第十二章_机械传动方案的设计

合集下载

第十二章轴与轮毂连接资料重点

第十二章轴与轮毂连接资料重点
12.1 轴的分类
1.按轴受的载荷和功用的不同进行分类 按轴受的载荷和功用的不同,轴可分为心轴(如图12-1)、传
动轴(如图12-2)、和转轴(如图12-3)。
第十二章 轴与轮毂连接
图12-1 心轴(铁路车辆轮轴)
第十二章 轴与轮毂连接
图12-2 传动轴
图12-3 转轴
第十二章 轴与轮毂连接
3.球墨铸铁
球墨铸铁吸振性和耐磨性好,对应力集中敏感低,价格低廉,使 用铸造方法可制成外形复杂的轴,如内燃机中的曲轴。
第十二章 轴与轮毂连接
12.4 轴的设计与计算
为了满足使用要求,并防止轴的疲劳断裂,设计轴时应根据使用 条件对轴进行设计计算。
12.4.1 按扭转强度计算
12.4.2 按弯扭合成强度计算
第十二章 轴与轮毂连接
图12-19 普通平键连接
第十二章 轴与轮毂连接
(2)半圆键连接
半圆键的两个侧面为半圆形,放置在半圆形的轴槽内,如图12-
22所示。工作时半圆键靠两侧面受挤压传递转矩,键在轴槽内可绕其
几何中心摆动,以适应轮毂槽底部的斜度。半圆键连接装拆方便,但
对轴的强度削弱较大,主要用于轻载场合。
完成轴的结构设计后,对于既承受弯矩M又传递转矩T的转轴, 可根据弯矩和转矩的合成强度来进行轴危险截面的强度校核。进行强 度计算时,我们通常把轴当作置于铰链支座上的梁,作用于轴上零件 的力作为集中力,其作用点取零件轮毂宽度的中点。
12.4.3 轴的刚度计算概念
轴的刚度主要是弯曲刚度和扭转刚度。其中,弯曲刚度是轴在弯 矩作用下产生的弯曲变形,其变形量用挠度 和偏转角 来度量;扭转 刚度是在扭矩作用下产生的扭转变形,其变形量用扭转角 来度量。
第十二章 轴与轮毂连接

《机械设计》第12章 蜗杆传动

《机械设计》第12章 蜗杆传动

阿基米德蜗杆:αx=20°
标准值
法向直廓蜗杆、渐开线蜗杆:αn=20°
s
pz=zpx1 px1
2.蜗杆导程角γ和分度圆直径d1 螺纹
蜗杆
ψ πd1
tanψ =
s πd1
=
np πd1
∴ d1
=
Z1 tanγ
m
=
qm
γ πd1
tanγ
=
pZ πd1
=
πmZ πd1
1
=
mZ 1 d1
q
=
Z1 tanγ
具有良好的减摩性、耐磨性、跑合性和抗胶合能力
特点:软硬搭配
蜗杆硬:优质碳素钢、合金结构钢 经表面硬化及调制处理
蜗轮软:铸锡青铜、无锡青铜、灰铸铁
1、蜗杆材料
蜗杆一般采用碳素钢或合金钢制造。 对于高速重载的传动,蜗杆常用低碳合金钢, 如20Cr,20CrMnTi等,经渗碳淬火,表面硬度 HRC56~62,并应磨削。
MPa
= 12.86MPa < [σ F ]
齿根的弯曲疲劳强度校核合格。
(5)验算传动效率h
蜗杆分度圆速度为
v1
=
π d1n1
60×1000
=
3.14×112×1450 60×1000
m/
s
=
8.54m /
s
vs
= v1
cosλ
8.54
=
m / s = 8.59m / s
cos6.412°
查表4.9得
ρ v = 1°09′(1.15°)
h
(0.95
~
0.97)
tan tan( v)
H
480 d2

机械设计_答案_彭文生第十二章__带传动设计

机械设计_答案_彭文生第十二章__带传动设计
V= πd 1 n1 = 6.28m / s ,符合 5-25m/s 要求。 60 × 1000
(3)确定基准带长 Ld 根据 0.7(d1+d2)<a0<2(d1+d2)及设计要求初选中心距 a0=500mm,
Lc ≈ 2 a 0 +
π
z
(d 1 + d 2 ) +
(d 2 − d 1 )2
4a 0
题 12-5 一 带 传 动 的 大 、 小 带 轮 的 基 准 直 径 d1=100mm , d2=400mm , 小 带 轮 转 速 n1=1460r/min,滑动率ε=0.02,传递功率 P=10KW。求带速、有效拉力、大带轮实际转速 各为多少? 解答: 1、带速
V=
πd 1 n1 π × 100 × 1460 = = 7 .6 m / s ; 60 ×1000 60 × 1000 1000P 1000 ×10 = = 1316 N ; V 7 .6
d1 n1 100 × 1460 = (1 − 0.02) = 358r 轮实际转速
n 2 = (1 − ε )
12-2
题 12-6 测得一普通 V 带传动的数据如下:n1=1460r/min,中心距 a=400mm,小带轮 直径 d1=140mm,大带轮直径 d2=400mm,B 型带共 3 根,传动水平布置,张紧力按标准规 定,采用电动机传动,一班制工作,工作平稳,试求允许传递的最大功率。 解答: 查表得单根 B 型带所能传递的功率 P0=2.83KW; 传动比 i=d2/d1=2.86,查表并用插入计算得功率增量△P0=0.47KW; 小轮包角 α 1 = 180 0 −
d 2 − d1 × 57.3 0 ≈ 140 0 ,查表得包角系数 Kα=0.89; a

机械设计习题集答案第十二章 带传动设计

机械设计习题集答案第十二章  带传动设计
(6)弹性滑动是带传动的固有特性,它是有害的,也是无法避免的,而打滑是由于有效拉力F达到或超过极限值Fflim,带与带轮在整个接触弧上发生相对滑动所产生的,这是必须避免的。
(7)带传动的主要失效形式为打滑和疲劳破坏,其设计准则是在保证不打滑的前提下,使传动带具有一定的疲劳强度和寿命。
题12-3简答题
解答:
(1)带速
(2)F1+F2=2F0=2×354=708N
联解
其中

解得F1=552.713N,F2=155.286N
(3)V带传动能传递的最大有效圆周力F及最大功率P0
题12-5一带传动的大、小带轮的基准直径d1=100mm,d2=400mm,小带轮转速n1=1460r/min,滑动率ε=0.02,传递功率P=10KW。求带速、有效拉力、大带轮实际转速各为多少?
题12-2填空题
(1)带传动按其工作原理分为摩擦型带传动和啮合型带传动,摩擦型传动带按其横截面形状又可分为平带、V带、多楔带和圆带,其中传动能力最大的是多楔带。啮合型传动带只有同步齿形带一种。
(2)以下特点中(a传动平稳、b效率高、c宜用于许多特殊场合、d有过载保护性能、e轮轴上受力较小、f结构简单),属于带传动优点的是a、d、f。
(4)计算实际中心距a

(5)验算小轮包角α1

(三)确定V带根数Z
查表得单根A带基本额定功率P0=1.4KW,
查表用插入法计算得功率增量△P0=0.12kw,
查表得包角系数Kα及长度系数KL为:Kα=0.965、KL=0.99,
则带根数: ,取Z=6。
(四)计算初拉力F0及压轴力FQ
查得A型带q=0.1kg/m,
答:中心距过大,将引起严重抖动。在中心距一定条件下,传动比大,小带轮包角过小。带轮直径过小弯曲应力则过大。故应对三个参数加以限制。

第十二章、十四章习题06(参考答案)

第十二章、十四章习题06(参考答案)

第十二章其他常用机构一、选择题:1、用单万向节传递两相交轴之间的运动时,其传动比为变化值;若用双万向节时,其传动比C。

(A) 是变化值;(B) 一定是定值;(C) 在一定条件下才是定值2、在单向间歇运动机构中, A 的间歇回转角在较大的范围内可以调节。

(A)槽轮机构(B) 棘轮机构(C)不完全齿轮机构(D) 蜗杆凸轮式间歇运动机构3、在单向间歇运动机构中, C 可以获得不同转向的间歇运动。

(A)不完全齿轮机构(B) 圆柱凸轮间歇运动机构(C)棘轮机构(D) 槽轮机构4、家用自行车中的“飞轮”是一种超越离合器,是一种 C 。

(A)凸轮机构(B) 擒纵轮机构(C)棘轮机构(D) 槽轮机构二、填空题:1、棘轮机构是由摇杆、棘爪、棘轮、止动爪组成,可实现运动,适用于低速轻载的场合。

其棘轮转角大小的调节方法是:改变主动摇杆摆角的大小、加装一棘轮罩以遮盖部分棘齿。

2、槽轮机构是由主动拨盘、从动槽轮、机架组成,优点是:结构简单、外形尺寸小、机械效率高,能较平稳、间歇地进行转位,缺点是:存在柔性冲击,适用于速度不太高的场合。

3、擒纵轮机构由擒纵轮、擒纵叉、游丝摆轮及机架组成。

4、擒纵轮机构优点是结构简单,便于制造,价格低廉,缺点是振动周期不很稳定,故主要用于计时精度要求不高、工作时间较短的场合。

5、凸轮式间歇运动机构由主动轮和从动盘组成,主动凸轮作连续转动,通过其凸轮廓线推动从动盘作预期的间歇分度运动。

优点是:动载荷小,无刚性和柔性冲击,适合高速运转,无需定位装置,定位精度高,结构紧凑,缺点是:加工成本高,装配与调整的要求严格。

6、不完全齿轮机构由一个或一部分齿的主动轮与按动停时间要求而作出的从动轮相啮合,使从动轮作间歇回转运动。

工作特点是:结构简单,制造容易,工作可靠,动停时间比可在较大范围内变化,但在从动轮的运动始末有刚性冲击,适合于低速、轻载的场合。

7、螺旋机构是由螺杆、螺母和机架组成,通常它是将旋转运动转换为直线运动。

蜗轮蜗杆传动详解

蜗轮蜗杆传动详解
第十二章 蜗杆传动
§蜗杆传动的特点和类型 §圆柱蜗杆传动的主要参数 §蜗杆传动的失效形式、材料和结构 §圆柱蜗杆传动的效率、润滑
《机械设计基础 》
Northwest A&F University
第一节 蜗杆传动的特点和类型
蜗杆传动是由蜗杆和蜗轮组成的,用于传,蜗轮是从动件。
第三节蜗杆传动的失效形式、材料和结构
二、蜗杆和蜗轮的结构
由于蜗杆的直径不大,所以常和轴做成一个整体(蜗杆 轴),当蜗杆的直径较大时,可以将轴与蜗杆分开制作。
无退刀槽,加工螺旋部分时只能用铣制的办法。
有退刀槽,螺旋部分可用车制,也可用铣制加工,但该结构
的刚度 较前一种差。
Northwest A&F University
蜗杆导程角
蜗轮螺旋角 径向间隙 标准中心距
第十二章 蜗杆传动
符号
d ha
hf da
df
c
a
计算公式
蜗杆
蜗轮
d1 mq
d2 mz
ha m h f 1.2m
d a1 (q 2)m da2 (Z2 2)m
d f 1 (q 2.4)m arctg Z1
q
d f 2 (Z 2 2.4)m
第十二章 蜗杆传动
第六节圆柱蜗杆传动的效率、润滑和热平衡计算
二、蜗杆传动的润滑
➢ 目的:减摩、散热。 ➢ 润滑油的粘度和给油方法可参照表11-5选取。 ➢ 一般根据相对滑动速度选择润滑油的粘度和给油方法。
蜗杆下置时,浸油深度应为蜗杆的一个齿高; 给油方法: 油池润滑: 蜗杆上置时,浸油深度约为蜗轮外径的 1/6~1/3。
圆弧圆柱蜗杆传动
环面蜗杆传动 蜗杆的外形是圆弧回转面,同时啮合的齿数多,传动平稳; 齿面利于润滑油膜形成,传动效率较高;

机械设计课程设计带传动

机械设计课程设计带传动

机械设计课程设计带传动一、教学目标本节课的教学目标是让学生了解带传动的原理、类型、特点及其在机械设计中的应用。

具体目标如下:1.知识目标:使学生掌握带传动的定义、工作原理和主要参数,了解不同类型的带传动及其适用范围。

2.技能目标:培养学生能够分析带传动系统的工作特点,学会计算带传动的基本参数,并能够设计简单的带传动系统。

3.情感态度价值观目标:培养学生对机械设计的兴趣,增强学生对机械传动系统的认识,提高学生解决实际问题的能力。

二、教学内容本节课的教学内容主要包括以下几个部分:1.带传动的定义及工作原理:介绍带传动的定义,解释其工作原理,让学生了解带传动是如何实现动力传递的。

2.带传动的类型及特点:讲解不同类型的带传动(如平带、V带、圆带等),分析各类带传动的优缺点及适用范围。

3.带传动的设计计算:教授带传动的设计计算方法,包括带的尺寸选择、张紧力计算、承载能力分析等。

4.带传动系统的应用实例:通过实例分析,使学生了解带传动在机械设计中的应用,提高学生解决实际问题的能力。

三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:讲解带传动的基本原理、类型、设计计算方法等,使学生掌握带传动的基本知识。

2.案例分析法:分析带传动在实际工程中的应用实例,让学生了解带传动的设计与选型过程。

3.实验法:学生进行带传动实验,使学生亲自操作,观察带传动的工作原理,提高学生的实践能力。

4.讨论法:鼓励学生在课堂上提问、讨论,激发学生的学习兴趣,培养学生的思考能力。

四、教学资源为了保证本节课的教学质量,将准备以下教学资源:1.教材:选用权威、实用的机械设计教材,为学生提供系统、全面的学习资料。

2.参考书:推荐学生阅读相关的机械设计参考书,丰富学生的知识储备。

3.多媒体资料:制作精美的PPT,直观地展示带传动的工作原理、设计计算方法等。

4.实验设备:准备充足的实验设备,确保每个学生都能亲自动手进行实验。

5.在线资源:利用网络资源,为学生提供更多的学习资料和案例分析,拓宽学生的视野。

机械设计基础 第十二章 螺旋传动

机械设计基础 第十二章  螺旋传动



传力螺旋
传导螺旋 调整螺旋
第一节 概述
(1)传力螺旋 (传递动力为主) 应用:举重器 螺旋千斤顶 螺旋压力机 特点: 低速 间歇工作 传递轴向力大 自锁
第一节 概述
(2)传导螺旋(传递运动为主) 应用:机床进给丝杠 特点: 速度高 连续工作、 精度高
第一节 概述
(3)调整螺旋 (调整并固定零件间的相对位置 )
滚动螺旋传动是在具有圆弧形螺旋槽的螺杆和螺母 之间连续装填若干滚动体(多用钢球),当传动工 作,滚动体沿螺纹滚道滚动并形成循环。
第三节 其他螺旋传动简介
二、静压螺旋传动简介
液体摩擦,靠外部液压系统提高油压,压力油进入 螺杆与螺母螺纹间的油缸,促使螺杆、螺母、螺纹 牙间产生压力油膜而分隔开。
本章结束
特点:受力较小且不经常转动
应用:带传动张紧装置、机床卡盘、轧钢机轧 辊下压螺旋。
第一节 概述
按摩擦性质的不同,螺旋传动又可分为 滑动摩擦螺旋传动(简称滑动螺旋) 滚动摩擦螺旋传动(简称滚动螺旋/滚珠丝杠)
静压滑动摩擦螺旋传动(简称静压螺旋)。
第一节 概述
(1)滑动螺旋
优点:构造简单、传动比大,承载能力高,加工 方便、传动平稳、工作可Hale Waihona Puke 、易于自锁。剪切强度校核公式为
F zπDb
一圈螺纹沿螺纹大径展开图
螺纹大径
第二节 滑动螺旋传动的设计
四、螺杆强度校核 螺杆受轴向力F及转矩T的作用,
d2 TF tan( v ) 2
第四强度理论确定危险截面的计算应力
4F T ca 3 2 3 3 πd πd / 16 1 1

机械设计——齿轮传动-(1)

机械设计——齿轮传动-(1)

第十二章 齿轮传动1、图示为两级斜齿圆柱齿轮减速器,已知条件如下图。

试问:〔1〕画出轴II 和轴III 的转向。

〔2〕低速级斜齿轮的螺旋线方向应如何选择才能使中间轴Ⅱ上两齿轮所受的轴向力相反? 〔3〕低速级小齿轮的螺旋角β2应取多大值,才能使轴Ⅱ上轴向力相互抵消? 〔4〕画出各个齿轮所受轴向力。

2、今有两对斜齿圆柱齿轮传动,主动轴传递的功率P 1=13kW ,n 1=200r/min ,齿轮的法面模数m n =4mm ,齿数z 1=60均相同,仅螺旋角分别为9°与18°。

试求各对齿轮传动轴向力的大小?3、图所示为二级斜齿圆柱齿轮减速器。

已知:齿轮1的螺旋线方向和轴III 的转向,齿轮2的参数m n =3mm ,z 2=57,β2 =14°;齿轮3的参数m n =5mm ,z 3=21。

试求:〔1〕为使轴Ⅱ所受的轴向力最小,选择各齿轮的螺旋线方向,并在图上标出; 〔2〕在图b 上标出齿轮2、3所受各分力的方向;〔3〕如果使轴Ⅱ的轴承不受轴向力,则齿轮3的螺旋角β3应取多大值〔忽略摩擦损失〕?10、分析图中斜齿圆柱齿轮传动的小齿轮受力,忽略摩擦损失。

己知:小齿轮齿数221=z ,大齿轮齿数902=z ,法向模数mm m 2n =,中心距mm a 120=,传递功率KW P 2=,小齿轮转速min /3201r n =,小齿轮螺旋线方向右旋。

求: 〔1) 大齿轮螺旋角β大小和方向; 〔2) 小齿轮转矩1T ;1234〔3) 小齿轮和大齿轮受力的大小和方向,并在图上画出。

11、有一齿轮传动如下图,已知:281=z ,702=z ,1263=z ,模数mm m 4n =,压力角 20=α,中心距mm a 2001=,mm a 4002=,输入轴功率kW P 101=,转速min /10001r n =,不计摩擦。

〔1) 计算各轴所受的转矩;〔2)分析中间齿轮的受力,在图中画出,并计算所受各力的大小。

机械设计手册机械传动

机械设计手册机械传动

机械设计手册机械传动机械设计手册是机械工程师必备的工具书,用于指导机械传动的设计和计算。

机械传动是将动力从一个部件传递给另一个部件的过程,它是机械系统运行的关键环节之一。

机械传动的设计对于机械系统的性能和可靠性具有重要影响。

机械传动可以分为多种类型,包括齿轮传动、带传动、链传动等。

每种传动类型都有其特点和适用范围。

齿轮传动是最常见和最普遍应用的机械传动形式之一。

它主要由两个或多个齿轮组成,通过齿轮的啮合将动力传递给其他部件。

齿轮传动具有传动效率高、传动比稳定、传动精度高等优点,广泛应用于各个领域。

在机械传动的设计过程中,需要考虑多个因素。

首先是传动比的选择,传动比决定了传动输出转速和扭矩与输入转速和扭矩的关系。

传动比的选择要根据系统要求和传动部件的可靠性等因素进行合理确定。

其次是传动装置的布局和安装方式。

传动装置的布局应考虑机械的布局结构和空间限制等因素,合理安装传动装置可以提高机械系统的运行效率和可靠性。

机械传动的设计还需要考虑传动件的强度和寿命。

传动件的强度是指传动部件在工作过程中所能承受的最大载荷,而传动件的寿命则是指传动部件在规定工况下能够工作的时间。

在设计过程中,要根据传动装置的工作负荷和传动件的材料等因素,进行合理的强度计算和寿命评估。

此外,机械传动的设计还要考虑传动效率和噪声。

传动效率是指机械系统在能量传递过程中的损失程度,传动效率的高低直接影响着机械系统的能源利用效率。

而噪声是机械系统运行时产生的声音,对于某些应用领域,如航空航天、医疗器械等,噪声控制往往是设计的重要考虑因素之一。

综上所述,机械传动的设计是机械设计中重要的一部分,涉及到传动类型选择、传动比确定、布局和安装、传动件强度和寿命计算、传动效率和噪声控制等方面。

只有通过科学合理的设计和计算,才能够确保机械传动系统的正常运行和高效性能。

因此,机械设计手册中关于机械传动的内容是机械工程师在设计实践中必不可少的参考资料。

齿轮传动

齿轮传动

第十二章齿轮传动1 齿轮传动的特点和基本类型1.1齿轮传动的特点齿轮传动用来传递任意两轴间的运动和动力,其圆周速度可达到300m/s,传递功率可达105KW,齿轮直径可从不到1mm到150m以上,是现代机械中应用最广的一种机械传动。

齿轮传动与带传动相比主要有以下优点:(1)传递动力大、效率高;(2)寿命长,工作平稳,可靠性高;(3)能保证恒定的传动比,能传递任意夹角两轴间的运动。

齿轮传动与带传动相比主要缺点有:(1)制造、安装精度要求较高,因而成本也较高;(2)不宜作远距离传动。

1.2齿轮传动的类型齿轮传动平面齿轮运动(相对运动为平面运动,传递平行轴间的运动)直齿圆柱齿轮传动(轮齿与轴平行)外啮合内啮合齿轮齿条斜齿圆柱齿轮传动(轮齿与轴不平行)外啮合内啮合齿轮齿条人字齿轮传动(轮齿成人字形)空间齿轮运动(相对运动为空间运动,传递不平行轴间的运动)传递相交轴运动(锥齿轮传动)直齿斜齿曲线齿传递交错轴运动交错轴斜齿轮传动蜗轮蜗杆传动准双曲面齿轮传动外啮合直齿圆柱齿轮传动内啮合直齿圆柱齿轮传动齿轮齿条传动(直齿条)外啮合斜齿圆柱齿轮传动人字齿轮传动齿轮齿条传动(斜齿条)直齿圆锥齿轮传动曲齿圆锥齿轮传动蜗杆传动准双曲面齿轮传动螺旋齿轮传动(交错轴斜齿轮传动)1.3 齿廓啮合基本定律齿轮传动要求准确平稳,即要求在传动过程中,瞬时传动比保持不变,以免产生冲击、振动和噪音。

齿轮传动是依靠主动轮的轮齿依次拨动从动轮的轮齿来实现的。

传动比为:一对齿轮,传动比恒定不变。

但是,这并不能保证每一瞬时的传动比(即两轮的角速度之比)亦为常数。

传动的瞬时传动比是否保持恒定,与齿轮的齿廓曲线有关。

2 渐开线齿轮的齿廓及传动比2.1 渐开线的形成2.2 渐开线的性质(1)发生线沿基圆滚过的线段长度等于基圆上被滚过的相应弧长。

2)渐开线上任意一点法线必然与基圆相切。

换言之,基圆的切线必为渐开线上某点的法线。

发生线BK是渐开线在任意点K的法线。

《机械设计基础》第12章 蜗杆传动

《机械设计基础》第12章 蜗杆传动
2、重合度大,传动平稳,噪声低;
3、摩擦磨损问题突出,磨损是主要 的失效形式。为了减摩耐磨,蜗轮齿圈常需用青铜制造,成本较高;
4、传动效率低,具有自锁性时,效率低于50%。
由于上述特点,蜗杆传动主要用于传递运动,而在动力传输中的应用受到限制。
其齿面一般是在车床上用直线刀刃的 车刀切制而成,车刀安装位置不同, 加工出的蜗杆齿面的齿廓形状不同。
γ
β
γ=β (蜗轮、蜗杆同旋向)
一、蜗杆传动的主要参数及其选择
1、模数m和压力角α
§12-2 蜗杆传动的参数分析及几何计算
ma1= mt2= m αa1=αt2 =α=20°
在蜗杆蜗轮传动中,规定中间平面上的模数和压力角为标准值,即:
模数m按表12-1选取,压力角取α=20° (ZA型αa=20º;ZI型αn=20º) 。
阿基米德蜗杆(ZA蜗杆) 渐开线蜗杆(ZI蜗杆)
圆柱蜗杆传动
环面蜗杆传动
锥蜗杆传动
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲面,这种蜗杆同时啮合齿数多,传动平稳;齿面利于润滑油膜形成,传动效率较高。
同时啮合齿数多,重合度大;传动比范围大(10~360);承载能力和效率较高。
三、分类
在轴剖面上齿廓为直线,在垂直于蜗 杆轴线的截面上为阿基米德螺旋线。
§12-5 圆柱蜗杆传动的强度计算
一、蜗轮齿面接触疲劳强度的计算
1、校核公式:
2、设计公式:
式中:a—中心距,mm;T2 —作用在蜗轮上的转矩,T2 = T1 iη; zE—材料综合弹性系数,钢与铸锡青铜配对时,取zE=150;钢与铝青铜或灰铸铁配对时, 取zE=160。 zρ—接触系数,由d1/a查图12-11,一般d1/a=0.3~0.5。取小值时,导程角大,故效率高,但蜗杆刚性较小。 kA —使用系数,kA =1.1~1.4。有冲击载荷、环境温度高(t>35oC)、速度较高时,取大值。

第十二章联轴器、离合器、和制动器

第十二章联轴器、离合器、和制动器

滑块联轴器
第十二章联轴器、离合器、和制动器
结构
运动演十二章联轴器、离合器、和制动器
实物
滚子链联轴器
第十二章联轴器、离合器、和制动器
弹性套柱销联轴器 第十二章弹联轴性器套、离柱合器销、联和制轴动器器
弹性柱销联轴器
弹性柱销联轴器
第十二章联轴器、离合器、和制动器
梅花形弹性联 轴器
元件的联轴器;考虑安装尺寸 2.尺寸选择 据被联接轴的直径,转速,计算转矩选择
第十二章联轴器、离合器、和制动器
§12—2离合器
作用:离合器用来联接两根轴,使之一起转动并传递转矩,在工作中主、从 动部分可分离可接合。
一、离合器的分类 按其工作原理可分为 啮合式:利用牙齿啮合传递转矩,可保证两轴同步运转,但只能在低速或停 车时进行离合 摩擦式:利用工作表面的摩擦传递扭矩,能在任何转速下离合,有过载保护 但不能保证两轴同步运转
按离合控制方法不同,可分为操纵式和自动式两类; 按操纵方式分有机械操纵式、电磁操纵式、液压操纵式和气压操纵式等; 可自动离合的离合器有超越离合器、离心离合器和安全离合器等,它们能
在特定条件下,自动地接合或分离。
第十二章联轴器、离合器、和制动器
对离合器的基本要求 分离、接合迅速,平稳无冲击,分离彻底,动作准确可靠; 结构简单,重量轻,惯性小,外形尺寸小,工作安全,效率高; 接合元件耐磨性好,使用寿命长,散热条件好; 操纵方便省力,制造容易,调整维修方便。
§12—1 联轴器
一.联轴器的种类
联轴器所联接的两轴,由于制造及安装误差、承载后的变形以及温度 变化的影响等,往往不能保证严格的对中,而是存在着某种程度的相对位 移。这就要求设计联轴器时,要从结构上采取各种不同的措施,使之具有 适应一定范围的相对位移的性能。

机械设计手册机械传动

机械设计手册机械传动

机械设计手册机械传动
机械设计手册中的机械传动部分主要涵盖了各种机械传动系统的原理、设计方法和计算公式。

其中常见的机械传动类型包括:
1. 齿轮传动:利用齿轮之间的啮合传递动力和运动。

包括圆柱齿轮、锥齿轮、蜗轮蜗杆等。

2. 链传动:通过链条将动力从一个轴传递到另一个轴。

适用于较远距离的传动。

3. 带传动:通过传动带将动力从一个轴传递到另一个轴。

适用于较短距离的传动。

4. 离合器传动:在机械传动系统中,用于连接和切断动力传递的部件。

如摩擦离合器、液力离合器等。

5. 联轴器:用于连接两个轴,传递转矩和运动。

如膜片联轴器、挠性联轴器等。

6. 减速器:用于降低输入轴的转速,提高输出轴的扭矩。

如齿轮减速器、蜗轮减速器等。

7. 变速器:用于在运行过程中改变输入轴和输出轴的转速比。

如齿轮变速器、液力变速器等。

8. 传动轴:用于连接不同轴之间的传动装置,传递转矩和运动。

9. 万向节:用于连接传动轴和驱动部件,允许在一定角度范围内摆动。

10. 导向部件:用于引导和定位运动部件,如导轨、丝杠等。

在实际应用中,可以根据需求选择合适的机械传动系统进行设计。

设计时需考虑传动比、扭矩、功率、材料、尺寸等因素。

机械传动手册提供了丰
富的设计资料、计算方法和实例,有助于工程师更好地进行机械传动系统的设计与优化。

机械设计基础第12章螺旋传动

机械设计基础第12章螺旋传动
螺旋传动的优势 相比其他传动方式,如齿轮传动、链传动等,螺旋传动在机床进给机构中具有更高的传动精度和稳定性, 能够满足高精度加工的需求。
实例二:汽车转向器中的螺旋传动
螺旋传动的特点
在汽车转向器中,螺旋传动具有结构紧凑、传动效率高、可靠性好等优点。通过调整螺旋的 导程和转速,可以实现汽车转向的灵活性和稳定性。
螺旋传动的优势
相比其他驱动方式,如链条驱动、齿 轮驱动等,螺旋传动在升降机中具有 更高的承载能力和运行平稳性,能够 满足不同高度和负载下的升降需求。
THANKS
感谢观看
旋转运动
当主动件固定不动时,从 动件绕螺旋轴作旋转运动。
螺旋传动的效率计算
滑动摩擦效率
总效率
考虑螺旋副间滑动摩擦时的效率,与 摩擦系数、法向力和切向力有关。
综合考虑滑动摩擦和滚动摩擦时的效 率,是评价螺旋传动性能的重要指标。
滚动摩擦效率
考虑螺旋副间滚动摩擦时的效率,与 滚动体的形状、大小和数量有关。
机械设计基础第12章螺 旋传动
目 录
• 螺旋传动概述 • 螺旋传动的工作原理 • 螺旋传动的类型与结构 • 螺旋传动的参数设计与计算 • 螺旋传动的材料、制造与热处理 • 螺旋传动的润滑与密封 • 螺旋传动在机械设计中的应用实例
01
螺旋传动概述
定义与分类
定义
螺旋传动是利用螺旋副传递运动和 动力的一种机械传动方式。
分类
根据螺旋副的摩擦性质,螺旋传动 可分为滑动螺旋传动、滚动螺旋传 动和静压螺旋传动三种类型。
螺旋传动的特点
优点 结构简单,制造方便,易于自锁。
传动平稳,噪声小,工作可靠。
螺旋传动的特点
• 能实现大传动比和远距离传动
04

机械设计基础复习精要:第12章 蜗杆传动

机械设计基础复习精要:第12章 蜗杆传动

154第12章 蜗杆传动12.1 考点提要12.1.1 重要的术语和概念蜗杆的传动特点和分类、蜗杆的效率、蜗杆的头数、导程角、直径系数、12.1.2蜗杆传动的滑动速度和效率蜗杆主动时的机构效率为:)(v tg tg ϕγγη+-=)96.095.0( (12-1) 蜗杆的功率损耗一般由啮合摩擦,轴承损耗及零件搅油和飞溅损耗。

计算效率时,需要用到当量摩擦角v ϕ,其数值可通过arctgf v =ϕ算出,再结合相对滑动速度查表确定。

增加蜗杆的头数会使导程角增大,从而使效率增大,同时滑动速度也增大;如果增大蜗杆的分度圆直径将使导程角减小,从而使效率下降,而蜗杆的刚度提高。

蜗轮主动的效率为)(’v tg tg ϕγγη-= (12-2) 显然若v ϕγ≤,则0≤‘η,机构自锁,显然,如果反行程(蜗轮主动)自锁,正行程的效率(蜗杆主动)一定不大于50O O /。

蜗杆机构总的效率为啮合效率与轴承效率及搅油效率的乘积。

在设计之初,为近似求出蜗轮的转矩2T ,η数值可按表14-1数值估计。

表14-1 效率与蜗杆头数关系1Z 12 3 4 总效率0.7 0.8 0.85 0.9 影响蜗杆传动啮合效率的几何因素有:蜗杆的头数Z1,蜗杆的直径系数q﹑蜗杆分度圆直径〔或模数﹑Z1﹑q〕。

由于传动多是减速传动,所以蜗杆多处于高速级。

当蜗杆头数较少时,反行程效率低,机构自锁。

只有蜗杆头数多时才有较高的效率,反行程不自锁(可以蜗轮为主动件),但蜗轮和蜗杆的滑动速度过大,对材料要求很高,易出现磨损和胶合,因此很少采用。

12.1.3普通圆柱蜗杆传动的主要参数和几何尺寸计算蜗杆蜗轮的正确啮合条件有:1)蜗杆的轴向模数ma1=蜗轮的端面模数mt2且等于标准模数;2)杆的轴向压力角αa1=蜗轮的端面压力角αt2且等于标准压力角;3)蜗杆的导程角γ=蜗轮的螺旋角β且均可用γ表示,蜗轮与蜗轮的螺旋线方向相同。

通过蜗杆轴线并与涡轮端面垂直的平面称中间平面。

蜗轮蜗杆传动

蜗轮蜗杆传动
算式为
a=0.5(d1+d2)=0.5m(q+z2)
(12-4)
注意: a≠0.5m(z1+z2) 。中心距的常用值见表12-3注。
二、圆柱蜗杆传动的几何尺寸计算
设计蜗杆传动时,一般是先根据传动的功用和传动比的要 求,选择蜗杆头数z1和蜗轮齿数z2,然后再按强度计算确定 模数m和蜗杆分度圆直径d1(或q),再根据表12-3计算出蜗杆、 蜗轮的几何尺寸(两轴交错角为90°、标准传动)。
第一节 蜗杆传动的特点和类型
nn
阿基米德螺线

n


n
2 nn


n

n
阿基米德蜗杆(ZA)
轴面---直线
延伸渐开线 延伸渐开线蜗杆(ZI)
加工:刀具平面垂直于螺线 特点:端面---延伸渐开线
法面---直线
2
Northwest A&F University
第一节 蜗杆传动的特点和类型
a=100mm,就只能采用变位传动了。方法是在切制蜗轮时将 滚刀外移2mm,即将滚刀与被切蜗轮的中心距由98mm增加到 100mm。有关变位蜗杆传动的计算,参见机械设计手册。
Northwest A&F University
第三节蜗杆传动的失效形式、材料和结构
一、蜗杆传动的失效形式及材料选择
1. 主要失效形式:胶合、磨损、点蚀等。 在润滑良好的闭式传动中,若不能及时散热,胶合
Northwest A&F University
第二节圆柱蜗杆传动的主要参数和几何尺寸
表12-3 蜗杆传动的几何尺寸计算
名称 分度圆直径
齿顶高 齿根高
齿顶圆直径
齿根圆直径

机械设计基础 第12章 蜗杆传动

机械设计基础 第12章  蜗杆传动

d1 mq
pz z1 px
tan pz z1 px z1m z1 d1 d1 d1 q
蜗杆导程 蜗杆轴向齿距
蜗杆导程角
d1越小(或q越小), 越大,传动效率越高,但蜗杆的刚度
和强度越低。 通常,转速高的蜗杆可取较小的d1值,蜗轮齿 数z2较大时可取较大的d1值。
当导程角 小于当量摩擦角时,蜗轮为主动时则发生自锁。
蜗杆材料:20Cr渗碳淬火;40Cr、35CrMo淬火;45调质
蜗轮材料:ZCuSn10P1 ZCuAl10Fe3
vs 25 m/s 耐磨性好、抗胶合
vs 6 m/s 价格便宜
HT200
vs 2 m/s 经济、低速
二、 蜗杆和蜗轮的结构 蜗杆结构:通常与轴为一体,蜗杆轴
蜗轮结构:整体式(铸铁蜗轮或尺寸很小的青铜蜗轮) 组合式(有色金属齿圈+钢或铸铁轮芯)
二、 蜗杆传动的类型 因蜗轮是用形状与蜗杆相同的滚刀加工而成,故蜗杆传动 的类型是按蜗杆的不同进行分类。
按蜗杆形状分:圆柱蜗杆和环面蜗杆。
圆柱蜗杆用直线刀刃的车刀车削成形,根据刀具安装位置 的不同,可加工出阿基米德蜗杆和渐开线蜗杆等。
圆柱蜗杆传动
环面蜗杆传动
阿基米德蜗杆:刀具两刃与蜗杆轴线共面;轴面内相当于 直线齿条,端面齿形为阿基米德螺线。 渐开线蜗杆:用两把车刀,其刀刃顶面切于蜗杆基圆柱; 端面齿廓为渐开线,在切于蜗杆基圆柱的剖面内,齿廓的 一侧为直线,轴面内为凸廓曲线。 蜗杆有左、右旋之分,常用的是右旋蜗杆。
蜗轮径向力
各力方向的确定: 类似于斜齿轮
【例】图示蜗杆传动,蜗杆1主动,转向如图。试指出蜗轮2、 3轮齿旋向及转向,并画出蜗杆1上啮合处的作用力三个分力 方向。
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、画机构运动简图 7、进行机构的运动分析及运动尺寸的确定,如关 键执行构件的S、V、a分析 ;间歇运动机构如槽 轮机构的尺寸确定;
8、画运动循环图; 9、心得体会 10、参考书目
12.2 原动机、传动机构和执行机构的类型与选择
一、原动机的选择 原动机的动力源主要有电、液及气三种。 电动机是最常用的原动机,其中交流异步电动机应用 最广,它具有结构简单,价格便宜,效率高和控制方 便 等 优 点 。 其 转 速 有 3000 、 1500 、 1000 、 750r/min。 液压马达及液压油缸是主要的液压原动机。 气马达及气缸则是主要的气压原动机。
1、一般原则
•运动链简短; •优先选基本机构; •机械效率较高; •传动机构排列顺序合理; •合理分配传动比。
2、机构的变异 3、机构的组合 4、机构的封闭式组合 5、机构的装载式组合
二、 机器的运动循环图
方案设计时要考虑各执行构件之间的动作协调配 合问题,根据机器工作的需要,各执行构件的动作必 须密切准确地协调配合,不能有任何紊乱,否则机器 便不能完成其预期的生产任务,甚至损坏设备。 工作循环:开始加工一个产品到开始加工另一个 产品所经历的时间间隔。 运动循环:对于机器的机构系统则称为运动循环。
三、执行系统的功能原理设计
根据机械预期实现的功能,考虑选择何种工 作原理来实现这一功能要求。
功能原理设计的任务,就是根据机械预 期实现的功能要求,构思出所有可能的功能 原理,加以分析比较并根据使用要求或者工 艺要求,从中选择出既能很好的满足功能要 求,工艺动作又简单的工作原理。
举例: 自动送料板装置的功能原理设计
二、传动机构的类型及功用
常用的传动机构有: 1、齿轮机构 齿轮机构应用在中心距较小,传动精度较高,各种不 同传递动力范围的场合。 2、螺旋机构 在许多机械设备中大量应用着螺旋机构(又称丝杠传 动),它主要用于将回转运动转变为直线运动。
3、带传动与链传动 带传动及链传动多用于中心距较大的传动。 4、连杆机构 连杆机构在机械设备及日常生活中有大量应用。 5、凸轮机构。 由于凸轮机构是高副接触,决定了这种机构主要 用于传递运动。
运动循环图:反应机械系统一个运动循环期间各执行 构件之间动作的协调关系图。
绘制机械运动循环图的方法:
选定一个主要执行机构(构件)做为定标件, 用它的运动位置(转角或时间或位移)作为确定 其它执行构件运动先后次序的基准,所选的定 标件最好是其一个运动循环与机器的一个运动 循环有着严格的一一对应。
以牛头刨床为例:有两个执行构件 刨头和工作台,以牛 头刨床主体机构----曲柄导杆机构中的曲柄为定标件。
1.直线式
φ 以曲柄的转角 为横坐标,曲柄每转一转为
一个工作循环
刨头
工作行程
工作台
00 曲柄的转角φ
900
1800
空回行程
进给
2700
3600
2.圆盘式

头工

作 台

送 进


刨 头
工作

曲台
柄停 作

进送


3.直角坐标式
以上两种循环图只表示了各执行构件先后次序和
动作持续时间的长短,而不能显示出各执行构件
在工作时间的运动规律和各执行构件在位置上的
协调配合关系。
1800&#动机构
工作行程(进)
工作台间歇 送进机构
00 曲柄的转角φ
静止
900
1800
空回行程(退)
进给 2700
静止 3600
这种运动循环图不仅能表示出两执行构件动作 的先后,而且能表示出两执行构件的工作行程和空 回行程的运动规律以及它们在运动上的配合关系, 是一种较完善的工作循环图。
轨迹运动、点到点的运动及位到位的运动等主要五种 运动形式。 1、实现直线运动的机构 齿轮-齿条机构:齿轮的正、反向回转可以使齿条做往复 直线运动 螺旋机构:丝杠的回转可以使螺母实现往复直线运动 曲柄滑块机构:当曲柄连续回转时,滑块可做往复直线 运动。
链传动(直线段部分的运动):带有翼片的链传动, 可以拖动被作业件在两链轮间的直线段做直线运动。 2、实现回转运动的机构 :齿轮传动机构 、双曲 柄机构(含平行四边形机构)、链传动及带传动 可以实现较长距离的回转运动。 3、实现运动轨迹的机构:四杆机构(连杆曲线)、 开式链机构(任何开式链机构上的端点都可以实现一 定的运动轨迹 )。
• 机械推拉原理
• 摩擦传动原理(摩擦板)
• 摩擦传动原理(摩擦轮) • 气吸原理(顶吸法)
• 气吸原理(底吸法)
总结
• 实现某种预期的要求,可以采用多种不同 的工作原理;
• 不同的工作原理需要不同的工艺动作,这 样所设计出的机械在工作性能、工作品质 和适用场合等方面都会有很大的差别。
四、执行机构的运动类型及典型机构 执行机构的运动分为直线运动、回转运动、任意
4、点到点的运动机构:曲柄滑块机构、凸轮机构 5、位到位的运动机构:热处理炉炉门开闭机构 、 飞机起落架机构
12.3 机械运动方案设计
一、 机构的选型 机构的选型是指按照给定原动机的输入运动、执行构件的运动、
工作要求和其他有关约束条件选择恰当的机构类型,以构成一个符 合要求的机构系统。机构选型犹如在原动机和执行构件之间按照约 束条件搭建起来的一架桥梁,使之成为一个完整的体系。
第12章 机械传动系统的方案设计
12.1 概述 12.2 原动机、 传动 机构和执行机构的类 型与选择 12.3 机械运动方案设计
机械运动方案设计举例
一、运动方案设计的主要步骤
1、确定其所要完成的工作任务;
2、充分分析给定的各项已知条件,明确设计的目
标和约束条件等;(根据题目、设计要求、 原始数
据及工作原理,将机器进行工艺动作分解)
如多轴钻床:
送料机构
电机 减速装置
工作台的进给机构
钻头的切屑机构
2、动力源的选择及减速装置; 3、确定执行构件的运动形式和运动参数;如酸奶 包装机中灌奶机构中的执行构件为直线运动,据 原始数据(ml/杯)确定直线运动的行程。 4、机构选型及创新性设计,即分别选择能够满足各执 行构件运动要求的若干相同类型或不同类型的机构。 5、确定合适的机械运动系统,即配置若干辅助机构 (如各分运动的传递与变换,操作控制等)将上述各 分机构联成一个完整的机械系统;
相关文档
最新文档