,-9,()分析:43-1=63;33-1=26;23-1=7;13-1=0; -13-1=-2;-23-1=-9 ;-33-1=-28【303】8,8,12,24,60,( )A,240;B,180;C,120;D,80分析:选B,8, 8是一倍12,24两倍关系60,(180)三倍关系【304】-1,0,31,80,63,( ),5A.35;B.24; C.26;D.37;分析:选B,-1 = 07 - 1 0 = 16 - 1 31= 25 - 1 80 = 34 - 1 63 = 43 - 1 24 = 52 - 1 5 = 61–1【305】3,8,11,20,71,()A.168;B.233;C.91;D.304分析:选B,每项除以第一项=>余数列2、2、2、2、2、2、2【306】88,24,56,40,48,(),46A.38;B.40;C.42;D.44分析:选D,前项减后项=>64、-32、16、-8、4、-2=>前项除以后项=>-2、-2、-2、-2、-2【307】4,2,2,3,6,()A.10;B.15;C.8;D.6;分析:选B,后项/前项为:0.5,1,1.5,2,?=2.5 所以6×2.5=15【308】49/800,47/400,9/40,( )A.13/200;B.41/100;C.51/100;D.43/100分析:选D,思路一:49/800, 47/400, 9/40, 43/100=>49/800、94/800、180/800、344/800=>分子 49、94、180、344 49×2-4=94;94×2-8=180;180×2-16=344;其中4、8、16等比。
数字推理题考试题及答案
数字推理题考试题及答案一、单选题(每题2分,共20分)1. 观察下列数列,找出下一个数:2, 4, 8, 16, 32, ?A. 64B. 48C. 56D. 72答案:A解析:这是一个等比数列,每个数都是前一个数的2倍。
2. 观察下列数列,找出下一个数:1, 2, 4, 8, 16, ?A. 24B. 32C. 36D. 64答案:D解析:这是一个等比数列,每个数都是前一个数的2倍。
3. 观察下列数列,找出下一个数:1, 3, 6, 10, 15, ?A. 18B. 21C. 22D. 30答案:B解析:这是一个三角数列,每个数是前一个数加上当前项的序号(1, 2, 3, 4, 5...)。
4. 观察下列数列,找出下一个数:2, 3, 5, 7, 11, ?A. 12B. 13C. 17D. 19答案:C解析:这是一个质数数列,每个数都是质数。
5. 观察下列数列,找出下一个数:1, 2, 6, 24, 120, ?A. 720B. 504C. 600D. 840答案:A解析:这是一个阶乘数列,每个数是前一个数乘以当前项的序号(1!, 2!, 3!, 4!, 5!...)。
6. 观察下列数列,找出下一个数:1, 8, 27, 64, 125, ?A. 216B. 216C. 343D. 512答案:C解析:这是一个立方数列,每个数是当前项序号的立方(1^3, 2^3, 3^3, 4^3, 5^3...)。
7. 观察下列数列,找出下一个数:1, 4, 9, 16, 25, ?A. 36B. 40C. 49D. 50答案:A解析:这是一个平方数列,每个数是当前项序号的平方(1^2, 2^2, 3^2, 4^2, 5^2...)。
8. 观察下列数列,找出下一个数:2, 5, 8, 11, 14, ?A. 17B. 18C. 19D. 20答案:A解析:这是一个等差数列,每个数都是前一个数加3。
9. 观察下列数列,找出下一个数:1, 1, 2, 3, 5, 8, ?A. 11B. 13C. 14D. 15答案:A解析:这是一个斐波那契数列,每个数是前两个数的和。
经典数字推理题库120题(专项练习答案解析)
数字推理120题答案解析(1). 5,6,8,10,14,() A. 12 B. 14 C 16 D 185=2+36=3+38=5+310=7+314=11+316=13+3(2). -11,-4,-3,-2,( ) A.-1, B.0 C.3 D.5(-2)^3-3=-11(-1)^3-3=-40^3-3=-31^3-3=-22^3-3=5(3). 77,63,23,18,41,31,( ) A. -5, B.6 C.12 D.1877+23=100=10^263+18=81=9^223+41=64=8^218+31=49=7^241+(-5)=36=6^2(4) 1,7,19,37,( ) A. 57 B.61 C.66 D.80 7-1=619-7=1237-19=1861-37=24等差数列。
或者是1^2-0=13^2-2=75^2-6=197^2-12=379^2-20=610,2,6,12,20 差为2,4,6,8(5) 2,6,10,18,32,( ) A 57, B. 58 C.61 D.63 6+(2+6)/2=1010+(6+10)/2=1818+(10+18)/2=3232+(18+32)/2=57(6) 2,2,3,5,14,() A. 50 B. 55 C.63 D.69 2×2-1=32×3-1=53×5-1=145×14-1=69(7) 7/3,5/2,6/5,11,9/2,11/7, 8,( ) A 9/7 B 9 C 13/11 D 7/6两两一组(7+3)/(7-3)=10/4=5/2(6+5)/(6-5)=11/1(9+2)/(9-2)=11/78=8/1=(8+1)/(8-1)=9/7(8) 0,10,24,68,120,( ) A 196 B.210 C 216 D 2221^3-1=02^3+2=103^3-3=244^3+4=685^3-5=1206^3+6=222(9) (9,2,7),(4,3,8),(49,12,31),(0,17,?) A.34 B.51 C.49 D. 479开2次方+2×2=74开2次方+3×2=849开2次方+12×2=310开2次方+17×2=34(10) 21,17,22,21,31,37,( ) A.48 B.53 C.56 D 6122-21=121-17=431-22=937-21=1656-31=25(11) 2,12,23,52,() A 61 B 74 C 76 D 822=0+21+2=32+3=55+2=77+4=11(12) 1,1,2,6,8,11,() A 13 B 17 C 18 D 201+1+2=41+2+6=92+6+8=166+8+11=258+11+17=36(13) 3,3,9,33,93,() A 210 B 213 C 216 D 222 3-3=0=1^3-19-3=6=2^3-233-9=24=3^3-393-33=60=4^3-4213-93=120=5^3-5(14) (7,28,4),(3,16,16),(10,20,10),(21,?,9) A 108 B 63 C 41 D 27 (7×4)/1=28(3×16)/3=16(10×10)/5=20(21×9)/7=27(15) 4,11,17,20,15,1,() A -24, B -16 C 16 D 24(11+17)-2*4=20(17+20)-2*11=15(20+15)-17*2=1(15+1)-20*2=-24(16) 6,9,15,21,33,( ) A. 51 B.48 C.42 D.396=2×39=3×315=5×321=7×333=11×339=13×3(17) 2,3,9,36,360,( ) A.13320 B.13322 C.12320 D12322 (2+1)*3=9(3+1)*9=36(9+1)*36=360(36+1)*360=13320(18) (14,13,3), (22,25,7), (36,?,23) A.56 B.64 C.67 D.7214/2+3*2=1322/2+7*2=2536/2+23*2=64(19) 5,32,81,128,125,( ) A. 0 B.216 C.144 D.1895=5×1^332=4×2^381=3×3^3128=2×4^3125=1×5^30=0×6^3(20) 0,7,8,63,24,( ) A. 0 B.255 C.215 D.3231^2-1=02^3-1=73*2-1=84*3-1=635^2-1=246^3-1=215(21). 2,6,12,22,36,( ) A.48 B.58 C.64 D.686-2=2*212-6=2*322-12=2*536-22=2*758-36=2*11(22). 4,8,32,128,( ) A. 256 B.512 C 1024 D.2048 2^2=42^3=82^5=322^7=1282^11=2048(23). 7,9,20,62,( ) A. 194 B.198 C.102 D.2507*1+2=99*2+2=2020*3+2=6262*4+2=250(24). (12,13,7),(23,31,9),(43,12,10),(37,16,?) A.45 B.32 C.19 D.131*1+2*3=72*3+3*1=94*1+3*2=103*1+7*6=45(25). 3,1,12,16,30,100,39,( ) A. 177 B.189 C.98 D.169 (3/3)^2=1(12/3)^2=16(30/3)^2=100(39/3)^2=169(26) 11,24,35,42,47,( ) A.50 B.51 C.52 D.53 24-11=1335-24=1142-35=747-42=550-47=3(27) 13,7,8,17,43,( ) A. 67 B.112 C.84 D.1267×3-13=88×3-7=1717×3-8=4343×3-17=112(28) 3,11/5,15/7,2,21/11,( ) A.23/11 B.23/13 C.21/13 D.25/14 6/2, 11/5, 15/7, 18/9, 21/11,6-2=411-5=615-7=818-9=921-11=10选项符合分子-分母是合数序列的1223-11=12 选A(29) (12,7,9),(46,55,1),(12,86,8),(23,13,?) A.4 B.6 C.8 D.10 2+7=96+5=112+6=83+3=6(30) 2,6,30,60,130, ( ) A.180 B.200 C.210 D.240 1^3+1=22^3-2=63^3+3=304^3-4=605^3+5=1306^3-6=210(31) 3,4,21,75,288,()A 900 B 1089 C 1098 D 1200(3+4)×3=21(4+21)×3=75(21+75)×3=288(75+288)×3=1089(32) 7,5,2,3,-1,()A.0 B.2 C 4 D -4A-C=B7-2=55-3=22-(-1)=33-4=-1(33) (2,3,13),(3,2,15),(4,5,?)A.19 B.31 C 40 D 242^2+3*3=133^2+2*3=154^2+5*3=31(34) 0,1,2,9,44,()A.121 B.196 C.265 D 3001=0×2+12=1×3-19=2×4+144=9×5-1265=44×6+1(35) 5,2,1,2,5,()A.2 B.5 C.8 D.102-5=-31-2=-12-1=15-2=310-5=5或者隔项减1-5=-42-2=05-1=410-2=8(36)、1,3,3,5,4,6,()A.6 B.7 C.8 D.91+3=43+3=63+5=85+4=94+6=106+6=12合数序列(37)、-2,-3,0,27,()A.64 B.128 C.162 D.192 -2×3^0=-2-1×3^1=-30×3^2=01×3^3=272×3^4=162(38)、0,0,1,5,23,()A.46 B.97 C.108 D.119 0!-1=01!-1=02!-1=13!-1=54!-1=235!-1=119!表示阶乘(39) 59,33,18,8,5,()A.0 B.1 C.2 D.359-33=26=5^2+133-18=15=4^2-118-8=10=3^2+18-5=3=2^2-15-3=2=1^2+1(40)、2,5,11,41,911,()A.756941B.640011C.630011D.670031 (5-2)^2+2=11(11-5)^2+5=41(41-11)^2+11=911(911-41)^2+41=756941 (看尾数是否是41)(41) 2,2,0,4,16,( ) A.48 B.64 C.128 D.144 (2-2)^2=0(2-0)^2=4(0-4)^2=16(4-16)^2=144(42) 5,14,34,76,( ) A.142 B.163 C.169 D.176 5=2×3-114=3×5-134=5×7-176=7×11-1=11×13-1=142(43) 3,3,6,18,72,( ) A.256 B.288 C.360 D.384 3/3=16/3=218/6=372/18=4360/72=5(44) 15,9,3,3,0,( ) A.1.5 B.-1.5 C. -2 D.-3 (15-9)/2=3(9-3)/2=3(3-3)/2=0(3-0)/2=1.5(45) 0,1,0,7,20,( ) A.32 B.34 C.37 D.420+1+0=1=1^31+0+7=8=2^30+7+20=27=3^37+20+37=64=4^3(46) -1/2, 1/3, 4/5, 9/7, 16/9, ( )A. 25/13B.23/13C.24/11D.19/11-1+2=11+3=44+5=99+7=1616+9=2523+13=36选B(47) 1, 2, 2, 5, 9, 16, ( )A.22B.26C.30D.341+2+2=52+2+5=92+5+9=165+9+16=30(48) 2, 0, 0, 4, 6, ( )A.3B.6C.12D.24-2×(-1)^5=2-1×0^4=00×1^3=01×2^2=42×3^1=63×4^0=3(49) (6, 4, 15) , (7,2,21), (3,2,1), (5,3,? )A.10,B. 15C.18D. 126*4-9=157*2+7=213*2-5=15*3+3=18(50) 2, 1, 5, 6, 31, ( )A. 45B.67C.72D.782^2+1=51^2+5=65^2+6=316^2+31=67(51) 7, 28, 124, 344, ( )A.990B.1330C.1432D.16913^3+1=285^3-1=1247^3+1=34411^3-1=1330(52) 37, 55, 82, 127, ( )A.193B.188C.172D.1653+7=105+5=108+2=101+2+7=101+7+2=10 选C(53) 146, 255, 366, 479, ( )A. 581B.583C.891D.1000看中间数字146, 255, 366, 479 4^2=16 合成1465^2=25 合成2556^2=36 合成3667^2=49 合成479选项中只有C满足(54) 1, 2, 5, 14, 53, ( )A. 102B.202C.302D.4021^2+2×2=52^2+5×2=145^2+14×2=5314^2+53×2=302(55) 2,6,15,28,( )A.55B.56C.58D.602=2×16=3×215=5×328=7×4=11×5=55(56) 1/3, 1/3, 5/6, 3/2, 9/4, ( )A.31/5B.31/10C.61/20D.61/30 1/3-1/3=0/15/6-1/3=1/23/2-5/6=2/39/4-3/2=3/4=61/20(57) 3, 11, 32, 71, 136, ( )A.199B.229C.234D.2431^3+2=32^3+3=113^3+5=324^3+7=715^3+11=1366^3+13=229(58) 2, 3, 5, 11, 28, 126, ( )A.486B.580C.720D.7952+3^2=113+5^2=285+11^2=12611+28^2=795(59) 1, 2, 3, 8, 27 ( )A.164B.200C.216D.2241*(2+1)=32*(3+1)=83*(8+1)=278*(27+1)=224公式:A*(B+1)=C(60) 4, 12, 24, 36, 50, ( )A. 64B.68C.72D.801*4=42*6=123*8=244*9=365*10=506*12=724,6,8,9,10,12是合数列(61) 7, 13, 20, 29, 38, ( )A. 50B.51C.52D.543^2-2=74^2-3=135^2-5=206^2-7=297^2-11=388^2-13=51(62) 21, 36, 96, 41, 81, ( )A. 1B.34C. 89D.72除以5的余数都是1 选A(63) 3, 1, 8,18, 52,( )A. 96B.120C.136D.140 (3+1)×2=8(1+8)×2=18(8+18)×2=52(18+52)×2=140(64) 2,0,2,7,7,11, ( )A. 16B.17C.18D.192+0+2=40+2+7=92+7+7=167+7+11=257+11+18=36(65) 14, 18, 24, 32, 41, 51, ( )A. 63B.65C.66D.6718-14=424-18=632-24=841-32=951-41=1063-51=12合数序列(66) 8, 4, 4, 6, 12, 30, ( )A.40B.48C.72D.904/8=0.54/4=16/4=1.512/6=230/12=2.5/30=3 ?=90(67) 134, 257, 415, 606, ( )A.911B.802C.691D.4591+3=42+5=74+1=56+0=64+5=9(68) 2, -2, 6, -2, 38, ( )A.-34B. 40C. 48D.562^2-(-2)=6(-2)^2-6=-26^2-(-2)=38(-2)^2-38=-34(69) 2,6,20,42, ( )A.80B.96C.110D.1202^2-2=23^2-3=65^2-5=207^2-7=4211^2-11=110(70) 3,3,6,3,33,( )A.-24,B.27C.36D.543^2-3=63^2-6=36^2-3=333^2-33=-24(71) 7, 3, 16, 5, 21, 5 , 66, ( )A.12B. 13C.14D.15(7-1)/2=3(16-1)/3=5(21-1)/4=5(66-1)/5=13(72) 3,1,4,9,25, ( )A. 90B.160C.256D.343(3-1)^2=4(1-4)^2=9(4-9)^2=25(9-25)^2=256(73) 78, 57, 36, 19, 10, ( )A. 2B. 1C.0D.-17*8+1=575*7+1=363*6+1=191*9+1=101*0+1=1(74) 13,16,21,30,45,()A. 57B.68C.72D.7516-13=321-16=530-21=945-30=1568-45=23(75) 3/4,1/2,1/3,2/9,()A.5/12B.1/5C.5/21D.4/273/4 * 2/3=1/21/2 * 2/3=1/31/3 * 2/3=2/92/9 * 2/3=4/27(76) 131,67,31,15,()A.11B. 9C.7D.5131-67=64=8^267-31=36=6^231-15=16=4^215-11=4=2^2(77) 6,3,8,4,2,8,()A.2B.4C.6D.8移动求积看个位数6×3=183×8=248×4=324×2=82×8=16 个位数是6 选C(78) 3,2,13,32,103,()A.222B.302C.316D.2563+2=52+13=1513+32=4532+103=135103+302=405(79) 6,12,12,18,21,()A.28B.28.5C.35D.386+12/2=1212+12/2=1812+18/2=2118+21/2=28.5(80) 0,1,6,23,()A.86B.81C.76D.613^0-1=03^1-2=13^2-3=63^3-4=233^4-5=76(81) 4,12,24,36,50,()A. 64B.60C.72D.764=1×412=2×624=3×836=4×950=5×1072=6×124,6,8,9,10,12 是合数序列(82) 21,14,17,35,31,52,()A.58B.66C.72D.7821+14=3514+17=3117+35=5235+31=66A+B=D(83) 7 ,10,18,42,90,()A. 180B.210C.240D.27010-7=3=2^2-118-10=8=3^2-142-18=24=5^2-190-42=48=7^2-1(84) 25, 35, 54, 73, 92, ( ) A.66 B.97 C.98 D.10925:2+5=735:3+5=854:5+4=973:7+3=1092:9+2=1166:6+6=12(85) 4, 2, 3, 7, 14, ( ) A.20 B.24 C.26 D.282-4=-23-2=17-3=414-7=724-14=10-2,1,4,7,10 是等差数列差值是3(86) -1, 3, 3, 5, 37, ( ) A.87 B.327 C.729 D.735(-2)^1+1=-1(-1)^2+2=30^3+3=31^4+4=52^5+5=373^6+5=735(87) 3/4, 7/11, 18/29, 47/76, ( ) A.94/101 B.123/199 C.113/171 D.7/8 将所有分子分母都联系起来看3,4,7,11,18,29,47,76,?,?3+4=74+7=117+11=18..........47+76=12376+123=199(88) -1,0,27,512,()A.164 B.1291 C.3255 D.9375-1=(-1)*1^10=0*2^227=1*3^3512=2*4^49375=3*5^5(89) 7,10,16,22,()A.31 B.32 C.33 D.343*2+1=73*3+1=103*5+1=163*7+1=223*11+1=34(90) 30,31,54,59,()A.68 B.70 C.78 D.865^2+5=306^2-5=317^2+5=548^2-5=599^2+5=8691. C 等差数列。
50道经典数字推理题及答案解析
50道经典数字推理题及答案解析【来源:联创世华编辑:haoxiaoying 更新时间:2009-9-13 16:33:00 点击数:534 】1.256 ,269 ,286 ,302 ,()A.254B.307C.294D.316解析:2+5+6=13 256+13=2692+6+9=17 269+17=2862+8+6=16 286+16=302?=302+3+2=3072. 72 , 36 , 24 , 18 , ( )A.12B.16C.14.4D.16.4解析:(方法一)相邻两项相除,72 36 24 18\ / \ / \ /2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/14.4=5/4. 选C(方法二)6×12=72,6×6=36,6×4=24,6×3 =18,6×X 现在转化为求X12,6,4,3,X12/6 ,6/4 ,4/3 ,3/X化简得2/1,3/2,4/3,3/X,前三项有规律,即分子比分母大一,则3/X=5/4可解得:X=12/5 再用6×12/5=14.43. 8 , 10 , 14 , 18 ,()A. 24B. 32C. 26D. 20分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8所以,此题选18+8=264. 3 , 11 , 13 , 29 , 31 ,()A.52B.53C.54D.55分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D5. -2/5,1/5,-8/750,()。
A 11/375B 9/375C 7/375D 8/375解析:-2/5,1/5,-8/750,11/375=>4/(-10),1/5,8/(-750),11/375=>分子4、1、8、11=>头尾相减=>7、7分母-10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2所以答案为A6. 16 , 8 , 8 , 12 , 24 , 60 , ( )A.90B.120C.180D.240分析:相邻两项的商为0.5,1,1.5,2,2.5,3,所以选1807. 2 ,3 ,6 ,9 ,17 ,()A.18B.23C.36D.45分析:6+9=15=3×53+17=20=4×5 那么2+?=5×5=25 所以?=238. 3 ,2 ,5/3 ,3/2 ,()A.7/5B.5/6C.3/5D.3/4分析:通分3/1 4/2 5/3 6/4 ----7/59. 20 ,22 ,25 ,30 ,37 ,()A.39B.45C.48D.51分析:它们相差的值分别为2,3,5,7。
数字推理80题(含解答)
数字推理。
1.5 7 9 ()15 19A.11 B. 12 C. 13 D. 14.【答案】C。
解析:质数列变式:5-2=3,7-2=5,9-2=7,13-2=11,15-2=13,19-2=17。
2.2 1 -1 1 12 ()A.26 B. 37 C.19 D.48【答案】B。
解析:三级等差数列2 1 -1 1 1 2 (37)-1 -2 2 11 (25)-1 4 9 (14)3.-1 6 -5 20 -27 ()A.70 B. 54 C.-18 D72【答案】A。
解析:各项都满足(-2)n+n4.1/4 2/5 5/7 1 17/14 ( )A.25/17B. 26/17C. 25/19D. 26/19【答案】D。
解析:分子分母分别为等差数列变式:4 5 7 10 14 (19)和1 2 5 10 17 (26),故选D。
5.161 244 369 5416 ()A.6325 B.8125 C.7843 D.6525【答案】B。
解析:把每个数分成两部分:16 24 36 54 (81)是公比为3/2的等比数列,1 4 9 16 25 是平方数列。
故选B。
6. 马立国每天早晨练习长跑都是从足球场跑到湖边,然后再返回来。
跑去的时候先是一段上坡路,然后就是下坡路。
上坡路马立国每分跑120米,下坡路每分跑150米。
去时一共跑了16分钟,返回时跑了15.5分钟。
则马立国从足球场向湖边跑的时候,上坡路长多少米?A.2100B.1800C.1500D.1200【答案】D。
解析:假设去时全是上坡,返回全是下坡,往返共用16+15.5=31.5分钟,把下坡时间算1份,上坡时间则是150÷120=1.25份,故下坡时间是31.5(÷1+1.25)=14份,全长14×150=2100米。
在假设去时全是下坡路,可得上坡路长(150×16-2100)÷(150-120)×120=1200米。
四年级数学数字推理练习题
四年级数学数字推理练习题一、选择题1. 下列四个数中,哪一个数是绝对值最小的?A. -5B. 0C. 2D. -32. 通过观察下列数字序列,找出其中的规律:4, 7, 10, 13, 16, ...A. 每个数字加3B. 每个数字加4C. 每个数字加5D. 每个数字加63. 下列各组数中,哪一组数都是素数?A. 4, 6, 8, 10B. 11, 13, 15, 17C. 19, 21, 23, 25D. 27, 29, 31, 334. 通过观察下列数字序列,找出其中的规律:2, 4, 8, 16, 32, ...A. 每个数字加2B. 每个数字乘以2C. 每个数字加4D. 每个数字乘以45. 通过观察下列数字序列,找出其中的规律:1, 4, 9, 16, ...A. 每个数字加1B. 每个数字减1C. 每个数字加3D. 每个数字乘以3二、判断题1. 三个质数相加的结果一定是质数。
A. 对B. 错2. 如果一个整数的个位数是5,则这个整数一定能被5整除。
A. 对B. 错3. 两个奇数相乘的结果一定是奇数。
A. 对B. 错4. 一个大于1的自然数一定能被1和自身整除。
A. 对B. 错5. 如果一个整数的个位数和个位数之和能被9整除,则这个整数一定能被9整除。
A. 对B. 错三、解题题1. 有5个相邻的整数,其中一个数是19,另外4个数即将开始的3个数是多少?2. 小明把一个3位数的数字反转后得到另一个3位数,这两个数字之和是201。
这个3位数是多少?3. 一个整数的九倍再加上4,结果是84,这个整数是多少?4. 一个正整数的十倍减去它本身等于170,这个正整数是多少?5. 一个偶数的百位数是2,个位数是6,十位数是奇数的一个数字,这个数字是多少?四、填空题1. 一个整数除以5的商是16,余数是多少?2. 选出一个能被3又能被4整除的最大的两位数。
3. 一个3位数的个位数是5,十位数是它的个位数加3,百位数是它的十位数减2,这个3位数是多少?4. 选出一个满足下列条件的两位数:个位数的平方加十位数的平方等于这个两位数本身。
数字推理试题及答案
数字推理试题及答案1. 题目:如果一个数列的前几项是2, 4, 8, 16, 32, 64, 128, 256,那么这个数列的下一项是什么?答案:这个数列的下一项是512。
2. 题目:在数列1, 3, 6, 10, 15, 21中,找出数列的规律,并计算出数列的第10项。
答案:数列的规律是每一项比前一项多增加1, 2, 3, 4, 5, 6...。
因此,第10项是1+2+3+...+10 = 55。
3. 题目:给定数列2, 4, 8, 16, 32, 64,找出数列的通项公式。
答案:数列的通项公式为a(n) = 2^(n-1)。
4. 题目:数列1, 2, 3, 5, 8, 13, 21, 34...中,下一个数是什么?答案:下一个数是55。
5. 题目:数列5, 10, 20, 40, 80, 160, 320...的规律是什么?答案:数列的规律是每一项都是前一项的2倍。
6. 题目:数列2, 3, 5, 8, 13, 21, 34...的通项公式是什么?答案:数列的通项公式是a(n) = a(n-1) + a(n-2),其中a(1) = 2,a(2) = 3。
7. 题目:如果一个数列的前几项是2, 4, 8, 16, 32, 64,那么这个数列的第10项是多少?答案:数列的第10项是1024。
8. 题目:数列1, 4, 9, 16, 25, 36, 49...的规律是什么?答案:数列的规律是每一项是其项数的平方。
9. 题目:数列1, 2, 4, 8, 16, 32, 64...的通项公式是什么?答案:数列的通项公式是a(n) = 2^(n-1)。
10. 题目:数列2, 5, 10, 17, 26, 37...的规律是什么?答案:数列的规律是每一项比前一项多3, 5, 7, 9, 11...,即每一项是前一项加上一个递增的奇数。
数字推理练习100题
数字推理练习100题1.5,7,4,6,4,6,()。
A. 4B. 5C. 6D. 72.3,6,29,62,127,()。
A. 214B. 315C. 331D. 3353.3,10,21,35,51,()。
A. 59B. 66C. 68D. 724.14,25,57,1,1714,()。
A. 2517B. 2617C. 2519D. 26195.1.01,1.02,2.03,3.05,5.08,()。
A. 8.13B. 8.013C. 7.12D. 7.0126.-1,0,27,()。
A. 64B. 91C. 256D. 5127.1,2,0,3,-1,()。
A. 5B. 4C. 3D. 28.1,1,2,2,4,16,128,()。
A. 1096B. 7586C. 8192D. 82289.0,0,1,4,()。
A. 7B. 9C. 11D. 1310. 3,-1,5,1,()。
A. 3B. 7C. 25D. 6411. 3,2,8,12,28,()。
A. 15B. 32C. 27D. 5212. -49,109,43,79,19,()。
A. 73B. 109C. -518D. -213. 1,-2,6,-24,()。
A. 72B. 96C. 120D. -12014. 2,2,-2,-10,()。
A. 10B. -10C. -22D. 2215. 48,65,80,103,120,149,168,()。
A. 202B. 203C. 221D. 23316. 4,5,7,11,19,()。
A. 27B. 31C. 35D. 4117. 8/9,-2/3,1/2,-3/8,()。
A. 9/32B. 5/72C. 8/32D. 9/2318. 0,6,24,60,120,()。
A. 180B. 210C. 220D. 24019. 1,1,-1,-5,()。
A. -1B.-5C. -9D. -1120. 4,4,2,-2,()。
50道经典数字推理题及答案解
50道经典数字推理题及答案解1.256 ,269 ,286 ,302 ,()A.254B.307C.294D.316解析:2+5+6=13 256+13=2692+6+9=17 269+17=2862+8+6=16 286+16=302=302+3+2=3072. 72 , 36 , 24 , 18 , ( )A.12B.16C.14.4D.16.4解析:(方法一)相邻两项相除,72 36 24 18\ / \ / \ /2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/14.4=5/4. 选C(方法二)6×12=72,6×6=36,6×4=24,6×3 =18,6×X 现在转化为求X 12,6,4,3,X12/6 ,6/4 ,4/3 ,3/X化简得2/1,3/2,4/3,3/X,前三项有规律,即分子比分母大一,则3/X=5/4可解得:X=12/5 再用6×12/5=14.43. 8 , 10 , 14 , 18 ,()A. 24B. 32C. 26D. 20分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8所以,此题选18+8=264. 3 , 11 , 13 , 29 , 31 ,()A.52B.53C.54D.55分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D5. -2/5,1/5,-8/750,()。
A 11/375B 9/375C 7/375D 8/375解析:-2/5,1/5,-8/750,11/375=>4/(-10),1/5,8/(-750),11/375=>分子4、1、8、11=>头尾相减=>7、7分母-10、5、-750、375=>分2组(-10,5)、(-750,375)=>每组第二项除以第一项=>-1/2,-1/2所以答案为A6. 16 , 8 , 8 , 12 , 24 , 60 , ( )A.90B.120C.180D.240分析:相邻两项的商为0.5,1,1.5,2,2.5,3,所以选1807. 2 ,3 ,6 ,9 ,17 ,()A.18B.23C.36D.45分析:6+9=15=3×53+17=20=4×5 那么2+?=5×5=25 所以?=238. 3 ,2 ,5/3 ,3/2 ,()A.7/5B.5/6C.3/5D.3/4分析:通分3/1 4/2 5/3 6/4 ----7/59. 20 ,22 ,25 ,30 ,37 ,()A.39B.45C.48D.51分析:它们相差的值分别为2,3,5,7。
数字推理习题库及答案解析
数字推理习题库及答案解析1、5,10,17,26,()A、30;B、43;C、37;D、41【解答】相邻两数之差为5、7、9、11,构成等差数列。
2、184:55,66,78,82,()A、98;B、100;C、97;D、102【解答】本题思路:56-5-6=45=5×966-6-6=54=6×978-7-8=63=7×982-8-2=72=8×998-9-8=81=9×94、5的立方加1,所以括号中应为5的立方加1,即126的开方,故选D。
3、1,13,45,97,()A、169;B、125;C、137;D、189【解答】相邻两数之差构成12、32、52这样的等差数列,故下一个数就应该是97+72=169,选A。
4、1,01,2,002,3,0003,()…A、40003;B、4003;C、400004;D、40004【解答】隔项为自然数列和等比数列,故选D。
5、2,3,6,36,()A、48;B、54;C、72;D、1296【解答】从第三项开始,每一项都是前几项的乘积。
故选D。
6、3,6,9,()A、12;B、14;C、16;D、24【解答】等比数列。
7、1,312,623,()A、718;B、934;C、819;D、518【解答】个位数分别是1、2、3、4,十位数分别是0、1、2、3,百位数分别是0、3、6、9,所以选B。
8、8,7,15,22,()A、37;B、25;C、44;D、39【解答】从第三项开始,后一项是前两项的和。
故选A。
9、3,5,9,17,()A、25;B、33;C、29;D、37【解答】相邻两项的差构成等比数列。
故选B。
10、20,31,43,56,()A、68;B、72;C、80;D、70【解答】相邻两项的差构成等差数列。
故选D。
11、+1,-1,1,-1,()A、+1;B、1;C、-1;D、-1【解答】从第三项开始,后一项是前两项的乘积。
数字推理最新题库200道及详解
数字推理最新题库200道及详解数字推理最新题库200道及详解1、5,10,17,26,()A、30;B、43;C、37;D、41解答:相邻两数之差为5、7、9、11,构成等差数列2、,3,,,()A、2;B、;C、4;D、3解答:把四个数全部化为根号,则根号里新的数是2、9、28、65、(),这明显是1、2、3、4、5的立方加1,所以括号中应为5的立方加1,即126的开方,故选D。
3、1,13,45,97,()A、169;B、125;C、137;D、189解答:相邻两数之差构成12、32、52这样的等差数列,故下一个数就应该是97+72=169,选A。
4、1,01,2,002,3,0003,()…A、4 0003;B、4 003;C、4 00004;D、4 0004解答:隔项为自然数列和等比数列,故选D。
5、2,3,6,36,()A、48;B、54;C、72;D、1296解答:从第三项开始,每一项都是前几项的乘积。
故选D6、3,6,9,()A、12;B、14;C、16;D、24解答:等比数列。
7、1,312,623,()A、718;B、934;C、819;D、518解答:个位数分别是1、2、3、4,十位数分别是0、1、2、3,百位数分别是0、3、6、9,所以选B。
8、8,7,15,22,()A、37;B、25;C、44;D、39解答:从第三项开始,后一项是前两项的和。
故选A。
9、3,5,9,17,()A、25;B、33;C、29;D、37解答:相邻两项的差构成等比数列。
故选B。
10、20,31,43,56,()A、68;B、72;C、80;D、70解答:相邻两项的差构成等差数列。
故选D。
11、+1,-1,1,-1,()A、+1;B、1;C、-1;D、-1解答:从第三项开始,后一项是前两项的乘积。
12、+1,4,3+1,()A、10;B、4+1;C、11;D、解答:选A13、144,72,18,3,()A、1;B、1/3;C、3/8;D、2解答:相邻两数的商构成2、4、6、(),是等差数列。
50道经典数字推理题
50道超经典数字推理题(带解释)1. 256 ,269 ,286 ,302 ,()A.254B.307C.294D.316解析:2+5+6=13 256+13=2692+6+9=17 269+17=2862+8+6=16 286+16=302?=302+3+2=3072. 72 , 36 , 24 , 18 , ( )A.12B.16C.14.4D.16.4解析:(方法一)相邻两项相除,72 36 24 18\ / \ / \ /2/1 3/2 4/3(分子与分母相差1且前一项的分子是后一项的分母)接下来貌似该轮到5/4,而18/14.4=5/4. 选C(方法二)6×12=72,6×6=36,6×4=24,6×3 =18,6×X 现在转化为求X12,6,4,3,X12/6 ,6/4 ,4/3 ,3/X化简得2/1,3/2,4/3,3/X,注意前三项有规律,即分子比分母大一,则3/X=5/4可解得:X=12/5再用6×12/5=14.43. 8 , 10 , 14 , 18 ,()A. 24B. 32C. 26D. 20分析:8,10,14,18分别相差2,4,4,?可考虑满足2/4=4/?则?=8所以,此题选18+8=264. 3 , 11 , 13 , 29 , 31 ,()A.52B.53C.54D.55分析:奇偶项分别相差11-3=8,29-13=16=8×2,?-31=24=8×3则可得?=55,故此题选D5. -2/5,1/5,-8/750,()。
A 11/375B 9/375C 7/375D 8/375解析:-2/5,1/5,-8/750,11/375→4/(-10),1/5,8/(-750),11/375→分子4、1、8、11→头尾相减→7、7分母-10、5、-750、375→分2组(-10,5)、(-750,375)→每组第二项除以第一项→-1/2,-1/2 所以答案为A6. 16 , 8 , 8 , 12 , 24 , 60 , ( )A.90B.120C.180D.240分析:相邻两项的商为0.5,1,1.5,2,2.5,3,所以选18010. 2 ,3 ,6 ,9 ,17 ,()A.18B.23C.36D.45分析:6+9=15=3×53+17=20=4×5 那么2+?=5×5=25 所以?=2311. 3 ,2 ,5/3 ,3/2 ,()A.7/5B.5/6C.3/5D.3/4分析:通分3/1 4/2 5/3 6/4 ----7/513. 20 ,22 ,25 ,30 ,37 ,()A.39B.45C.48D.51分析:它们相差的值分别为2,3,5,7。
行测:数字推理题100道(详解)
数字推理题500道详解【1】7,9,—1,5,( )A、4;B、2;C、—1;D、—3分析:选D,7+9=16;9+(-1)=8;(—1)+5=4;5+(—3)=2 ,16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;()=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2; 3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1。
5; 6/3=2;0.5,1,1。
5,2等比,所以后项为2。
5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10; (8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字推理题库【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。
思路二:95 - 9 - 5 = 81;88 - 8 - 8 = 72;71 - 7 - 1 = 63;61 - 6 - 1 = 54;50 - 5 - 0 = 45;40 - 4 - 0 = 36 ,构成等差数列。
【11】2,6,13,39,15,45,23,( )A. 46;B. 66;C. 68;D. 69;分析:选D,数字2个一组,后一个数是前一个数的3倍【12】1,3,3,5,7,9,13,15(),()A:19,21;B:19,23;C:21,23;D:27,30;分析:选C,1,3,3,5,7,9,13,15(21),(30 )=>奇偶项分两组1、3、7、13、21和3、5、9、15、23其中奇数项1、3、7、13、21=>作差2、4、6、8等差数列,偶数项3、5、9、15、23=>作差2、4、6、8等差数列【13】1,2,8,28,()A.72;B.100;C.64;D.56;分析:选B,1×2+2×3=8;2×2+8×3=28;8×2+28×3=100【14】0,4,18,(),100A.48;B.58;C.50;D.38;分析:A,思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列;思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100;思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100;思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100 可以发现:0,2,6,(12),20依次相差2,4,(6),8,思路五:0=12×0;4=22×1;18=32×2;( )=X2×Y;100=52×4所以()=42×3【15】23,89,43,2,()A.3;B.239;C.259;D.269;分析:选A,原题中各数本身是质数,并且各数的组成数字和2+3=5、8+9=17、4+3=7、2也是质数,所以待选数应同时具备这两点,选A【16】1,1, 2, 2, 3, 4, 3, 5, ( )分析:思路一:1,(1,2),2,(3,4),3,(5,6)=>分1、2、3和(1,2),(3,4),(5,6)两组。
思路二:第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项、第九项为一组=>1,2,3;1,3,5;2,4,6=>三组都是等差【17】1,52, 313, 174,( )A.5;B.515;C.525;D.545;分析:选B,52中5除以2余1(第一项);313中31除以3余1(第一项);174中17除以4余1(第一项);515中51除以5余1(第一项)【18】5, 15, 10, 215, ( )A、415;B、-115;C、445;D、-112;答:选B,前一项的平方减后一项等于第三项,5×5-15=10;15×15-10=215;10×10-215=-115【19】-7,0, 1, 2, 9, ( )A、12;B、18;C、24;D、28;答:选D,-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1【20】0,1,3,10,( )A、101;B、102;C、103;D、104;答:选B,思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102;思路二:0(第一项)2+1=1(第二项) 12+2=3 32+1=10 102+2=102,其中所加的数呈1,2,1,2 规律。
思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1;【21】5,14,65/2,( ),217/2A.62;B.63;C. 64;D. 65;答:选B,5=10/2 ,14=28/2 , 65/2, ( 126/2), 217/2,分子=> 10=23+2;28=33+1;65=43+1;(126)=53+1;217=63+1;其中2、1、1、1、1头尾相加=>1、2、3等差【22】124,3612,51020,()A、7084;B、71428;C、81632;D、91836;答:选B,思路一:124 是1、2、4;3612是 3 、6、12;51020是5、10、20;71428是7,14 28;每列都成等差。
思路二:124,3612,51020,(71428)把每项拆成3个部分=>[1,2,4]、[3,6,12]、[5,10,20]、[7,14,28]=>每个[ ]中的新数列成等比。
思路三:首位数分别是1、3、5、(7 ),第二位数分别是:2、6、10、(14);最后位数分别是:4、12、20、(28),故应该是71428,选B。
【23】1,1,2,6,24,( )A,25;B,27;C,120;D,125解答:选C。
思路一:(1+1)×1=2 ,(1+2)×2=6,(2+6)×3=24,(6+24)×4=120思路二:后项除以前项=>1、2、3、4、5 等差【24】3,4,8,24,88,( )A,121;B,196;C,225;D,344解答:选D。
思路一:4=20 +3,8=22 +4,24=24 +8,88=26 +24,344=28 +88思路二:它们的差为以公比2的数列:4-3=20,8-4=22,24-8=24,88-24=26,-88=28,?=344。
【25】20,22,25,30,37,( )A,48;B,49;C,55;D,81解答:选A。
两项相减=>2、3、5、7、11质数列【26】1/9,2/27,1/27,( )A,4/27;B,7/9;C,5/18;D,4/243;答:选D,1/9,2/27,1/27,(4/243)=>1/9,2/27,3/81,4/243=>分子,1、2、3、4 等差;分母,9、27、81、243 等比【27】√2,3,√28,√65,( )A,2√14;B,√83;C,4√14;D,3√14;答:选D,原式可以等于:√2,√9,√28,√65,( ) 2=1×1×1 + 1;9=2×2×2 + 1;28=3×3×3 + 1;65=4×4×4 + 1;126=5×5×5 + 1;所以选√126 ,即D 3√14【28】1,3,4,8,16,( )A、26;B、24;C、32;D、16;答:选C,每项都等于其前所有项的和1+3=4,1+3+4=8,1+3+4+8=16,1+3+4+8+16=32【29】2,1,2/3,1/2,( )A、3/4;B、1/4;C、2/5;D、5/6;答:选C ,2, 1 , 2/3 , 1/2 , (2/5 )=>2/1, 2/2, 2/3, 2/4 (2/5)=>分子都为2;分母,1、2、3、4、5等差【30】1,1,3,7,17,41,( )A.89;B.99;C.109;D.119 ;答:选B,从第三项开始,第一项都等于前一项的2倍加上前前一项。
2×1+1=3;2×3+1=7;2×7+3=17;…;2×41+17=99【31】5/2,5,25/2,75/2,()答:后项比前项分别是2,2.5,3成等差,所以后项为3.5,()/(75/2)=7/2,所以,()=525/4【32】6,15,35,77,( )A.106;B.117;C.136;D.163答:选D,15=6×2+3;35=15×2+5;77=35×2+7;163=77×2+9其中3、5、7、9等差【33】1,3,3,6,7,12,15,( )A.17;B.27;C.30;D.24;答:选D,1,3,3,6,7,12,15,( 24 )=>奇数项1、3、7、15=>新的数列相邻两数的差为2、4、8 作差=>等比,偶数项3、6、12、24 等比【34】2/3,1/2,3/7,7/18,()A、4/11;B、5/12;C、7/15;D、3/16分析:选A。