第1章行列式自测题(答案)

合集下载

第一章行列式作业及答案

第一章行列式作业及答案

第一部分 行列式作业(一)选择题(15分)1.在5阶行列式展开式中,12335544i j a a a a a 是其中带有正号的一项,则,i j 之值为( )(A) 1,2i j == (B) 2,3i j == (C) 1,3i j == (D) 2,1i j ==2.在5阶行列式展开式中,包含1325,a a 并带有负号的项是( )(A) 1325344251a a a a a - (B) 1325314254a a a a a - (C) 1325324154a a a a a - (D) 1325314452a a a a a -3.已知行列式111213212223313233a a a a a a m a a a =,则行列式212213311132123313112112221323222222a a a a a a aa a a a a aa a ---=+++( )(A)-4m (B)-2m (C)2m (D)4m4.已知4101111111111111x D ---=----,则4D 中x 的系数是( )(A)4 (B)-4 (C)-1 (D)15. 设方程组123123123112x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩ ,若方程组有惟一解,则λ的值应为( )(A)0 (B)1 (C)-1 (D)异于0与1±的数 (二)填空题(15分)1.排列(1)(2)321n n n -⋅-⋅⋅⋅ 的逆序数为 。

2.排列12n a a a 与排列121n n a a a a - 的逆序数之和等于 。

3.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中1111111111111111D -=--。

4.若行列式11121321222331323312a a a a a a a a a =,则行列式111311122123212231333132222222a a a a a a a a a a a a --=- 。

《线性代数》第一章单元自测题答案

《线性代数》第一章单元自测题答案

第一章 行《线性代数》单元自测题列式专业 班级 姓名 学号一、填空题:1.设12335445i j a a a a a 是五阶行列式中带有负号的项,则i =____2____;j =_____1____。

2. 在四阶行列式中,带正号且包含因子23a 和31a 的项为_____44312312a a a a __。

3. 在五阶行列式中,项2543543112a a a a a 的符号应取_______+ ___。

4. 在函数xx x x x x f 21123232101)(=中,3x 的系数是 1- ____。

5. 行列式=600300301395200199204100103____2000______。

一、 计算下列各题:1.设4321630211118751=D ,求44434241A A A A +++的值 解:根据行列式展开定理的推论,有44434241A A A A +++4424432342224121A a A a A a A a ⋅+⋅+⋅+⋅==02.计算ab b a b a ba 00000000000 解:由行列式展开定理有abb a b a b a 000000000000 1110)1(-+⋅-⨯=n a b a b a a 11000)1(-+⋅-⨯+n n b a b a b bn n n b a 1)1(+-+=3.计算n 222232222222221解:n222232222222221)加到各列上第二列乘(1-nn n ⨯--202001200200021)1(-=)1(2022020120002-⨯-n n n)!2(2-⋅-=n4.计算ab b b b a b b bb a b bb b a解:ab b b b a b b b b a b b b b a各行加到第一行上abbbb a b b b b a b bn a b n a b n a b n a)1()1()1()1(-+-+-+-+ab b b b a b b bb a b b n a 1111])1([⋅-+=一列从第二列开始各列减第ba b b a b b a b b n a ---⋅-+00000001])1([1)(])1([--⋅-+=n b a b n a5.设51234555533325422221146523D =,求3132333435,A A A A A +++。

线性代数第1章行列式试卷及答案

线性代数第1章行列式试卷及答案

第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。

2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。

解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。

工程数学 第1章 行列式 习题答案

工程数学 第1章 行列式 习题答案

因此该行列式的值为0.
6. 利用行列式的定义计算 (4)
x 0 0 0 y
y x 0 0 0
0 y x 0 0
0 0 y x 0
0 0 0 y x ( 1) ( j1 j5 ) a1 j1 a 2 j2 a 3 j3 a4 j4 a5 j5
j1 j5
其中非0项为:
( 1) (12345 ) a11a22 a33 a44 a55 ( 1) ( 23451 ) a12 a23 a34 a45 a51 x y
( c1 c 2 c 3 ) 2
abc
ca
ab

2 a' b' c' c' a' a' b' a' ' b' ' c' ' c' ' a' ' a' ' b' '
abc b c abc b c 2 a' b' c' b' c' 2 a' b' c' b' c' 右 边 a' ' b' ' c' ' b' ' c' ' a' ' b' ' c' ' b' ' c' '

n 2n 2n n! n
(3) x1 a12 a13 a1n 1
x1 x1 x2 x2 a23 a2 n 1 x3 a3 n 1 xn 1 xn 1 x3 x3

(完整版)行列式习题1附答案.doc

(完整版)行列式习题1附答案.doc

⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。

⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。

;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。

第一章 行列式 自测题

第一章 行列式 自测题

第一章 行列式 自测题一 选择题241.设D=792513802-,则代数余子式12A 的值为 ( ) (A) 0 (B) -11 (C)-31 (D) 312.下列行列式等于零的是( )(A)100123123- (B) 031010300- (C) 100003010-(D) 261422613- 3.行列式D 互换两行或两例,行列式D 的值( ) (A) 不变 (B) 改变符号 (C) 不确定4. 已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,-3,-7,4,则D= ( ) (A ) -15 (B )-3 (C ) 0 (D ) 15.已知四阶行列式D 的值为2,将D 的第三行元素乘以―1加到第四行的对应元素上去,则现行列式的值( )(A )2 (B )0 (C ) ―1 (D ) ―2 6.设11121313111211212223232122213132333331323122332,22332233a a a a a a a D a a a a a a a a a a a a a a -==--=-则( ) (A)0 (B) ―18 (C )36 (D )―367.在函数()xx x xxx f 2142112---=中x 的系数是( ) (A) -2 (B) 4 (C) 7 (D) 88. 若D n =det(a ij )=1,则det(-a ij ) = ( ) (A) 1 (B) -1 (C) ()1-n(D)()()121--n n9. 排列53716482的逆序数( ) (A )8 (B )10 (C )12 (D )1410.行列式2000102000002000002010002=( ) (A)0 (B) 32 (C) 24 (D) 211.行列式000102003004000=( ) (A)0 (B) 24 (C) - 24 (D) 10 12.若111221225a a a a =,131123213a a a a =,则111213212223a a a a a a +=+( ) (A)8 (B) 5 (C) 3 (D) 2二 填空301.在五阶行列式中,1153422435a a a a a 的符号是_________2. 8001072003604005=___________ 3.46924692341234=4. 131410242121=____ 5.243012321---1212c c r r ↔+= ____6. 若111221223a a a a =,则1222112122a a a a =_________ 7. (5317462)t =______8. 行列式243012321---中元素0的代数余子式的值为_______9.2121r r c c 312231014↔----=-10. 齐次线性方程组有唯一解的条件 齐次线性方程组没有非零解的条件 三 计算行列式 401.315124227--- 2.312231014----3.设,410132213----=D则31211122A A A --的值。

行列式习题答案

行列式习题答案

线性代数练习题 第一章 行 列 式系 专业 班 学号 第一节 n 阶 行 列 式一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,24.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

现代分章测试及答案

现代分章测试及答案

【第一章行列式】1.排列315426的逆序数为()。

(A) 4 (B) 5 (C) 6 (D) 72.四阶行列式|a ij|中含a13a24的项是()(A) a13a24a31a42及-a13a24a32a41 (B) -a13a24a31a42及a13a24a32a41 (C) -a13a24a31a42及-a13a24a32a41(D) a13a24a31a42及a13a24a32a413.行列式,则x=()A) 0 B) 8 C) -8 D) 16 4.行列式=()A) 0 B) 4 C) 24 D)-24 5.行列式=()。

(A) a4-b2 (B) (a2-b2)2 (C) b4-a4 (D) a4b4二、填空题1如果行列式D的各行元素之和为0,则D= ___2如果行列式D的某两行成比例,则D= ___ 3.行列式D交换某两行后,则行列式要__4.n个变量n个方程的线性方程组有唯一解的充分必要条件是系数行列式__5.设行列式D=|a ij|,A ij为元素a ij的代数余子式,则= ____三、计算题1.计算行列式。

2 .解方程3.用克拉默法则解方程组一1(C) 2(A) 3(B) 4(D) 5(B)二、1 0 2 0 3 变号 4 |A|≠05三、1.解:2.=(x-1)[(x-2)(x-3)-4]-4(x-3)=x3-5x2+3x+10=(x-2)(x-5)(x+1)=0,所以方程的解为:x=2,或x=5,或x=-1 。

3.解:系数行列式所以方程组的解为【第二章矩阵】1.设A是m×n矩阵,B是n×m矩阵,C是m×m矩阵,则以下运算可以进行的是()。

(A) A+BC (B) AB+C (C) AC+B (D) BA+C2.设A是m×n矩阵,B是s×t矩阵,AB, A T B T可以运算,则()。

A) m=n,s=t (B) m=s, n=t (C) m=t, n=s (D) m=n=s=t3.设,则A+B=()。

第一章行列式(学生题目简单答案版)

第一章行列式(学生题目简单答案版)

第二部分 线性代数第一章 行列式题型1.1 行列式的计算(88年,数学一)设4阶矩阵234234(,,,)(,,,)A B αγγγβγγγ==,,其中,234,,,,αβγγγ均为4维列向量,且已知行列式41A B ==,,则行列式A B += .【答案】40.(88年,数学三/数学四)1110110110110111= . 【答案】3-.(89年,数学五)行列式1111111111111111x x x x ---+-=--+-- . 【答案】4x .(90年,数学五)设A 为1010⨯矩阵 10010000010000001100000A ⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎝⎭,计算行列式A E λ-,其中E 为10阶单位矩阵,λ为常数.【解析】101010A E λλ-=-.(91年,数学五)n 阶行列式0000000000000000a b a b a a b b a=.【答案】1(1)n n n a b ++-.(96年,数学一)四阶行列式112233440000000a b a b b a b a 的值等于(). (A )12341234a a a a b b b b -. (B )12341234a a a a b b b b +.(C )12123434()()a a b b a a b b --. (D )23231414()()a a b b a a b b --. 【答案】(D ).(96年,数学五)5阶行列式1000110001100011011a aaa D a a a a a---==------ . 【答案】23451a a a a a -+-+-.(97年,数学四)设n 阶矩阵0111110111110111110111110A ⎛⎫⎪⎪ ⎪=⎪ ⎪ ⎪⎪⎪⎝⎭,则A = .【答案】1(1)(1)n n ---.(99年,数学二)记行列式212322212223333245354435743x x x x x x x x x x x x x x x x ---------------为()f x ,则方程()0f x =的根的个数为().(A )1. (B )2. (C )3. (D )4. 【答案】(B ).(00年,数学四)设(1,0,1)T α=-,矩阵T A n αα=,为正整数,则n aE A -= . 【答案】2(2)n a a -.(01年,数学四)设行列式3040222207005322D =--,则第四行各元素余子式之和的值为 .【答案】28-.(14年,数学一/数学二/数学三)行列式00000000a b abc d c d=(). (A )2()ad bc -.(B )2()ad bc --.(C )2222a d b c -.(D )2222b c a d -.【答案】(B ).(15年,数学一)n 阶行列式200212020022012-=-. 【答案】122n +-.(16年,数学一/数学三)行列式10001=0014321λλλλ---+ . 【答案】43223 4.λλλλ++++题型1.2 行列式的计算(二)矩阵的性质(87年,数学一)设A 为n 阶方阵,且A 的行列式0A a =≠,而*A 是A 的伴随矩阵,则*A =().(A )a . (B )1a. (C )1n a -. (D )na . 【答案】(C ).(87年,数学四)设A 为n 阶方阵,k 为常数,则kA k A =.()【答案】(×).(88年,数学四)设A 是三阶方阵,*A 是A 的伴随矩阵,A 的行列式12A =.求行列式1*(3)2A A --的值.【解析】31*12(3)23A A A --⎛⎫-=- ⎪⎝⎭1627=-.(90年,数学五)设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则*A =().(A )1n A-. (B )A . (C )n A . (D )1A-.【答案】(A ).(92年,数学四)设A 为m 阶方阵,B 为n 阶方阵,且00A A a B b C B ⎛⎫=== ⎪⎝⎭,,,则C = .【答案】(1)mn ab -.(92年,数学五)已知实矩阵33()ij A a ⨯=满足条件:(Ⅰ)(,1,2,3)ij ij a A i j ==,其中ij A 是ij a 的代数余子式; (Ⅱ)110a ≠. 计算行列式A .【解析】1A =.(93年,数学五)若12312,,,,αααββ都是四维列向量,且四阶行列式1231,,,,m αααβ=1223,,,,n ααβα=则四阶行列式32112,,,()αααββ+等于().(A )m n +. (B )()m n -+. (C )n m -. (D )m n -. 【答案】(C ).(94年,数学一)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,T A 是A 的转置矩阵,当*T A A =时,证明0A ≠.【证明】略. .(95年,数学一)设A 是n 阶矩阵,满足T AA E =(E 是n 阶单位矩阵,T A 是A 的转置矩阵),0A <,求A E +.【解析】0A E +=.(98年,数学四)设,A B 均为n 阶矩阵,23A B ==-,,则*12A B -= .【答案】2123n --.(03年,数学二)设三阶方阵,A B 满足2A B A B E --=,其中E 为三阶单位矩阵,若101020201A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则B = .【答案】12.(04年,数学一/数学二)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,矩阵B 满足**2ABA BA E =+,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B = .【答案】19.(05年,数学一/数学二/数学四)设123,,ααα均为三维列向量,记矩阵123(,,)A ααα=,123123123(2439)B ααααααααα=++++++,,.如果1A =,那么B = .【答案】2.(06年,数学一/数学二)设矩阵2112A E ⎛⎫=⎪-⎝⎭,为二阶单位矩阵,矩阵B 满足2BA B E =+,则B = .【答案】2.(06年,数学四)已知12,αα为二维列向量,矩阵1212(2,)A αααα=+-,12(,)B αα=.若行列式,6A =,则B = .【答案】2-.(10年,数学二/数学三)设,A B 为3阶矩阵,且1322A B A B -==+=,,,则1A B -+= .【答案】3.(12年,数学二/数学三)设A 为3阶矩阵,且*3A A =,为A 的伴随矩阵,若交换A 的第一行与第二行得矩阵B ,则*BA = .【答案】27-.(13年,数学一/数学二/数学三)设()ij A a =是3阶非零矩阵,A 为A 的行列式,ijA 为ij a 的代数余子式.若0(123)ij ij a A i j +==,,,,则A = . 【答案】1-.题型1.3 行列式的计算(三)秩数,特征值的性质(91年,数学一)设A 是n 阶正定矩阵,E 是n 阶单位矩阵,证明A E +的行列式大于1. 【证明】略.(98年,数学三)齐次线性方程组2123123123000x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩,,,的系数矩阵记为A ,若存在3阶矩阵B O ≠,使得AB O =,则().(A )2λ=-且0B =. (B )2λ=-且0B ≠. (C )1λ=且0B =. (D )1λ=且0B ≠. 【答案】(C ).(99年,数学一/数学二)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则().(A )当m n >时,必有行列式0AB ≠. (B )当m n >时,必有行列式0AB =.(C )当n m >时,必有行列式0AB ≠. (D )当n m >时,必有行列式0AB =. 【答案】(B ).(00年,数学三)若四阶矩阵A 与B 相似,矩阵A 的特征值为1111,,,2345,则行列式1B E --= .【答案】24.(00年,数学四)已知四阶矩阵A 相似于,B A 的特征值为2,3,4,5.E 为四阶单位矩阵,则B E -= .【答案】24.(08年,数学三)设3阶矩阵A 的特征值是1,2,2,E 为3阶单位矩阵,则14A E --= .【答案】3.(15年,数学二/数学三)设3阶矩阵A 的特征值为2221B A A E -=-+,,,,其中E 为3阶单位矩阵,则行列式B = .【答案】21.。

(完整版)第一章行列式试题及答案

(完整版)第一章行列式试题及答案

第一章 行列式试题及答案一 选择题 (每小题3分,共30分)⑴ n 元排列 i 1 i 2… i n 经过相邻对换,变为i n … i 2 i 1,则相邻对换的次数为( )(A) n (B) n /2 (C) 2n(D) n (n -1)/2⑵ 在函数()xx x x x x f 2142112---=中,x 3的系数是( )(A) -2 (B) 2 (C) -4 (D) 4⑶ 若D n =det(a ij )=1,则det(-a ij ) = ( )(A) 1 (B) -1 (C) (-1)n (D) (-1)n(n -1)/2⑷ 设nn λλλλλλNO2121=,则n 不可取下面的值是( )(A)7 (B) 2k +1(k ≥2) (C) 2k (k ≥2) (D) 17⑸ 下列行列式等于零的是( )(A)100123123- (B) 031010300- (C) 100003010- (D) 261422613-⑹ 行列式D 非零的充分条件是( ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 ⑺ =+++111222c bcacbc b ab ac ab a ( )(A) 100010001222+c bc ac bc b ab ac ab a (B) 1111122222+++++c bc ac bc b ab ac ab c bc ac bc b ab ac ab a(C) 101011122222+++++c bc bc b ac abc bc ac bc b ab ac aba(D) 111222bc ac bc ab acab c bc ac bc b ab acab a+⑻ 设a ,b ,c 两两不同,则0222=+++c b a c b a ba a c cb 的充要条件是( )(A) abc =0 (B) a+b+c =0 (C) a =1, b =-1, c =0 (D) a 2=b 2, c =0⑼ 四阶行列式=44332211a b a b b a b a ( )(A) (a 1a 2- b 1b 2) (a 3a 4- b 3b 4) (B) (a 1a 4- b 1b 4) (a 2a 3- b 2b 3) (C) (a 1b 2- a 2b 1) (a 3b 4- a 4b 3) (D) (a 1b 4- a 4b 1) (a 2b 3- a 3b 2)⑽ 齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+0302022321321321x x x x x x x x x λ只有零解,则λ应满足的条件是( )(A) λ=0 (B) λ=2 (C) λ=1 (D) λ≠1二 填空 (每小题3分,共15分)⑴ 在五阶行列式中,3524415312a a a a a 的符号是_________。

线性代数第一章(行列式)小测验与解答

线性代数第一章(行列式)小测验与解答

2. 计算n + 1阶行列式 Dn+1
b a1 a1 b . . . = . . . a1 a2 a1 a2
a2 · · · a2 · · · . . . a3 · · · a3 · · ·
an−1 1 an−1 1 . . . . . . . b 1 an 1 ··· ··· ··· ··· an−1 − an 1 an−1 − an 1 . . . . . . b − an 1 0 1
√ ( )
二 、填 空 题 (每 小 题 1分 , 共 3分 )
1. 排列134782695的逆序数为10. x 1 1 x 2. f (x) = 3 2 −5 −3 1 2 1 −1 , 则x3 的系数是−1. x 1 0 −1
3. 用克莱姆法则解方程组的两个条件: (1)未知量的个数等于方程的个数; (2)系数行列式不等于0.
b b a a a1 + b1 a2 + b2 = 1 2 + 1 2. b3 b 4 a3 a4 a3 + b3 a4 + b4 ka kb a b . =k c d kc kd (×)
(×)
a11 x1 + · · · + a1n xn = 0 a21 x1 + · · · + a2n xn = 0 6. 若系数行列式det(aij ) = 0, 则方程组 有非零解. . . . an1 x1 + · · · + ann xn = 0
0 0 . . .
0 0 . . .
b − an 0 an 1
按最后一列展开 = = = = = = = = = = = = = = (−1)(n+1)+(n+1) (b − a1 )(b − a2 ) · · · (b − an ) =

第一章行列式专项测试题参考答案(1)

第一章行列式专项测试题参考答案(1)
2 −1 0 0
326
=3
1
3 = (−1)3+2 (−1) 3
6 = −9 .
33
0 −1 0
爱启航在线考研
a2 ab b2
7. 证明 2a a + b 2b = (a − b)3 .
111
【证明】
a2 ab b2 2a a + b 2b 111
c −c
2
3
c −c
1
3
(a −b)(a +b) b(a −b) b2
zxy
【分析】利用行列式运算性质化简. 可按如下步骤操作:第一步,将第一列拆开,得到两行
爱启航在线考研
列式之和;第二步,利用第一列化简其他列;第三步,化简后提出列的公因子,再化简剩下
的最后一列.
ax + by ay + bz az + bx x ay + bz az + bx y ay + bz az + bx 【证明】 ay + bz az + bx ax + by = a y az + bx ax + by + b z az + bx ax + by
zxy
111 121 14. (1) D = 1 1 3
111
1 1+ a 1
1 1 ; (2) D = 2 2 + a
nn n
1 2
.
n+a
【答案】(1) (n −1)!
;(2)
a
+
n(1 + 2
n)
a n −1
.
【解析】(1)
111 121 D= 1 1 3

第一章行列式专项测试题参考答案(1)

第一章行列式专项测试题参考答案(1)
爱启航在线考研
第一章 行列式
1. 求下列排列的逆序数,并确定它们的奇偶性.
(1) 53412
(2)135 (2n −1)246 (2n)
【解析】(1) (53412) = 4 + 2 + 2 + 0 + 0 = 8 ,偶排列;
(2)前 n 个元素135 (2n −1) 相互之间不构成逆序,后 n 个元素 246 (2n) 相互之间也不 构成逆序,因此逆序数为前 n 个元素中的每个元素与后 n 个元素所构成的逆序个数之和.
0 b3 a3
0 0 a2 b2
b4 0 0 a4
b4 a4 0 0
0 0 b3 a3
= (a1a4 − b1b4 ) (a2a3 − b2b3 )
(法二)直接按第 1 行(列)展开,过程略.
a1 + b1 12. 计算行列式 D = a2 + b2
a3 + b3
2a1 − b1 2a2 − b2 2a3 − b3
a11 a12 = −3 a21 a22
a31 a32
a13 a23 + 0 = −3M . a33
爱启航在线考研
x − 2 x −1 x − 2 x −3
2x − 2 2x −1 2x − 2 2x −3
10. 记行列式
为 f (x) ,则方程 f (x) = 0 的根的个数为
3x − 3 3x − 2 4x − 5 3x − 5
1 2 4 001
2 −5 1 2
−3 7 −1 4
6. 计算行列式 D =
.
5 −9 2 7
4 −6 1 2
【答案】-9
【解析】(化零降阶法)
2 −5 1 2 2 −5 1

线代第1章练习附答案

线代第1章练习附答案
a4 b4 c4
1 d
的值。
d2 d4
111 1 1
abcd x 【分析】 利用范作范德蒙行列式 D1 a 2 b2 c 2 d 2 x 2 ,则行
a3 b3 c3 d 3 x3 a4 b4 c4 d 4 x4
列式 D 就是行列式 D1 元素 x3 的余子式 M 45 ,即 D M 45
又 D1 (x a)(x b)(x c)(x d)(d a)(d b)(d c)(c a)(c b)(b a)
2341 2 3 4 1 2341
D
10
3412 3 4 1 2 3412
4123 4 1 2 3 4123
1 1 1 1 11 1 1
0 1 2 1 0 1 2 1
10
10
160
0 1 2 1 0 0 4 0
0 3 2 1 0 0 0 4
1 222
2 2 22
3.计算 2 2 3 2 的值。
3
111
111
A. 2
B.1
3
5.下列行列式等于零的是(
3 21
A . 3 2 1
003
B. 0 1 0
0 01
130
C.2
D. 8
3
D)
0 1 0
C. 3 0 0
001
3 1 6
D. 2 2 4
162
0 1 1 1
6.行列式 1 0 1 1
1 0
1 1
第二行第一列元素的代数余子式
A21=(
B)
1 1 1 0
2013 0 0

00 0 00 0 0 0 2015
【分析】方法一:此行列式刚好只有 n 个非零元素

第一章 行列式练习题目及答案

第一章  行列式练习题目及答案

第一章 行列式一、单项选择题1.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D) 22. =0001100000100100( ). (A) 0 (B)1- (C) 1 (D) 23. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 26. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)07. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D)08. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. 行列式=0100111010100111.2.行列式=-0100002000010 n n .3.行列式=--001)1(2211)1(111 n n n n a a a a a a .4.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.6.行列式=--+---+---1111111111111111x x x x .7.n 阶行列式=+++λλλ111111111.8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为.9.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .10.已知db c a cca b b a b c a c ba D =, D 中第四列元的代数余子式的和为.11.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .12.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.13.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.14.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x+++;3.解方程0011011101110=x x xx ; 4. na a a a111111111111210(n j a j ,,1,0,1 =≠);5. bn b b ----)1(1111211111311116. na b b b a a b b a a a b 321222111111111;7.xa a a a x a a a a x a a a a x n nn321212121; 8.2212221212121111n n n nn x x x x x x x x x x x x x x x +++;9.211200000210012100012; 10.aa a aa a a aa D ---------=1101100011000110001.参考答案一. 二. 单项选择题C C A B CD B B二.填空题1.0;2.!)1(1n n --;3.1)1(212)1()1(n n n n n a a a ---; 4.M 3-; 5.160-; 6.4x ;7.1)(-+n n λλ; 8.2-; 9.0; 10.0; 11.9,12-; 12.)11(!1∑=-nk kn ; 13.3,2-≠k ;14.7=k 三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-;3. 1,0,2-=x ;4.)111()1(00∑∏==-+-nk k nk k a a ;5. ))2(()1)(2(b n b b ---+- ;6. ∏=--nk k kna b1)()1(;7. ∏∑==-+n k k n k k a x a x 11)()(; 8. ∑=+nk k x 11; 9. 1+n ;10. )1)(1(42a a a ++-.。

《线性代数》单元自测题

《线性代数》单元自测题

《线性代数》基础习题第一章 行列式一、 填空题:1.设12335445i j a a a a a 是五阶行列式中带有负号的项,则i = ,j = 。

2. 在四阶行列式中,带正号且同时包含因子23a 和31a 的项为__ ___。

3. 在五阶行列式中,项2543543112a a a a a 的符号应取 。

4.已知xx x x x x f 42124011123313)(--=,则)(x f 中4x 的系数为 。

5. 行列式=600300301395200199204100103__ __。

二、 计算下列各题:1.计算63123112115234231----=D 。

2.设4321630211118751=D ,求44434241A A A A +++的值。

3.计算ab b a b a b a D n 000000000000=4.计算nD n 222232222222221=5.计算ab b b b a b bb b a bb b b a D n = 6.计算4443332225432543254325432=D 7.设齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)12(02)12(02)1(3213213221x k kx kx x x k x x x k x 有非零解,求k 的值。

第二章 矩阵一、填空题:1.设A ⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221,则R(A)= 。

2.设A 是3阶方阵,且m A =,则1--mA = 。

3.=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20092010100001010534432121001010100 。

4.设A 为33⨯矩阵,2-=A ,把A 按列分块为),,(321A A A A =,其中)3,2,1(=j A j 为A 的第j 列,则=-1213,3,2A A A A 。

5.设A 为3阶方阵,1A =-,A 按列分块为()321A A A A =,()32122A A A B =,则*B = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内容提要:一、行列式的定义1、2阶和3阶行列式2112221122211211a a a a a a a a D -==312312322113332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a ---2、排列与逆序定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义定义 称∑-==nn n p p p np p p p p p nnn n nn a a a a a a a a a a a a D21212121)(212222111211)1(τ )det(ij a =为n 阶行列式,记作D 或n D .也记作)det(ij a .4、三角形行列式:主对角线元素的乘积。

二、行列式的性质 性质1 D D ='.性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零.性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式.推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.性质4 nnn n in i i nnnn n in i i n nnn n in in i i i i n a a a a a a a a a a a a a a a a a a21211121121211121121221111211βββαααβαβαβα+=+++性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变.三、行列式的展开定理定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M .ij j i ij M A +-=)1( ——ij a 的代数余子式定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解D D x 11=,D Dx 22=,……,DD x n n =.推论 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (01=x ,02=x ,……,0=n x 显然是方程组的解,称为零解)1)0≠D ⇒仅有零解. 2)有非零解⇒0=D .《线性代数》单元自测题答案第一章 行列式一、填空题:1.设j i a a a a a 54435231是五阶行列式中带有负号的项,则i =________;j =_________。

分析 2,1==j i 或者1,2==j i 。

当2,1==j i 时,5244352311524435231145244352311)13542()1()1(a a a a a a a a a a a a a a a =-=-τ 。

当1,2==j i 时,5144352312514435231255144352312)23541()1()1(a a a a a a a a a a a a a a a -=-=-τ。

2. 在四阶行列式中,带正号且包含因子23a 和31a 的项为_____ __。

分析 同时包含23a 和31a 的项有4431231244312312244312312)2314()1()1(a a a a a a a a a a a a =-=-τ。

和 4231231442312314542312314)4312()1()1(a a a a a a a a a a a a -=-=-τ。

作业:第6页,习题1.1,2.写出四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 中同时包含12a 和31a 的项。

解 4431231244312312244312312)2314()1()1(a a a a a a a a a a a a =-=-τ和4331241243312412343312412)2413()1()1(a a a a a a a a a a a a -=-=-τ。

3. 在五阶行列式中,项2543543112a a a a a 的符号应取_______ ___。

分析 54433125122543543112a a a a a a a a a a =,所以,1)1()1(4)25134(=-=-τ。

4. 已知xx x x x x f 42124011123313)(--=,则)(x f 中4x 的系数为 ____。

分析 含4x 的项为4144322311)1324(2)2()()1()1(x x x x x a a a a =⋅⋅⋅--=-τ。

所以,4x 的系数为2。

5. 行列式=600300301395200199204100103__________。

分析 031521413100100030015200141003260030030139520019920410010322321--→----c c c c c20005548)1(11000155148310031312=---⨯⨯=----+c c 。

二、计算下列各题:1.计算63123112115234231----=D 。

解2170555011704231223141312------+--r r r r r r D 2175551217555117)1(13111---+------⨯=+r r301755)1(131-=---⨯=+。

2. 设4321630211118751=D ,求44434241A A A A +++的值。

解 将D 按第4行展开: 444342414321A A A A D +++=。

将D 的第4行元素分别换为1,1,1,1,则44434241A A A A +++01111630211118751==. 解法二 0444342414424432342224121=+++=+++A A A A A a A a A a A a 。

作业,第20页,习题1.32.已知pc b a p c b a p c b a p c b a D 4443332221114=,求.41312111A A A A +++解 将4D 按第1列展开:.4143132121114A a A a A a A a D +++=将4D 的第1列的元素分别换成1,1,1,1,则.011114433221141312111==+++pc b p c b pc b p c b A A A A3. 计算4443332225432543254325432=D 。

解 3333222211114321543154315431111154325432⨯⨯⨯→→→→c c c c D(由范德蒙行列式) 5760453534151413120=-⨯-⨯-⨯-⨯-⨯-⨯=)()()()()()(.作业,第20页,习题1.31(6)3333222243244433322243214321432111114324324321432143214321⨯⨯→→→=c c c D (由范德蒙行列式) .28834242314131224=-⨯-⨯-⨯-⨯-⨯-⨯=)()()()()()(4. 计算ab b a a b a b a D n 0000000000000000=解 将行列式按第1列展开:11111000000000)1(0000000000)1(-+-+-⨯+-⨯=n n n n b a b b ab b a b a a b aa Dn n n n n n b a b b a a 1111)1()1(+-+--+=⨯-⨯+⨯=。

作业,第13页,习题1.28.ba a a a a a nn2121100010001 2222121*********00010001nnnn n a a a b a a a r a r a r a r --------+.22221n a a a b ----=5.计算1111121111211112---=λλλn D 。

解111312131123111321-+--+--+-++++n n n n c c c D n n λλλλλλ303000030111311312----+---λλλλn r r r r r r n 1)3(]3[--⋅-+=n n λλ.作业,第12页,习题1.22..11100001000010333112331132311332113331123333233332333321413124321-=------+++rr r r r r c c c c 6..6133303330010000243333333001000024333333333233331343231=-------c c r r r r 第19页,习题1.3,1(3)λλλλλλλλλλλ11111111111111111111111114321----------+++--------c c c c100212221)1)(1(100021202210111111141312--+-+--=--+-+------+λλλλλλλλr r r r r r]4)1[()1(1221)1()1(22332-+-=++--=+λλλλλ ).3()1()32()1(322+-=-+-=λλλλλ6.设齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++0)12(02)12(02)1(3213213221x k kx kx x x k x x x k x 有非零解,求k 的值。

相关文档
最新文档