英文食品科学原理资料

合集下载

HACCP基本原理及其执行步骤

HACCP基本原理及其执行步骤

目前,HACCP系统在食品质量控制上已被世 界各国接受,获得联合国粮农组织(FAO)、和 世界卫生组织(WHO)联合食品法典委员会 (CAC)的认同,是目前世界上最具权威的食品 质量安全保证体系,它是一种建立在良好操作规 范(GMP : Good Manufacturing Practice) 和卫 生操作标准规程(SSOP :Sanitation Standard Operation Procedure )基础之上的控制危害的预 防性体系,主要控制目标是食品的安全性。
众所周知,太空人员需要安全、卫生的食品, 而传统的品质控制(Quality Control QC)手段 并不能完全确保产品的安全,且大多数食品的安 全性和质量都需要依赖终产品的检验,更需要对 产品进行大量的破坏性检测试验,这种方法最终 仅有少量产品符合要求。
皮尔斯柏利(Pillsbury)公司检查了NASA的“无缺 陷计划(zero-defect program),发现这种非破坏性检 验并没有直接针对食品与食品的成分,但总的来说是合 适的,认为该检测系统可以延伸到整个生产过程(即从 原材料和工厂环境开始到生产过程和产品消费)的控制。 皮尔斯柏利(Pillsbury)公司因此提出了新的概念— HACCP,专门用于控制生产过程中可能出现危害的位置 或加工点,而这个生产过程应该包括原材料、生产、贮 运过程直至食品消费。HACCP被纳蒂克(Natick)实验 室采用及修改后,用于太空食品生产。
1.9控制措施(Control Measure) 用以防止或消除食品安全危害或将其降低到可接受 的水平,所采取的任何措施和活动。
1.10标准(standard) 判断的依据。
1.11关键限值(Critical Limit (CL)) 将可接受水平与不可接受水平区分开的判定标准。

食品科学概论-食品工程原理

食品科学概论-食品工程原理

食品的冷冻原理
制冷-从低于环境温度的物体中吸取热量,并
将其转移给环境介质的过程。
食品工业上冷冻温度范围在-100度以上
制冷量-在一定操作条件下,单位时间制冷剂
从被冷冻物质取出的热量
制冷剂-氨、氟利昂-12、氟利昂-22 载冷剂-水、盐水、有机化合物
由冰点下降至形成冰晶的临界温度而尚不冻结的现象
食品的粉碎
颗粒群的粒度分布 列表法 图解法 函数法 粒度测定方法 筛分法 沉降法 显微镜法 库尔特计数法 -透过法、吸附法
食品的筛分
泰勒标准 1in=2.54cm(目)
食品的搅拌混合、均质和乳化原理
均质度-一种或几种组分的浓度或其他物理量 分离尺度-表示组分或热量等可分散的“参量” 的未分散部分的大小 分离强度-表示两相邻块间浓度、温度等参量 的差异,同时也表示团块中的参量值与完全均 匀后的参量平均值之间的差异 混合的机制 对流混合-混合器运动部件表面对物料的相对 运动;分离尺度大时 分子扩散混合-分离尺度小时 剪力混合-对高黏度流体的混合
将能量传递给食品---(传热过程) 促使食品物料中水分向表面转移并排放到物料 周围的外部环境中,完成脱水干制的过程--传质过程) 湿热的转移是食品干燥原理的核心问题。
影响湿热传递的主要因素
(一)食品物料的组成与结构 (1)食品成分在物料中的位置;(2)溶质浓度 (3)结合水的状态;(4)细胞结构 (二)物料的表面积 (三)空气的湿度 (四)空气温度 (五)空气流速 (六)大气压力或真空度 (七)物料干燥温度
(三)冰晶的洗涤
膜浓缩(膜分离)
膜浓缩--类似于过滤的浓缩方法,只不过“过滤介 质”为天然或人工合成的高分子半透膜,如果“过 滤”膜只允许溶剂通过,把溶质截留下来,使溶质 在溶液中的相对浓度提高,就称为膜浓缩。 膜分离的种类 以推动力本质的不同: 静压力差为推动力的过程 以蒸汽压差为推动力的过程 以浓度差为推动力的过程 以电位差为推动力的过程

食品科学英文作文范文

食品科学英文作文范文

食品科学英文作文范文英文:As a food scientist, I believe that food is not just something we eat to survive, but also a form of art. Theway we prepare and present food can greatly affect our enjoyment and appreciation of it. In addition, food plays a crucial role in our health and well-being.One of the most important aspects of food science is understanding the chemistry behind food. For example, knowing how different ingredients interact with each other can help us create delicious and nutritious meals. In addition, understanding the chemical reactions that occur during cooking can help us avoid common mistakes and ensure that our food is safe to eat.Another important aspect of food science is food safety. We need to ensure that the food we eat is free from harmful bacteria and other contaminants. This involves properhandling, storage, and preparation of food, as well as regular testing and monitoring.As a food scientist, I am also interested in the cultural and social aspects of food. Food is often acentral part of our celebrations and traditions, and can bring people together in a unique way. For example, in my own culture, we often prepare special dishes for holidays and family gatherings, and these meals are an important way of connecting with our heritage and each other.Overall, I believe that food science is a fascinating and important field that has a significant impact on our daily lives.中文:作为一名食品科学家,我认为食物不仅是我们为了生存而吃的东西,也是一种艺术形式。

食品工程原理英语

食品工程原理英语

食品工程原理英语Food Engineering PrinciplesFood engineering is a multidisciplinary field that combines the principles of science, technology, and engineering to develop and improve processes for the production, preservation, and distribution of food products. This field encompasses a wide range of activities, from the design and optimization of food processing equipment to the development of new food products and the implementation of sustainable practices in the food industry.One of the fundamental principles in food engineering is the understanding of the physical and chemical properties of food materials. This knowledge is essential for the design and operation of various food processing operations, such as mixing, drying, fermentation, and packaging. Food engineers must be able to analyze the behavior of food components, such as proteins, carbohydrates, and lipids, under different processing conditions to ensure the quality, safety, and stability of the final product.Another crucial aspect of food engineering is the application of heat and mass transfer principles. Food processing often involves thetransfer of heat and mass (e.g., moisture, gases) between the food product and its surroundings, and food engineers must be able to predict and control these processes to achieve the desired product characteristics. This includes the design of heating and cooling systems, the optimization of drying processes, and the understanding of the effects of temperature and pressure on food quality.In addition to the physical and chemical properties of food, food engineers must also consider the microbial aspects of food production and preservation. They must understand the growth and behavior of microorganisms, such as bacteria, yeasts, and molds, and how they can be controlled or eliminated to ensure the safety and shelf-life of food products. This may involve the design of sterilization and pasteurization processes, the development of antimicrobial packaging materials, and the implementation of effective cleaning and sanitation protocols.Another important area of food engineering is the optimization of food processing operations. This involves the use of mathematical modeling and simulation tools to analyze and improve the efficiency, productivity, and sustainability of food processing systems. Food engineers may use techniques such as process control, optimization, and simulation to identify and address bottlenecks, reduce energy and resource consumption, and improve product quality andconsistency.The field of food engineering also encompasses the development of new food products and the improvement of existing ones. Food engineers may work with food scientists and product developers to create innovative food products that meet the changing demands of consumers, such as healthier, more convenient, or more sustainable options. This may involve the use of novel ingredients, the application of new processing technologies, or the optimization of existing formulations and production methods.In recent years, the importance of sustainability and environmental responsibility has become increasingly prominent in the food industry. Food engineers play a crucial role in developing and implementing sustainable practices, such as the use of renewable energy sources, the reduction of waste and emissions, and the optimization of water usage. They may also work on the design of biodegradable packaging materials, the recovery and reuse of food processing byproducts, and the integration of renewable energy sources into food processing facilities.Overall, food engineering is a dynamic and multifaceted field that plays a vital role in the development, production, and distribution of safe, nutritious, and high-quality food products. By applying principles from various scientific and engineering disciplines, foodengineers are constantly working to improve the efficiency, sustainability, and innovation of the food industry, ultimately contributing to the well-being of people and the planet.。

HACCP基础知识

HACCP基础知识

问题4:是否有下一步骤能控制危害发生,将危害程度减少到可接受水平? 否 是
关键控制点
没有关键控制点
停止
13.制订HACCP计划的流程
准备阶段
完成危害分析工作表
完成HACCP计划表
13.1 准备阶段
步骤1
步骤2 步骤3 步骤4 步骤5
基本资料的收集:包括有关政策,法规,标准,组 建HACCP实施小组的人员及有关教育培训,制定的 有关表格等信息资料。并完成危害分析工作表和 HACCP计划表。 食品说明:食品特性,产品包装等。 产品销售方法说明:产品储藏运输方式等。 确定产品使用者或消费者。 完成一张流程图:流程图应反应产品生产的全过程 简要描述加工的每个步骤。
2.HACCP起源 1959年美国皮尔斯柏利(Pillsbury)公司与美国 航空和航天局(NASA)纳蒂克(Natick)实验室在联合 开发航天食品时形成了HACCP食品质量体系。太空实验 室人员需要安全,卫生的食品,而传统的品质控制手段 并不能完全确保产品的安全,而且需要对产品进行大量 的破坏性检测试验,这种方法最终仅有少量的产品符合 要求。Pillsbury 检查了NASA的 “无缺陷计划 ”(Zero defect Program),发现这种非破坏检测系统非常合 适,这种非破坏检验并没有直接针对食品和食品成分, 仅延伸到整个生产过程的控制。因此,Pillsbury提出了 一个新的概念—HACCP。
步骤18 建立审核(验证)措施:实施HACCP以后,要经 常进行审核,检查HACCP计划一确定建立的 CCP 和CL值是否正确;是否进行有效的控制和监控; 出现偏差时,采取的措施;检查HACCP记录是否 保持完好等。
பைடு நூலகம்
11.食品的潜在危害程度: 11.1 A类:专门用于非杀菌产品和特殊人群(如:婴儿 老人,体弱等)消费的食品。 11.2 B类:产品含有对微生物敏感性的成分,如:牛奶 鲜肉等含水分高的新鲜食品。 11.3 C类:生产过程缺乏可控制的步骤,如:肉类分割 等无热处理过程。 11.4 D类:产品在加工后,包装前会遭受污染的食品, 如大批量杀菌后在包装的食品。 11.5 E类:在运输,分零和消费过程中,易造成消费者 操作不当而存在的潜在危害的食品。 11.6 F类:包装后或在家里食用时不再加热处理的食品

食品科学与工程专业课英文对照

食品科学与工程专业课英文对照
酿造酒工艺学:Brewing wine technology
食品包装:Food packaging
食品毒理学:Food toxicology
食品生物技术:Food biotech
仪器分析:Instrument analysis
饮料工艺学:Beverage technology
园产品加工学:The product processingbiology
食品卫生检验:Food hygiene inspection
焙烤食品工艺学:Baking food technology
功能性食品:Functional food
粮油食品加工学:Cereals, oils and foodstuffs processing learn
食品机械基础:Food machinery basis
食品加工厂设计:Food processing plant design
食品营养学:Food nutrition
食品发酵工艺学:Food fermentation technology
食品分析:Food analysis
食品企业经营管理:Food enterprise operation and management
调味品生产工艺:Dressing production process
肉制品加工技术:Meat processing technology
乳制品加工技术:Dairy products processing technology
食品安全评价:Food safety evaluation
水产品加工技术:Aquatic product processing technology

GMP与HACCP原理

GMP与HACCP原理

GMP与HACCP原理目前,我国的食品安全状况令人担忧,主要表现在农业种植、养殖业的源头污染对食品安全的威胁日趋严重,一些企业违法生产和经营伪劣食品,企业应用新原料、新工艺(如转基因技术等)给食品安全带来许多新问题,政府有关部门在食品储存、运输、销售等环节监督管理不力并缺乏有效的卫生安全措施等。

因此,亟待加大我国食品行业安全卫生监管的力度,推广和应用GMP势在必行。

GMP是良好操作规范(Good Manufacture Practce)的英文缩写,其主要内容是对企业生产过程的合理性、生产设备的适用性和生产操作的精确性、规范性提出强制性要求。

几十年的应用实践证明,GMP是确保产品高质量的有效工具。

因此,联合国食品法典委员会(CAC)将GMP作为实施危害分析与关键控制点(HACCP)原理的必备程序之一。

1969年,世界卫生组织向世界各国推荐使用GMP。

1972年,欧共体14个成员国公布了GMP总则。

1975年,日本开始制定各类食品卫生规范。

我国药品行业率先应用GMP并颁布了药品生产的GMP标准,要求企业实施GMP认证,使药品的生产及管理水平有了较大程度的提高。

我国食品行业应用GMP始于20世纪80年代。

1984年,为加强对我国出口食品生产企业的监督管理,保证出口食品的安全和卫生质量,原国家商检局制定了《出口食品厂、库卫生最底要求》。

该规定是类似GMP 的卫生法规,于1994年卫生部修改为《出口食品厂、库卫生要求》。

1994年,卫生部参照FAO/WHO食品法典委员会CAC/RCP Rev.2—1985《食品卫生通则》,制定了《食品企业通用卫生规范》(GB14881—1994)国家标准。

随后,陆续发布了《罐头厂卫生规范》、《白酒厂卫生规范》等19项国家标准。

虽然上述标准均为强制性国家标准,但由于标准本身的局限性、我国标准化工作的滞后性、食品生产企业卫生条件和设施的落后状况,以及政府有关部门推广和监管措施力度不够,这些标准尚未得到全面的推广和实施。

英文食品科学原理资料(PPT 60页)

英文食品科学原理资料(PPT 60页)
U.S. Army begins food irradiation program (1953).
Watson & Crick discover the double-helix structure of DNA, laying the foundation for understanding genetics and developing recombinant DNA technology
Projection: Maximum amount of people earth can sustain = 20.7 billion
Food Science Achievements:
1900 - 1999
1900s:
Vacuum packaging - removes atmosphere from food packages. Hydrogenation - to keep unsaturated fats from turning rancid. U.S. & British patents issues for killing bacteria in food with ionizing radiation (1905). In U.S., first commercial freezing ofgest increases are expected in some of the poorest areas, such as Africa, southern Asia, and South America. Human population of Africa will double in 23 years. Population of South America will double in 29 years. Population of Europe will double in 343 years.

食品专业英语复习资料整理版(按PPT)

食品专业英语复习资料整理版(按PPT)

食品专业英语复习资料(祝你好运)1.姓名:名在前、姓在后;作者地址:由小到大的顺序书写,科室,所在单位,所在地(城市、省、国名),邮编等。

E.g. Department of Food Quality and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China, 5240882.述语、组织、团体名称:LC =lethal concentration 致死浓度 EAA =Essential amino acids 必需氨基酸DH = degree of hydrolysis 水解度 DNA =deozyrebonucleic acid 脱氧核糖核酸USDA=US Department of Agriculture 美国农业部 IFT=Institute of Food Technologists 食品科技协会CEO=chief executive officer 总经理3.数字+度量衡单位词15ft (foot\feet) 50rpm (revolutions per minute) cal (calorie) 卡C(centigrade)摄氏温度 etc=et cetera=and others(等物)et al.=et alii=and others(等人) i.e.=id est=that is e.g.=exampli gratia=for example4.公式:+plus 加号;正号-minus 减号;负号±plus or minus 正负号×is multiplied by 乘号÷is divided by 除号=is equal to 等于号%per cent 百分之…℃degree Celsius /centigrade摄氏度273 ℃273 Celsius or 273 degree Celsius5.The inhibition ratio(%)was calculated using the following formula:Inhibition ratio(%)= (A-A1)/A×100%Where A was the absorbance of the control, and A1 was the absorbance of the test sample.由下面的公式计算其抑制率(%):抑制率(%)=(A-A1)/A×100% 式中:A是对照的吸收度,A1是试样的吸收度。

食品专业英语课件带翻译

食品专业英语课件带翻译
团结 信赖 创造 挑战
Part 2 食品科技英语的阅读
Lesson 3 Amino acids
Para.1 Amino acids are produced using a range of technologies including direct fermentation, biotransformation of precursors using cells or enzymes, extraction of protein hydrolysates and chemical synthesis. They have a variety of uses as nutrients and flavours in the food and feed industries.
食品专业英语课件带翻译
团结 信赖 创造 挑战
Part 2 食品科技英语的阅读
Lesson 3 Amino acids
一.词汇讲解 二.课文阅读 三.课后小结 四.课后作业
团结 信赖 创造 挑战
Part 2 食品科技英语的阅读
Lesson 3 Amino acids
20种常见的蛋白质氨基酸
Glycine Alanine Valine Leucine
译文
除了甘氨酸、L-半胱氨酸和L-胱氨酸之外,其它所有的氨基酸 都可以通过发酵或生物合成的方法来生产。然而,并不是所有的生 产方法都可进行商业化生产。L-天冬酰胺、L-亮氨酸、L-酪氨酸、 L-半胱氨酸和L-胱氨酸是由蛋白质水解Amino acids
Para.1 Table 1 indicates the annual demand, production methods and applications of amino acids in the food industry. Important amino acids with non-food applications include Larginine, L-gludtamine, L-histidine, L-leucine, Lphenylalanine, L-tyrosine and L-valine.

【实用文档】CCP原则的主要内容

【实用文档】CCP原则的主要内容

HACCP 管理体系简介HACCP 是危害分析关键控制点(英文Hazard Analysis Critical Control Point)的简称。

它作为一种科学的、系统的方法,应用在从初级生产至最终消费过程中,通过对特定危害及其控制措施进行确定和评价,从而确保食品的安全。

HACCP在国际上被认为是控制由食品引起疾病的最经济的方法,并就此获得FAO/WHO 食品法典委员会(CAC)的认同。

它强调企业本身的作用,与一般传统的监督方法相比较,其重点在于预防而不是依赖于对最终产品的测试,它具有较高的经济效益和社会效益。

一.HACCP 的由来传统的食品生产卫生管理是通过对已生产的食品进行抽样检验来反映食品卫生和质量,但抽样检验相对来说准确性较低,需要大量的检验技术人员及经费。

20 世纪60 年代美国的Pillsbury 公司、Natick 的美军实验室以及国家航空和宇航局在开发美国航天食品时,采用过程控制推理分析方法,试图将工业生产的零缺陷程序应用在食品生产上。

通过事先采取充分的预防性措施,对食品加工过程中可能产生危害的关键步骤进行识别和严格监控,配合少量的抽样检验,可确保生产出高度安全的航天食品,于是出现了HACCP 概念。

1971年Pillsbury 公司在第一届美国国家食品保护会议上首次公开提出了HACCP 的原理。

二.应用HACCP的优点HACCP 体系的最大优点就在于它是一种系统性强、结构严谨、理性化、有多项约束、适用性强而效益显著的以预防为主的质量保证方法。

运用恰当则没有任何方法或体系像它那样能提供相同程度的安全性和质量保证,而HACCP的日常运行费用要比靠大量抽样检查的方式少得多。

从书刊资料中还可列出并汇总如下优点(Mitoh11, 1992):1.在问题出现之前就可采取纠正措施,因而是积极主动的控制。

通过易于监视的特性如时间、温度和外观实施控制。

监控方法简单、直观、可操作性强、快速。

2.可根据需要及时采取预防措施,迅速控制危害。

HACCP体系文件

HACCP体系文件

八个关键卫生条件和操作
1. 水的安全性 ssop文件\1生产二部生产用水安全控制.doc
2. 食品接触面的状况和清洁 ssop文件\2生产二部食品接触表面
3.
防止交叉污染
控制.doc
ssop文件\3生产二部防止交叉污染控制.doc
4.
手部清洁、消毒和厕所设施的维持 ssop文件\4生产二部手 的清洁、消毒和厕所
目的
在该部分中,你将学到: 监控是怎样定义的 为何需要监控 怎样设计一个监控体系 应用什么方法和设备监控关键限值 应当多长时间进行一次监控 谁进行监控
HACCP原理4
监控每个CCP
HACCP计划表——监控
1
23
CCP 危害 关键限值
监控
4
5
67
什么 怎样 频率 谁
监控
什么:通常是评估CCP是否在关键限值范 围内
危害评估
1. 评估非受控时的严重性 2. 确定发生的可能性 3. 确定危害是否应在HACCP计划中实施控

危害分析
危害必须受控,如果其: 可能发生, 可能引起消费者疾病或伤害
危害分析工作单——危害确定 和评估
(1)配 料/加工 步骤
(2)确 (3)潜 (4)对 (5)应
定本步骤 在的食品 第3栏的 用什么措
HACCP
(Hazard Analysis and Critical Control Point)是英文“危害分析
和关键控制点”的缩写
HACCP
是预防性的,不是反应性的 是用于防止因生物的、化学的和物理的 危害导致食品不安全的管理工具
HACCP的起源
最早起源于1960年 首先用于为太空计划准备食品的项目中 后被许多美国食品加工者采用

HACCP 原理及其应用

HACCP 原理及其应用

第3章如何理解HACCP原理及其应用第1节 HACCP简介1.HACCP概念和特点2.HACCP发展史和趋势第2节 HACCP原理1.危害分析(HA)2.确定关键控制点(CCP)3.建立关键限值(CL)4. 关键控制点的监控(M)5. 纠正措施(CA)6. 验证程序(V)7. 有效记录及保持(R)第3节 HACCP运行的前提条件1、GMP(Good Manufacturing Practice)2、标准卫生操作程序SSOP(Sanitation Standard OperatingProcedure)3.建立HACCP体系的几大步骤第4节食品加工HACCP应用实例1、基础工作阶段2、预备阶段3、完成危害分析工作单阶段第5节 HACCP与 GMP、SSOP、ISO9000之间的关系1、GMP与SSOP的关系2.GMP与SSOP的关系3、SSOP与HACCP的关系4、HACCP与ISO9000系列标准如何理解HACCP原理及其应用学习要点:1.掌握HACCP七个原理的内容;2.了解HACCP的特点3.了解HACCP的应用概况。

第1节 HACCP 简介1.HACCP概念和特点HACCP(危害分析和关键控制点)是“Hazard Analysis Critical Control Point”英文词的字母缩写。

HACCP是控制食品安全的经济有效体系。

作为科学的预防性的食品安全体系,HACCP具有以下特点:(1)HACCP是预防性的食品安全控制保证体系,HACCP不是一个孤立的体系,HACCP建筑在现行的食品安全计划的基础上,例如GMP(如人员和加工卫生计划等)。

(2)每个HACCP计划都反映了某种食品加工方法的专一特性,其重点在于预防,设计上在于防止危害进入食品。

(3)HACCP体系作为食品安全控制方法业已为全世界所认可,虽然HACCP不是零风险体系,HACCP可用于尽量减少食品安全危害的风险。

(4)恰如其分地肯定了食品行业对生产安全食品有基本责任,将保证食品安全的责任首先归于食品生产商/销售商。

HACCP食品质量管理体系

HACCP食品质量管理体系

HACCP食品质量管理体系——原理和实施方法简介课程目录u HACCP的定义u HACCP的产生和发展历程u HACCP与ISO9000的关系u HACCP的基本原理——7大原则u HACCP计划的编写和验证u 我国实施HACCP的必要性HACCP的定义u HACCP是英文Hazard Analysis and Critical Control Point的缩写,意思是危害分析与关键控制点,它是控制食品安全经济而有效的管理体系。

u 国际标准CAC/RCP-1《食品卫生通则》1997修订第三版对HACCP的定义是:鉴别、评价和控制对食品安全至关重要的危害的一种体系;HACCP的产生和发展历程u HACCP产生和发展的原因u HACCP的特点u HACCP的优缺点;u HACCP的发展历程u HACCP的发展趋势HACCP产生和发展的原因u HACCP的产生与发展与现代食品安全有关;u 与欧美发达国家对HACCP发展与应用的大力推动有关;u 国际贸易的发展促进了HACCP在全球水产业的推广应用HACCP的特点u 改变了以最终检验为主的传统控制观念,是从原料到消费每一个关键环节全面控制的控制体系;u 分析食品中的危害,达到控制危害的目的,保证食品的安全;u 适用于食品、饮品行业;HACCP的优缺点u 优点:1、最大优点就在于它是一种系统性强、结构严谨、理性化、有多向约束、适应性强而效益显著的预防为主的质量保证方法。

2、运用恰当则没有任何方法或体系象它那样能提供相同程度的安全性和质量保证,而HACCP的日常运行费用要比靠大量抽样检验的方式少的多。

3、在问题出现之前就可采取纠正措施,因而是积极主动的控制;4、通过易于监视的特性如时间、温度和外观实施控制;HACCP的优缺点u 优点:5、在需要时能采取及时的纠正措施,进行迅速控制;6、与依靠化学分析、微生物检验进行控制相比较,费用低廉;7、由直接专注于加工食品的人员控制生产操作;8、由于控制集中在生产操作的关键点,就可以对每批产品采取更多的保证措施;9、HACCP能用于潜在危害的预告;10、HACCP涉及到与产品安全性有关的各层次的职工,包括非技术性的人员。

食品专业英语LESSON10PrinciplesOfFoodPreserva

食品专业英语LESSON10PrinciplesOfFoodPreserva

食品专业英语LESSON10PrinciplesOfFoodPreservaDrying is one of man's oldest methods of food preservation. It is a process copied from nature; we have improved certain features of the operation. Drying is the most widely used method of food preservation.All the cereal grains are preserved by drying, and the natural process is so efficient it hardly requires added effort by man. However, there have been periods in history when climatic factors were such that grains failed to dry properly in the fields. In these instances, man attempted to assist the natural action by supplying heat to the grains which otherwise would decompose. Grains, legumes, nuts and certain fruits mature on the plants and dry in the warm wind. More fruits are preserved by drying than by any other method of food preservation. The natural sun drying of foods yields highly concentrated materials of enduring quaity. yet a highly complex civilization cannot be so dependent upon the elements-they are unpredictable. Sun drying remains the greatest food preservation action.Dehydration-Artificial DryingThe use of heat from a fire to dry foods was discovered independently by many men in the New and Old Worlds. Ancient man dried foods in his shelters; pre-Columbus American Indians used the heat from fire to dry foods. However, it was not until about 1795 that a hot air dehydration room was invented. The team of Masson and Challet in France developed a vegetable dehydrator which consisted of hot air(40℃) flow over thin slices of vegetables. It is worth noting that both canning anddehydration came into being at approximately the same time, nearly a century and a half ago.Evaporation and desiccation are terms which perhaps note the same action. The term dehydration has taken the meaning in the food industry as that Process of artificial drying.Dehydration vs. Sun DryingDehydration implies control over climatic conditions within a chamber, or microenvironment control. Sun drying is at the mercy of the elements. Dried foods from a dehydration unit can have better quality than sun-dried counterparts.Less land is required for the drying activity. Sun drying for fruit requires approximately one unit of drying surface per 20 units of crop land.Sanitary conditions are controllable within a dehydration pant, whereas in open fields contamination from dust, insects. birds and rodents are major problems.Dehydration obviously is a more expensive process than sun drying, yet the dried foods may have more monetary value from dehydration due to improved quality. The yield of dried fruit from a dehydrator is higher inasmuch as sugar is lost due to continued respiration of tissues during sun drying, and also due to fermentation.The color of sun-dried fruit may be superior to dehydrated fruit under optimum conditions of operation of both. Color development in certain immature fruits continues slowly during sun drying. This does not occur during. dehydration .In cooking quality of dehydrated foods are usually superior to sun-dried counterparts. However, sun-dried animal flesh and fish can be highly acceptable.On the basis of cost sun drying has advantages, but on thebasis of time to dry and quality, dehydration has merits. Furthermore sun drying can not be practiced widely due to unfavorable weather conditions in many areas where man lives and agriculture is rewarding.Why Dried Foods?Dried and dehydrated foods are more concentrated than any other preserved form of foodstuffs. They are less costly to produce; there is a minimum of labor required, processing equipment is limited, dried food storage requirements are at a minimum, and distribution costs are reduced (one carload of dried, compressed food may equal ten carloads of the fresh commodity).There are chemical and biological forces acting upon the food supply man desires. Man controls the chemical forces in dehydrated food by packaging and certain chemical additives. The biological forces are controlled by reducing the free water content and by heating. To be a suitable substrate to support growth of microorganisms, a food must have free water available for the microorganisms.By reducing the free water content, thereby increasing osmotic pressures, microbial growth can be controlled.Air-The Drying MediumFoodstuffs may be dried in air, superheated steam, in vacuum, in inert gas, and by the direct application of heat. Air is generally used as the drying medium because it is plentiful, convenient, and overheating of the food can be controlled. Air is used to conduct heat to the food being dried, and to carry liberated moisture vapor from the food. No elaborate moisture recovering system is required with air. as is needed with other gases. Dryingcan be accomplished gradually, and tendencies to scorch and discolor are within control.Function of Air in Drying-Air conveys heat to the food, causing water to vaporize, and is the vehicle to transport the liberated moisture vapor from the dehydrating food.Volume of Air Required in Drying-More air is required to conduct heat to the food to evaporate the water present than is needed to transport the vapor from the chamber. If the air entering is not dry. or if air leaving the dehydration chamber is not saturate4 with moisture vapor, the volume of air required is altered As a rule, 5 to 7 times as much air is required to heat food as is needed to carry the moisture vapor from the food. The moisture capacity of air is dependent upon the temperature.The volume of a gas at standard pressure increases l/273 in volume for each. 1℃ rise in temperature. Each 15℃ increase in temperature doubles the moisture ,holding capacity of air.Heat Required to Evaporate 454g of Water from Food─As a working figure, 4400 kgc are required to change 454 g of water to vapor at common dehydration temperatures. The heat of vaporization is actually temperature dependent.Rate of Evaporation from Free Surfaces.─The greater the surface area, the more porous the surface, and the higher will be the drying rate of food. The drying rate increases as the velocity of air flowing over food increases. The higher the temperature of air end the greater the temperature drop, the faster the rate of drying will be, providing case hardening does not develop. Almost as much time may be consumed in reducing the final 6% moisture as is required to bring the moisture content of 80% down to 6%. The drying time increases rapidly as the final moisture content approaches its equilibrium value.Case Hardening─if the temperature of the air is high and the relative humidity of the air is low, there is danger that moisture will be removed from the surface of foods being dried more rapidly than water can diffuse from the moist interior of the foods particle, and a hardening or casing will be formed. This impervious layer or boundary will retard the free diffusion of moisture. This condition is referred to as case hardening. It is prevented by controlling the relative humidity of the circulating air and the temperature of the air.Types of Driers─There are many t ypes of driers used in the dehydration of foods, the particular type chosen being governed by the nature of the commodity to be dried. the desired form of the finished product, economics,and operating conditions.The types of driers and the products upon which they are used are generallyas follows:Drier ProductDrum drier Milk veyetable juices,cranberries, bananasVacuum shelf drier Limited production of certainfoodsContinuous vacuume drier Fruits and vegetables Continuous belt (atmospheric) VegetablesdrierFluidized-bed drier VegetablesFoam-mat driers JuicesFreeze driers MeatsSpray driers Whole eggs, egg yolk, blood albumin and milkRotary driers Some meat Products usually not used for foodCabinet or compartment driers Fruits and vegetablesKiln driers Apples, some vegetablestunnel driers Fruits and vegetables第十课食品的干燥保藏原理干燥是人类保藏食品最古老的方法之一。

food bioscience的under review -回复

food bioscience的under review -回复

food bioscience的under review -回复食品生物科学的原理和应用——探索食品卫生和安全的必经之路摘要:食品生物科学是一个广泛的学科领域,涉及从食品原料到终端产品的生物学、化学和工程学等方面的知识。

本文将介绍食品生物科学的定义、基本原理和应用,并探讨其在食品卫生和安全方面的重要性。

我们还将讨论食品生物科学领域的最新研究和进展,以及未来的发展方向。

一、引言:食品生物科学是一个综合性学科,通过对食品的生物学、化学和工程学的研究,探索食品的组成、性质、制造和储存过程。

它为我们提供了一种能够确保食品卫生和安全的方法。

二、食品生物科学的基本原理:1. 食品成分和结构:食品生物科学的首要任务是研究食品的成分和结构。

这包括食物中的碳水化合物、蛋白质、脂肪、维生素和矿物质等。

了解食品的成分可以帮助我们确定其营养价值和食品处理过程中的变化。

2. 食品加工和保存技术:食品生物科学研究食品的制造和保存技术。

它研究食品在加热、蒸煮、冷藏、冷冻和干燥等处理过程中的变化。

这些技术可以改变食品的物理和化学性质,从而改变其口感、颜色和保存期限。

3. 食品微生物学:食品生物科学研究食品中的微生物。

食品中的微生物可以分为有益微生物和有害微生物。

有益微生物可以促进食品的发酵和熟化过程,增加食品的品质和口感。

然而,有害微生物可以引起食物中毒和感染性疾病。

4. 食品安全和风险评估:食品生物科学通过食品安全和风险评估研究食品中的潜在风险。

这包括食品中的有害物质,如重金属、农药残留和添加剂等。

食品安全和风险评估可以帮助我们选择安全和健康的食品。

三、食品生物科学的应用:1. 食品工业:食品生物科学在食品工业中有广泛的应用。

它可以帮助我们改进食品的加工和保存技术,提高食品的品质和安全性。

例如,利用食品生物科学的知识,我们可以设计更安全的食品加工设备,降低食品中的微生物污染和有害物质的含量。

2. 公共卫生:食品生物科学在公共卫生中起着重要的作用。

食品科学英语

食品科学英语

食品科学英语Food science is a fascinating field that combines biology, chemistry, and engineering to study the nature of food andits transformation during processing. It's not just about cooking; it's about understanding the science behind the flavors we love.From the moment raw ingredients are harvested, food scientists are at work, ensuring quality and safety. They analyze the nutritional content, develop new recipes, andeven create innovative food packaging that preserves freshness.One of the most exciting aspects of food science is the role it plays in new product development. Imagine being the one to invent the next big snack or health supplement! It's a blend of creativity and scientific rigor that makes thisfield so dynamic.Another crucial role food scientists play is in food safety. They are responsible for testing and monitoring to prevent foodborne illnesses, ensuring that what we eat is not only delicious but also safe for consumption.The study of food science also extends to the environmental impact of food production. How can we make our food systems more sustainable? This is a question that food scientists are actively researching, looking for ways toreduce waste and the carbon footprint of our diets.Innovation in food science doesn't stop at the lab bench. It's about applying knowledge to real-world problems, likehow to feed a growing global population while also addressing issues of food security and nutrition.The future of food science is bright, with advancementsin biotechnology offering new possibilities for creating healthier, more sustainable food options. It's a field that's constantly evolving, with new discoveries waiting to be made.In conclusion, food science is more than just adiscipline; it's a commitment to improving the way we produce, process, and consume food. It's a field that touches every aspect of our lives, and for those who are passionate about making a difference, it offers endless opportunities for growth and discovery.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Food fortification begins by fortifying table salt with iodine (1924).
1930s:
Freeze-drying process invented to preserve food. Vitamin D first added to milk through ultraviolet radiation (1933).
1950s:
Controlled-atmosphere packaging (CAP) developed (CAP controls O2 and CO2 in the package to limit respiration and ethylene production, thereby delaying ripening and spoilage).
1910s:
In U.S., first large-scale commercial pasta production.
1920s:
Clarence Birdseye develops quick-freezing process for foods and first commercializes blanched frozen vegetables.
Projle earth can sustain = 20.7 billion
Food Science Achievements:
1900 - 1999
1900s:
Vacuum packaging - removes atmosphere from food packages. Hydrogenation - to keep unsaturated fats from turning rancid. U.S. & British patents issues for killing bacteria in food with ionizing radiation (1905). In U.S., first commercial freezing of fruit and fish.
Milestones & Projections:
1830: World human population reaches 1 billion 1930: 2 billion 1960: 3 billion 1975: 4 billion 1999: 6 billion [Assuming a 64-year human life expectancy, of all the people born on earth since its creation, 2/3 are now alive.] 2030: 9 billion
Food Science and Technology
By Gilsonl 10/23/2002
Definition
Food science: Scientific study of food from “farm to fork”. Food technology: Use of the information generated by food science to produce safe, nutritious and wholesome food.
MORE PEOPLE, LESS FOOD
Widespread food shortages will develop over the next 40 years as a population explosion gradually outstrips world food supply. The food supply is the most immediate constraint on the Earth’s population-carrying capacity.
FOOD SCIENCE
Multidisciplinary Engineering Chemistry/Biochemistry Microbiology Nutrition
Foods as edible biochemicals Touches on many other areas Globalization of world food supply
Biggest increases are expected in some of the poorest areas, such as Africa, southern Asia, and South America. Human population of Africa will double in 23 years. Population of South America will double in 29 years. Population of Europe will double in 343 years.
1940s:
Mass production of food using automation takes off. Concentrated, frozen, and dehydrated foods produced in mass quantities for shipping overseas to military. Flour first fortified with vitamins and iron (1940). Aseptic processing and packaging is developed, increasing food quality, safety, and retention of nutrients.
U.S. Army begins food irradiation program (1953).
Watson & Crick discover the double-helix structure of DNA, laying the foundation for understanding genetics and developing recombinant DNA technology
相关文档
最新文档