高等几何试卷答案

合集下载

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项是欧几里得几何的公理?A. 两点之间线段最短B. 过直线外一点有且只有一条直线与已知直线平行C. 任意两条直线都相交D. 圆的周长与直径的比值是一个常数答案:B2. 球面上的最短路径是:A. 直线B. 曲线C. 大圆D. 任意路径答案:C3. 以下哪个定理是球面几何中的定理?A. 勾股定理B. 泰勒斯定理C. 球面三角形的内角和大于180度D. 三角形内角和等于180度答案:C4. 以下哪个选项是双曲几何的特征?A. 过直线外一点有且只有一条直线与已知直线平行B. 过直线外一点有无数条直线与已知直线平行C. 过直线外一点没有直线与已知直线平行D. 过直线外一点有一条直线与已知直线平行答案:B二、填空题(每题5分,共20分)1. 在欧几里得几何中,一个平面上任意两个点确定一条________。

答案:直线2. 球面几何中,球面上的两点之间的最短路径称为________。

答案:大圆3. 在双曲几何中,过直线外一点可以画出________条直线与已知直线平行。

答案:无数4. 根据球面几何的性质,球面上的三角形内角和________180度。

答案:大于三、解答题(每题15分,共30分)1. 证明:在球面几何中,任意两个大圆的交点最多有两个。

证明:假设球面上有两个大圆A和B,它们相交于点P和Q。

如果存在第三个交点R,则R必须位于大圆A和B上。

由于大圆A和B是球面上的最短路径,它们在球面上的交点必须是球面上的最短路径的端点,因此R不可能存在。

因此,任意两个大圆的交点最多有两个。

答案:证明完毕。

2. 已知球面上的三角形ABC,其内角分别为α、β、γ,且α+β+γ=180°+ε,其中ε为正数。

求证:三角形ABC的边长之和小于球面上的任意其他三角形的边长之和。

证明:设球面上的任意其他三角形为DEF,其内角分别为α'、β'、γ'。

最完整高等几何习题解答(最全版)

最完整高等几何习题解答(最全版)

高等几何习题解答习题一1.0设A ,B 为二定点,xy 为定直线。

于xy 上任取P ,Q ,又AP 与BQ 交于L ,AQ 与BP 交于M ,求证:LM 通过AB 上一定点。

解:把直线xy 射影为无穷远直线,则点P ,Q ,2P ,2Q 变为无穷远点1P ∞,1Q ∞,2P ∞,2Q ∞,所以1A L B M ''''∥,22A L B M ''''∥,11A M B L ''''∥,22A M B L ''''∥,得两个平行四边形。

11L B M ''''中,11L M '',A B ''是对角线,交于1S ,且1S 是A B ''的中点。

22L B M ''''中,22L M '',A B ''是对角线,交于点1S ,且1S 是A B ''的中点,∴1S '≡2S '=S ',从而,LM通过AB 上一定点S 。

1.1 写出下列各直线的绝对坐标:(1)123320x x -= (2)23230x x -= (3)30x =答:(1)(3,-;(2)(0,2,3)-;(3)(0,0,1) 1.2 写出下列个点的方程(3,5,1)a =- (0,1,0)b = 1,0)c =-答:123:350a ξξξ-+= 2:0b ξ= 120c ξ-=1.3 求下列三点中每两点连线的方程和坐标:(1,4,1)x =,(2,0,1)y =,(1,1,2)z =- 答:),8,1,4(=⨯y x 084321=++x x x ),2,3,1(--=⨯z y 023321=--x x x ),5,1,9(--=⨯x z 059321=--x x x1.4 求下列三直线中每两条的交点的方程和坐标:),4,1,0(=ξ),3,1,2(=η)0,1,1(-=ζ 答:),2,8,1(-=⨯ηξ028321=+-ξξξ ),1,1,1(-=⨯ξη0321=-+ξξξ),1,4,4(-=⨯ξζ044321=-+ξξξ1.5 如果直线,ξ,η,ζϕ的方程分别是:,031=-x x ,032=-x x ,02321=-+x x x,0321=++x x x 求直线)()(ϕζηξ⨯⨯⨯的方程和坐标。

高等几何试卷及答案

高等几何试卷及答案

《高等几何》考试试题A 卷(120分钟)一、填空题(2分⨯12=24分)1平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: (5,-1,0)3、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -24、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x5、方程065222121=+-u u u u 表示的图形坐标 (1,2,0) (1,3,0) 6、已知OX 轴上的射影变换式为312'+-=x x x ,则原点的对应点 -317、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -19、一点列到自身的两射影变换a):21→,32→,43→; b):10→,32→,01→ 其中为对合的就是: b10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件就是 底的交点自对应12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1 二、求二阶曲线的方程,它就是由下列两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。

解:射影对应式为'2'10λλλλ-++=。

由两线束的方程有:1233,'x xx x λλ==。

将它们代入射影对应式并化简得,2122313320x x x x x x x +-+=此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

(10分)证明:三点形ABC 与三点形C B A '''内接于二次曲线(C),设 AB I C B ''=D AB I C A ''=E B A ''I BC=D ' B A ''I AC=E ',则),,,(B A B A C '''∧),,,(B A B A C ''所以,),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B 即),E ,D ,(B A ∧)D ,,,E (''''A B这两个点列对应点的连线AC,B C '',A C '',BC 连同这两个点列的底AB,B A ''属于同一条二级曲线(C '),亦即三点形ABC 与三点形C B A '''的边外切一条二次曲线。

4月浙江自考高等几何试题及答案解析

4月浙江自考高等几何试题及答案解析

1浙江省2018年4月自学考试高等几何试题课程代码:10027一、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1.简比(ABC)__________,则点C 在AB 上.2.对合的表达式是__________.3.欧氏几何的基本不变量是__________、__________.4.已知共线四点A 、B 、C 、D 的交比(AB ,CD)=2,则(DA ,BC)=__________.5.两个线束成透视的充要条件是__________.6.平面内两点I(1,i,0)和J(1,-i,0)称为平面内的__________点.7.几何公理体系的三个基本问题是__________,__________,__________.8.罗氏几何的一个重要定理:任何三角形的内角和__________两直角.9.欧几里得在前人的基础上写成的《__________》是仅存的古代数学名著之一.10.射影平面上,__________线不存在.二、计算题(本大题共5小题,每小题6分,共30分)1.求连接点(1,2,-1)与二直线(2,1,3),(1,-1,0)之交点的直线方程.2.设共线三点P 1、P 2、P 3在留氏坐标系下,已知P 1,P 2的非齐次坐标顺次为(x 1,y 1),(x 2,y 2),且简比(P 1P 2P 3)=λ(λ≠1),求P 3的坐标(x,y).3.已知线束中三直线a,b,c 的方程依次是3x-2=0,-x+2y+2=0,5x-y-4=0,它们与第四直线d 的交比为32,求d 的方程. 4.试求点(-1,2)关于二阶曲线x 2-3xy+y 2-2x-y-1=0的极线.5.试求二次曲线x 2+3xy-4y 2+2x-10y=0的中心.三、作图题(本大题共3小题,每小题6分,共18分)1.给定透视仿射的对应轴g 和一对对应点A 、A′,求作已知正方形PQRS 的对应图形.作法:2.已知一直线上三点A、B、C,求作第四点D使交比(AB,CD)=-1. 作法:3.如图,求作直线p关于二次曲线Γ的极点(如图).作法:四、证明题(本大题共2小题,每小题10分,共20分)1.△ABC和△A′B′C′的六个顶点在二次曲线Γ′上,证明CA、AB、BC、C′A′、A′B′,C′B′切于另一个二次曲线Γ上.证明:22.以四条迷向直线为边作一个四边形ABCD(如图),其中对边属于同类迷向直线,试证其对角线AC,BD互相垂直.证明:五、综合应用题(本大题共12分)△ABC内接于椭圆,过A,B,C作椭圆的切线,交成△A1B1C1(图甲),若AB∥A1B1,BC∥B1C1,求证:CA∥C1A1证明:(按以下程序作业)第一步:经某仿射变换将椭圆变成圆(图乙)为什么这样的变换是存在的?第二步:在图乙中画出图甲的对应点和线段,叙述原来的命题对应地变成怎样的命题?第三步:证明经变换后相应的命题成立,这样原来的命题也就成立,为什么?3。

成人教育高等几何复习题及参考答案

成人教育高等几何复习题及参考答案

山东师范大学成人高等教育《高等几何》课程复习题A参考答案在试卷后一、 填空题(每小题 2 分,共 20 分)1、平行四边形的仿射对应图形为: ;2、直线0521=+x x 上无穷远点坐标为: ;3、已知3),(4321=l l l l ,则=),(1234l l l l =),(4231l l l l4、过点A(1,i - ,2)的实直线的齐次方程为:5、方程065222121=+-u u u u 表示的图形坐标 6、已知OX 轴上的射影变换式为312'+-=x x x ,则原点的对应点 7、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程 8、两个线束点列成透视的充要条件是 .9、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC =10. 两点决定一条直线的对偶命题为二、判断题(每小题2分,共10分)1、两全等三角形经仿射对应后得两全等三角形 ( )2、射影对应保持交比不变,也保持单比不变 ( )3、一个角的内外角平分线调和分离角的两边 ( )4、欧氏几何是射影几何的子几何,所以对应内容是射影几何对应内容的子集 ( )5、共线点的极线必共点,共点线的极点必共线 ( )三、解答题(共50 分)1. 求一仿射变换,它使直线210x y +-=上的每个点都不变,且使点(1,-1)变为(-1,2)(7分)2. 求证:点 (1,2,1),(1,1,2),(3,0,5)A B C --三点共线,并求,t s ,使,(1,2,3)i i i c ta sb i =+=(8分)3. 求通过两直线[1,3,1],[1,5,1]a b -交点且属于二级曲线 222123420u u u +-=的直线。

(10分)4.(1)求点(5,1,7)关于二阶曲线222123121323236240x x x x x x x x x ++---=的极线(2)已知二阶曲线外一点P 求作其极线。

学历自考模拟试卷(专升本)《高等几何》期末考试试卷【附答案】

学历自考模拟试卷(专升本)《高等几何》期末考试试卷【附答案】

…………○…………内…………○…………装…………○…………订…………○…………线…………○………5.( B.1C.装订线内不许答题15.().A.B.C.D.16.().A. B.C.D.17.().A.B.C.D.18.().A.B.1C.D.19.()A. B.C.D.20.() A.B.C. D.二、填空题(本题共10小题,每题3分,共30.0分)21.直线=22.已知OX 轴上的射影变换式为,则原点的对应点为23.求射影变换的自对应元素的参数24.过点的实直线的齐次方程为25.ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则A(BC,DE)=26.平行四边形的仿射对应图形为27.两个线束点列成透视的充要条件是28.已知29.求点(1,-1,0)关于二阶曲线的极线方程30.直线上无穷远点坐标为三、问答题(本题共3小题,每题10.0分,共30.0分)1.求通过平面4x-y+3z-1=0与x+5y-z+2=0的交线且与平面垂直的平面方程(10.0分)2.(10分)3.试求L1与L2间的距离与它们的公垂线方程。

(10分)得分评卷人得分评卷人高等几何参考一、1-10 DACAD CACAD 11-20 BBBCB DDDDD二、填空1.答案:1.2.答案:-1/3. 3.答案:1.4.答案:.5.答案:-1.6.答案:平行四边形7.答案:底的交点自应8.答案:3,-29.答案:. 10.答案:(5,-1,0)三、1.2.3.。

华师《高等几何》在线作业答案

华师《高等几何》在线作业答案

华师《高等几何》在线作业试卷总分:100 得分:100一、单选题(共20 道试题,共60 分)1.在中心射影下,如下哪种量不变A.角度B.交比C.面积D.长度答案:B2.(3,2,1)的非齐次坐标为()A.(3,2)B.(3,1)C.(2,1)D.(1,3)答案:A3.若共点四直线a,b,c,d的交比为(ab,cd)=-1,则交比(ad,bc)=()A.1B.2C.3D.4答案:B4.下列哪个名称或命题属于射影几何学A.三角形三条高线共点B.直角三角形C.Desargues定理D.梯形答案:C5.满足条件( )的一维射影变换必为对合变换A.有一个自对应点B.有两个自对应点C.有两个对合点D.有三个对合点.答案:C6.等腰梯形的仿射对应图形是()A.等腰梯形B.梯形C.四边形D.三角形答案:B7.点(0,2)的齐次坐标为()A.(2,0,1)B.(-2,0,1)C.(0,2,1)D.(0,-2,1)答案:C8.下列结论正确的是()A.射影变换群是一个六维群B.仿射变换群是一个六维群C.相似变换群是一个六维群D.正交变换群是一个六维群答案:B9.仿射对应是平行射影的充分必要条件为()A.象点与原象点的连线平行B.象点与原象点的连线交于一点C.不可判定D.象点与原象点不平行答案:A10.(-2,2,1)的非齐次坐标为()A.(-2,1)B.(2,1)C.(-1,1)D.(-2,2)答案:D11.(2,4,-3)的非齐次坐标为()A.(-2,4)B.(2,4)C.(-2/3,4/3)D.(-2/3,-4/3)答案:D12.(0,0,1)的非齐次坐标为()A.(0,0)B.(0,1)C.(1,0)D.不存在答案:A13.若(P1P2, P3P4)=4,则(P2P3, P4P1)=()。

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 已知直线l的方程为Ax+By+C=0,直线m的方程为Dx+Ey+F=0,若l与m平行,则以下哪个条件成立?A. A/D = B/E ≠ C/FB. A/D = B/E = C/FC. A/D = B/E ≠ C/FD. A/D ≠ B/E = C/F答案:A2. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β垂直,则以下哪个条件成立?A. AE + BF + CG = 0B. AE + BF + CG ≠ 0C. AE + BF + CG = D + HD. AE + BF + CG = D - H答案:A3. 已知点P(x1, y1, z1)在平面α:Ax+By+Cz+D=0上,则以下哪个条件成立?A. Ax1+By1+Cz1+D=0B. Ax1+By1+Cz1+D≠0C. Ax1+By1+Cz1+D>0D. Ax1+By1+Cz1+D<0答案:A4. 已知直线l的参数方程为x=x0+at,y=y0+bt,z=z0+ct,其中a、b、c为直线的方向向量,若直线l与平面α:Ax+By+Cz+D=0平行,则以下哪个条件成立?A. Aa+Bb+Cc=0B. Aa+Bb+Cc≠0C. Aa+Bb+Cc=DD. Aa+Bb+Cc=-D答案:A二、填空题(每题5分,共20分)5. 已知直线l的方程为Ax+By+Cz+D=0,直线m的方程为Ex+Fy+Gz+H=0,若l与m相交,则它们的交点坐标为__________。

答案:((BF-CE)/(AF-CD), (AG-CF)/(AF-CD), (AE-BF)/(AF-CD))6. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β相交,则它们的交线方程为__________。

答案:(Ax+By+Cz+D)(EF-GH) - (Ex+Fy+Gz+H)(AF-CD) = 07. 已知点P(x1, y1, z1)到平面α:Ax+By+Cz+D=0的距离为d,则d=__________。

高等几何试卷与答案

高等几何试卷与答案

《高等几何》考试试题 A 卷( 120 分钟)题号一二三四五六七八合计分数2410101010121212100得分一、填空题( 2 分12=24 分)1、平行四边形的仿射对应图形为:平行四边形;2、直线 x15x20 上无穷远点坐标为:(5,-1,0)3、已知 (l1l 2 , l 3l 4 ) 3 ,则 (l 4l 3 , l 2 l1 )3(l1l 3 , l 2 l 4 )-24、过点 A(1,i,2)的实直线的齐次方程为: 2 x1 x305、方程 u125u1u26u220 表示的图形坐标(1,2,0)( 1,3,0)6、已知OX轴上的射影变换式为x'2x 1,则原点的对应点-1x337、求点(1, 1,0)关于二阶曲线 3x125x22x327x1 x24x1x35x2 x30 的极线方程x13x26x308、ABCD为平行四边形,过A引AE与对角线BD平行,则A( BC, DE ) = -19、一点列到自身的两射影变换a):1 2 , 2 3 , 3 4 ;b): 0 1 , 2 3 ,1 0 其中为对合的是:b10、求射影变换'210 的自对应元素的参数111、两个线束点列成透视的充要条件是底的交点自对应12、直线 2x1x2x30 上的三点A(1,3,1),B(2,5,1),C (1,2,0)的单比( ABC ) =1二、求二阶曲线的方程,它是由下列两个射影线束所决定的:x1 x3 0 与 x2' x3 0且'2'10。

由两线束的方程有:x1, 'x 2 。

x 3x 3将它们代入射影对应式并化简得,x 1x 2 2x 2 x 3 x 1 x 3 x 32 0此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

(10 分)证明:三点形 ABC 和三点形 A B C 内接于二次曲线( C ),设AB BC =D AB AC =EAB BC=DABAC= E , 则 C (A,B,A,B)C(A,B,A,B)所 以 ,(A,D,E,B)C (A,B ,A,B)C(A,B ,A ,B)(E ,B ,A ,D )即 (A,D,E,B) (E ,B ,A ,D )这两个点列对应点的连线 AC , C B , C A ,BC 连同这两个点列的底AB ,A B 属于同一条二级曲线 ( C ),亦即三点形 ABC 和三点形 A B C 的边外切一条二次曲线。

《高等几何》期末试卷B答案.

《高等几何》期末试卷B答案.

2012— 2013学年度第 1学期此卷使用班级为:数学系 2011级数学与应用数学专业本科班-----------------------------装 -------------------------------------订 -------------------------------线 ----------------------------一、填空题(每题 3分,共计 30分 1. 0, 3, 1(- 2. -1, 3 3. 自对应 4. 仿射 5. 12 6.0≠ij a7. 1, 2-=≠a a , 椭圆形对合8. 透视中心二、判断题 (对的打√ , 错的打×, 每题 2分 , 共计 20分1. ×2. √3. √4. ×5. √6. ×7. ×8. √9. √ 10.× 三、计算题 (共计 24分 1. (10分解由于0551111112, 001111112=---=-- …………………………… 4分故 D C B A , , , 四点共线 . 以 1, 1, 1(, 1, 1, 2(--B A 为基底 , 令0, 0, 1( 1, 1, 1( 1, 1, 2(1=-+-λ即10112111λλλ+-=-=+ 得11=λ, 同理令…………………………… 6分5, 5, 1( 1, 1, 1( 1, 1, 2(2-=-+-λ2012— 2013学年度第 1学期此卷使用班级为:数学系 2011级数学与应用数学专业本科班-----------------------------装 -------------------------------------订 -------------------------------线 ----------------------------即515112222-+-=-=+λλλ 得 232-=λ, 所求交比为…………………………… 8分3221-=λλ …………………………… 10分 2. (8分解化为齐次方程1211:0l x k x -= 2221:0l x k x -=3231:0l x k x -= 4241:0l x k x -=…………………………… 2分取 21:0, :0a x b x ==为基线,则有11223344(, (, (, ( l a k b l a k b l a k b l a k b ----…………………………… 6分由定理 1.11的推论,得132412342314(((, ((k k k k l l l l k k k k -+-+=-+-+…………………………… 8分3. (6分解因为点 P 在二阶曲线上,即0=PP S …………………………… 2分所以切线方程为S P=12123311020203401032x x x x x ⎛⎫- ⎪⎛⎫⎪⎪-=-+= ⎪⎪⎪⎪⎝⎭- ⎪⎝⎭…………………………… 6分2012— 2013学年度第 1学期此卷使用班级为:数学系 2011级数学与应用数学专业本科班-----------------------------装 -------------------------------------订 -------------------------------线 ----------------------------四、 (10分证明:, E F 为自对应元素, P 与 1P 对应则有11(, (, P P EF PP EF = …………………………… 2分而111(, (,PP EF PP EF =…………………………… 4分所以111(, (, PP EF P P EF =…………………………… 6分得21(, 1PP EF = …………………………… 8分因为 1, P P 不重合故 1(, 1PP EF =- …………………………… 10分五、 (10分图形的结构及点线的标注各占 5分六、 (6分解 1. 如图,过 a 做一直线 s ,分别交 c b a . , 于点 C B A , , ; 2.在 a 上取点 G ,连接 CB , 交 c 于点 E ;3.连接 AE 交 b 于点 F ,连接 GF 交 s 于点 D ;4.连接 OD , 即为所求直线d . …………………………… 4分2012— 2013学年度第 1学期此卷使用班级为:数学系 2011级数学与应用数学专业本科班-----------------------------装 -------------------------------------订 -------------------------------线 ----------------------------…………………………… 6分。

高等几何习题参考答案

高等几何习题参考答案

高等几何综合练习题参考答案一、(1)椭圆;(2)三角形;(3)三角形内切椭圆的中心;(4)两个等面积的平行四边形;(5)三角形的重心;(6)面积比相同但不必相似的三角形;(7)不是三角形的垂心;(8)平行四边形。

二、(2)、(3)、(6)、(9)经中心射影后不变。

三、过点(,,),(0,,)a b c b c -的直线为12300x x x ab c bc =-,即12320,bcx acx abx --= 因为1110,a b c ++=所以0bc ca ab ++=,取点1(,1,1)2--代入直线方程,得0bc ca ab ++=,故此直线必过定点1(,1,1)2--。

四、取XYZ 为坐标三点形:(1,0,0),(0,1,0),(0,0,1),X Y Z 设(1,1,1),(1,1,1),(1,1,1),(1,1,1),(,,)A B C D P f g h ------,可以求得直线l 的方程为230gx hx -=,类似可以求出,m n 的方程。

五、只有恒等变换的群没有相应的几何学,理由是经过恒等变换图形的任何性质都没有改变,因为位置没有改变,就无法进行比较、推广,对任何图形都要一一研究,这是不可能的。

六、因无三点共线的五个点A,B,C,D,E 构成线束A(C,D,E)与B(C,D,E)的射影对应,由此三对对应直线唯一决定,故其对应线之交点唯一确定,因此唯一确定一条二次曲线。

其对偶命题为:非退化的二级曲线是由无三线共点的五条直线唯一决定。

七、设两个透视三点形111222,A B C A B C 的对应边的交点为L,M,N,非对应边之交点为123456,,,,,P P P P P P ,适当编排这六点的顺序,使这六点为定点的简单六点形之对应边交点为L,M,N ,因为L,M,N 共线,根据帕斯卡定理的逆定理知此六点形为二次曲线之内接六点形。

八、主轴为612110,220x y x y +-=--=。

《高等几何》考试练习题及参考答案

《高等几何》考试练习题及参考答案

《高等几何》考试练习题及参考答案一、单选题1. 菱形的仿射对应图形是()A 、菱形B 、平行四边形C 、正方形D 、不等边四边形答案:B2. 圆经过中心射影之后的对应图形是()A 、圆B 、椭圆C 、二次曲线D 、二共点直线答案:C3. 射影平面上所有射影变换的集合构成群,称为射影变换群,它是()A 、8维群B 、6维群C 、4维群D 、3维群答案:A4. 正六边形经过中心射影后的对应图形是()A 、正六边形B 、二次曲线C 、二平行直线D 、内接于二次曲线的六边形答案:D5. 在射影平面上,两条相交直线可以把平面分成几个区域?()A 、1B 、2C 、3D 、4答案:B6. 欧式平面内所有正交变换的集合构成群,称为正交变换群,它是()A 、3维群B 、4维群C 、6维群D 、8维群答案:A7. 双曲型曲线与无穷远直线的关系是()A 、相交B 、相切C 、相离D 、相割答案:A8. 下面属于欧式几何学的是()A 、梯形B 、离心率C 、重心D 、塞瓦定理和麦尼劳斯定理答案:B9. 直角三角形经过中心射影后的对应图形是()A 、三角形B 、等腰三角形C 、直角三角形D 、四边形答案:A10. 共点的直线经过中心射影之后的对应图形是()A 、二直线B 、二垂直直线C 、共点的直线D 、二平行直线答案:C11. 在射影平面上二阶曲线可共分为()类.A 、2B 、3C 、4D 、5答案:D12. 双曲线有几条主轴?()A 、1B 、2C 、3D 、4答案:B13. 已知两点A(2,-1,1),B(3,1,-2),下列哪一个点与它们共线?()A 、(7 ,-1 ,0)B 、(7 ,-1 ,1)C 、(5 ,0 ,2)D 、(0 ,0 ,1)答案:A14. 等腰梯形的仿射对应图形是:()A 、等腰梯形B 、梯形C 、四边形D 、平行四边形答案:B15. 对于非恒等二维射影变换下列说法错误的是()A 、是非奇线性对应B 、保持共线四点的交比不变C 、不变直线不能超过三条D 、不共线的不变点至多有三个答案:C16. 下列哪些图形具有射影性质?()A 、平行直线B 、三点共线C 、两点间的距离D 、两直线的夹角答案:B17. 圆的仿射对应图形是:()A 、梯形B 、四边形C 、椭圆D 、平行四边形答案:C18. 矩形的仿射对应图形是:()A 、四边形B 、平行四边形C 、梯形D 、圆答案:B19. 下列名称或者定理不属于仿射几何学的是A 、三角形的垂心B 、梯形C 、在平面内无三线共点的四条直线有六个交点D 、椭圆答案:A二、判断题1. 一维基本形间的射影对应不保持对应四元素的交比. ()A 、正确B 、错误答案:错误2. 两全等三角形经仿射对应后得两全等三角形()A 、正确B 、错误答案:错误3. 射影平面的不共点三直线将平面分成四部分.()A 、正确B 、错误答案:正确4. 一个角的内外角平分线调和分离角的两边()A 、正确B 、错误答案:正确5. 共线三点的单比经中心射影后不变. ()A 、正确B 、错误答案:错误6. 二直线所成角度是相似群的不变量.()A 、正确B 、错误答案:正确7. 射影平面上的一直线能将射影平面剖分成两部分. ()A 、正确B 、错误答案:错误8. 三点形经中心射影之后还是三点形.()A 、正确B 、错误答案:正确9. 在一维射影变换中,若已知一对对应元素(非自对应元素)符合对合条件,则此射影变换一定是对合. ()A 、正确B 、错误答案:正确10. 在仿射变换下,等腰三角形的对应图形是三角形. ()A 、正确B 、错误答案:正确11. 仿射变换的基本不变量是单比. ()A 、正确B 、错误答案:正确12. 抛物线有一对主轴. ()A 、正确B 、错误答案:错误13. 三角形的垂心属于仿射几何学的范畴()A 、正确B 、错误答案:错误14. 在仿射变换下,正方形的对应图形是正方形.()A 、正确B 、错误答案:错误15. 共线点的极线必共点,共点线的极点必共线()A 、正确B 、错误答案:正确16. 椭圆和双曲线的四个焦点中有二实点二虚点.()A 、正确B 、错误答案:正确17. 配极变换是一种非奇线性对应,()A 、正确B 、错误答案:正确18. 两个三角形的面积之比是仿射不变量. ()A 、正确B 、错误19. 德萨格定理属于射影几何学的范畴. ()A 、正确B 、错误答案:正确20. 二阶曲线上任一点向曲线上四定点作直线,四直线的交比为常数. ()A 、正确B 、错误答案:正确21. 菱形的仿射对应图形是四边形. ()A 、正确B 、错误答案:错误22. 两点列的底只要相交构成的射影对应就是透视对应. ()A 、正确B 、错误答案:错误23.A 、正确B 、错误答案:正确24. 两个不同的无穷远点所决定的直线上可以含有有穷远点.()A 、正确B 、错误答案:错误三、名词解释1. 图形的仿射性质答案:图形经过任何仿射变换后都不变的性质称为图形的仿射性质.2. 二次曲线的直径答案:无穷远点关于二次曲线的有穷极线称为此二次曲线的直径.3. 二次曲线的中心答案:无穷远直线关于二次曲线的极点称为此二次曲线的中心.4. 配极原则答案:如果P点的极线通过Q点,则Q点的极线也通过P点.5. 二阶曲线答案:在射影平面上,成射影对应的两个线束对应直线的交点的集合称为二阶曲线.6. 二次曲线的渐近线答案:二次曲线上的无穷远点的切线,如果不是无穷远直线,则称为二次曲线的渐近线.7. 对偶原则答案:在射影平面里,如果一个命题成立,则它的对偶命题也成立.8. 完全四点形答案:由四个点(其中无三点共线)以及连结其中任意两点的六条直线所组成的图形称为完全四点形.四、问答题1. 下列图形的仿射对应图形是什么?(1)圆;(2)等腰三角形;(3)三角形的内心;(4)两个合同的矩阵;(5)三角形的重心;(6)相似三角形;(7)三角形的垂心;(8)矩形。

高等几何练习题(附参考答案)

高等几何练习题(附参考答案)

1.求一个二维射影变换,它使点(1,0,1),(0,1,1),(1,1,1),(0,0,1)分别变为(1,0,0),(0,1,0),(0,0,1),(1,1,1)。

2. 求通过点(1,0,1),(0,1,1),(0,-1,0)且以031=-x x ,032=-x x 为切线的二次曲线的方程。

3.已知一个一维射影变换的三对对应点的参数为:0→1/2,2→5/8,1→3/5,求出此射影变换的参数对应方程和自对应点的参数。

4.给定二次曲线C: 02223222121=++-x x x x x , (1)求点P(1,1)关于二次曲线(C)的极线以及x 轴关于的二次曲线(C)极点。

(2) 判断二阶曲线(C)的类型,并求二阶曲线(C)的过点(1,0,0)的直径及其共轭直径。

5.设四直线4321,,,l l l l 的方程分别为,023,02321321=-+=+-x x x x x x,0721=-x x ,0531=-x x ,求),(4321l l l l 的值。

6. 一个一维射影对应,它使直线l 上的点)1(1P ,)2(2P,)3(3P 顺次对应直线l '上的点)1(1-'P ,)2(2-'P ,)3(3-'P,请写出该一维射影对应的非齐次表达式与齐次表达式。

7.求由两个射影线束031=-x x λ,032='-x x λ,12='+λλ所构成的二次曲线的方程。

8.已知二阶曲线c :04228233231212221=+-++-x x x x x x x x x , (1) 此二阶曲线什么类型的?其中心是什么?(2)试求此二阶曲线的渐近线。

9.求一仿射变换,使直线x+2y-1=0上的每一个点都不变,且使点(1,-1)变为点(-1,2)。

1.(15分)解:所求变换式为:3132121111x a x a x a x ++='ρ 3232221212x a x a x a x ++='ρ 3332321313x a x a x a x ++='ρ (3分) 将(1,0,1)→(1,0,0),(0,1,1)→(0,1,0),(1,1,1)→(0,0,1),(0,0,1)→(1,1,1)代入上式可解得:1:1:1:1:0:1:1:1:0::::::::333231232221131211----=a a a a a a a a a (6分)∴所求变换式为:321x x x +-='ρ 312x x x +-='ρ 3213x x x x +--='ρ (6分)2.(15分)0222233332233113222221122111=+++++x a x x a x x a x a x x a x a过点(1,0,1) 02331311=++a a a过点(0,1,1) 02332322=++a a a过点(0,-1,0) 022=a (6分)02331311=++a a a ,023323=+a a ,022=a , ∴02312=+a a ,)(33131311a a a a +-=+ (0,1,1)在曲线上,切线032=-x x ,0)()()(333232232211312=+++++x a a x a a x a a∴01312=+a a ,)(33232322a a a a +-=+∴曲线方程为023323121=+--x x x x x x x 。

临沂大学高等几何期末考试试卷级参考答案

临沂大学高等几何期末考试试卷级参考答案

高等几何2021年12月期末考试试卷(1)一、单选题(共30题,60分)1、无穷远直线是()的集合A、直线上的无穷远点B、平面上的无穷远点C、空间中的无穷远点D、所有的无穷远点正确答案:B2、一个圆在平面上的射影图形是()A、圆B、椭圆C、线段D、圆或椭圆或线段正确答案:D3、直线上无穷远点的透视称为直线的()A、迹点B、主点C、站点D、灭点正确答案:D4、仿射几何的基本不变量是()A、交比B、单比C、距离D、角度正确答案:B5、欧式平面R2上的下列变换不是保距变换的是()A、平移变换B、轴对称变换C、旋转变换D、投影变换正确答案:D6、加上复元素以后的射影平面叫()A、实欧氏平面B、复欧氏平面C、实射影平面D、复射影平面正确答案:D7、射影平面上,一条n次曲线和一条m次曲线相交的点数(切点重复计算)恰好是()个。

这就是著名的Bezout定理。

A、m nnC、n/mC 、 1-iD 、1+i正确答案:c19、 任何代数曲线(也就是黎曼曲面)都可以投影到射影平面上,使得投影出来 的曲线最多只含有通常二重点作为()。

A 、 切点B 、 中心C 、 圆心D 、 奇点正确答案:D20、 在一个几何元素上为了能用直线或圆弧插补逼近该几何元素而人为分割的 点称为()正确答案:C21、 ()为仿射性质A 、 任何正交变换下保持不变的性质B 、 任何仿射变换下保持不变的性质C 、 任何射影变换下保持不变的性质D 、 任何仿射变换下保持不变的量正确答案:B22、 共轴复数相乘等于()A 、 常数B 、 纯虚数C 、 复数D 、 不能确定正确答案:A23、 不同平面坐标系统间常采用相似变换,其变换一般需要转换参数,求解转 换参数的个数以及至少需要公共点坐标的个数是()A 、 4、2B 、 4、4C 、 3、3D 、 2、2正确答案:A24、 欧式平面R2上的下列变换不是保距变换的是( )A 、 平移变换B 、 轴对称变换C 、 旋转变换D 、 投影变换正确答案:D断基节交 、 、 、、A B c D25、经过()且垂直于切线的直线必经过圆心.A、半径B、公共点C、圆心D、切点正确答案:D26、在使用节点电压法和回路电流法时,不改变互为()的元件的值,将会得到形式完全一样的对偶方程,从而得到相同的一组解。

高等几何测试题及答案

高等几何测试题及答案

高等几何测试题及答案一、选择题(每题5分,共20分)1. 在三维空间中,以下哪个几何体的体积是最小的?A. 正方体B. 球体C. 圆柱体D. 圆锥体答案:D2. 以下哪个定理是关于直线与平面关系的?A. 勾股定理B. 泰勒斯定理C. 毕达哥拉斯定理D. 欧拉定理答案:B3. 在欧几里得几何中,以下哪个图形是不可测量的?A. 线段B. 角度C. 面积D. 体积答案:B4. 以下哪个几何概念与曲面的曲率有关?A. 向量B. 张量C. 标量D. 矢量答案:B二、填空题(每题5分,共20分)1. 一个球体的表面积公式是_______。

答案:4πr²2. 一个圆柱体的体积公式是_______。

答案:πr²h3. 欧拉特征数对于一个球体的值是_______。

答案:24. 一个圆锥体的侧面积公式是_______。

答案:πrl三、解答题(每题15分,共30分)1. 证明:在三维空间中,任何两个不同平面的交线都是一条直线。

答案:略2. 解释并证明高斯-博内定理在曲面上的适用性。

答案:略四、计算题(每题15分,共30分)1. 计算半径为3的球体的体积。

答案:4/3π(3)³ = 36π2. 计算底面半径为4,高为5的圆柱体的表面积。

答案:2π(4)² + 2π(4)(5) = 32π + 40π = 72π结束语:以上为高等几何测试题及答案,希望同学们通过这些题目能够更好地理解和掌握高等几何的基本概念和定理。

高等几何试题及答案

高等几何试题及答案

试卷类型: A高等几何使用专业年级 考试方式:开卷( )闭卷( √ ) 共 6 页题号 一 二 三 四 五 六 合计 得分一、 填空题(每小题4 分,共 20 分) 1、设 P 1 (1), 2P (-1), 3P ( )为共线三点,则 ( 1P 2P 3P ) 。

2、写出德萨格定理的对偶命题:。

3、若共点四直线 a,b,c,d 的交比为(ab,cd)=-1,则交比(ad,bc)=______。

4、平面上 4 个变换群,射影群,仿射群,相似群,正交群的大小关系为:。

5、二次曲线的点坐标方程为 4xx x 2 0,则其线坐标方程为是 。

二、 选择题 (每小题 2 分,共 10 分)1.下列哪个图形是仿射不变图形? ( )A.圆B.直角三角形C.矩形D.平行四边形2. u 12 2u 1u 2 8u 22表示( ) A.以-1/4 为方向的无穷远点和以 1/2 为方向的无穷远点名姓 号学 班 业专 系1 3 2┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ 线┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ 封┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ 密┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉ ┉B. 以-4 为方向的无穷远点和以 2 为方向的无穷远点C. 以4 为方向的无穷远点和以-2 为方向的无穷远点D. 以 1/4 为方向的无穷远点和以-1/2 为方向的无穷远点3.两个不共底且不成透视的射影点列至少可以由几次透视对应组成? ( )A.一次B.两次C.三次D.四次4.下面的名称或定理分别不属于仿射几何学有 ( ):A. 三角形的垂心B. 梯形C.在平面内无三线共点的四条直线有六个交点D.椭圆5.二次曲线按射影分类总共可分为( )A.4 类B.5 类C.6 类D.8 类三、判断题(每小题 2 分,共 10 分)1.仿射对应不一定保持二直线的平行性。

()2.两直线能把射影平面分成两个区域。

()3.当正负号任意选取时,齐次坐标(1,1,1)表示两个相异的点。

高等几何试卷及答案

高等几何试卷及答案

【高等几何】考试试题A 卷〔120分钟〕一、填空题〔2分⨯12=24分〕1、平行四边形的仿射对应图形为: 平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: 〔5,-1,0〕3、3),(4321=l l l l ,那么=),(1234l l l l 3 =),(4231l l l l -24、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x5、方程065222121=+-u u u u 表示的图形坐标 〔1,2,0〕 〔1,3,0〕 6、OX 轴上的射影变换式为312'+-=x x x ,那么原点的对应点 -317、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,那么),(DE BC A = -1 9、一点列到自身的两射影变换a 〕:21→,32→,43→; b 〕:10→,32→,01→ 其中为对合的是: b10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件是 底的交点自对应12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1二、求二阶曲线的方程,它是由以下两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。

解:射影对应式为'2'10λλλλ-++=。

由两线束的方程有:1233,'x x x x λλ==。

将它们代入射影对应式并化简得,2122313320x x x x x x x +-+=此即为所求二阶曲线的方程。

三、证明:如果两个三点形内接于同一条二次曲线,那么它们也同时外切于一条二次曲线。

高等几何试题及答案

高等几何试题及答案

高等几何试题及答案试题一:已知三角形ABC中,AB = AC,D为BC边中点,AD的延长线交BC于点E,且DE = DC。

证明:∠ABC = ∠ACD。

解析:首先,根据已知条件可得到以下几个等式:AB = ACDE = DC我们需要证明∠ABC = ∠ACD。

为了证明这个等式,我们可以利用三角形的相似性。

设∠ABC = α,∠ACD = β。

根据三角形ABC中的角度和为180°,我们可以得到∠BAC = 180°- 2α。

同样地,根据三角形ACD中的角度和为180°,我们可以得到∠CAD = 180° - 2β。

接下来,我们分别观察三角形ABD和三角形ACD。

在三角形ABD中,根据角度和的性质可得∠BAD = 180° - ∠BDA - ∠ABD = 180° - (180° - 2α) - α = α。

同时根据三角形ABD中的角度和为180°,我们可以得到∠ADB = 180° - ∠ABD - ∠BAD = α。

在三角形ACD中,根据角度和的性质可得∠CAD = 180° - ∠CDA - ∠ACD = 180° - (180° - 2β) - β = β。

同时根据三角形ACD中的角度和为180°,我们可以得到∠ACD = 180° - ∠ACD - ∠ACD = β。

由于 DE = DC,根据等腰三角形的性质可知三角形ACD和三角形CDE相似。

因此,我们可以得到以下等式:AC/CD = CD/DEAC/BC = BC/DC将已知条件代入上述等式,得到:AB/BC = BC/DCAB = AC由于 AB = AC,且 BC = BC,根据全等三角形的性质可知三角形ABC和三角形ACD全等。

因此,我们可以得到∠ABC = ∠ACD。

综上所述,已证明∠ABC = ∠ACD。

华中师大《高等几何》练习题库及答案

华中师大《高等几何》练习题库及答案

华中师大《高等几何》练习题库及答案《高等几何》练习题库及答案一、填空题1.欧几里得的《几何原本》一书共计卷,其中存有条公理,条公设。

2.用公理法建立的几何学演绎体系是由原始概念的列举、、、等四个方面组成的。

3.绝对几何学的公理体系就是由四组,,条公理形成的。

4.罗巴切夫斯基函数(x)当平行矩x时,其对应的平行角?连续递减。

5.罗氏平面上直线的相互位置有三种可能,即、、。

6.斜率为k的直线上的无穷远点的齐次坐标是。

7.两个射影点列成透视对应的充要条件是。

8.欧氏平面上添加了后,成为仿射平面。

9.共线4点a,b,c,d,若满足用户,则表示点对a,b与点对c,d能斯脱调和共轭。

10.平面内两点i(1,i,0),j(1,?i,0)称作平面内的。

11.希尔伯特提出几何公理系统的三个基本问题是、、。

12.罗巴切夫斯基函数(x)当平行矩x连续递增时,其对应的平行角?。

13.球面三角形的三角和常小于而大于。

球面三角形中两角和减去第三角常小于。

14.射影转换t就是闭集的充要条件就是。

15.射影转换的基本不变量就是。

16.共线4点a,b,c,d,若满足(ab,cd)??1,则称点对a,b与点对c,d互成。

17.平面内两点、称为平面内的圆点。

18.几何学公理法从开始到形成,大体经历了阶段。

19.《几何原本》被认为是用建立的几何学。

20.欧几里得第五公设描述为:21.希尔伯特于1899年刊登了知名的著作《》,这部书被看做就是几何基础研究的经典著作。

22.《几何原本》被指出就是用古典公理法创建的几何学,这本书的作者就是。

23.罗巴切夫斯基平面几何的平行公理描述为24.罗氏平面上三角形内角和二直角。

25.球面三角形的内角和大于,小于。

26.布里安香定理描述为。

27.欧氏直线上嵌入了后,沦为向量丛直线。

28.射影平面上一点的射影坐标与另一种射影坐标的变换是。

29.通过圆点的任意虚直线称为。

30.《几何原本》被认为是用古典公理法建立的几何学,这本书的作者是.131.两共轭虚直线的交点为,两共轭虚点的连线为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与应用数学专业《高等几何》试卷B
一、 填空题(2分⨯12=24分)
1、仿射变换的基本不变性与不变量有 同素性、结合性、简比不变、保持平行性
2、直线0521=+x x 上无穷远点坐标为: (5,-1,0)
3、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -2
4、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x
5、方程0652
2
2121=+-u u u u 表示的图形坐标 (1,2,0) (1,3,0) 6、已知OX 轴上的射影变换式为312'+-=
x x x ,则原点的对应点 -3
1
7、求点)0,1,1(-关于二阶曲线0547533231212322
21=+++++x x x x x x x x x 的极线方程063321=++x x x
8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -1 9、一点列到自身的两射影变换a ):21→,32→,43→; b ):10→,32→,
01→ 其中为对合的是: b
10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件是 底的交点自对应
12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1
二、求二阶曲线的方程,它是由下列两个射影线束所决定的:
130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。

解:射影对应式为'2'10λλλλ-++=。

由两线束的方程有:1233
,'x x x x λλ=
=。

将它们代入射影对应式并化简得,
2
122313320x x x x x x x +-+=
此即为所求二阶曲线的方程。

三、如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。

(10分)
证明:三点形ABC 和三点形C B A '''内接于二次曲线(C ),设 AB C B ''=D AB C A ''=E B A '' BC=D '
B A '' AC=E ',则),,,(B A B A
C '''∧),,,(B A B A C ''所以,
),E ,
D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,
E (''''A B
即),E ,D ,(B A ∧)D ,,,E (''''A B
这两个点列对应点的连线AC ,B C '',A C '',BC 连同这两个点列的底AB ,
B A ''属于同一条二级曲线
(C '),亦即三点形ABC 和三点形C B A '''的边外切一条二次曲线。

四、已知四直线1l ,2l ,3l ,4l 的方程顺次为12x -2x +3x =0,13x +2x -32x =0, 17x -2x =0,
15x -3x =0, 求证四直线共点,并求(1l 2l ,3l 4l )的值。

解:因为
1
7213
112---=0且1
5
01
7213---=0
所以1l ,2l ,3l ,4l 共点。

四直线与x 轴(2x =0)的交点顺次为
A(1,0,-2),B(2,0,3),C(0,0,1),D(1,0,5),非齐次坐标为A(-21,0),B(32,0),C(0,0),D(51
,0), 所以 (1l 2l ,3l 4l )=(AB ,CD )=
)
2
151)(320()
3251)(210(+--+=21 五、求两对对应元素,其参数为12
1
→,0→2,所确定的对合方程。

(10分)
解 设所求为 a λλ'+b(λ+λ')+d=0

将对应参数代入得:
21a+(1+2
1
)b+d=0 ②
(0+2)b+d=0 ③ 从①②③中消去a,b,d 得
1
2
012321
1
λλλλ'+'=0 即λλ'+λ+λ'-2=0为所求
六、求直线32163x x x +-=0关于212
2212x x x x -++231x x -632x x =0之极点。

(12分)
解:设0p (0
30201,,x x x )为所求,则
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----031311111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡03020
1x x x =⎥⎥
⎥⎦⎤

⎢⎢⎣⎡-613 解线性方程组
⎪⎪⎩
⎪⎪⎨⎧=--=-+-=+-6133020103020
10
30201x x x x x x x x
得即,1,1,30
30201-=-==x x x (3,-1,-1)为所求极点的坐标
七、叙述帕萨卡定理的内容并证明其定理。

(12分)
定理:内接于二阶曲线的简单六点形,三对对应边的交点在同一直线上。

证明:设简单六点形654321A A A A A A ,其三对对边的交点分别为L ,M ,N , L= 21A A 54A A ,M=32A A 65A A ,N=43A A 16A A 以1A ,3A 为中心,分别连接其他四点,则由定理得到()65421A A A A A ∧()65423A A A A A
设P A A A A =5421 , Q A A A A =4365
则()65421A A A A A ∧()P A A L 54,,,()65423A A A A A ∧()65,,A A Q M
所以,()P A A L 54,,∧()65,,A A Q M 由于两个点列底的交点5A →5A ,故有 ()P A A L 54,,∧()65,,A A Q M
所以LM ,Q A 4,5PA 三点共点,但Q A 4 5PA =N, 即L ,M ,N 三点共线。

八、用两种方法求双曲线042322
2
=-+-+y x xy y x 的渐近线方程。

(12分)
解:方法一
设渐近线的方程为
0)3
23
2
22
1
12
3
13
2
12
1
11
(=+++++x a x a x a k x a x a x a
根据公式得 01232=++-k k
解之,得31
,121-==k k ,所以渐近线方程为
0)23(1=--+++y x y x 和
0)23(3
1
1=---++y x y x
化简,得所求为
2x-2y-1=0 和2x+6y+5=0
方法二
先求出中心,因为
131=A ,332=A ,433-=A
所以中心为⎪⎭

⎝⎛--43,41C 代入公式得渐近线方程
03433434124
3412
2
=-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛
++⎪⎭
⎫ ⎝
⎛+⎪⎭
⎫ ⎝⎛+y x y y x
分解因式得
⎪⎭⎫ ⎝

+41x -⎪⎭⎫ ⎝⎛+43y =0
⎪⎭⎫ ⎝⎛
+41x +⎪⎭

⎝⎛+
433y =0 化简,得所求为
2x-2y-1=0 和2x+6y+5=0。

相关文档
最新文档