推荐--初中数学经典易错题集锦及答案
初三数学易错题集锦及解析
![初三数学易错题集锦及解析](https://img.taocdn.com/s3/m/b50471603868011ca300a6c30c2259010202f3d6.png)
初三数学易错题集锦及解析题目1:选择题:下列哪个数既是正数又是负数?A. 0B. 1C. -1D. √2题目2:填空题:计算下列表达式的值:2^3 - 3^2。
题目3:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(对/错)题目4:解答题:求解方程:x^2 - 4x + 3 = 0。
题目5:选择题:下列哪个数是绝对值最小的数?A. -1B. 1C. 0D. √2题目6:填空题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形的第三个内角是多少度?题目7:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(对/错)题目8:解答题:求解方程:x^2 - 4x + 3 = 0。
题目9:选择题:下列哪个数既是正数又是负数?A. 0B. 1C. -1D. √2题目10:填空题:计算下列表达式的值:2^3 - 3^2。
题目11:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(对/错)题目12:解答题:求解方程:x^2 - 4x + 3 = 0。
题目13:选择题:下列哪个数是绝对值最小的数?A. -1B. 1C. 0D. √2题目14:填空题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形的第三个内角是多少度?题目15:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(对/错)题目16:解答题:求解方程:x^2 - 4x + 3 = 0。
题目17:选择题:下列哪个数既是正数又是负数?A. 0B. 1C. -1D. √2题目18:填空题:计算下列表达式的值:2^3 - 3^2。
题目19:判断题:如果一个三角形的两个内角分别是45°和45°,那么这个三角形一定是等腰直角三角形。
(易错题精选)初中数学函数基础知识易错题汇编及解析(1)
![(易错题精选)初中数学函数基础知识易错题汇编及解析(1)](https://img.taocdn.com/s3/m/7905eb387e21af45b307a896.png)
(易错题精选)初中数学函数基础知识易错题汇编及解析(1)一、选择题1.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.2.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数6y x =-的自变量x 的取值范围是6x ≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算|9-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦122723333-=-=-是无理数;故正确.故选:B .【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.3.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.4.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5.若A(﹣3,y 1)、B(0,y 2)、C(2,y 3)为二次函数y =(x+1)2+1的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.6.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()A.20 B.24 C.18 D.16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,故选:A .【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,2020D 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是( )A .B .C .D .【答案】A【解析】【分析】 火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化9.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】试题解析:设BP=x,CQ=y,则AP2=42+x2,PQ2=(6-x)2+y2,AQ2=(4-y)2+62;∵△APQ为直角三角形,∴AP2+PQ2=AQ2,即42+x2+(6-x)2+y2=(4-y)2+62,化简得:y=−14x2+32x整理得:y=−14(x−3)2+94根据函数关系式可看出D中的函数图象与之对应.故选D.【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.10.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.11.如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.【详解】通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;故选D.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.12.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.13.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:①他们都骑行了20km ;②乙在途中停留了0.5h ;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km ;乙在途中停留了0.5h ;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B .考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.14.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x xy x xx x⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C选项符合题意.故选:C.【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A .B .C .D .【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.17.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A 3B3C.2 D3【答案】A 【解析】【分析】本题根据图2判断△EFG 的面积y 最小时和最大时分别对应的x 值,从而确定AB ,EG 的长度,求出等边三角形EFG 的最小面积.【详解】由图2可知,x =2时△EFG 的面积y 最大,此时E 与B 重合,所以AB =2,∴等边三角形ABC∴等边三角形ABC由图2可知,x =1时△EFG 的面积y 最小,此时AE =AG =CG =CF =BG =BE ,显然△EGF 是等边三角形且边长为1,所以△EGF 的面积为4, 故选A .【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.18.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.19.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴== ∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE --=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+- 解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.20.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km 故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应。
(word完整版)初中数学易错题(含参考答案)
![(word完整版)初中数学易错题(含参考答案)](https://img.taocdn.com/s3/m/102d3ef0cc175527062208c2.png)
1、 ) 12、 3、 4、 5、 6、 7、 9、 初中数学、选择题(本卷带*号的题目可以不做)A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( A 、互为相反数 B 、绝对值相等C 、是符号不同的数 有理数a 、b 在数轴上的位置如图所示,则化简 |a-b|-|a+b|的结果是(D 、A 、2a 轮船顺流航行时m 千米/小时,逆流航行时 A 、2千米/小时 方程2x+3y=20的正整数解有( A 、1个B 、3个 下列说法错误的是( ) A 、两点确定一条直线C 、一条直线不是平角10、11、 B 、2b B 、3千米/小时 )都是负数 ) -2a+b (m-6)千米/小时,则水流速度( ) 6千米/小时 D 、不能确定 C 、2a-2b■e—bD 、无数个 函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( A 、当m z 3时,图像有一个交点 C 、当m 1时,只有一个交点 如果两圆的半径分别为 A 、内切 在数轴上表示有理数 --------- © ------- 0 -------- O ------------ ABC 线段是直线的一部分 D 、把线段向两边延长即是直线 ) B 、m 1时,肯定有两个交点 D 、图像可能与x 轴没有交点 R 和r ( R>r ),圆心距为d ,且(d-r )2=R 2,则两圆的位置关系是 B 、外切 a 、b 、c 的小点分别是 心 ------- A C 、内切或外切 A 、B 、C 且 b<a<c , ---------- 0 --------- O --------- 0 --------------- CAB有理数中,绝对值最小的数是( A 、-1 1的倒数的相反数是( A 、-2 D 、不能确定 则下列数轴中正确的是 --------- 0 ------- Q B A不存在 若 |x|=x ,贝y -x A 、正数 两个有理数的和除以这两个有理数的积, A 、互为相反数 13、长方形的周长为 A 、2x ) 非负数 12、 B 、互为倒数 x ,宽为2,则这个长方形的面积为( B 、2(x-2)14、 “比x 的相反数大3的数”可表示为( A 、-X-3 B 、-(x+3) 15、 如果0<a<1,那么下列说法正确的是( A 、a 2比a 大 B 、a 2比a 小 16、 数轴上,A 点表示-1,现在A 开始移动, 动5个单位,这时,A 点表示的数是( A 、-1 17、 线段AB=4cm ,延长AB A 、 12cm18、 12的相反数是(A 、1 •、219、 方程 x(x-1)(x-2)=xA 、 X 1=1,X 2=23 <5C 、X 1= —2— , X 2=C 、负数 其商为 0,则这两个有理数为( C 、互为相反数且不为 ) 非正数 ) 有一个为 C 、x-4 ) C 、3-x )C 、a 2与a 相等2 • (x-2)/2 x+3 先向左移动 3个单位,再向右移动 ) C 、1 D 、a 2与a 的大小不能确定 9个单位,又向左移 0 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为() B 、10cm )B 、 -.2 1C 、 8cmD 、 4cm C 、 1 •、2 D-2的根是()B 、 X 1=0,X 2=1,X 3=23 ■ 5D 、C3舅 3 X =0 , X = ,X =511 1解方程3(x 2) 5(x _) 4 0时,若设x _ y ,则原方程可化为() X 2X, XA 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=0方程 X 2+1=2|X |有( )A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根一次函数y=2(x-4)在y 轴上的截距为( ) A 、-4 B 、4C 、-8D 、8解关于X 的不等式 X a,正确的结论是 X a( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当 a<0时无解反比例函数y 2,X当x w 3时,y 的取值范围是( )2A、y w 32 B 、y > 32 j.C 、y > -或 y<03D 、0<y < |0.4的算术平方根是 ( )A 、0.2B 、土 0.2 10 、-5- D、 ± .105李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽 误时间,于时就加快了车速,在下列给出的四个 S-t 函数示意图象,符合以上情况的是()20、 21、22、23、24、25、26、27、 28、 29、 30、 31、 32、 33、 34、 35、36、 kX 1, kX 2, kX 3,…,kX n 的平均数与方差分别是( ) A 、k X , k 2s 2 若关于X 的方程 B 、X , s 2 12有解,则 C 、k X , ks 2 a 的取值范围是( k 2x, ks 2A 、a H 1 下列图形中既是中心对称图形,又是轴对称图形的是( A 、线段 ” a c已知匚H b da b A 、 rc d B 、正三角形,下列各式中不成立的是( c a 3c d b 3d 一个三角形的三个内角不相等,则它的最小角 A 、 300 B 、 450 已知三角形内的一个点到它的三边距离相等, A 、三角形的外心 B 、三角形的重心 下列三角形中是直角三角形的个数有( ①三边长分别为、3:1:2的三角形 ③三个内角的度数之比为 A 、1个 如图,设AB=1 , C 、平行四边形 等腰梯形C 、b d 2bD 、 ad=bc不大于( )C 、550D 、 600 那么这个点是( )C 、三角形的内心D 、 三角形的垂心 ) 1:2:3的三角形 a c 3a 3:4:5的三角形 B 、2个 S ^OAB = — cm 2,则弧 AB 长为( )4m 2 B 、— cm )②三边长之比为 ④一边上的中线等于该边一半的三角形 C 、3个A 、3 cm 平行四边形的一边长为 5cm ,则它的两条对角线长可以是(A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cm 如图,△ ABC 与厶BDE 都是正三角形,且 AB<BD ,若△ ABC 不动,将△ BDE 绕B 点旋转,则在旋转过程中, AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定C 、二 cm 6A4cm, 8cm顺次连结四边形各边中点得到一个菱形,则原四边形必是( )A 、 y 1>y 2>y 3B 、 y 1<y 2<y 3C 、 下列根式是最简二次根式的是( ) A 、 .8a B 、 .a 2 b 2C 、 下列计算哪个是正确的( ) A 、 3.2 5B 、2 5 2.5C 、 把a 1 ( a 不限定为正数)化简,结果为(r aA 、 aB 、aC 、若 a+|a|=0,则.(a 2)2.a 2 等于( )A 、2-2aB 、2a-2C 、已知,2x 1 .1 2x 0 「x 2 2x 1 的值( 1A 、1B 、土C 、设a 、b 是方程x 2-12x+9=0的两个根,则.aA 、18B 、 6C 、 下列命题中,正确的个数是( ) ①等边三角形都相似 ②直角三角形都相似 ④锐角三角形都相似 ⑤等腰三角形都全等 ⑦有一个钝角相等的两个等腰三角形相似 A 、2 个 B 、3 个C 、y 2>y 1>y 3D 、 y 3>y 1>y 2 ,0.1xD 、-.a 5••: a 2 b 2 a b1D 、、 22 . 21^22 J21)-■. aD 、■a-2D 、2)1 1―D 、-—A 、矩形B 、梯形C 、两条对角线互相垂直的四边形 在圆O 中,两段弧满足 AB=2CD ,那么弦AB 和弦CD 的关系旦 A 、AB=2CD B 、AB>2CD 在等边三角形ABC 外有一点 A 、 300 B 、 600 △ ABC 的三边a 、b 、c 满足 A 、a w 6 如图,在△ ABC 中, A 、/ B=300D ,满足 b<6/ ACB=Rt 疋v C 、AB<2CD D 、AB AD=AC ,则Z BDC 的度数为C 、1500 △ ABC 的周长为18,则( )D 、两条对角线相等的四边形 )与CD 不可能相等( )D 、300 或 15002,5 5如图,把直角三角形纸片沿过顶点 上,如果折叠后得到等腰三角形 合 (3)点E 到AB 的距离等于 A 、0 B 、1不等式,2x 2 ,3x .、6的解是( A 、 x> …2 B 、 x>- ,2 C 、斜边上的高线长为a wb wc , C 、 c>6 D 、a 、b 、c 中有一个等于 Z, AC=1 , BC=2,则下列说法正确的是( B 、斜边上的中线长为 1D 、 该三角形外接圆的半径为 1)B 的直线BE (BE 交CA 于E )折叠,直角顶点 EBA ,那么下列结论中(1)Z A=300 CE 的长,正确的个数是 已知一元二次方程(m-1)x 2-4mx+4m-2=0 A 、m<1/3 B 、m W 1/3.」k , i函数y=kx+b (b>0)和y= — (k 丰0),在同一坐标系中的 x 图象可能是右图中的( )(注:从左到右依次为 ABCD ) 在一次函数y=2x-1的图象上,到两坐标轴距离相等的 点有( ) A 、1个 B 、2个 若点(-2, y 1)、(-1, y 2 )、(1, y 3) C 、x< 2 没有实数根,则 C 、m > 1/3 C 落在斜边AB (2)点C 与AB 的中点重 C 、3个 在反比例函数yD 、无数个 1-的图像上,则下列结论中正确的是( x 37、 38、 39、 40、 41、42、43、 44、 45、 46、 47、 48、 49、 50、51、52、*53、54、顺次连结四边形各边中点得到一个菱形,则原四边形必是()2 2 •b等于()3.2 D、土 3.2③等腰三角形都相似⑥有一个角相等的等腰三角形相似⑧全等三角形相似4个D、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________________ 。
七年级数学试卷错题集
![七年级数学试卷错题集](https://img.taocdn.com/s3/m/f636a5e5f021dd36a32d7375a417866fb84ac03d.png)
一、选择题1. 错题:3 + 2 × 4 = 20正确答案:3 + 2 × 4 = 11错误原因:未正确运用乘法优先级原则。
2. 错题:8 ÷ 2 + 2 = 7正确答案:8 ÷ 2 + 2 = 6错误原因:未正确运用除法和加法的顺序。
3. 错题:5 × (3 + 2) = 25正确答案:5 × (3 + 2) = 25错误原因:题目本身正确,但误以为题目有误。
4. 错题:0.5 × 0.5 = 0.25正确答案:0.5 × 0.5 = 0.25错误原因:题目本身正确,但误以为题目有误。
5. 错题:(-2) × (-3) = 6正确答案:(-2) × (-3) = 6错误原因:题目本身正确,但误以为题目有误。
二、填空题1. 错题:一个数的3倍加上4等于24,这个数是()正确答案:8错误原因:未正确运用代数方法解方程。
2. 错题:如果a = 5,那么a - 2 =()正确答案:3错误原因:未正确进行变量替换。
3. 错题:一个长方形的长是6厘米,宽是3厘米,它的面积是()正确答案:18平方厘米错误原因:未正确运用长方形面积公式。
4. 错题:一个数的平方根是5,那么这个数是()正确答案:±5错误原因:未考虑平方根的正负。
5. 错题:一个数的倒数是2,那么这个数是()正确答案:1/2错误原因:未正确理解倒数的概念。
三、解答题1. 错题:解方程:2x - 5 = 11正确答案:x = 8错误原因:未正确运用等式性质解方程。
2. 错题:计算:(-3) × 4 + 2 × (-5)正确答案:-14错误原因:未正确运用有理数混合运算规则。
3. 错题:求长方体的体积,长是8厘米,宽是4厘米,高是6厘米。
正确答案:192立方厘米错误原因:未正确运用长方体体积公式。
4. 错题:计算三角形面积,底是10厘米,高是6厘米。
初中数学易错题(含参考答案)
![初中数学易错题(含参考答案)](https://img.taocdn.com/s3/m/16f013170c22590103029dc0.png)
文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。
初中数学 易错题专题一、选择题(本卷带*号的题目可以不做)1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定4、方程2x+3y=20的正整数解有( )A 、1个B 、3个C 、4个D 、无数个5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线不是平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( )A 、当m ≠3时,图像有一个交点B 、1±≠m 时,肯定有两个交点C 、当1±=m 时,只有一个交点D 、图像可能与x 轴没有交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( )A 、内切B 、外切C 、内切或外切D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列数轴中正确的是( )9、有理数中,绝对值最小的数是( )A 、-1B 、1C 、0D 、不存在10、21的倒数的相反数是( ) A 、-2 B 、2 C 、-21 D 、21 11、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( )A 、互为相反数B 、互为倒数C 、互为相反数且不为0D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( )A 、2xB 、2(x-2)C 、x-4D 、2·(x-2)/214、“比x 的相反数大3的数”可表示为( )A 、-x-3B 、-(x+3)C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( )A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=253+, x 3=253-b20、解方程04)1(5)1(322=-+++x x x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有( )A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>a x a x ,正确的结论是( ) A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数x y 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32 C 、y ≥32或y<0 D 、0<y ≤32 25、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个S-t 函数示意图象,符合以上情况的是( )27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-a x x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( ) A 、线段 B 、正三角形 C 、平行四边形D 、等腰梯形 30、已知d c b a =,下列各式中不成立的是( ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、b d a c b a 23++= D 、ad=bc31、一个三角形的三个内角不相等,则它的最小角不大于( )A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形A 、1个B 、2个C 、3个D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( ) A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定B37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( )A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形38、在圆O 中,两段弧满足AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、300B 、600C 、1500D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( ) A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于6 41、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为1 42、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300 (2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( )A 、0B 、1C 、2D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0没有实数根,则m 的取值范围是( ) A 、m<1/3 B 、m ≤1/3 C 、m ≥1/3 D 、m ≥1/3且m ≠145、函数y=kx+b(b>0)和y=x k -(k ≠0),在同一坐标系中的 图象可能是右图中的( )(注:从左到右依次为ABCD)46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数x y 1=的图像上,则下列结论中正确的是( ) A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 2>y 1>y 3 D 、y 3>y 1>y 248、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a 49、下列计算哪个是正确的( ) A 、523=+ B 、5252=+ C 、b a b a +=+22 D 、212221221+=- 50、把a a1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a - 51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2aB 、2a-2C 、-2D 、2 52、已知02112=-+-x x ,则122+-x x 的值( ) A 、1 B 、±21 C 、21 D 、-21 53*、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个A BC D E E AB C二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。
(完整版)初中数学易错题集锦及标准答案
![(完整版)初中数学易错题集锦及标准答案](https://img.taocdn.com/s3/m/c4d3a015856a561253d36ff5.png)
初中数学易错题及答案1 .声的平方根是.〔A 〕2 〔B 〕〞〔C 〕 2〔D 〕 弹.解:石=2, 2的平方根为22 2 .假设|x|二x ,那么x 一定是〔 〕A 、正数B 、非负数C 、负数D 、非正数答案:B 〔不要漏掉0〕 3 .当 x时,|3-x|=x-3 .答案:x-3 >0,贝Ux34 .年」数〔填“是〞或“不是〞〕 答案:是无理数,不是分数.5 .质的算术平方根是答案:716 =4, 4的算术平方根=2 6 .当m=时,m m 2有意义答案: m 2 >0 ,并且m 2 >0 ,所以m=0, x 2 x 6 一7分式工■的值为零,那么、= --------------- 22x x 6 0 x 1 2,x 2 39・二x 24 0 x 22(k 1)x k 1 0总有实数根.k 2 0答案:2;k 3且k 22(k 1)4(k 2)(k 1) 0x 2,9 .不等式组 x a.的解集是x a ,那么a 的取值范围是.28.关于x 的一元二次方程〔k 2〕x(A) a 2, (B) a 2 , (C) a 2 , (D) a 2.答案:10 .关于x 的不2 a 3等式4x a 0的正整数解是1和2;那么a 的取值范围是.4答案:2 a 34 11 .假设对于任何实数X,分式 丁」一总有意义,那么C 的值应满足 ________x 4x c答案:分式总有意义,即分母不为0,所以分母x 2 4x c 0无解,「C 〉4 12 .函数y 也?中,自变量x 的取值范围是- x 3 答案:x 1 0 . X >1x 3 013 .假设二次函数y mx 2 3x 2m m 2的图像过原点,那么 m= _______________ . m 0-2. m = 22mm 0b 的自变量的取值范围是 2x6,相应的函数值的范围是11 y 9,求此函数解析式15 .二次函数y=x 2-x+1的图象与坐标轴有 ______ 个交点.答案:1个16 .某旅社有100张床位,每床每晚收费10元时,客床可全部租出.假设每床每晚收费再提升 2元,那么再减少10张床位租出.以每次这种提升2元的方法变化下去,为了投资少而获利大, 每床每晚应提升 ________________ 元. 答案:6元17 .直角三角形的两条边长分别为8和6,那么最小角的正弦等于 _______ .18 .一个等腰三角形的周长为14,且一边长为4,那么它的腰长是 19 .一等腰三角形的一个内角为50度,那么其它两角度数为 答案:50度,80度或65度,65度20 .等腰三角形的一边长为10,面积为25,那么该三角形的顶角等于14 .如果一次函数y kx6 r …… 时,解析式为: 9611时,解析式为 21y答案:90或30或15021 .等腰三角形一腰上的高与腰长之比为1:2 ,那么该三角形的顶角为—答案:30或15022 .假设U 一口k,那么卜= .a b c答案:—1或223 .PA、PB是..的切线,A、B是切点, APB 78,点C是..上异于A、B的任意一点, 那么ACB答案:51度或129度24 .半径为5cm的圆内有两条平行弦,长度分别为6cm和8cm ,那么这两条弦的距离等于答案:1cm或7cm25 .两相交圆的公共弦长为2 ,两圆的半径分别为我、2,那么这两圆的圆心距等于答案:73 1或73 126 .假设两同心圆的半径分别为2和8,第三个圆分别与两圆相切,那么这个圆的半径为答案:3或527 .在Rt^ ABC中, C 90 , AC 3, AB 5 ,以C为圆心,以「为半径的圆,与斜边AB只有一个交点,那么r的取值范围答案:r=2.4 或3<r <428 . 一个圆和一个半径为5的圆相切,两圆的圆心距为3,那么这个圆的半径为29 .在半径为1的..中,弦AB J2, AC .3,那么BAC答案:15度或75度30,两枚相同硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为答案:231 .假设一数组X i, X2, X3,…,X n的平均数为x ,方差为s2,那么另一数组kx 1, kx 2, kx 3,…,kx n的平均数与方差分别是( )A、k x , k2s2B、x, s2C、k x, ks 2D、k2x, ks2答案:A32 .假设关于x的分式方程 1 旦无解,那么m的值为()x 1 x 1A.-2B.-1C.1D.2答案:A33. (2021年鸡西市)假设关于x的分式方程2m+x 1 = 2无解,那么m的值为( )x 3 xA . -1.5 B. 1 C, -1.5 或2 D. -0.5 或-1.5解析:把原分式方程去分母,得(2m+x)x-x(x-3)=2(x-3) ,整理得(2m+1)x=-6.①可以分两种情况讨论:根据方程无解得出x=0或x=3 ,分别把x=0或x=3代入方程①,求出m的值;当2m+1=0 时,方程也无解,即可得出答案.解:方程两边都乘以x(x-3),得(2m+x)x-x(x-3)=2(x-3). 整理,得(2m+1)x=-6. ①(1)当2m+1=0 时,此方程无解,此时m=-0.5 ;(2)当2m+1总由于原分式方程无解,所以整式方程有增根, x-3=0或x=0 ,即x=3或x=0.把x=3代入方程①中,得6m+3=-6.解得m=-1.5 ;把x=0代入方程①中,此方程无解.综上所述,m的值为-0.5或-1.5.应选D.34 . (2021年泰安市)一项工程,甲、乙两公司合作,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1.5倍,乙公司每大的施工费比甲公司每天的施工费少1500元.(1)甲、乙公司单独完成此项工程,各需多少大?(2)假设让一个公司单独完成这项工程,哪个公司施工费较少?解析:(1)设甲公司单独完成此工程需x大,那么乙公司单独完成此项工程需1.5x天.根据―…1 1 1 ―题意,得1 1.解得x=20.x 1.5x 12经检验,知x=20是方程的解,且符合题意,1.5x=30.答:甲、乙两公司单独完成此工程各需要20天、30天.(2)设甲公司每天的施工费为y元,那么乙公司每天的施工费为(y-1500)元.根据题意,得12(y+y-1500)=102 000. 解得y=5000.甲公司单独完成此工程所需施工费:20 X5000=100 000(元),乙公司单独完成此工程所需施工费:30 X (5000-1500 ) =105 000(元),所以甲公司的施工费较少35 . (2021年达州市)为保证达万高速公路在2021年底全线顺利通车,某路段规定在假设干天内完成修建任务.甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天.如果甲、乙两队合作,可比规定时间提前14天完成任务.假设设规定的时间为x天,A.^ ______x 10 x 40C.^L x 10 x 40由题意列出的方程是〔〕1 B 1 1 1 x 14 x 10 x 40 x 14」 D.,-J _____________ x 14 x 10 x 14 x 40解析:工程问题通常将工程总量视为1,设规定的时间为x天,那么甲、乙单独完成分别需要(x+10)、(x+40)天,两队平均每天完成的工作量为 ,、,;甲、乙合作那么只需要x 10 x 40(x-14)天,两队合作平均每天完成的工作量为',用工作量相等可列出方程得,x 14- --------- 1------- 」.应选B.x 10 x 40 x 1436 .关于x的分式方程——1的解为正数,求m的取值范围.x 1 1 x错解:方程两边同乘x-1 ,得m-3=x-1.解得x=m-2.由于方程的解为正数,所以m-2 >0.所以m >2.剖析:此题是一道由分式方程的解确定待定字母取值范围的题目, 先求出分式方程的解, 再由其解为正数构造一个不等式,从而确定m的取值范围.错解疏忽了原分式方程成立的原始条件.所以还应满足x-1 ^0 ,即m-3 *0 ,得m w3.正解:方程两边同乘x-1 ,得m-3=x-1.解得x=m-2.由于方程的解为正数,所以m-2 >0 ,得m >2.又x-1 w0 ,即m-3 w0 ,得m *3.所以m的取值范围是m >2且m w3.37.为了减轻学生的作业负担,烟台市教育局规定:初中学段学生每晚的作业总量不超过1.5小时.一个月后,九(1)班学习委员亮亮对本班每位同学晚上完成作业的时间进行了一次通缉, 并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)该班共有多少名学生?(2)将①的条形图补充完整.(3)计算出作业完成时间在0.5〜1小时的局部对应的扇形圆心角.(4)完成作业时间的中位数在哪个时间段内?(5)如果九年级共有500名学生,请估计九年级学生完成作业时间超过 1.5小时的有多少人?解跌班共有学生!撮-4翼名上(幻如图.C町作业完成时间在0- 5-1小时的局部对应的圆心角力36bx30% =].8;完成作业时间的中位数落在1〜L 5小时时间段内.(5)九年级完成作业时间超过L 5小时的有工500X(1-4S%-30W) = 125(A).38.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止)(1)请你用画树状图或列表格的方法,求出点x,y落在第二象限内的概率;(2)直接写出点x, y落在函数y 1图象上的概率x解:口)根据题意,画树状图甲转投乙转般由,图可知,点心,了?的坐标具有盘伸等可能的结果:6冬电.£7』>.3-13区一为,⑶孑〕心协其中点仁*3落在第二单限的共有2科乂一2,;〕J-2.Eh 所服网点〔…〕落在第二象跟尸,=春1. £ J或根据题意,画表格y转;1-23一1? - 2. -1)⑶-1)_ 1 3出一不(—2t —4-)(3,-y)1 47〔一2,暴2i (1 ⑵1⑶21由表祜可知共有13种结果r其中点J,力落在第二象限的有2种,2 1所削$〔点〔工.了〕落在第二象限〕"五=手⑵H点Q中落在kT用象上〕=卷=千39如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线2OB在x轴上,顶点A在反比例函数y= x的图像上,那么菱形的面积 2 3为答案:440. (2021 山东烟台,5, 4 分)如果,(2a 1)2 1 2a ,贝(J (A.a<—B. a0-C. a〉—D. a>一3 2 2 2答案:B40. 〔2021山东烟台〕体育课上测量立定跳远,其中一组六个人的成绩〔单位:米〕分别是:1.0, 1.3, 2.2, 2.0 , 1.8 , 1.6 ,,那么这组数据的中位数和极差分别是〔〕A.2.1 , 0.6B. 1.6 , 1.2C.1.8, 1.2D.1.7 , 1.2【答案】D1.6 1.8=1.7 ; 极差为2.2 — 1.0=1.2.应选D.241. 〔2021 南充〕方程x 〔x-2 〕+x-2=0 的解是〔〕A.2B.-2 ,1C.-1D.2 , — 1解析:此题考查了运用因式分解法解一元二次方程的方法:先利用提公因式因式分解, 再化为两个一元一次方程,解方程即可. x (x-2) + (x-2) =0,(x-2 ) (x+1 ) =0 ,• ・x-2=0 ,或x+1=0 , . x1=2 , x2=-1 .应选D.评注:利用因式分解时要注意不要漏解,直接把一个一元二次方程化为两个一元一次方程来进行解决即可.42.关于x的方程(12k)x2 2 Jk1x 10有两个不相等的实数根,求k的取值范围.错解:Qa 1 2k, b 27r7, c 1,••• b2 4ac ( 2*"币2 4(1 2k) ( 1) 4k 8 > 0.二•原方程有两个不相等的实数根,「• 4k 8 0, /.k <2 .剖析:本例错在两个地方一是忽略了一元二次方程的二次项系数 1 2k 0这个隐含条件;二是忽略了一次项系数2/7中k 1>0这个条件.正解:;原方程有两个不相等的实数根,4k 8>0 ,「*<2.1又丁原万程中,12k 0, k 1>0, .,.k> 1且k - 43.增【思路分析】将数据按顺序排列: 1.0, 1.3, 1.6, 1.8, 2.0, 2.2,易判断中位数为1< k<2且k长率问题(2021娄底市)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,那么下面所列方程正确的是(A.289 (1 -x) 2=256B.256 (1 -x) 2=289C.289 (1 -2x) =256D.256 (1 - 2x ) =289解析:此题考查求平均变化率的方法.设变化前的量为a,变化后的量为b,平均变化率 为x,那么经过两次变化后的数量关系为 a (1 ±x) 2=b .设平均每次降价的百分率为 x,那么第 一降价售价为289 (1 -x),那么第二次降价为289 (1 -x)2,由题意得:289 (1 -x) 2=256 .故 选A.评注:对于连续两次增长或降低的问题,可以直接套用式子.假设初始数值为a,连续两次增长 或降低后的数值为b,平均增产率或降低率相同,可建立方程:a(x 1)2=b .44. (2021年内江市)如图2,四边形ABCD 是梯形,BD = 月 月AC 且 BDLAC.假设 AB = 2, CD =4,那么 S 梯形 ABCD =. \ 解析:如图2,过点B 作BE//AC,交DC 的延长线于点E, 4匕 ------------- 白图.一过点 B 作 BFLDC 于点 F,那么 AC = BE, DE = DC + CE=DC +AB = 6.由于BD=AC 且BDXAC,所以ABDE 是等腰直角三角形.所以 BF=1D E = 3,所以 S 梯形 ABCD = 1 (AB+CD) XBF=9. 2 2点评:作梯形的高,平移一条对角线是解决梯形问题经常用到的辅助线453a-22与2a-3都是实数m 的平方根,求m 的值.答案:49或1225答案:1 47 .我市为了增强学生体质,开展了乒乓球比赛活动. 局部同学进入了半决赛,赛制为单循环 式(即每两个选手之间都赛一场),半决赛共进行了 6场,那么共有 人进入半决赛.一,1 1 46.一一 a b 4,那么 a 3ab b 2a 2b 7ab48 .在参加足球世界杯预选赛的球队中, 每两个队都要进行两次比赛,共要比赛60场,假设参赛队有x支队,那么可得方程答案:x(x 1) 6049 .如果不等式组2x 1>3 x 1,的解集是x< 2,那么m的取值范围是〔x< mA.m=2B.m>2C.m <2D. m >2答案:D50 .假设不等式组5 3x 0,有实数解,那么实数m的取值范围是〔〕x m 0A. m <5B. m < 5C. m > 5D. m >-3 3 3 3答案:A51.假设关于x的不等式组x m 0的整数解共有4个,那么m的取值范围是〔〕 A.67 2x< 1B.6<m<7C.6<m <7D.6 < m<7答案:D。
初中数学易错题(含参考答案)
![初中数学易错题(含参考答案)](https://img.taocdn.com/s3/m/2d4003ede109581b6bd97f19227916888486b95e.png)
初中数学 易错题专题一、选择题〔本卷带*号的题目可以不做1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是〔 A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是〔 A 、2aB 、2bC 、2a-2bD 、2a+b 3、轮船顺流航行时m 千米/小时,逆流航行时<m-6>千米/小时,则水流速度〔 A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定 4、方程2x+3y=20的正整数解有〔 A 、1个B 、3个C 、4个D 、无数个5、下列说法错误的是〔A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线不是平角D 、把线段向两边延长即是直线6、函数y=<m 2-1>x 2-<3m-1>x+2的图象与x 轴的交点情况是 < > A 、当m ≠3时,图像有一个交点 B 、1±≠m 时,肯定有两个交点 C 、当1±=m 时,只有一个交点 D 、图像可能与x 轴没有交点7、如果两圆的半径分别为R 和r 〔R>r,圆心距为d,且<d-r>2=R 2,则两圆的位置关系是〔 A 、内切B 、外切C 、内切或外切D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c,则下列数轴中正确的是〔 9、有理数中,绝对值最小的数是〔A 、-1B 、1C 、0D 、不存在10、21的倒数的相反数是〔 A 、-2B 、2C 、-21D 、2111、若|x|=x,则-x 一定是〔A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为〔A 、互为相反数B 、互为倒数C 、互为相反数且不为0D 、有一个为013、长方形的周长为x,宽为2,则这个长方形的面积为〔A 、2xB 、2<x-2>C 、x-4D 、2·<x-2>/2 14、"比x 的相反数大3的数"可表示为〔 A 、-x-3 B 、-<x+3> C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是〔A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是〔 A 、-1B 、0C 、1D 、817、线段AB=4cm,延长AB 到C,使BC=AB 再延长BA 到D,使AD=AB,则线段CD 的长为〔bA 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是〔A 、21+B 、12-C 、21--D 、12+-19、方程x<x-1><x-2>=x 的根是〔A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=253+, x 3=253-20、解方程04)1(5)1(322=-+++x x x x 时,若设y xx =+1,则原方程可化为〔 A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有〔A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根 22、一次函数y=2<x-4>在y 轴上的截距为〔 A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax a x ,正确的结论是〔A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解24、反比例函数xy 2=,当x ≤3时,y 的取值范围是〔A 、y ≤32B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是〔 A 、0.2B 、±0.2C 、510 D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个S-t 函数示意图象,符合以上情况的是〔27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是〔 A 、k x , k 2s 2 B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是〔A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±1 29、下列图形中既是中心对称图形,又是轴对称图形的是〔A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dc ba =,下列各式中不成立的是〔A 、dc ba d cb a ++=--B 、db c a d c 33++=C 、bd a c b a 23++=D 、ad=bc31、一个三角形的三个内角不相等,则它的最小角不大于〔 A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是〔 A 、三角形的外心 B 、三角形的重心 C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有〔①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形A 、1个B 、2个C 、3个D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为〔A 、3πcmB 、32πcm C 、6πcmD 、2πcm35、平行四边形的一边长为5cm,则它的两条对角线长可以是〔 A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD,若△ABC 不动,将△BDEB绕B点旋转,则在旋转过程中,AE与CD的大小关系是〔A、AE=CDB、AE>CDC、AE>CDD、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是〔 A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,两段弧满足AB=2CD,那么弦AB 和弦CD 的关系是〔 A 、AB=2CD B 、AB>2CD C 、AB<2CD D 、AB 与CD 不可能相等39、在等边三角形ABC 外有一点D,满足AD=AC,则∠BDC 的度数为〔 A 、300B 、600C 、1500D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c,△ABC 的周长为18,则〔A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是〔A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE 〔BE 交CA 于E 折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA,那么下列结论中〔1∠A=300 〔2点C 与AB 的中点重合 〔3点E 到AB 的距离等于CE 的长,正确的个数是〔 A 、0 B 、1C 、2D 、343、不等式6322+>+x x 的解是〔A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程<m-1>x 2-4mx+4m-2=0没有实数根,则m 的取值范围是〔 A 、m<1/3B 、m ≤1/3C 、m ≥1/3D 、m ≥1/3且m ≠145、函数y=kx+b<b>0>和y=xk -<k ≠0>,在同一坐标系中的图象可能是右图中的〔 <注:从左到右依次为ABCD>46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有〔 A 、1个B 、2个C 、3个D 、无数个47、若点〔-2,y 1、〔-1,y 2、〔1,y 3在反比例函数xy 1=的图像上,则下列结论中正确的是〔 A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 2>y 1>y 3 D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是〔A 、a8B 、22b a +C 、x1.0D 、5a49、下列计算哪个是正确的〔A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--〔a 不限定为正数化简,结果为〔A 、a B 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于〔A 、2-2aB 、2a-2C 、-2D 、252、已知02112=-+-x x ,则122+-x x 的值〔A 、1B 、±21C 、21D 、-21ABC DEEABC53*、设a、b是方程x2-12x+9=0的两个根,则ba 等于〔A、18B、6C、23D、±2354、下列命题中,正确的个数是〔①等边三角形都相似②直角三角形都相似③等腰三角形都相似④锐角三角形都相似⑤等腰三角形都全等⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似⑧全等三角形相似A、2个B、3个C、4个D、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。
初中数学常见易错题含答案
![初中数学常见易错题含答案](https://img.taocdn.com/s3/m/64ea1c267375a417866f8fed.png)
2、如图所示的抛物线是二次函数的图象,那么a 的值为_______. 3、函数自变量x 的取值范围____ ____.4、将代数式 化简,再选择一个你喜欢的数代入求值。
5、方程(x+2)(x-1)=x-1的根为:6、关于x 的一元二次方程mx 2-6x+9=0有实数根,则m 的取值范围是 .7、若二次函数y=mx 2+4x+m-1的最小值为2,求m 的值。
8、直角三角形两边长分别为3和4,则第三边长为__________.9、某等腰三角形的一个角为50°,则另外两个角分别为____________________.10、某等腰三角形的两边长分别为4和6,则等腰三角形的周长为_________11、等腰三角形一腰上的高与另一腰的夹角为20度,则该三角形的顶角为________.12、在半径为8的圆中,长为8的弦所对的圆周角为________________.13、在半径为5的圆中,两平行弦为6和8,则两弦之间的距离为________.14、某点到圆上各点所有距离中,最短为2,最长为6,则圆的半径为______.15、两圆相切,圆心距为5,其中一圆的半径为1,则另一圆的直径为__________.4222-+-=a x axy 21)4(0-+-=x x y a a a 1112-÷⎪⎭⎫ ⎝⎛-2、如图所示的抛物线是二次函数的图象,那么a 的值为___-2_. 3、函数自变量x 的取值范围42≠x x 且 .4、将代数式 化简,再选择一个你喜欢的数代入求值。
11+a 选的数不能是0和1±5、方程(x+2)(x-1)=x-1的根为: x= 1±6、关于x 的一元二次方程mx 2-6x+9=0有实数根,则m 的取值范围是01≠≤m m 且.7、若二次函数y=mx 2+4x+m-1的最小值为2, m= 48、直角三角形两边长分别为3和4.9、某等腰三角形的一个角为50°,则另外两个角分别为65°和65°或50°和80°.10、某等腰三角形的两边长分别为4和6,则等腰三角形的周长为_14或16_____11、等腰三角形一腰上的高与另一腰的夹角为20度,则该三角形的顶角为_70°或110°.12、在半径为8的圆中,长为8的弦所对的圆周角为_30°或150°__.13、在半径为5的圆中,两平行弦为6和8,则两弦之间的距离为_7或1_______.14、某点到圆上各点所有距离中,最短为2,最长为6,则圆的半径为__4或2____.15、两圆相切,圆心距为5,其中一圆的半径为1,则另一圆的直径为___8或12___.4222-+-=a x ax y 21)4(0-+-=x x y a a a 1112-÷⎪⎭⎫ ⎝⎛-。
初三数学易错题集锦及答案
![初三数学易错题集锦及答案](https://img.taocdn.com/s3/m/7d42a79749649b6649d7470b.png)
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、8O17、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B )A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
中考数学易错题集锦及答案 [整理版]
![中考数学易错题集锦及答案 [整理版]](https://img.taocdn.com/s3/m/d3e28fb1daef5ef7ba0d3c36.png)
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定 4、方程2x+3y=20的正整数解有( ) A 、1个 B 、3个 C 、4个 D 、无数个 5、下列说法错误的是( )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线 6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( )A B C D 9、有理数中,绝对值最小的数是( ) A 、-1 B 、1 C 、0 D 、不存在10、21的倒数的相反数是( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为( ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( ) A 、-x-3 B 、-(x+3) C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是( ) A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++xx x x 时,若设y x x =+1,则原方程可化为( )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=0 21、方程x 2+1=2|x|有( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±510 26、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( ) A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s2B 、x , s2C 、k x , ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形 30、已知dcb a =,下列各式中不成立的是( )A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、30B 、45C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( ) A 、矩形 B 、梯形 C 、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( )A 、30B 、60C 、150D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( )A 、∠B=30B 、斜边上的中线长为1C 、斜边上的高线长为552 D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( )A 、m ≤1B 、m ≥31且m ≠1C 、m ≥1D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( )ABA B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21 C 、21 D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似 A 、2个 B 、3个 C 、4个 D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
初中数学易错题(含参考标准答案)资料汇编
![初中数学易错题(含参考标准答案)资料汇编](https://img.taocdn.com/s3/m/b98460b3f5335a8103d22085.png)
A、18
B、 6
C、 3 2
D、± 3 2
54、下列命题中,正确的个数是( )
①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似
④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似
⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似
A、2 个
B、3 个
C、4 个
D、5 个
B、 2 1
C、 1 2
D、 2 1
19、方程 x(x-1)(x-2)=x 的根是( )
A、x1=1, x2=2
B、x1=0, x2=1, x3=2
C、x1=
3 2
5
, x2=
3 2
5
D、x1=0,x2=
3 2
5
, x3=
3 2
5
0 /9
20、解方程 3(x2
1
)
5( x
1 )
4
0
时,若设
ୄ
A、a≤6
B、b<6
C、c>6
D、a、b、c 中有一个等于 6
41、如图,在△ABC 中,∠ACB=Rt∠,AC=1,BC=2,则下列说法正确的是( )
ୄ ୄ
A、∠B=300
B、斜边上的中线长为 1
C、斜边上的高线长为 2 5
D、该三角形外接圆的半径为 1
ୄ
ୄ
5
42、如图,把直角三角形纸片沿过顶点 B 的直线 BE(BE 交 CA 于 E)折叠,直角顶点 C 落在斜边 AB
5、当 x_________时,|3-x|=x-3。
6、从 3 点到 3 点 30 分,分针转了_________度,时针转了_________度。
最新初中数学易错题(选择、填空、判断)含答案
![最新初中数学易错题(选择、填空、判断)含答案](https://img.taocdn.com/s3/m/4e92b36471fe910ef02df8e4.png)
初中数学易错题(选择、填空、判断)含答案------------------------------------------作者xxxx------------------------------------------日期xxxx2 / 5初中数学易错题分类汇编 第2页(共5页)初中数学易错题一、容易漏解的题目1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.(5±,非负数) 2._________的倒数是它本身;_________的立方是它本身.(1±,1±和0)3.关于x 的不等式40x a -≤的正整数解是1和2;则a 的取值范围是_________.(412a ≤<) 4.不等式组213,.x x a ->⎧⎨>⎩的解集是2x >,则a 的取值范围是_________.(2a ≤)5.若()2211a a a +--=,则a =_________.(2-,2,1-,0) 6.当m 为何值时,函数21(3)45m y m x x +=++-是一个一次函数.(0m =或3m =-)7.若一个三角形的三边都是方程212320x x -+=的解,则此三角形的周长是_________.(12,24或20) 8.若实数a 、b 满足221a a =+,221b b =+,则a b +=________.(2,2±9.在平面上任意画四个点,那么这四个点一共可以确定_______条直线.10.已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =_____.(4c m或10cm )11.一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少30︒,求这两个角的度数.(30︒,30︒或70︒,110︒)12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?(4) 13.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.(30︒或150︒)14.等腰三角形的腰长为a,一腰上的高与另一腰的夹角为30︒,则此等腰三角形底边上的高为_______.(2a或)15.矩形ABCD的对角线交于点O.一条边长为1,OAB△是正三角形,则这个矩形的周长为______.(2+216.梯形ABCD中,AD BC∥,90A∠=︒,AB=7cm,BC=3cm,试在AB 边上确定P的位置,使得以P、A、D 为顶点的三角形与以P、B、C为顶点的三角形相似.(AP=1cm,6cm或145cm)17.已知线段AB=10cm,端点A、B到直线l的距离分别为6cm和4cm,则符合条件的直线有___条.(3条)18.过直线l外的两点A、B,且圆心在直线l的上圆共有_____个.(0个、1个或无数个)19.在Rt ABC△中,90C∠=︒,3AC=,5AB=,以C为圆心,以r为半径的圆,与斜边AB只有一个交点,求r的取值范围.( 2.4r=或34r<≤)20.直角坐标系中,已知(1,1)P,在x轴上找点A,使AOP△为等腰三角形,这样的点P共有多少个?(4个)21.在同圆中,一条弦所对的圆周角的关系是______________.(相等或互补)22.圆的半径为5cm,两条平行弦的长分别为8cm和6cm,则两平行弦间的距离为_______.(1cm或7cm)23.两同心圆半径分别为9和5,一个圆与这两个圆都相切,则这个圆的半径等于多少?(2或7)24.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为多少?(2或8)3 / 5初中数学易错题分类汇编第3页(共5页)4 / 5初中数学易错题分类汇编 第4页(共5页)25.PA 切⊙O 于点A ,AB 是⊙O的弦,若⊙O的半径为1,AB ,则PA 的长为____.(1)26.PA 、PB 是⊙O 的切线,A 、B 是切点,80APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠= ________.(50︒或130︒)27.在半径为1的⊙O 中,弦AB =AC 那么BAC ∠=________.(75︒或15︒)二、容易多解的题 28.已知()()22222215x y x y +++=,则22x y +=_______.(3) 29.在函数y 中,自变量的取值范围为_______.(1x ≥)30.已知445x x -+=,则22x x -+=_____31.当m 为何值时,关于x 的方程2(2)(21)0m x m x m ---+=有两个实数根.(14m ≥-,且2m ≠).32.当m 为何值时,函数2(1)350m m y m x x -=++-=是二次函数.(2)33.若22022(43)x x x x --=-+,则x =?.(1-)34.方程组22240,3260.x y x xy x y ⎧-=⎪⎨-+++=⎪⎩的实数解的组数是多少?(2) 35.关于x的方程2210x k +-=有实数解,求k 的取值范围.(113k -≤≤)36.k 为何值时,关于x 的方程2(2)320x k x k -++-=的两根的平方和为23? (3k =-)37.m 为何值时,关于x 的方程21202x m x m ⎛⎫-++= ⎪⎝⎭的两根恰好是一个直角三角形的两个锐角的余弦值?.(m =).38.若对于任何实数x ,分式214x x c++总有意义,则c 的值应满足______.(4c >)39.在ABC △中,90A ∠=︒,作既是轴对称又是中心对称的四边形ADEF ,使D 、E 、F 分别在AB 、BC 、CA 上,这样的四边形能作出多少个?(1)40.在⊙O中,弦AB=8cm,P为弦AB 上一点,且AP=2cm,则经过点P的最短弦长为多少?(41.两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______.(2)三、容易误判的问题:1.两条边和其中一组对边上的高对应相等的两个三角形全等。
(易错题精选)初中数学圆的易错题汇编及答案(1)
![(易错题精选)初中数学圆的易错题汇编及答案(1)](https://img.taocdn.com/s3/m/7380ad4c59eef8c75ebfb331.png)
(易错题精选)初中数学圆的易错题汇编及答案(1)一、选择题1.已知线段AB 如图,(1)以线段AB 为直径作半圆弧»AB ,点O 为圆心;(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交»AB 于点E F 、;(3)连接,OE OF .根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .»»AE BF =C .60EOF ∠=︒D . =2CE CO【答案】D【解析】【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.【详解】根据HL 可判定ECO FDO ≅V V ,得CE DF =,A 正确;∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,CE 为OA 的中垂线,AE OE =在半圆中,OA OE =∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;∴圆心角相等,所对应的弧长度也相等,»»AE BF=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误【点睛】本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.2.如图,ABC ∆是O e 的内接三角形,45A ∠=︒,1BC =,把ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,点A 的对应点为点D ,则点A ,D 之间的距离是()A .1B .2 C .3 D .2【答案】A【解析】【分析】 连接AD ,构造△ADB ,由同弧所对应的圆周角相等和旋转的性质,证△ADB 和△DBE 全等,从而得到AD=BE=BC=1.【详解】如图,连接AD ,AO ,DO∵ABC ∆绕圆心O 按逆时针方向旋转90︒得到DEB ∆,∴AB=DE ,90AOD ∠=︒,45CAB BDE ∠=∠=︒∴1452ABD AOD ∠=∠=︒(同弧所对应的圆周角等于圆心角的一半), 即45ABD EDB ∠=∠=︒,又∵DB=BD ,∴DAB BED ∠=∠(同弧所对应的圆周角相等),在△ADB 和△DBE 中 ABD EDB AB EDDAB BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB ≌△EBD (ASA ),∴AD=EB=BC=1.故答案为A.【点睛】本题主要考查圆周角、圆中的计算问题以及勾股定理的运用;顶点在圆上,两边都与圆相交的角角圆周角;掌握三角形全等的判定是解题的关键.3.如图,四边形ABCD 为⊙O 的内接四边形.延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连接BD ,∠GBC=50°,则∠DBC 的度数为( )A .50°B .60°C .80°D .90°【答案】C【解析】【分析】 根据圆内接四边形的性质得:∠GBC =∠ADC =50°,由垂径定理得:··CMDM =,则∠DBC =2∠EAD =80°.【详解】如图,∵四边形ABCD 为⊙O 的内接四边形,∴∠GBC =∠ADC =50°.∵AE ⊥CD ,∴∠AED =90°,∴∠EAD =90°﹣50°=40°,延长AE 交⊙O 于点M .∵AO ⊥CD ,∴··CMDM =,∴∠DBC =2∠EAD =80°. 故选C .【点睛】本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.4.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【答案】D【解析】【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.【详解】解:∵»»AB CD =,∴AB =CD ,∠AOB =∠COD ,∵OE AB ⊥,OF CD ⊥,∴BE =12AB ,DF =12CD , ∴BE =DF ,又∵OB =OD , ∴由勾股定理可知OE =OF ,即A 、B 、C 正确,D 错误,故选:D .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.5.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,点D 在BA 的延长线上,CD 与⊙O 交于另一点E ,DE=OB=2,∠D=20°,则弧BC 的长度为( )A .23πB .13πC .43πD .49π 【答案】A【解析】【分析】连接OE 、OC ,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.【详解】解:连接OE 、OC ,如图,∵DE=OB=OE ,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC ,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴»BC 的长度=260?2360π⨯=23π, 故选A.【点睛】本题考查了弧长公式:l=••180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.6.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线33y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2C 3D 2 【答案】D【解析】【分析】先根据题意,画出图形,令直线3x+ 23x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,作OH ⊥CD 于H ;然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C 、D 两点的坐标值; 再在Rt △POC 中,利用勾股定理可计算出CD 的长,并利用面积法可计算出OH 的值; 最后连接OA ,利用切线的性质得OA ⊥PA ,在Rt △POH 中,利用勾股定理,得到21PA OP =-PA 的最小值即可.【详解】如图,令直线3x+23x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=3D(0,3当y=033,解得x=-2,则C(-2,0),∴222(23)4CD=+=,∵12OH•CD=12OC•OD,∴2233⨯=连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴2221PA OP OA OP=-=-当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA22(3)12-=故选D.【点睛】本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.7.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.8.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定...是直角的是( ) A . B .C .D .【答案】C【解析】【分析】根据作图痕迹,分别探究各选项所做的几何图形问题可解.【详解】解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角.选项B 中,AO 为BC 边上的高,则AOB ∠是直角.选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角.故应选C【点睛】本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键.9.将直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB =4,则光盘表示的圆的直径是( )A .4B .83C .6D .43【答案】B【解析】【分析】 设三角板与圆的切点为C ,连接OA 、OB ,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知,AB =AC =3,AO 平分∠BAC ,∴∠OAB =60°,在Rt△ABO中,OB=AB tan∠OAB=43,∴光盘的直径为83.故选:B.【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.10.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.12【答案】C【解析】【分析】根据三角形内角和定理求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求得BD的长.【详解】∵∠BAC=120°,AB=AC=4,∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选C.11.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:OB= 22BD OD13+=故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.12.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则FEEC=()A.12B.13C.14D.38【答案】C【解析】【分析】连接OE、OF、OC,利用切线长定理和切线的性质求出∠OCF=∠FOE,证明△EOF∽△ECO,利用相似三角形的性质即可解答.【详解】解:连接OE、OF、OC.∵AD、CF、CB都与⊙O相切,∴CE=CB;OE⊥CF; FO平分∠AFC,CO平分∠BCF.∵AF∥BC,∴∠AFC+∠BCF=180°,∴∠OFC+∠OCF =90°,∵∠OFC+∠FOE =90°,∴∠OCF =∠FOE ,∴△EOF ∽△ECO , ∴=OE EF EC OE ,即OE 2=EF•EC . 设正方形边长为a ,则OE =12a ,CE =a . ∴EF =14a . ∴EF EC =14. 故选:C .【点睛】本题考查切线的性质、切线长定理、相似三角形的判定与性质,其中通过作辅助线构造相似三角形是解答本题的关键..13.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.14.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C 的度数是()A.48°B.42°C.34°D.24°【答案】B【解析】【分析】根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【详解】解:∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.【点睛】考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.15.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG 上,正方形PCGQ的顶点P也在⊙O上.若BC=1,GH=2,则CG的长为()A.125B6C21D.22【答案】B【解析】【分析】【详解】解:连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,由勾股定理可知:22222222211{22r xr x x yr y=++=++=++()①()②()③,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x).∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6.∵x+y>0,∴x+y=6,∴CG=x+y=6.故选B.点睛:本题考查了正方形的性质、圆、勾股定理等知识,解题的关键是设未知数列方程组解决问题,难点是解方程组,利用因式分解法巧妙求出x的值,学会把问题转化为方程组,用方程组的思想去思考问题.16.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是( )A.22°B.26°C.32°D.68°【答案】A【解析】试题分析:根据同弧所对的圆心角等于圆周角度数的两倍,则∠BOC=2∠A=136°,则根据三角形内角和定理可得:∠OBC+∠OCB=44°,根据OB=OC可得:∠OBC=∠OCB=22°.考点:圆周角的计算17.如图,四边形ABCD 内接于圆O ,DA DC =,50CBE ∠=︒,AOD ∠的大小为( )A .130°B .100°C .20°D .10°【答案】A【解析】【分析】 先求出∠ABC 的大小,根据内接四边形角度关系,得到∠ADC 的大小,从而得出∠C 的大小,最后利用圆周角与圆心角的关系得∠AOD 的大小.【详解】∵∠CBE=50°∴∠ABC=130°∵四边形ABCD 是内接四边形∴∠ADC=50°∵AD=DC∴在△ADC 中,∠C=∠DAC=65°∴∠AOD=2∠C=130°故选:A【点睛】本题考查圆的性质,主要是内接四边形对角互补和同弧对应圆心角是圆周角2倍,解题中,我们要充分利用圆的性质进行角度转换,以便得到我们需要的角度.18.如图,已知⊙O 上三点A ,B ,C ,半径OC=1,∠ABC=30°,切线PA 交OC 延长线于点P ,则PA 的长为( )A .2B 3C 2D .12【答案】B【解析】【分析】 连接OA ,由圆周角定理可求出∠AOC=60°,再根据∠AOC 的正切即可求出PA 的值.【详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC =PA OA,∴PA= tan60°×1=3.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.19.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=4cm ,OM=R-2, 在RT △OMD 中, OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB 的长为:2×5=10cm .故选B .【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.20.如图,点E 为ABC ∆的内心,过点E 作MN BC P 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A .3.5B .4C .5D .5.5【答案】B【解析】【分析】 连接EB 、EC ,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME ,同理可得NC=NE ,接着证明△AMN ∽△ABC ,所以767MN BM -=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN 的方程,然后解方程即可.【详解】连接EB 、EC ,如图,∵点E 为△ABC 的内心,∴EB 平分∠ABC ,EC 平分∠ACB ,∴∠1=∠2,∵MN∥BC,∴∠2=∠3,∴∠1=∠3,∴BM=ME,同理可得NC=NE,∵MN∥BC,∴△AMN∽△ABC,∴MN AMBC AB=,即767MN BM-=,则BM=7-76MN①,同理可得CN=5-56MN②,①+②得MN=12-2MN,∴MN=4.故选:B.【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.。
(完整)初三数学易错题集锦及答案
![(完整)初三数学易错题集锦及答案](https://img.taocdn.com/s3/m/45c08656cc7931b764ce1505.png)
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
(完整word版)初中数学经典易错题集锦及答案
![(完整word版)初中数学经典易错题集锦及答案](https://img.taocdn.com/s3/m/ca7be419a5e9856a56126086.png)
初中数学经典易错题集锦一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是 -----------------------------( )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是--------------------(A 、2aB 、2bC 、2a-2bD 、2a+b 3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度-----------------( )A 、2千米/小时B 、3千米/小时C 、6千米/小时D 、不能确定4、方程2x+3y=20的正整数解有---------------------------------------------------------( )A 、1个B 、3个C 、4个D 、无数个5、下列说法错误的是-------------------------------------------------------------------( )A. 两点确定一条直线 B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6.函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是---------------------------------- ( )A.当m ≠3时,有一个交点 B 、1±≠m 时,有两个交C 、当1±=m 时,有一个交点D 、不论m 为何值,均无交点7.如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是---------( )A 、内切B 、外切C 、内切或外切D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是---------( )A B C D9、有理数中,绝对值最小的数是---------------------------------------------------------( )A 、-1B 、1C 、0D 、不存在10、21的倒数的相反数是--------------------------------------------------------------- ( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是------------------------------------------------------------- ( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为------------------- ( )A 、互为相反数B 、互为倒数C 、互为相反数且不为0D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为------------------------------------ ( )A 、2xB 、2(x-2)C 、x-4D 、2·(x-2)/214、“比x 的相反数大3的数”可表示为------------- ----------------------------------- ( )A 、-x-3B 、-(x+3)C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是-----------V-------------------------------------- ( )A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是----------------------------------------------------------------------------------- ( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为---------- ( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是-------------------------------------------------------------------- ( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是-------------------------------------------------------------- ( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253- 20、解方程04)1(5)1(322=-+++x x x x 时,若设y x x =+1,则原方程可化为--------------- ( )A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有----------------------------------------------------------------------- ( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根22、一次函数y=2(x-4)在y 轴上的截距为----------------------------------------------------- ( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是----------------------------------------------- ( ) A 、无解 B 、解为全体实数 C 、当a>0时无解 D 、当a<0时无解24、反比例函数x y 2=,当x ≤3时,y 的取值范围是------------------------------------------- ( ) A 、y ≤32 B 、y ≥32 C 、y ≥32或y<0 D 、0<y ≤32 25、0.4的算术平方根是-------------------------------------------------------------------- ( )A 、0.2B 、±0.2C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是------------------------------------------- ( )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是---------------------------------------- ( ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是----------------------------------------- ( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知d c b a =,下列各式中不成立的是------------------------------------------------------- ( ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd a c b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于--------------------------------------- ( )A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是--------------------------------- ( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有----------------------------------------------------- ( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形A 、1个B 、2个C 、3个D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为---- ------------------------------------ ( )A 、3πcmB 、32πcmC 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是----------------------------------- ( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是------------ ( ) A 、AE=CD B 、AE>CD C 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是------------------( )A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是----------------------------------------- ( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 不可能相等39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为-----------( )A 、300B 、600C 、1500D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则------------( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=900,AC=1,BC=2,则下列说法正确的是------( ) A 、∠B=300 B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为1 42、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是-------------( ) A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是----------------------------------------------------( ) A 、x>2 B 、x>-2 C 、x<2 D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是----------------------( )A 、m ≤1B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 45、函数y=kx+b(b>0)和y=x k -(k ≠0),在同一坐标系中的图象可能是------------------------------( ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有----------------------------------------( )BA 、1个B 、2个C 、3个D 、无数个47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是------------------------------------------------------------------------( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 248、下列根式是最简二次根式的是-----------------------------------------------------------------( )A 、a 8B 、22b a +C 、x 1.0D 、5a49、下列计算哪个是正确的-----------------------------------------------------------------------( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=- 50、把a a 1--(a 不限定为正数)化简,结果为----------------------------------------------------( ) A 、a B 、a - C 、-a D 、-a -51、若a+|a|=0,则22)2(a a +-等于------------------------------------------------------------( )A 、2-2aB 、2a-2C 、-2D 、252、已知02112=-+-x x ,则122+-x x 的值------------------------------------------------( )A 、1B 、±21C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于------------------------------------------( )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是---------------------------------------------------------------------( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是________。
八年级数学易错题20例(含解析)
![八年级数学易错题20例(含解析)](https://img.taocdn.com/s3/m/1245f6143d1ec5da50e2524de518964bcf84d2c3.png)
八年级数学易错题20例1. 理解错误的题目:一些学生可能会误解题目的意思,从而得出错误的答案。
例如,题目要求求解一个方程,但是学生可能会误解为需要求解一个不同的方程。
2. 忘记变号:在进行等式运算时,有时会忘记在移项或者合并同类项时变号。
3. 计算错误:在进行复杂计算时,可能会出现计算错误,例如算错乘法、加法等。
4. 错误的应用公式:例如在使用勾股定理时,将直角三角形的边长错误地代入公式。
5. 忽视条件:在解决问题时,可能会忽视题目给出的某些条件,导致答案错误。
6. 图形理解错误:在几何问题中,可能会误解或错误地画出图形。
7. 错误的角度计算:在几何问题中,尤其是涉及角度的计算,容易出错。
8. 比例理解错误:在涉及比例的问题中,可能会对比例的概念理解错误。
9. 单位换算错误:在涉及单位换算的问题中,可能会换算错误。
10. 错误的概率计算:在概率问题中,可能会出现计算错误或者理解错误。
11. 忽视坐标系的方向:在平面直角坐标系中,有时会忽视坐标轴的方向,导致点的位置判断错误。
12. 函数理解不足:对于函数的理解不足,可能导致在解决与函数相关的问题时出错。
13. 三角形性质理解错误:例如,误将等边三角形的性质应用于等腰三角形等。
14. 分式运算错误:在进行分式的加减乘除运算时,可能会出现运算错误。
15. 错误的不等式解法:在解不等式时,可能会因为变号、计算等问题导致解答错误。
16. 数列求和公式使用不当:例如,等差数列和等比数列的求和公式混淆使用。
17. 根与系数的关系理解不清:对于二次方程的根与系数的关系理解不足,导致相关题目解答错误。
18. 圆的性质理解不足:例如,对圆心角、圆周角、弧长等性质理解不清,导致解题出错。
19. 忽视特殊情况:在一些数学问题中,可能存在特殊情况需要额外考虑,如果忽视这些特殊情况,可能会导致答案不完整或错误。
20. 不严谨的推理:在数学证明题中,推理过程不严谨,跳跃步骤或者逻辑不清晰,导致证明错误。
初中数学易错题(含参考答案解析)
![初中数学易错题(含参考答案解析)](https://img.taocdn.com/s3/m/e8c7d6700a1c59eef8c75fbfc77da26925c596af.png)
初中数学易错题(含参考答案解析)初中数学易错题专题⼀、选择题(本卷带*号的题⽬可以不做)1、A 、B 是数轴上原点两旁的点,则它们表⽰的两个有理数是() A 、互为相反数 B 、绝对值相等 C 、是符号不同的数 D 、都是负数2、有理数a 、b 在数轴上的位置如图所⽰,则化简|a-b|-|a+b|的结果是()A 、2aB 、2bC 、2a-2bD 、2a+b3、轮船顺流航⾏时m 千⽶/⼩时,逆流航⾏时(m-6)千⽶/⼩时,则⽔流速度() A 、2千⽶/⼩时 B 、3千⽶/⼩时 C 、6千⽶/⼩时 D 、不能确定4、⽅程2x+3y=20的正整数解有() A 、1个 B 、3个 C 、4个 D 、⽆数个5、下列说法错误的是()A 、两点确定⼀条直线B 、线段是直线的⼀部分C 、⼀条直线不是平⾓D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( )A 、当m ≠3时,图像有⼀个交点B 、1±≠m 时,肯定有两个交点C 、当1±=m 时,只有⼀个交点D 、图像可能与x 轴没有交点7、如果两圆的半径分别为R 和r (R>r ),圆⼼距为d ,且(d-r)2=R 2,则两圆的位置关系是() A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表⽰有理数a 、b 、c 的⼩点分别是A 、B 、C 且b9、有理数中,绝对值最⼩的数是()A 、-1B 、1C 、0D 、不存在 10、21的倒数的相反数是()A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x ⼀定是() A 、正数 B 、⾮负数 C 、负数 D 、⾮正数 12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为() A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有⼀个为0 13、长⽅形的周长为x ,宽为2,则这个长⽅形的⾯积为() A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“⽐x 的相反数⼤3的数”可表⽰为() A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0A 、a 2⽐a ⼤B 、a 2⽐a ⼩C 、a 2与a 相等D 、a 2与a 的⼤⼩不能确定 16、数轴上,A 点表⽰-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,⼜向左移动5个单位,这时,A 点表⽰的数是() A 、-1 B 、0 C 、1 D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为() A 、12cm B 、10cm C 、8cm D 、4cm 18、21-的相反数是() A 、21+ B 、12- C 、21-- D 、12+- 19、⽅程x(x-1)(x-2)=x 的根是()A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=253+, x 3=253-O a bA B C C B A C A B B A C20、解⽅程04)1(5)1(322=-+++x x x x 时,若设y xx =+1,则原⽅程可化为() A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、⽅程x 2+1=2|x|有()A 、两个相等的实数根B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根 22、⼀次函数y=2(x-4)在y 轴上的截距为() A 、-4 B 、4 C 、-8 D 、8 23、解关于x 的不等式-<>a x ax ,正确的结论是()A 、⽆解B 、解为全体实数C 、当a>0时⽆解D 、当a<0时⽆解24、反⽐例函数xy 2=,当x ≤3时,y 的取值范围是()A 、y ≤32B 、y ≥32C 、y ≥32或y<0D 、0225、0.4的算术平⽅根是() A 、0.2B 、±0.2C 、510D 、±51026、李明骑车上学,⼀开始以某⼀速度⾏驶,途中车⼦发⽣故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个S-t 函数⽰意图象,符合以上情况的是()27、若⼀数组x 1, x 2, x 3, …, x n 的平均数为x ,⽅差为s 2,则另⼀数组kx 1, kx 2, kx 3, …, kx n 的平均数与⽅差分别是()A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的⽅程21=+-ax x 有解,则a 的取值范围是()A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±1 29、下列图形中既是中⼼对称图形,⼜是轴对称图形的是() A 、线段 B 、正三⾓形 C 、平⾏四边形 D 、等腰梯形 30、已知dc ba =,下列各式中不成⽴的是()A 、dc ba d cb a ++=--B 、db c a d c 33++=C 、bd a c b a 23++=D 、ad=bc31、⼀个三⾓形的三个内⾓不相等,则它的最⼩⾓不⼤于()A 、300B 、450C 、550D 、60032、已知三⾓形内的⼀个点到它的三边距离相等,那么这个点是() A 、三⾓形的外⼼ B 、三⾓形的重⼼ C 、三⾓形的内⼼D 、三⾓形的垂⼼ 33、下列三⾓形中是直⾓三⾓形的个数有()①三边长分别为3:1:2的三⾓形②三边长之⽐为1:2:3的三⾓形③三个内⾓的度数之⽐为3:4:5的三⾓形④⼀边上的中线等于该边⼀半的三⾓形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为()A 、3πcmB 、32πcm C 、6πcmD 、2πcm35、平⾏四边形的⼀边长为5cm ,则它的两条对⾓线长可以是() A 、4cm, 6cm B 、4cm, 3cm C 、2cm, 12cm D 、4cm, 8cm 36、如图,△ABC 与△BDE 都是正三⾓形,且AB绕B 点旋转,则在旋转过程中,AE 与CD 的⼤⼩关系是() A 、AE=CD B 、AE>CD C 、AE>CD D 、⽆法确定O O O O OBA ABDC E37、顺次连结四边形各边中点得到⼀个菱形,则原四边形必是() A 、矩形 B 、梯形 C 、两条对⾓线互相垂直的四边形 D 、两条对⾓线相等的四边形 38、在圆O 中,两段弧满⾜AB=2CD ,那么弦AB 和弦CD 的关系是() A 、AB=2CD B 、AB>2CD C 、AB<2CD D 、AB 与CD 不可能相等 39、在等边三⾓形ABC 外有⼀点D ,满⾜AD=AC ,则∠BDC 的度数为()A 、300B 、600C 、1500D 、300或150040、△ABC 的三边a 、b 、c 满⾜a ≤b ≤c ,△ABC 的周长为18,则() A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有⼀个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是()A 、∠B=300B 、斜边上的中线长为1C 、斜边上的⾼线长为552D 、该三⾓形外接圆的半径为142、如图,把直⾓三⾓形纸⽚沿过顶点B 的直线BE (BE 交CA 于E )折叠,直⾓顶点C 落在斜边AB 上,如果折叠后得到等腰三⾓形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合(3)点E 到AB 的距离等于CE 的长,正确的个数是() A 、0 B 、1 C 、2 D 、3 43、不等式6322+>+x x 的解是() A 、x>2 B 、x>-2 C 、x<2 D 、x<-244、已知⼀元⼆次⽅程(m-1)x 2-4mx+4m-2=0没有实数根,则m 的取值范围是()A 、m<1/3B 、m ≤1/3C 、m ≥1/3D 、m ≥1/3且m ≠1 45、函数y=kx+b(b>0)和y=xk -(k ≠0),在同⼀坐标系中的图象可能是右图中的()(注:从左到右依次为ABCD)46、在⼀次函数y=2x-1的图象上,到两坐标轴距离相等的点有() A 、1个 B 、2个 C 、3个D 、⽆数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反⽐例函数xy 1=的图像上,则下列结论中正确的是() A 、y 1>y 2>y 3 B 、y 1y 1>y 3 D 、y 3>y 1>y 2 48、下列根式是最简⼆次根式的是() A 、a 8 B 、22b a + C 、x1.0 D 、5a49、下列计算哪个是正确的() A 、523=+ B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为()A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于()A 、2-2aB 、2a-2C 、-2D 、252、已知02112=-+-x x ,则122+-x x 的值()A 、1B 、±21C 、21D 、-2153*、设a 、b 是⽅程x 2-12x+9=0的两个根,则b a +等于()A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是()①等边三⾓形都相似②直⾓三⾓形都相似③等腰三⾓形都相似④锐⾓三⾓形都相似⑤等腰三⾓形都全等⑥有⼀个⾓相等的等腰三⾓形相似⑦有⼀个钝⾓相等的两个等腰三⾓形相似⑧全等三⾓形相似 A 、2个 B 、3个 C 、4个 D 、5个ABCDEEABC⼆、填空题1、如果⼀个数的绝对值等于它的相反数,那么这个数⼀定是____ _____。
初三数学易错题整理汇编及规范标准答案
![初三数学易错题整理汇编及规范标准答案](https://img.taocdn.com/s3/m/c8efc995f12d2af90242e6a8.png)
天。
9、因式分解:-4x2+y2= (2x y)(2x y) , x2-x-6= (x 3)(x 2)
10、计算:a6÷a2=__ a4 ____,(-2)-4=__ 1 ____,-22=__-4____
16
11、如果某商品降价 x%后的售价为 a 元,那么该商品的原价为 a 1 0.01x
A、三角形的外心 B、三角形的重心
C、三角形的内心
D、三角形的垂心
33、下列三角形中是直角三角形的个数有( B )
①三边长分别为 3 :1:2 的三角形 ②三边长之比为 1:2:3 的三角形 ③三个内角的度数之比
为 3:4:5 的三角形 ④一边上的中线等于该边一半的三角形
A、1 个 B、2 个 C、3 个 D、4 个
15、P 点表示有理数 2,那么在数轴上到 P 点的距离等于 3 个单位长度的点所表示的数是_5 或 1_。
16、a、b 为实数,且满足 ab+a+b-1=0,a2b+ab2+6=0,则 a2-b2=___ 6 17 _____。 17、已知一次函数 y=(m2-4)x+1-m 的图象在 y 轴上的截距与一次函数 y=(m2-2)x+m2-3 的图象
A、两点确定一条直线
B、线段是直线的一部分
C、一条直线是一个平角
D、把线段向两边延长即是直线
6、函数 y=(m2-1)x2-(3m-1)x+2 的图象与 x 轴的交点情况是 ( C )
A、当 m≠3 时,有一个交点
B、 m 1时,有两个交
C、当 m 1时,有一个交点
D、不论 m 为何值,均无交点
34、如图,设 AB=1,S△OAB= 3 cm2源自则弧 AB 长为( A )4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学错题集一、选择题1、A、B是数轴上原点两旁的点,则它们表示的两个有理数是-----------------------------()A、互为相反数B、绝对值相等C、是符号不同的数D、都是负数2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是--------------------()A、2aB、2bC、2a-2bD、2a+b3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度-----------------()A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有---------------------------------------------------------()A、1个B、3个C、4个D、无数个5、下列说法错误的是-------------------------------------------------------------------()abA. 两点确定一条直线 B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6.函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是---------------------------------- ( )A.当m ≠3时,有一个交点 B 、1±≠m 时,有两个交C 、当1±=m 时,有一个交点D 、不论m 为何值,均无交点7.如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是---------( )A 、内切B 、外切C 、内切或外切D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是---------( )A B C D9、有理数中,绝对值最小的数是---------------------------------------------------------( )A 、-1B 、1C 、0D 、不存在10、21的倒数的相反数是--------------------------------------------------------------- ( )A 、-2B 、2C 、-21D 、2111、若|x|=x ,则-x 一定是------------------------------------------------------------- ( )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为------------------- ( )A 、互为相反数B 、互为倒数C 、互为相反数且不为0D 、有一个为013、长方形的周长为x ,宽为2,则这个长方形的面积为------------------------------------ ( )A 、2xB 、2(x-2)C 、x-4D 、2·(x-2)/214、“比x 的相反数大3的数”可表示为------------- ----------------------------------- ( )A 、-x-3B 、-(x+3)C 、3-xD 、x+315、如果0<a<1,那么下列说法正确的是------------------------------------------------- ( )A 、a 2比a 大B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是----------------------------------------------------------------------------------- ( )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为---------- ( )A 、12cmB 、10cmC 、8cmD 、4cm18、21-的相反数是-------------------------------------------------------------------- ( )A 、21+B 、12-C 、21--D 、12+-19、方程x(x-1)(x-2)=x 的根是-------------------------------------------------------------- ( )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253- D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++x x x x 时,若设y x x =+1,则原方程可化为--------------- ( )A 、3y 2+5y-4=0B 、3y 2+5y-10=0C 、3y 2+5y-2=0D 、3y 2+5y+2=021、方程x 2+1=2|x|有----------------------------------------------------------------------- ( )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根22、一次函数y=2(x-4)在y 轴上的截距为----------------------------------------------------- ( )A 、-4B 、4C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是----------------------------------------------- ( ) A 、无解 B 、解为全体实数 C 、当a>0时无解 D 、当a<0时无解24、反比例函数x y 2=,当x ≤3时,y 的取值范围是------------------------------------------- ( ) A 、y ≤32 B 、y ≥32 C 、y ≥32或y<0 D 、0<y ≤32 25、0.4的算术平方根是-------------------------------------------------------------------- ( )A 、0.2B 、±0.2C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是------------------------------------------- ( )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) O O O OA 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-a x x 有解,则a 的取值范围是---------------------------------------- ( )A 、a ≠1B 、a ≠-1C 、a ≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是----------------------------------------- ( )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知d c b a =,下列各式中不成立的是------------------------------------------------------- ( ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd a c b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于--------------------------------------- ( )A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是--------------------------------- ( )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有----------------------------------------------------- ( )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形A 、1个B 、2个C 、3个D 、4个34、平行四边形的一边长为5cm ,则它的两条对角线长可以是----------------------------------- ( )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm35、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动, C E将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是------------ ( )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定36、顺次连结四边形各边中点得到一个菱形,则原四边形必是------------------( )A 、矩形B 、梯形C 、两条对角线互相垂直的四边形D 、两条对角线相等的四边形37、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是----------------------------------------- ( )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 38、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为-----------( )A 、300B 、600C 、1500D 、300或1500 39、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则------------( )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于640、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是------( )A 、∠B=300B 、斜边上的中线长为1 C 、斜边上的高线长为552D 、该三角形外接圆的半径为141、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300 (2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是---------------------------------------------------( )A 、0B 、1C 、2D 、342、不等式6322+>+x x 的解是----------------------------------------------------( ) A 、x>2 B 、x>-2 C 、x<2 D 、x<-2DE E A B C43、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是----------------------( ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤144、函数y=kx+b(b>0)和y=x k-(k ≠0),在同一坐标系中的图象可能是------------------------------( )A B C D45、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有----------------------------------------( )A 、1个B 、2个C 、3个D 、无数个46、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数x y 1=的图像上,则下列结论中正确的是------------------------------------------------------------------------( )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 247、下列根式是最简二次根式的是-----------------------------------------------------------------( )A 、a 8B 、22b a +C 、x 1.0D 、5a48、下列计算哪个是正确的-----------------------------------------------------------------------( )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-49、把a a 1--(a 不限定为正数)化简,结果为----------------------------------------------------( )A 、aB 、a -C 、-aD 、-a -50、若a+|a|=0,则22)2(a a +-等于------------------------------------------------------------( )A 、2-2aB 、2a-2C 、-2D 、251、已知02112=-+-x x ,则122+-x x 的值------------------------------------------------( )A 、1B 、±21C 、21D 、-21 52、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于------------------------------------------( )A 、18B 、6C 、23D 、±2353、下列命题中,正确的个数是---------------------------------------------------------------------( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。